bgfx/3rdparty/ocornut-imgui/widgets/gizmo.inl
Branimir Karadžić 044dd87bff Updated ImGui.
2016-10-23 12:16:41 -07:00

1496 lines
58 KiB
C++

// The MIT License(MIT)
//
// Copyright(c) 2016 Cedric Guillemet
//
// Permission is hereby granted, free of charge, to any person obtaining a copy
// of this software and associated documentation files(the "Software"), to deal
// in the Software without restriction, including without limitation the rights
// to use, copy, modify, merge, publish, distribute, sublicense, and / or sell
// copies of the Software, and to permit persons to whom the Software is
// furnished to do so, subject to the following conditions :
//
// The above copyright notice and this permission notice shall be included in all
// copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
// SOFTWARE.
namespace ImGuizmo
{
static const float ZPI = 3.14159265358979323846f;
static const float RAD2DEG = (180.f / ZPI);
static const float DEG2RAD = (ZPI / 180.f);
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
// utility and math
void FPU_MatrixF_x_MatrixF(const float *a, const float *b, float *r)
{
r[0] = a[0] * b[0] + a[1] * b[4] + a[2] * b[8] + a[3] * b[12];
r[1] = a[0] * b[1] + a[1] * b[5] + a[2] * b[9] + a[3] * b[13];
r[2] = a[0] * b[2] + a[1] * b[6] + a[2] * b[10] + a[3] * b[14];
r[3] = a[0] * b[3] + a[1] * b[7] + a[2] * b[11] + a[3] * b[15];
r[4] = a[4] * b[0] + a[5] * b[4] + a[6] * b[8] + a[7] * b[12];
r[5] = a[4] * b[1] + a[5] * b[5] + a[6] * b[9] + a[7] * b[13];
r[6] = a[4] * b[2] + a[5] * b[6] + a[6] * b[10] + a[7] * b[14];
r[7] = a[4] * b[3] + a[5] * b[7] + a[6] * b[11] + a[7] * b[15];
r[8] = a[8] * b[0] + a[9] * b[4] + a[10] * b[8] + a[11] * b[12];
r[9] = a[8] * b[1] + a[9] * b[5] + a[10] * b[9] + a[11] * b[13];
r[10] = a[8] * b[2] + a[9] * b[6] + a[10] * b[10] + a[11] * b[14];
r[11] = a[8] * b[3] + a[9] * b[7] + a[10] * b[11] + a[11] * b[15];
r[12] = a[12] * b[0] + a[13] * b[4] + a[14] * b[8] + a[15] * b[12];
r[13] = a[12] * b[1] + a[13] * b[5] + a[14] * b[9] + a[15] * b[13];
r[14] = a[12] * b[2] + a[13] * b[6] + a[14] * b[10] + a[15] * b[14];
r[15] = a[12] * b[3] + a[13] * b[7] + a[14] * b[11] + a[15] * b[15];
}
//template <typename T> T LERP(T x, T y, float z) { return (x + (y - x)*z); }
template <typename T> T Clamp(T x, T y, T z) { return ((x<y) ? y : ((x>z) ? z : x)); }
template <typename T> T max(T x, T y) { return (x > y) ? x : y; }
struct matrix_t;
struct vec_t
{
public:
float x, y, z, w;
void Lerp(const vec_t& v, float t)
{
x += (v.x - x) * t;
y += (v.y - y) * t;
z += (v.z - z) * t;
w += (v.w - w) * t;
}
void Set(float v) { x = y = z = w = v; }
void Set(float _x, float _y, float _z = 0.f, float _w = 0.f) { x = _x; y = _y; z = _z; w = _w; }
vec_t& operator -= (const vec_t& v) { x -= v.x; y -= v.y; z -= v.z; w -= v.w; return *this; }
vec_t& operator += (const vec_t& v) { x += v.x; y += v.y; z += v.z; w += v.w; return *this; }
vec_t& operator *= (const vec_t& v) { x *= v.x; y *= v.y; z *= v.z; w *= v.w; return *this; }
vec_t& operator *= (float v) { x *= v; y *= v; z *= v; w *= v; return *this; }
vec_t operator * (float f) const;
vec_t operator - () const;
vec_t operator - (const vec_t& v) const;
vec_t operator + (const vec_t& v) const;
vec_t operator * (const vec_t& v) const;
const vec_t& operator + () const { return (*this); }
float Length() const { return sqrtf(x*x + y*y + z*z); };
float LengthSq() const { return (x*x + y*y + z*z); };
vec_t Normalize() { (*this) *= (1.f / Length()); return (*this); }
vec_t Normalize(const vec_t& v) { this->Set(v.x, v.y, v.z, v.w); this->Normalize(); return (*this); }
void Cross(const vec_t& v)
{
vec_t res;
res.x = y * v.z - z * v.y;
res.y = z * v.x - x * v.z;
res.z = x * v.y - y * v.x;
x = res.x;
y = res.y;
z = res.z;
w = 0.f;
}
void Cross(const vec_t& v1, const vec_t& v2)
{
x = v1.y * v2.z - v1.z * v2.y;
y = v1.z * v2.x - v1.x * v2.z;
z = v1.x * v2.y - v1.y * v2.x;
w = 0.f;
}
float Dot(const vec_t &v) const
{
return (x * v.x) + (y * v.y) + (z * v.z) + (w * v.w);
}
float Dot3(const vec_t &v) const
{
return (x * v.x) + (y * v.y) + (z * v.z);
}
void Transform(const matrix_t& matrix);
void Transform(const vec_t & s, const matrix_t& matrix);
void TransformVector(const matrix_t& matrix);
void TransformPoint(const matrix_t& matrix);
void TransformVector(const vec_t& v, const matrix_t& matrix) { (*this) = v; this->TransformVector(matrix); }
void TransformPoint(const vec_t& v, const matrix_t& matrix) { (*this) = v; this->TransformPoint(matrix); }
float& operator [] (size_t index) { return ((float*)&x)[index]; }
const float& operator [] (size_t index) const { return ((float*)&x)[index]; }
};
vec_t makeVect(float _x, float _y, float _z = 0.f, float _w = 0.f) { vec_t res; res.x = _x; res.y = _y; res.z = _z; res.w = _w; return res; }
vec_t vec_t::operator * (float f) const { return makeVect(x * f, y * f, z * f, w *f); }
vec_t vec_t::operator - () const { return makeVect(-x, -y, -z, -w); }
vec_t vec_t::operator - (const vec_t& v) const { return makeVect(x - v.x, y - v.y, z - v.z, w - v.w); }
vec_t vec_t::operator + (const vec_t& v) const { return makeVect(x + v.x, y + v.y, z + v.z, w + v.w); }
vec_t vec_t::operator * (const vec_t& v) const { return makeVect(x * v.x, y * v.y, z * v.z, w * v.w); }
ImVec2 operator+ (const ImVec2& a, const ImVec2& b) { return ImVec2(a.x + b.x, a.y + b.y); }
vec_t Normalized(const vec_t& v) { vec_t res; res = v; res.Normalize(); return res; }
vec_t Cross(const vec_t& v1, const vec_t& v2)
{
vec_t res;
res.x = v1.y * v2.z - v1.z * v2.y;
res.y = v1.z * v2.x - v1.x * v2.z;
res.z = v1.x * v2.y - v1.y * v2.x;
res.w = 0.f;
return res;
}
float Dot(const vec_t &v1, const vec_t &v2)
{
return (v1.x * v2.x) + (v1.y * v2.y) + (v1.z * v2.z);
}
vec_t BuildPlan(const vec_t & p_point1, const vec_t & p_normal)
{
vec_t normal, res;
normal.Normalize(p_normal);
res.w = normal.Dot(p_point1);
res.x = normal.x;
res.y = normal.y;
res.z = normal.z;
return res;
