bgfx/examples/18-ibl/ibl.cpp
2017-02-22 22:26:39 -08:00

839 lines
22 KiB
C++

/*
* Copyright 2014-2016 Dario Manesku. All rights reserved.
* License: https://github.com/bkaradzic/bgfx#license-bsd-2-clause
*/
#include <vector>
#include <string>
#include "common.h"
#include "bgfx_utils.h"
#include "imgui/imgui.h"
#include "nanovg/nanovg.h"
#include <bx/readerwriter.h>
#include <bx/string.h>
static float s_texelHalf = 0.0f;
struct Uniforms
{
enum { NumVec4 = 12 };
void init()
{
u_params = bgfx::createUniform("u_params", bgfx::UniformType::Vec4, NumVec4);
}
void submit()
{
bgfx::setUniform(u_params, m_params, NumVec4);
}
void destroy()
{
bgfx::destroyUniform(u_params);
}
union
{
struct
{
union
{
float m_mtx[16];
/* 0*/ struct { float m_mtx0[4]; };
/* 1*/ struct { float m_mtx1[4]; };
/* 2*/ struct { float m_mtx2[4]; };
/* 3*/ struct { float m_mtx3[4]; };
};
/* 4*/ struct { float m_glossiness, m_reflectivity, m_exposure, m_bgType; };
/* 5*/ struct { float m_metalOrSpec, m_unused5[3]; };
/* 6*/ struct { float m_doDiffuse, m_doSpecular, m_doDiffuseIbl, m_doSpecularIbl; };
/* 7*/ struct { float m_cameraPos[3], m_unused7[1]; };
/* 8*/ struct { float m_rgbDiff[4]; };
/* 9*/ struct { float m_rgbSpec[4]; };
/*10*/ struct { float m_lightDir[3], m_unused10[1]; };
/*11*/ struct { float m_lightCol[3], m_unused11[1]; };
};
float m_params[NumVec4*4];
};
bgfx::UniformHandle u_params;
};
struct PosColorTexCoord0Vertex
{
float m_x;
float m_y;
float m_z;
uint32_t m_rgba;
float m_u;
float m_v;
static void init()
{
ms_decl
.begin()
.add(bgfx::Attrib::Position, 3, bgfx::AttribType::Float)
.add(bgfx::Attrib::Color0, 4, bgfx::AttribType::Uint8, true)
.add(bgfx::Attrib::TexCoord0, 2, bgfx::AttribType::Float)
.end();
}
static bgfx::VertexDecl ms_decl;
};
bgfx::VertexDecl PosColorTexCoord0Vertex::ms_decl;
void screenSpaceQuad(float _textureWidth, float _textureHeight, bool _originBottomLeft = false, float _width = 1.0f, float _height = 1.0f)
{
if (3 == bgfx::getAvailTransientVertexBuffer(3, PosColorTexCoord0Vertex::ms_decl) )
{
bgfx::TransientVertexBuffer vb;
bgfx::allocTransientVertexBuffer(&vb, 3, PosColorTexCoord0Vertex::ms_decl);
PosColorTexCoord0Vertex* vertex = (PosColorTexCoord0Vertex*)vb.data;
const float zz = 0.0f;
const float minx = -_width;
const float maxx = _width;
const float miny = 0.0f;
const float maxy = _height*2.0f;
const float texelHalfW = s_texelHalf/_textureWidth;
const float texelHalfH = s_texelHalf/_textureHeight;
const float minu = -1.0f + texelHalfW;
const float maxu = 1.0f + texelHalfW;
float minv = texelHalfH;
float maxv = 2.0f + texelHalfH;
if (_originBottomLeft)
{
std::swap(minv, maxv);
minv -= 1.0f;
maxv -= 1.0f;
}
vertex[0].m_x = minx;
vertex[0].m_y = miny;
vertex[0].m_z = zz;
vertex[0].m_rgba = 0xffffffff;
vertex[0].m_u = minu;
vertex[0].m_v = minv;
vertex[1].m_x = maxx;
vertex[1].m_y = miny;
vertex[1].m_z = zz;
vertex[1].m_rgba = 0xffffffff;
vertex[1].m_u = maxu;
