67 lines
2.0 KiB
Bash
67 lines
2.0 KiB
Bash
bool frustumCullingTest(mat4 mvp, vec3 bmin, vec3 bmax);
|
|
|
|
struct Frustum
|
|
{
|
|
vec4 planes[6];
|
|
};
|
|
|
|
/**
|
|
* Extract Frustum Planes from MVP Matrix
|
|
*
|
|
* Based on "Fast Extraction of Viewing Frustum Planes from the World-
|
|
* View-Projection Matrix", by Gil Gribb and Klaus Hartmann.
|
|
* This procedure computes the planes of the frustum and normalizes
|
|
* them.
|
|
*/
|
|
void loadFrustum(out Frustum f, mat4 mvp)
|
|
{
|
|
for (int i = 0; i < 3; ++i)
|
|
{
|
|
for (int j = 0; j < 2; ++j)
|
|
{
|
|
f.planes[i*2+j].x = mtxGetElement(mvp, 0, 3) + (j == 0 ? mtxGetElement(mvp, 0, i) : -mtxGetElement(mvp, 0, i));
|
|
f.planes[i*2+j].y = mtxGetElement(mvp, 1, 3) + (j == 0 ? mtxGetElement(mvp, 1, i) : -mtxGetElement(mvp, 1, i));
|
|
f.planes[i*2+j].z = mtxGetElement(mvp, 2, 3) + (j == 0 ? mtxGetElement(mvp, 2, i) : -mtxGetElement(mvp, 2, i));
|
|
f.planes[i*2+j].w = mtxGetElement(mvp, 3, 3) + (j == 0 ? mtxGetElement(mvp, 3, i) : -mtxGetElement(mvp, 3, i));
|
|
f.planes[i*2+j]*= length(f.planes[i*2+j].xyz);
|
|
}
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Negative Vertex of an AABB
|
|
*
|
|
* This procedure computes the negative vertex of an AABB
|
|
* given a normal.
|
|
* See the View Frustum Culling tutorial @ LightHouse3D.com
|
|
* http://www.lighthouse3d.com/tutorials/view-frustum-culling/geometric-approach-testing-boxes-ii/
|
|
*/
|
|
vec3 negativeVertex(vec3 bmin, vec3 bmax, vec3 n)
|
|
{
|
|
bvec3 b = greaterThan(n, vec3(0.0, 0.0, 0.0));
|
|
return mix(bmin, bmax, b);
|
|
}
|
|
|
|
/**
|
|
* Frustum-AABB Culling Test
|
|
*
|
|
* This procedure returns true if the AABB is either inside, or in
|
|
* intersection with the frustum, and false otherwise.
|
|
* The test is based on the View Frustum Culling tutorial @ LightHouse3D.com
|
|
* http://www.lighthouse3d.com/tutorials/view-frustum-culling/geometric-approach-testing-boxes-ii/
|
|
*/
|
|
bool frustumCullingTest(mat4 mvp, vec3 bmin, vec3 bmax)
|
|
{
|
|
float a = 1.0f;
|
|
Frustum f;
|
|
|
|
loadFrustum(f, mvp);
|
|
for (int i = 0; i < 6 && a >= 0.0f; ++i)
|
|
{
|
|
vec3 n = negativeVertex(bmin, bmax, f.planes[i].xyz);
|
|
a = dot(vec4(n, 1.0f), f.planes[i]);
|
|
}
|
|
|
|
return (a >= 0.0);
|
|
}
|