}
struct matrix_t
{
public:
union
{
float m[4][4];
float m16[16];
struct
{
vec_t right, up, dir, position;
} v;
};
matrix_t(const matrix_t& other) { memcpy(&m16[0], &other.m16[0], sizeof(float) * 16); }
matrix_t() {}
operator float * () { return m16; }
operator const float* () const { return m16; }
void Translation(float _x, float _y, float _z) { this->Translation(makeVect(_x, _y, _z)); }
void Translation(const vec_t& vt)
{
v.right.Set(1.f, 0.f, 0.f, 0.f);
v.up.Set(0.f, 1.f, 0.f, 0.f);
v.dir.Set(0.f, 0.f, 1.f, 0.f);
v.position.Set(vt.x, vt.y, vt.z, 1.f);
}
void Scale(float _x, float _y, float _z)
{
v.right.Set(_x, 0.f, 0.f, 0.f);
v.up.Set(0.f, _y, 0.f, 0.f);
v.dir.Set(0.f, 0.f, _z, 0.f);
v.position.Set(0.f, 0.f, 0.f, 1.f);
}
void Scale(const vec_t& s) { Scale(s.x, s.y, s.z); }
matrix_t& operator *= (const matrix_t& mat)
{
matrix_t tmpMat;
tmpMat = *this;
tmpMat.Multiply(mat);
*this = tmpMat;
return *this;
}
matrix_t operator * (const matrix_t& mat) const
{
matrix_t matT;
matT.Multiply(*this, mat);
return matT;
}
void Multiply(const matrix_t &matrix)
{
matrix_t tmp;
tmp = *this;
FPU_MatrixF_x_MatrixF((float*)&tmp, (float*)&matrix, (float*)this);
}
void Multiply(const matrix_t &m1, const matrix_t &m2)
{
FPU_MatrixF_x_MatrixF((float*)&m1, (float*)&m2, (float*)this);
}
float GetDeterminant() const
{
return m[0][0] * m[1][1] * m[2][2] + m[0][1] * m[1][2] * m[2][0] + m[0][2] * m[1][0] * m[2][1] -
m[0][2] * m[1][1] * m[2][0] - m[0][1] * m[1][0] * m[2][2] - m[0][0] * m[1][2] * m[2][1];
}
float Inverse(const matrix_t &srcMatrix, bool affine = false);
float Inverse(bool affine = false);
void SetToIdentity()
{
v.right.Set(1.f, 0.f, 0.f, 0.f);
v.up.Set(0.f, 1.f, 0.f, 0.f);
v.dir.Set(0.f, 0.f, 1.f, 0.f);
v.position.Set(0.f, 0.f, 0.f, 1.f);
}
void Transpose()
{
matrix_t tmpm;
for (int l = 0; l < 4; l++)
{
for (int c = 0; c < 4; c++)
{
tmpm.m[l][c] = m[c][l];
}
}
(*this) = tmpm;
}
void RotationAxis(const vec_t & axis, float angle);
void OrthoNormalize()
{
v.right.Normalize();
v.up.Normalize();
v.dir.Normalize();
}
};
void vec_t::Transform(const matrix_t& matrix)
{
vec_t out;
out.x = x * matrix.m[0][0] + y * matrix.m[1][0] + z * matrix.m[2][0] + w * matrix.m[3][0];
out.y = x * matrix.m[0][1] + y * matrix.m[1][1] + z * matrix.m[2][1] + w * matrix.m[3][1];
out.z = x * matrix.m[0][2] + y * matrix.m[1][2] + z * matrix.m[2][2] + w * matrix.m[3][2];
out.w = x * matrix.m[0][3] + y * matrix.m[1][3] + z * matrix.m[2][3] + w * matrix.m[3][3];
x = out.x;
y = out.y;
z = out.z;
w = out.w;
}
void vec_t::Transform(const vec_t & s, const matrix_t& matrix)
{
*this = s;
Transform(matrix);
}
void vec_t::TransformPoint(const matrix_t& matrix)
{
vec_t out;
out.x = x * matrix.m[0][0] + y * matrix.m[1][0] + z * matrix.m[2][0] + matrix.m[3][0];
out.y = x * matrix.m[0][1] + y * matrix.m[1][1] + z * matrix.m[2][1] + matrix.m[3][1];
out.z = x * matrix.m[0][2] + y * matrix.m[1][2] + z * matrix.m[2][2] + matrix.m[3][2];
out.w = x * matrix.m[0][3] + y * matrix.m[1][3] + z * matrix.m[2][3] + matrix.m[3][3];
x = out.x;
y = out.y;
z = out.z;
w = out.w;
}
void vec_t::TransformVector(const matrix_t& matrix)
{
vec_t out;
out.x = x * matrix.m[0][0] + y * matrix.m[1][0] + z * matrix.m[2][0];
out.y = x * matrix.m[0][1] + y * matrix.m[1][1] + z * matrix.m[2][1];
out.z = x * matrix.m[0][2] + y * matrix.m[1][2] + z * matrix.m[2][2];
out.w = x * matrix.m[0][3] + y * matrix.m[1][3] + z * matrix.m[2][3];
x = out.x;
y = out.y;
z = out.z;
w = out.w;
}
float matrix_t::Inverse(const matrix_t &srcMatrix, bool affine)
{
float det = 0;
if (affine)
{
det = GetDeterminant();
float s = 1 / det;
m[0][0] = (srcMatrix.m[1][1] * srcMatrix.m[2][2] - srcMatrix.m[1][2] * srcMatrix.m[2][1]) * s;
m[0][1] = (srcMatrix.m[2][1] * srcMatrix.m[0][2] - srcMatrix.m[2][2] * srcMatrix.m[0][1]) * s;
m[0][2] = (srcMatrix.m[0][1] * srcMatrix.m[1][2] - srcMatrix.m[0][2] * srcMatrix.m[1][1]) * s;
m[1][0] = (srcMatrix.m[1][2] * srcMatrix.m[2][0] - srcMatrix.m[1][0] * srcMatrix.m[2][2]) * s;
m[1][1] = (srcMatrix.m[2][2] * srcMatrix.m[0][0] - srcMatrix.m[2][0] * srcMatrix.m[0][2]) * s;
m[1][2] = (srcMatrix.m[0][2] * srcMatrix.m[1][0] - srcMatrix.m[0][0] * srcMatrix.m[1][2]) * s;
m[2][0] = (srcMatrix.m[1][0] * srcMatrix.m[2][1] - srcMatrix.m[1][1] * srcMatrix.m[2][0]) * s;
m[2][1] = (srcMatrix.m[2][0] * srcMatrix.m[0][1] - srcMatrix.m[2][1] * srcMatrix.m[0][0]) * s;
m[2][2] = (srcMatrix.m[0][0] * srcMatrix.m[1][1] - srcMatrix.m[0][1] * srcMatrix.m[1][0]) * s;
m[3][0] = -(m[0][0] * srcMatrix.m[3][0] + m[1][0] * srcMatrix.m[3][1] + m[2][0] * srcMatrix.m[3][2]);
m[3][1] = -(m[0][1] * srcMatrix.m[3][0] + m[1][1] * srcMatrix.m[3][1] + m[2][1] * srcMatrix.m[3][2]);
m[3][2] = -(m[0][2] * srcMatrix.m[3][0] + m[1][2] * srcMatrix.m[3][1] + m[2][2] * srcMatrix.m[3][2]);
}
else
{
// transpose matrix
float src[16];
for (int i = 0; i < 4; ++i)
{
src[i] = srcMatrix.m16[i * 4];
src[i + 4] = srcMatrix.m16[i * 4 + 1];
src[i + 8] = srcMatrix.m16[i * 4 + 2];
src[i + 12] = srcMatrix.m16[i * 4 + 3];
}
// calculate pairs for first 8 elements (cofactors)
float tmp[12]; // temp array for pairs
tmp[0] = src[10] * src[15];
tmp[1] = src[11] * src[14];
tmp[2] = src[9] * src[15];
tmp[3] = src[11] * src[13];
tmp[4] = src[9] * src[14];
tmp[5] = src[10] * src[13];
tmp[6] = src[8] * src[15];
tmp[7] = src[11] * src[12];
tmp[8] = src[8] * src[14];
tmp[9] = src[10] * src[12];
tmp[10] = src[8] * src[13];
tmp[11] = src[9] * src[12];
// calculate first 8 elements (cofactors)
m16[0] = (tmp[0] * src[5] + tmp[3] * src[6] + tmp[4] * src[7]) - (tmp[1] * src[5] + tmp[2] * src[6] + tmp[5] * src[7]);
m16[1] = (tmp[1] * src[4] + tmp[6] * src[6] + tmp[9] * src[7]) - (tmp[0] * src[4] + tmp[7] * src[6] + tmp[8] * src[7]);
m16[2] = (tmp[2] * src[4] + tmp[7] * src[5] + tmp[10] * src[7]) - (tmp[3] * src[4] + tmp[6] * src[5] + tmp[11] * src[7]);
m16[3] = (tmp[5] * src[4] + tmp[8] * src[5] + tmp[11] * src[6]) - (tmp[4] * src[4] + tmp[9] * src[5] + tmp[10] * src[6]);
m16[4] = (tmp[1] * src[1] + tmp[2] * src[2] + tmp[5] * src[3]) - (tmp[0] * src[1] + tmp[3] * src[2] + tmp[4] * src[3]);
m16[5] = (tmp[0] * src[0] + tmp[7] * src[2] + tmp[8] * src[3]) - (tmp[1] * src[0] + tmp[6] * src[2] + tmp[9] * src[3]);
m16[6] = (tmp[3] * src[0] + tmp[6] * src[1] + tmp[11] * src[3]) - (tmp[2] * src[0] + tmp[7] * src[1] + tmp[10] * src[3]);
m16[7] = (tmp[4] * src[0] + tmp[9] * src[1] + tmp[10] * src[2]) - (tmp[5] * src[0] + tmp[8] * src[1] + tmp[11] * src[2]);
// calculate pairs for second 8 elements (cofactors)
tmp[0] = src[2] * src[7];
tmp[1] = src[3] * src[6];
tmp[2] = src[1] * src[7];
tmp[3] = src[3] * src[5];
tmp[4] = src[1] * src[6];
tmp[5] = src[2] * src[5];
tmp[6] = src[0] * src[7];
tmp[7] = src[3] * src[4];
tmp[8] = src[0] * src[6];
tmp[9] = src[2] * src[4];
tmp[10] = src[0] * src[5];
tmp[11] = src[1] * src[4];
// calculate second 8 elements (cofactors)
m16[8] = (tmp[0] * src[13] + tmp[3] * src[14] + tmp[4] * src[15]) - (tmp[1] * src[13] + tmp[2] * src[14] + tmp[5] * src[15]);
m16[9] = (tmp[1] * src[12] + tmp[6] * src[14] + tmp[9] * src[15]) - (tmp[0] * src[12] + tmp[7] * src[14] + tmp[8] * src[15]);
m16[10] = (tmp[2] * src[12] + tmp[7] * src[13] + tmp[10] * src[15]) - (tmp[3] * src[12] + tmp[6] * src[13] + tmp[11] * src[15]);
m16[11] = (tmp[5] * src[12] + tmp[8] * src[13] + tmp[11] * src[14]) - (tmp[4] * src[12] + tmp[9] * src[13] + tmp[10] * src[14]);
m16[12] = (tmp[2] * src[10] + tmp[5] * src[11] + tmp[1] * src[9]) - (tmp[4] * src[11] + tmp[0] * src[9] + tmp[3] * src[10]);
m16[13] = (tmp[8] * src[11] + tmp[0] * src[8] + tmp[7] * src[10]) - (tmp[6] * src[10] + tmp[9] * src[11] + tmp[1] * src[8]);
m16[14] = (tmp[6] * src[9] + tmp[11] * src[11] + tmp[3] * src[8]) - (tmp[10] * src[11] + tmp[2] * src[8] + tmp[7] * src[9]);
m16[15] = (tmp[10] * src[10] + tmp[4] * src[8] + tmp[9] * src[9]) - (tmp[8] * src[9] + tmp[11] * src[10] + tmp[5] * src[8]);
// calculate determinant
det = src[0] * m16[0] + src[1] * m16[1] + src[2] * m16[2] + src[3] * m16[3];
// calculate matrix inverse
float invdet = 1 / det;
for (int j = 0; j < 16; ++j)
{
m16[j] *= invdet;
}
}
return det;
}
void matrix_t::RotationAxis(const vec_t & axis, float angle)
{
float length2 = axis.LengthSq();
if (length2 < FLT_EPSILON)
{
SetToIdentity();
return;
}
vec_t n = axis * (1.f / sqrtf(length2));
float s = sinf(angle);
float c = cosf(angle);
float k = 1.f - c;
float xx = n.x * n.x * k + c;
float yy = n.y * n.y * k + c;
float zz = n.z * n.z * k + c;
float xy = n.x * n.y * k;
float yz = n.y * n.z * k;
float zx = n.z * n.x * k;
float xs = n.x * s;
float ys = n.y * s;
float zs = n.z * s;
m[0][0] = xx;
m[0][1] = xy + zs;
m[0][2] = zx - ys;
m[0][3] = 0.f;
m[1][0] = xy - zs;
m[1][1] = yy;
m[1][2] = yz + xs;
m[1][3] = 0.f;
m[2][0] = zx + ys;
m[2][1] = yz - xs;
m[2][2] = zz;
m[2][3] = 0.f;
m[3][0] = 0.f;
m[3][1] = 0.f;
m[3][2] = 0.f;
m[3][3] = 1.f;
}
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
//
enum MOVETYPE
{
NONE,
MOVE_X,
MOVE_Y,
MOVE_Z,
MOVE_XY,
MOVE_XZ,
MOVE_YZ,
MOVE_SCREEN,
ROTATE_X,
ROTATE_Y,
ROTATE_Z,
ROTATE_SCREEN,
SCALE_X,
SCALE_Y,
SCALE_Z,
SCALE_XYZ,
};
struct Context
{
Context() : mbUsing(false), mbEnable(true)
{
}
ImDrawList* mDrawList;
MODE mMode;
matrix_t mViewMat;
matrix_t mProjectionMat;
matrix_t mModel;
matrix_t mModelInverse;
matrix_t mModelSource;
matrix_t mModelSourceInverse;
matrix_t mMVP;
matrix_t mViewProjection;
vec_t mModelScaleOrigin;
vec_t mCameraEye;
vec_t mCameraRight;
vec_t mCameraDir;
vec_t mCameraUp;
vec_t mRayOrigin;
vec_t mRayVector;
ImVec2 mScreenSquareCenter;
ImVec2 mScreenSquareMin;
ImVec2 mScreenSquareMax;
float mScreenFactor;
vec_t mRelativeOrigin;
bool mbUsing;
bool mbEnable;
// translation
vec_t mTranslationPlan;
vec_t mTranslationPlanOrigin;
vec_t mMatrixOrigin;
// rotation
vec_t mRotationVectorSource;
float mRotationAngle;
float mRotationAngleOrigin;
//vec_t mWorldToLocalAxis;
// scale
vec_t mScale;
vec_t mScaleValueOrigin;
float mSaveMousePosx;
// save axis factor when using gizmo
bool mBelowAxisLimit[3];
bool mBelowPlaneLimit[3];
float mAxisFactor[3];
//
int mCurrentOperation;
};
static Context gContext;
static const float angleLimit = 0.96f;
static const float planeLimit = 0.2f;
static const vec_t directionUnary[3] = { makeVect(1.f, 0.f, 0.f), makeVect(0.f, 1.f, 0.f), makeVect(0.f, 0.f, 1.f) };
static const ImU32 directionColor[3] = { 0xFF0000AA, 0xFF00AA00, 0xFFAA0000 };
static const ImU32 selectionColor = 0xFF1080FF;
static const ImU32 inactiveColor = 0x99999999;
static const ImU32 translationLineColor = 0xAAAAAAAA;
static const char *translationInfoMask[] = { "X : %5.3f", "Y : %5.3f", "Z : %5.3f", "X : %5.3f Y : %5.3f", "Y : %5.3f Z : %5.3f", "X : %5.3f Z : %5.3f", "X : %5.3f Y : %5.3f Z : %5.3f" };
static const char *scaleInfoMask[] = { "X : %5.2f", "Y : %5.2f", "Z : %5.2f", "XYZ : %5.2f" };
static const char *rotationInfoMask[] = { "X : %5.2f deg %5.2f rad", "Y : %5.2f deg %5.2f rad", "Z : %5.2f deg %5.2f rad", "Screen : %5.2f deg %5.2f rad" };
static const int translationInfoIndex[] = { 0,0,0, 1,0,0, 2,0,0, 0,1,0, 1,2,0, 0,2,1, 0,1,2 };
static const float quadMin = 0.5f;
static const float quadMax = 0.8f;
static const float quadUV[8] = { quadMin, quadMin, quadMin, quadMax, quadMax, quadMax, quadMax, quadMin };
static const int halfCircleSegmentCount = 64;
static const float snapTension = 0.5f;
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
//
static int GetMoveType(vec_t *gizmoHitProportion);
static int GetRotateType();
static int GetScaleType();
static ImVec2 worldToPos(const vec_t& worldPos, const matrix_t& mat)
{
ImGuiIO& io = ImGui::GetIO();
vec_t trans;
trans.TransformPoint(worldPos, mat);
trans *= 0.5f / trans.w;
trans += makeVect(0.5f, 0.5f);
trans.y = 1.f - trans.y;
trans.x *= io.DisplaySize.x;
trans.y *= io.DisplaySize.y;
return ImVec2(trans.x, trans.y);
}
static void ComputeCameraRay(vec_t &rayOrigin, vec_t &rayDir)
{
ImGuiIO& io = ImGui::GetIO();
matrix_t mViewProjInverse;
mViewProjInverse.Inverse(gContext.mViewMat * gContext.mProjectionMat);
float mox = (io.MousePos.x / io.DisplaySize.x) * 2.f - 1.f;
float moy = (1.f - (io.MousePos.y / io.DisplaySize.y)) * 2.f - 1.f;
rayOrigin.Transform(makeVect(mox, moy, 0.f, 1.f), mViewProjInverse);
rayOrigin *= 1.f / rayOrigin.w;
vec_t rayEnd;
rayEnd.Transform(makeVect(mox, moy, 1.f, 1.f), mViewProjInverse);
rayEnd *= 1.f / rayEnd.w;
rayDir = Normalized(rayEnd - rayOrigin);
}
static float IntersectRayPlane(const vec_t & rOrigin, const vec_t& rVector, const vec_t& plan)
{
float numer = plan.Dot3(rOrigin) - plan.w;
float denom = plan.Dot3(rVector);
if (fabsf(denom) < FLT_EPSILON) // normal is orthogonal to vector, cant intersect
return -1.0f;
return -(numer / denom);
}
void BeginFrame()
{
ImGuiIO& io = ImGui::GetIO();
ImGui::Begin("gizmo", NULL, io.DisplaySize, 0, ImGuiWindowFlags_NoTitleBar | ImGuiWindowFlags_NoResize | ImGuiWindowFlags_NoScrollbar | ImGuiWindowFlags_NoInputs | ImGuiWindowFlags_NoSavedSettings | ImGuiWindowFlags_NoFocusOnAppearing | ImGuiWindowFlags_NoBringToFrontOnFocus);
gContext.mDrawList = ImGui::GetWindowDrawList();
ImGui::End();
}
bool IsUsing()
{
return gContext.mbUsing;
}
bool IsOver()
{
return (GetMoveType(NULL) != NONE) || GetRotateType() != NONE || GetScaleType() != NONE || IsUsing();
}
void Enable(bool enable)
{
gContext.mbEnable = enable;
if (!enable)
gContext.mbUsing = false;
}
static float GetUniform(const vec_t& position, const matrix_t& mat)
{
vec_t trf = makeVect(position.x, position.y, position.z, 1.f);
trf.Transform(mat);
return trf.w;
}
static void ComputeContext(const float *view, const float *projection, float *matrix, MODE mode)
{
gContext.mMode = mode;
gContext.mViewMat = *(matrix_t*)view;
gContext.mProjectionMat = *(matrix_t*)projection;
if (mode == LOCAL)
{
gContext.mModel = *(matrix_t*)matrix;
gContext.mModel.OrthoNormalize();
}
else
{
gContext.mModel.Translation(((matrix_t*)matrix)->v.position);
}
gContext.mModelSource = *(matrix_t*)matrix;
gContext.mModelScaleOrigin.Set(gContext.mModelSource.v.right.Length(), gContext.mModelSource.v.up.Length(), gContext.mModelSource.v.dir.Length());
gContext.mModelInverse.Inverse(gContext.mModel);
gContext.mModelSourceInverse.Inverse(gContext.mModelSource);
gContext.mViewProjection = gContext.mViewMat * gContext.mProjectionMat;
gContext.mMVP = gContext.mModel * gContext.mViewProjection;
matrix_t viewInverse;
viewInverse.Inverse(gContext.mViewMat);
gContext.mCameraDir = viewInverse.v.dir;
gContext.mCameraEye = viewInverse.v.position;
gContext.mCameraRight = viewInverse.v.right;
gContext.mCameraUp = viewInverse.v.up;
gContext.mScreenFactor = 0.1f * GetUniform(gContext.mModel.v.position, gContext.mViewProjection);
ImVec2 centerSSpace = worldToPos(makeVect(0.f, 0.f), gContext.mMVP);
gContext.mScreenSquareCenter = centerSSpace;
gContext.mScreenSquareMin = ImVec2(centerSSpace.x - 10.f, centerSSpace.y - 10.f);
gContext.mScreenSquareMax = ImVec2(centerSSpace.x + 10.f, centerSSpace.y + 10.f);
ComputeCameraRay(gContext.mRayOrigin, gContext.mRayVector);
}
static void ComputeColors(ImU32 *colors, int type, OPERATION operation)
{
if (gContext.mbEnable)
{
switch (operation)
{
case TRANSLATE:
colors[0] = (type == MOVE_SCREEN) ? selectionColor : 0xFFFFFFFF;
for (int i = 0; i < 3; i++)
{
int colorPlaneIndex = (i + 2) % 3;
colors[i + 1] = (type == (int)(MOVE_X + i)) ? selectionColor : directionColor[i];
colors[i + 4] = (type == (int)(MOVE_XY + i)) ? selectionColor : directionColor[colorPlaneIndex];
}
break;
case ROTATE:
colors[0] = (type == ROTATE_SCREEN) ? selectionColor : 0xFFFFFFFF;
for (int i = 0; i < 3; i++)
colors[i + 1] = (type == (int)(ROTATE_X + i)) ? selectionColor : directionColor[i];
break;
case SCALE:
colors[0] = (type == SCALE_XYZ) ? selectionColor : 0xFFFFFFFF;
for (int i = 0; i < 3; i++)
colors[i + 1] = (type == (int)(SCALE_X + i)) ? selectionColor : directionColor[i];
break;
}
}
else
{
for (int i = 0; i < 7; i++)
colors[i] = inactiveColor;
}
}
static void ComputeTripodAxisAndVisibility(int axisIndex, vec_t& dirPlaneX, vec_t& dirPlaneY, bool& belowAxisLimit, bool& belowPlaneLimit)
{
const int planNormal = (axisIndex + 2) % 3;
dirPlaneX = directionUnary[axisIndex];
dirPlaneY = directionUnary[(axisIndex + 1) % 3];
if (gContext.mbUsing)
{
// when using, use stored factors so the gizmo doesn't flip when we translate
belowAxisLimit = gContext.mBelowAxisLimit[axisIndex];
belowPlaneLimit = gContext.mBelowPlaneLimit[axisIndex];
dirPlaneX *= gContext.mAxisFactor[axisIndex];
dirPlaneY *= gContext.mAxisFactor[(axisIndex + 1) % 3];
}
else
{
vec_t dirPlaneNormalWorld;
dirPlaneNormalWorld.TransformVector(directionUnary[planNormal], gContext.mModel);
dirPlaneNormalWorld.Normalize();
vec_t dirPlaneXWorld(dirPlaneX);
dirPlaneXWorld.TransformVector(gContext.mModel);
dirPlaneXWorld.Normalize();
vec_t dirPlaneYWorld(dirPlaneY);
dirPlaneYWorld.TransformVector(gContext.mModel);
dirPlaneYWorld.Normalize();
vec_t cameraEyeToGizmo = Normalized(gContext.mModel.v.position - gContext.mCameraEye);
float dotCameraDirX = cameraEyeToGizmo.Dot3(dirPlaneXWorld);
float dotCameraDirY = cameraEyeToGizmo.Dot3(dirPlaneYWorld);
// compute factor values
float mulAxisX = (dotCameraDirX > 0.f) ? -1.f : 1.f;
float mulAxisY = (dotCameraDirY > 0.f) ? -1.f : 1.f;
dirPlaneX *= mulAxisX;
dirPlaneY *= mulAxisY;
belowAxisLimit = fabsf(dotCameraDirX) < angleLimit;
belowPlaneLimit = (fabsf(cameraEyeToGizmo.Dot3(dirPlaneNormalWorld)) > planeLimit);
// and store values
gContext.mAxisFactor[axisIndex] = mulAxisX;
gContext.mAxisFactor[(axisIndex+1)%3] = mulAxisY;
gContext.mBelowAxisLimit[axisIndex] = belowAxisLimit;
gContext.mBelowPlaneLimit[axisIndex] = belowPlaneLimit;
}
}
static void ComputeSnap(float*value, float *snap)
{
if (*snap <= FLT_EPSILON)
return;
float modulo = fmodf(*value, *snap);
float moduloRatio = fabsf(modulo) / *snap;
if (moduloRatio < snapTension)
*value -= modulo;
else if (moduloRatio >(1.f - snapTension))
*value = *value - modulo + *snap * ((*value<0.f) ? -1.f : 1.f);
}
static void ComputeSnap(vec_t& value, float *snap)
{
for (int i = 0; i < 3; i++)
{
ComputeSnap(&value[i], &snap[i]);
}
}
static float ComputeAngleOnPlan()
{
const float len = IntersectRayPlane(gContext.mRayOrigin, gContext.mRayVector, gContext.mTranslationPlan);
vec_t localPos = Normalized(gContext.mRayOrigin + gContext.mRayVector * len - gContext.mModel.v.position);
vec_t perpendicularVector;
perpendicularVector.Cross(gContext.mRotationVectorSource, gContext.mTranslationPlan);
perpendicularVector.Normalize();
float acosAngle = Clamp(Dot(localPos, gContext.mRotationVectorSource), -0.9999f, 0.9999f);
float angle = acosf(acosAngle);
angle *= (Dot(localPos, perpendicularVector) < 0.f) ? 1.f : -1.f;
return angle;
}
static void DrawRotationGizmo(int type)
{
ImDrawList* drawList = gContext.mDrawList;
ImGuiIO& io = ImGui::GetIO();
// colors
ImU32 colors[7];
ComputeColors(colors, type, ROTATE);
vec_t cameraToModelNormalized = Normalized(gContext.mModel.v.position - gContext.mCameraEye);
cameraToModelNormalized.TransformVector(gContext.mModelInverse);
for (int axis = 0; axis < 3; axis++)
{
ImVec2 circlePos[halfCircleSegmentCount];
float angleStart = atan2f(cameraToModelNormalized[(4-axis)%3], cameraToModelNormalized[(3 - axis) % 3]) + ZPI * 0.5f;
for (unsigned int i = 0; i < halfCircleSegmentCount; i++)
{
float ng = angleStart + ZPI * ((float)i / (float)halfCircleSegmentCount);
vec_t axisPos = makeVect(cosf(ng), sinf(ng), 0.f);
vec_t pos = makeVect(axisPos[axis], axisPos[(axis+1)%3], axisPos[(axis+2)%3]) * gContext.mScreenFactor;
circlePos[i] = worldToPos(pos, gContext.mMVP);
}
drawList->AddPolyline(circlePos, halfCircleSegmentCount, colors[3 - axis], false, 2, true);
}
drawList->AddCircle(worldToPos(gContext.mModel.v.position, gContext.mViewProjection), 0.06f * io.DisplaySize.x, colors[0], 64);
if (gContext.mbUsing)
{
ImVec2 circlePos[halfCircleSegmentCount +1];
circlePos[0] = worldToPos(gContext.mModel.v.position, gContext.mViewProjection);
for (unsigned int i = 1; i < halfCircleSegmentCount; i++)
{
float ng = gContext.mRotationAngle * ((float)(i-1) / (float)(halfCircleSegmentCount -1));
matrix_t rotateVectorMatrix;
rotateVectorMatrix.RotationAxis(gContext.mTranslationPlan, ng);
vec_t pos;
pos.TransformPoint(gContext.mRotationVectorSource, rotateVectorMatrix);
pos *= gContext.mScreenFactor;
circlePos[i] = worldToPos(pos + gContext.mModel.v.position, gContext.mViewProjection);
}
drawList->AddConvexPolyFilled(circlePos, halfCircleSegmentCount, 0x801080FF, true);
drawList->AddPolyline(circlePos, halfCircleSegmentCount, 0xFF1080FF, true, 2, true);
ImVec2 destinationPosOnScreen = circlePos[1];
char tmps[512];
ImFormatString(tmps, sizeof(tmps), rotationInfoMask[type - ROTATE_X], (gContext.mRotationAngle/ZPI)*180.f, gContext.mRotationAngle);
drawList->AddText(ImVec2(destinationPosOnScreen.x + 15, destinationPosOnScreen.y + 15), 0xFF000000, tmps);
drawList->AddText(ImVec2(destinationPosOnScreen.x + 14, destinationPosOnScreen.y + 14), 0xFFFFFFFF, tmps);
}
}
static void DrawHatchedAxis(const vec_t& axis)
{
for (int j = 1; j < 10; j++)
{
ImVec2 baseSSpace2 = worldToPos(axis * 0.05f * (float)(j * 2) * gContext.mScreenFactor, gContext.mMVP);
ImVec2 worldDirSSpace2 = worldToPos(axis * 0.05f * (float)(j * 2 + 1) * gContext.mScreenFactor, gContext.mMVP);
gContext.mDrawList->AddLine(baseSSpace2, worldDirSSpace2, 0x80000000, 6.f);
}
}
static void DrawScaleGizmo(int type)
{
ImDrawList* drawList = gContext.mDrawList;
// colors
ImU32 colors[7];
ComputeColors(colors, type, SCALE);
// draw screen cirle
drawList->AddCircleFilled(gContext.mScreenSquareCenter, 12.f, colors[0], 32);
// draw
vec_t scaleDisplay = { 1.f, 1.f, 1.f, 1.f };
if (gContext.mbUsing)
scaleDisplay = gContext.mScale;
for (unsigned int i = 0; i < 3; i++)
{
vec_t dirPlaneX, dirPlaneY;
bool belowAxisLimit, belowPlaneLimit;
ComputeTripodAxisAndVisibility(i, dirPlaneX, dirPlaneY, belowAxisLimit, belowPlaneLimit);
// draw axis
if (belowAxisLimit)
{
ImVec2 baseSSpace = worldToPos(dirPlaneX * 0.1f * gContext.mScreenFactor, gContext.mMVP);
ImVec2 worldDirSSpaceNoScale = worldToPos(dirPlaneX * gContext.mScreenFactor, gContext.mMVP);
ImVec2 worldDirSSpace = worldToPos((dirPlaneX * scaleDisplay[i]) * gContext.mScreenFactor, gContext.mMVP);
if (gContext.mbUsing)
{
drawList->AddLine(baseSSpace, worldDirSSpaceNoScale, 0xFF404040, 6.f);
drawList->AddCircleFilled(worldDirSSpaceNoScale, 10.f, 0xFF404040);
}
drawList->AddLine(baseSSpace, worldDirSSpace, colors[i + 1], 6.f);
drawList->AddCircleFilled(worldDirSSpace, 10.f, colors[i + 1]);
if (gContext.mAxisFactor[i] < 0.f)
DrawHatchedAxis(dirPlaneX * scaleDisplay[i]);
}
}
if (gContext.mbUsing)
{
//ImVec2 sourcePosOnScreen = worldToPos(gContext.mMatrixOrigin, gContext.mViewProjection);
ImVec2 destinationPosOnScreen = worldToPos(gContext.mModel.v.position, gContext.mViewProjection);
/*vec_t dif(destinationPosOnScreen.x - sourcePosOnScreen.x, destinationPosOnScreen.y - sourcePosOnScreen.y);
dif.Normalize();
dif *= 5.f;
drawList->AddCircle(sourcePosOnScreen, 6.f, translationLineColor);
drawList->AddCircle(destinationPosOnScreen, 6.f, translationLineColor);
drawList->AddLine(ImVec2(sourcePosOnScreen.x + dif.x, sourcePosOnScreen.y + dif.y), ImVec2(destinationPosOnScreen.x - dif.x, destinationPosOnScreen.y - dif.y), translationLineColor, 2.f);
*/
char tmps[512];
//vec_t deltaInfo = gContext.mModel.v.position - gContext.mMatrixOrigin;
int componentInfoIndex = (type - SCALE_X) * 3;
ImFormatString(tmps, sizeof(tmps), scaleInfoMask[type - SCALE_X], scaleDisplay[translationInfoIndex[componentInfoIndex]]);
drawList->AddText(ImVec2(destinationPosOnScreen.x + 15, destinationPosOnScreen.y + 15), 0xFF000000, tmps);
drawList->AddText(ImVec2(destinationPosOnScreen.x + 14, destinationPosOnScreen.y + 14), 0xFFFFFFFF, tmps);
}
}
static void DrawTranslationGizmo(int type)
{
ImDrawList* drawList = gContext.mDrawList;
// colors
ImU32 colors[7];
ComputeColors(colors, type, TRANSLATE);
// draw screen quad
drawList->AddRectFilled(gContext.mScreenSquareMin, gContext.mScreenSquareMax, colors[0], 2.f);
// draw
for (unsigned int i = 0; i < 3; i++)
{
vec_t dirPlaneX, dirPlaneY;
bool belowAxisLimit, belowPlaneLimit;
ComputeTripodAxisAndVisibility(i, dirPlaneX, dirPlaneY, belowAxisLimit, belowPlaneLimit);
// draw axis
if (belowAxisLimit)
{
ImVec2 baseSSpace = worldToPos(dirPlaneX * 0.1f * gContext.mScreenFactor, gContext.mMVP);
ImVec2 worldDirSSpace = worldToPos(dirPlaneX * gContext.mScreenFactor, gContext.mMVP);
drawList->AddLine(baseSSpace, worldDirSSpace, colors[i + 1], 6.f);
if (gContext.mAxisFactor[i] < 0.f)
DrawHatchedAxis(dirPlaneX);
}
// draw plane
if (belowPlaneLimit)
{
ImVec2 screenQuadPts[4];
for (int j = 0; j < 4; j++)
{
vec_t cornerWorldPos = (dirPlaneX * quadUV[j * 2] + dirPlaneY * quadUV[j * 2 + 1]) * gContext.mScreenFactor;
screenQuadPts[j] = worldToPos(cornerWorldPos, gContext.mMVP);
}
drawList->AddConvexPolyFilled(screenQuadPts, 4, colors[i + 4], true);
}
}
if (gContext.mbUsing)
{
ImVec2 sourcePosOnScreen = worldToPos(gContext.mMatrixOrigin, gContext.mViewProjection);
ImVec2 destinationPosOnScreen = worldToPos(gContext.mModel.v.position, gContext.mViewProjection);
vec_t dif = { destinationPosOnScreen.x - sourcePosOnScreen.x, destinationPosOnScreen.y - sourcePosOnScreen.y, 0.f, 0.f };
dif.Normalize();
dif *= 5.f;
drawList->AddCircle(sourcePosOnScreen, 6.f, translationLineColor);
drawList->AddCircle(destinationPosOnScreen, 6.f, translationLineColor);
drawList->AddLine(ImVec2(sourcePosOnScreen.x + dif.x, sourcePosOnScreen.y + dif.y), ImVec2(destinationPosOnScreen.x - dif.x, destinationPosOnScreen.y - dif.y), translationLineColor, 2.f);
char tmps[512];
vec_t deltaInfo = gContext.mModel.v.position - gContext.mMatrixOrigin;
int componentInfoIndex = (type - MOVE_X) * 3;
ImFormatString(tmps, sizeof(tmps), translationInfoMask[type - MOVE_X], deltaInfo[translationInfoIndex[componentInfoIndex]], deltaInfo[translationInfoIndex[componentInfoIndex + 1]], deltaInfo[translationInfoIndex[componentInfoIndex + 2]]);
drawList->AddText(ImVec2(destinationPosOnScreen.x + 15, destinationPosOnScreen.y + 15), 0xFF000000, tmps);
drawList->AddText(ImVec2(destinationPosOnScreen.x + 14, destinationPosOnScreen.y + 14), 0xFFFFFFFF, tmps);
}
}
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
//
static int GetScaleType()
{
ImGuiIO& io = ImGui::GetIO();
int type = NONE;
// screen
if (io.MousePos.x >= gContext.mScreenSquareMin.x && io.MousePos.x <= gContext.mScreenSquareMax.x &&
io.MousePos.y >= gContext.mScreenSquareMin.y && io.MousePos.y <= gContext.mScreenSquareMax.y)
type = SCALE_XYZ;
const vec_t direction[3] = { gContext.mModel.v.right, gContext.mModel.v.up, gContext.mModel.v.dir };
// compute
for (unsigned int i = 0; i < 3 && type == NONE; i++)
{
vec_t dirPlaneX, dirPlaneY;
bool belowAxisLimit, belowPlaneLimit;
ComputeTripodAxisAndVisibility(i, dirPlaneX, dirPlaneY, belowAxisLimit, belowPlaneLimit);
dirPlaneX.TransformVector(gContext.mModel);
dirPlaneY.TransformVector(gContext.mModel);
const int planNormal = (i + 2) % 3;
const float len = IntersectRayPlane(gContext.mRayOrigin, gContext.mRayVector, BuildPlan(gContext.mModel.v.position, direction[planNormal]));
vec_t posOnPlan = gContext.mRayOrigin + gContext.mRayVector * len;
const float dx = dirPlaneX.Dot3((posOnPlan - gContext.mModel.v.position) * (1.f / gContext.mScreenFactor));
const float dy = dirPlaneY.Dot3((posOnPlan - gContext.mModel.v.position) * (1.f / gContext.mScreenFactor));
if (belowAxisLimit && dy > -0.1f && dy < 0.1f && dx > 0.1f && dx < 1.f)
type = SCALE_X + i;
}
return type;
}
static int GetRotateType()
{
ImGuiIO& io = ImGui::GetIO();
int type = NONE;
vec_t deltaScreen = { io.MousePos.x - gContext.mScreenSquareCenter.x, io.MousePos.y - gContext.mScreenSquareCenter.y, 0.f, 0.f };
float dist = deltaScreen.Length();
if (dist >= 0.058f * io.DisplaySize.x && dist < 0.062f * io.DisplaySize.x)
type = ROTATE_SCREEN;
const vec_t planNormals[] = { gContext.mModel.v.right, gContext.mModel.v.up, gContext.mModel.v.dir};
for (unsigned int i = 0; i < 3 && type == NONE; i++)
{
// pickup plan
vec_t pickupPlan = BuildPlan(gContext.mModel.v.position, planNormals[i]);
const float len = IntersectRayPlane(gContext.mRayOrigin, gContext.mRayVector, pickupPlan);
vec_t localPos = gContext.mRayOrigin + gContext.mRayVector * len - gContext.mModel.v.position;
if (Dot(Normalized(localPos), gContext.mRayVector) > FLT_EPSILON)
continue;
float distance = localPos.Length() / gContext.mScreenFactor;
if (distance > 0.9f && distance < 1.1f)
type = ROTATE_X + i;
}
return type;
}
static int GetMoveType(vec_t *gizmoHitProportion)
{
ImGuiIO& io = ImGui::GetIO();
int type = NONE;
// screen
if (io.MousePos.x >= gContext.mScreenSquareMin.x && io.MousePos.x <= gContext.mScreenSquareMax.x &&
io.MousePos.y >= gContext.mScreenSquareMin.y && io.MousePos.y <= gContext.mScreenSquareMax.y)
type = MOVE_SCREEN;
const vec_t direction[3] = { gContext.mModel.v.right, gContext.mModel.v.up, gContext.mModel.v.dir };
// compute
for (unsigned int i = 0; i < 3 && type == NONE; i++)
{
vec_t dirPlaneX, dirPlaneY;
bool belowAxisLimit, belowPlaneLimit;
ComputeTripodAxisAndVisibility(i, dirPlaneX, dirPlaneY, belowAxisLimit, belowPlaneLimit);
dirPlaneX.TransformVector(gContext.mModel);
dirPlaneY.TransformVector(gContext.mModel);
const int planNormal = (i + 2) % 3;
const float len = IntersectRayPlane(gContext.mRayOrigin, gContext.mRayVector, BuildPlan(gContext.mModel.v.position, direction[planNormal]));
vec_t posOnPlan = gContext.mRayOrigin + gContext.mRayVector * len;
const float dx = dirPlaneX.Dot3((posOnPlan - gContext.mModel.v.position) * (1.f / gContext.mScreenFactor));
const float dy = dirPlaneY.Dot3((posOnPlan - gContext.mModel.v.position) * (1.f / gContext.mScreenFactor));
if (belowAxisLimit && dy > -0.1f && dy < 0.1f && dx > 0.1f && dx < 1.f)
type = MOVE_X + i;
if (belowPlaneLimit && dx >= quadUV[0] && dx <= quadUV[4] && dy >= quadUV[1] && dy <= quadUV[3])
type = MOVE_XY + i;
if (gizmoHitProportion)
*gizmoHitProportion = makeVect(dx, dy, 0.f);
}
return type;
}
static void HandleTranslation(float *matrix, float *deltaMatrix, int& type, float *snap)
{
ImGuiIO& io = ImGui::GetIO();
bool applyRotationLocaly = gContext.mMode == LOCAL || type == MOVE_SCREEN;
// move
if (gContext.mbUsing)
{
const float len = IntersectRayPlane(gContext.mRayOrigin, gContext.mRayVector, gContext.mTranslationPlan);
vec_t newPos = gContext.mRayOrigin + gContext.mRayVector * len;
// compute delta
vec_t newOrigin = newPos - gContext.mRelativeOrigin * gContext.mScreenFactor;
vec_t delta = newOrigin - gContext.mModel.v.position;
// 1 axis constraint
if (gContext.mCurrentOperation >= MOVE_X && gContext.mCurrentOperation <= MOVE_Z)
{
int axisIndex = gContext.mCurrentOperation - MOVE_X;
const vec_t& axisValue = *(vec_t*)&gContext.mModel.m[axisIndex];
float lengthOnAxis = Dot(axisValue, delta);
delta = axisValue * lengthOnAxis;
}
// snap
if (snap)
{
vec_t cumulativeDelta = gContext.mModel.v.position + delta - gContext.mMatrixOrigin;
if (applyRotationLocaly)
{
matrix_t modelSourceNormalized = gContext.mModelSource;
modelSourceNormalized.OrthoNormalize();
matrix_t modelSourceNormalizedInverse;
modelSourceNormalizedInverse.Inverse(modelSourceNormalized);
cumulativeDelta.TransformVector(modelSourceNormalizedInverse);
ComputeSnap(cumulativeDelta, snap);
cumulativeDelta.TransformVector(modelSourceNormalized);
}
else
{
ComputeSnap(cumulativeDelta, snap);
}
delta = gContext.mMatrixOrigin + cumulativeDelta - gContext.mModel.v.position;
}
// compute matrix & delta
matrix_t deltaMatrixTranslation;
deltaMatrixTranslation.Translation(delta);
if (deltaMatrix)
memcpy(deltaMatrix, deltaMatrixTranslation.m16, sizeof(float) * 16);
matrix_t res = gContext.mModelSource * deltaMatrixTranslation;
*(matrix_t*)matrix = res;
if (!io.MouseDown[0])
gContext.mbUsing = false;
type = gContext.mCurrentOperation;
}
else
{
// find new possible way to move
vec_t gizmoHitProportion;
type = GetMoveType(&gizmoHitProportion);
if (io.MouseDown[0] && type != NONE)
{
gContext.mbUsing = true;
gContext.mCurrentOperation = type;
const vec_t movePlanNormal[] = { gContext.mModel.v.up, gContext.mModel.v.dir, gContext.mModel.v.right, gContext.mModel.v.dir, gContext.mModel.v.right, gContext.mModel.v.up, -gContext.mCameraDir };
// pickup plan
gContext.mTranslationPlan = BuildPlan(gContext.mModel.v.position, movePlanNormal[type - MOVE_X]);
const float len = IntersectRayPlane(gContext.mRayOrigin, gContext.mRayVector, gContext.mTranslationPlan);
gContext.mTranslationPlanOrigin = gContext.mRayOrigin + gContext.mRayVector * len;
gContext.mMatrixOrigin = gContext.mModel.v.position;
gContext.mRelativeOrigin = (gContext.mTranslationPlanOrigin - gContext.mModel.v.position) * (1.f / gContext.mScreenFactor);
}
}
}
static void HandleScale(float *matrix, float *deltaMatrix, int& type, float *snap)
{
ImGuiIO& io = ImGui::GetIO();
if (!gContext.mbUsing)
{
// find new possible way to scale
type = GetScaleType();
if (io.MouseDown[0] && type != NONE)
{
gContext.mbUsing = true;
gContext.mCurrentOperation = type;
const vec_t movePlanNormal[] = { gContext.mModel.v.up, gContext.mModel.v.dir, gContext.mModel.v.right, gContext.mModel.v.dir, gContext.mModel.v.up, gContext.mModel.v.right, -gContext.mCameraDir };
// pickup plan
gContext.mTranslationPlan = BuildPlan(gContext.mModel.v.position, movePlanNormal[type - SCALE_X]);
const float len = IntersectRayPlane(gContext.mRayOrigin, gContext.mRayVector, gContext.mTranslationPlan);
gContext.mTranslationPlanOrigin = gContext.mRayOrigin + gContext.mRayVector * len;
gContext.mMatrixOrigin = gContext.mModel.v.position;
gContext.mScale.Set(1.f, 1.f, 1.f);
gContext.mRelativeOrigin = (gContext.mTranslationPlanOrigin - gContext.mModel.v.position) * (1.f / gContext.mScreenFactor);
gContext.mScaleValueOrigin = makeVect(gContext.mModelSource.v.right.Length(), gContext.mModelSource.v.up.Length(), gContext.mModelSource.v.dir.Length());
gContext.mSaveMousePosx = io.MousePos.x;
}
}
// scale
if (gContext.mbUsing)
{
const float len = IntersectRayPlane(gContext.mRayOrigin, gContext.mRayVector, gContext.mTranslationPlan);
vec_t newPos = gContext.mRayOrigin + gContext.mRayVector * len;
vec_t newOrigin = newPos - gContext.mRelativeOrigin * gContext.mScreenFactor;
vec_t delta = newOrigin - gContext.mModel.v.position;
// 1 axis constraint
if (gContext.mCurrentOperation >= SCALE_X && gContext.mCurrentOperation <= SCALE_Z)
{
int axisIndex = gContext.mCurrentOperation - SCALE_X;
const vec_t& axisValue = *(vec_t*)&gContext.mModel.m[axisIndex];
float lengthOnAxis = Dot(axisValue, delta);
delta = axisValue * lengthOnAxis;
vec_t baseVector = gContext.mTranslationPlanOrigin - gContext.mModel.v.position;
float ratio = Dot(axisValue, baseVector + delta) / Dot(axisValue, baseVector);
gContext.mScale[axisIndex] = max(ratio, 0.001f);
}
else
{
float scaleDelta = (io.MousePos.x - gContext.mSaveMousePosx) * 0.01f;
gContext.mScale.Set(max(1.f + scaleDelta, 0.001f));
}
// snap
if (snap)
{
float scaleSnap[] = { snap[0], snap[0], snap[0] };
ComputeSnap(gContext.mScale, scaleSnap);
}
// no 0 allowed
for (int i = 0; i < 3;i++)
gContext.mScale[i] = max(gContext.mScale[i], 0.001f);
// compute matrix & delta
matrix_t deltaMatrixScale;
deltaMatrixScale.Scale(gContext.mScale * gContext.mScaleValueOrigin);
matrix_t res = deltaMatrixScale * gContext.mModel;
*(matrix_t*)matrix = res;
if (deltaMatrix)
{
deltaMatrixScale.Scale(gContext.mScale);
memcpy(deltaMatrix, deltaMatrixScale.m16, sizeof(float) * 16);
}
if (!io.MouseDown[0])
gContext.mbUsing = false;
type = gContext.mCurrentOperation;
}
}
static void HandleRotation(float *matrix, float *deltaMatrix, int& type, float *snap)
{
ImGuiIO& io = ImGui::GetIO();
bool applyRotationLocaly = gContext.mMode == LOCAL;
if (!gContext.mbUsing)
{
type = GetRotateType();
if (type == ROTATE_SCREEN)
{
applyRotationLocaly = true;
}
if (io.MouseDown[0] && type != NONE)
{
gContext.mbUsing = true;
gContext.mCurrentOperation = type;
const vec_t rotatePlanNormal[] = { gContext.mModel.v.right, gContext.mModel.v.up, gContext.mModel.v.dir, -gContext.mCameraDir };
// pickup plan
if (applyRotationLocaly)
{
gContext.mTranslationPlan = BuildPlan(gContext.mModel.v.position, rotatePlanNormal[type - ROTATE_X]);
}
else
{
gContext.mTranslationPlan = BuildPlan(gContext.mModelSource.v.position, directionUnary[type - ROTATE_X]);
}
const float len = IntersectRayPlane(gContext.mRayOrigin, gContext.mRayVector, gContext.mTranslationPlan);
vec_t localPos = gContext.mRayOrigin + gContext.mRayVector * len - gContext.mModel.v.position;
gContext.mRotationVectorSource = Normalized(localPos);
gContext.mRotationAngleOrigin = ComputeAngleOnPlan();
}
}
// rotation
if (gContext.mbUsing)
{
gContext.mRotationAngle = ComputeAngleOnPlan();
if (snap)
{
float snapInRadian = snap[0] * DEG2RAD;
ComputeSnap(&gContext.mRotationAngle, &snapInRadian);
}
vec_t rotationAxisLocalSpace;
rotationAxisLocalSpace.TransformVector(makeVect(gContext.mTranslationPlan.x, gContext.mTranslationPlan.y, gContext.mTranslationPlan.z, 0.f), gContext.mModelInverse);
rotationAxisLocalSpace.Normalize();
matrix_t deltaRotation;
deltaRotation.RotationAxis(rotationAxisLocalSpace, gContext.mRotationAngle - gContext.mRotationAngleOrigin);
gContext.mRotationAngleOrigin = gContext.mRotationAngle;
matrix_t scaleOrigin;
scaleOrigin.Scale(gContext.mModelScaleOrigin);
if (applyRotationLocaly)
{
*(matrix_t*)matrix = scaleOrigin * deltaRotation * gContext.mModel;
}
else
{
matrix_t res = gContext.mModelSource;
res.v.position.Set(0.f);
*(matrix_t*)matrix = res * deltaRotation;
((matrix_t*)matrix)->v.position = gContext.mModelSource.v.position;
}
if (deltaMatrix)
{
*(matrix_t*)deltaMatrix = gContext.mModelInverse * deltaRotation * gContext.mModel;
}
if (!io.MouseDown[0])
gContext.mbUsing = false;
type = gContext.mCurrentOperation;
}
}
void DecomposeMatrixToComponents(const float *matrix, float *translation, float *rotation, float *scale)
{
matrix_t mat = *(matrix_t*)matrix;
scale[0] = mat.v.right.Length();
scale[1] = mat.v.up.Length();
scale[2] = mat.v.dir.Length();
mat.OrthoNormalize();
rotation[0] = RAD2DEG * atan2f(mat.m[1][2], mat.m[2][2]);
rotation[1] = RAD2DEG * atan2f(-mat.m[0][2], sqrtf(mat.m[1][2] * mat.m[1][2] + mat.m[2][2]* mat.m[2][2]));
rotation[2] = RAD2DEG * atan2f(mat.m[0][1], mat.m[0][0]);
translation[0] = mat.v.position.x;
translation[1] = mat.v.position.y;
translation[2] = mat.v.position.z;
}
void RecomposeMatrixFromComponents(const float *translation, const float *rotation, const float *scale, float *matrix)
{
matrix_t& mat = *(matrix_t*)matrix;
matrix_t rot[3];
for (int i = 0; i < 3;i++)
rot[i].RotationAxis(directionUnary[i], rotation[i] * DEG2RAD);
mat = rot[0] * rot[1] * rot[2];
float validScale[3];
for (int i = 0; i < 3; i++)
{
if (fabsf(scale[i]) < FLT_EPSILON)
validScale[i] = 0.001f;
else
validScale[i] = scale[i];
}
mat.v.right *= validScale[0];
mat.v.up *= validScale[1];
mat.v.dir *= validScale[2];
mat.v.position.Set(translation[0], translation[1], translation[2], 1.f);
}
void Manipulate(const float *view, const float *projection, OPERATION operation, MODE mode, float *matrix, float *deltaMatrix, float *snap)
{
ComputeContext(view, projection, matrix, mode);
// set delta to identity
if (deltaMatrix)
((matrix_t*)deltaMatrix)->SetToIdentity();
// behind camera
vec_t camSpacePosition;
camSpacePosition.TransformPoint(makeVect(0.f, 0.f, 0.f), gContext.mMVP);
if (camSpacePosition.z < 0.001f)
return;
// --
int type = NONE;
if (gContext.mbEnable)
{
switch (operation)
{
case ROTATE:
HandleRotation(matrix, deltaMatrix, type, snap);
break;
case TRANSLATE:
HandleTranslation(matrix, deltaMatrix, type, snap);
break;
case SCALE:
HandleScale(matrix, deltaMatrix, type, snap);
break;
}
}
switch (operation)
{
case ROTATE:
DrawRotationGizmo(type);
break;
case TRANSLATE:
DrawTranslationGizmo(type);
break;
case SCALE:
DrawScaleGizmo(type);
break;
}
}
void DrawCube(const float *view, const float *projection, float *matrix)
{
matrix_t viewInverse;
viewInverse.Inverse(*(matrix_t*)view);
const matrix_t& model = *(matrix_t*)matrix;
matrix_t res = *(matrix_t*)matrix * *(matrix_t*)view * *(matrix_t*)projection;
for (int iFace = 0; iFace < 6; iFace++)
{
const int normalIndex = (iFace % 3);
const int perpXIndex = (normalIndex + 1) % 3;
const int perpYIndex = (normalIndex + 2) % 3;
const float invert = (iFace > 2) ? -1.f : 1.f;
const vec_t faceCoords[4] = { directionUnary[normalIndex] + directionUnary[perpXIndex] + directionUnary[perpYIndex],
directionUnary[normalIndex] + directionUnary[perpXIndex] - directionUnary[perpYIndex],
directionUnary[normalIndex] - directionUnary[perpXIndex] - directionUnary[perpYIndex],
directionUnary[normalIndex] - directionUnary[perpXIndex] + directionUnary[perpYIndex],
};
// clipping
bool skipFace = false;
for (unsigned int iCoord = 0; iCoord < 4; iCoord++)
{
vec_t camSpacePosition;
camSpacePosition.TransformPoint(faceCoords[iCoord] * 0.5f * invert, gContext.mMVP);
if (camSpacePosition.z < 0.001f)
{
skipFace = true;
break;
}
}
if (skipFace)
continue;
// 3D->2D
ImVec2 faceCoordsScreen[4];
for (unsigned int iCoord = 0; iCoord < 4; iCoord++)
faceCoordsScreen[iCoord] = worldToPos(faceCoords[iCoord] * 0.5f * invert, res);
// back face culling
vec_t cullPos, cullNormal;
cullPos.TransformPoint(faceCoords[0] * 0.5f * invert, model);
cullNormal.TransformVector(directionUnary[normalIndex] * invert, model);
float dt = Dot(Normalized(cullPos - viewInverse.v.position), Normalized(cullNormal));
if (dt>0.f)
continue;
// draw face with lighter color
gContext.mDrawList->AddConvexPolyFilled(faceCoordsScreen, 4, directionColor[normalIndex] | 0x808080, true);
}
}
};