vertex[1].m_v = minv;
vertex[2].m_x = maxx;
vertex[2].m_y = maxy;
vertex[2].m_z = zz;
vertex[2].m_rgba = 0xffffffff;
vertex[2].m_u = maxu;
vertex[2].m_v = maxv;
bgfx::setVertexBuffer(&vb);
}
}
struct LightProbe
{
enum Enum
{
Bolonga,
Kyoto,
Count
};
void load(const char* _name)
{
char filePath[512];
bx::snprintf(filePath, BX_COUNTOF(filePath), "textures/%s_lod.dds", _name);
m_tex = loadTexture(filePath, BGFX_TEXTURE_U_CLAMP|BGFX_TEXTURE_V_CLAMP|BGFX_TEXTURE_W_CLAMP);
bx::snprintf(filePath, BX_COUNTOF(filePath), "textures/%s_irr.dds", _name);
m_texIrr = loadTexture(filePath, BGFX_TEXTURE_U_CLAMP|BGFX_TEXTURE_V_CLAMP|BGFX_TEXTURE_W_CLAMP);
}
void destroy()
{
bgfx::destroyTexture(m_tex);
bgfx::destroyTexture(m_texIrr);
}
bgfx::TextureHandle m_tex;
bgfx::TextureHandle m_texIrr;
};
struct Camera
{
Camera()
{
reset();
}
void reset()
{
m_target.curr[0] = 0.0f;
m_target.curr[1] = 0.0f;
m_target.curr[2] = 0.0f;
m_target.dest[0] = 0.0f;
m_target.dest[1] = 0.0f;
m_target.dest[2] = 0.0f;
m_pos.curr[0] = 0.0f;
m_pos.curr[1] = 0.0f;
m_pos.curr[2] = -3.0f;
m_pos.dest[0] = 0.0f;
m_pos.dest[1] = 0.0f;
m_pos.dest[2] = -3.0f;
m_orbit[0] = 0.0f;
m_orbit[1] = 0.0f;
}
void mtxLookAt(float* _outViewMtx)
{
bx::mtxLookAt(_outViewMtx, m_pos.curr, m_target.curr);
}
void orbit(float _dx, float _dy)
{
m_orbit[0] += _dx;
m_orbit[1] += _dy;
}
void dolly(float _dz)
{
const float cnear = 1.0f;
const float cfar = 10.0f;
const float toTarget[3] =
{
m_target.dest[0] - m_pos.dest[0],
m_target.dest[1] - m_pos.dest[1],
m_target.dest[2] - m_pos.dest[2],
};
const float toTargetLen = bx::vec3Length(toTarget);
const float invToTargetLen = 1.0f/(toTargetLen+FLT_MIN);
const float toTargetNorm[3] =
{
toTarget[0]*invToTargetLen,
toTarget[1]*invToTargetLen,
toTarget[2]*invToTargetLen,
};
float delta = toTargetLen*_dz;
float newLen = toTargetLen + delta;
if ( (cnear < newLen || _dz < 0.0f)
&& (newLen < cfar || _dz > 0.0f) )
{
m_pos.dest[0] += toTargetNorm[0]*delta;
m_pos.dest[1] += toTargetNorm[1]*delta;
m_pos.dest[2] += toTargetNorm[2]*delta;
}
}
void consumeOrbit(float _amount)
{
float consume[2];
consume[0] = m_orbit[0]*_amount;
consume[1] = m_orbit[1]*_amount;
m_orbit[0] -= consume[0];
m_orbit[1] -= consume[1];
const float toPos[3] =
{
m_pos.curr[0] - m_target.curr[0],
m_pos.curr[1] - m_target.curr[1],
m_pos.curr[2] - m_target.curr[2],
};
const float toPosLen = bx::vec3Length(toPos);
const float invToPosLen = 1.0f/(toPosLen+FLT_MIN);
const float toPosNorm[3] =
{
toPos[0]*invToPosLen,
toPos[1]*invToPosLen,
toPos[2]*invToPosLen,
};
float ll[2];
latLongFromVec(ll[0], ll[1], toPosNorm);
ll[0] += consume[0];
ll[1] -= consume[1];
ll[1] = bx::fclamp(ll[1], 0.02f, 0.98f);
float tmp[3];
vecFromLatLong(tmp, ll[0], ll[1]);
float diff[3];
diff[0] = (tmp[0]-toPosNorm[0])*toPosLen;
diff[1] = (tmp[1]-toPosNorm[1])*toPosLen;
diff[2] = (tmp[2]-toPosNorm[2])*toPosLen;
m_pos.curr[0] += diff[0];
m_pos.curr[1] += diff[1];
m_pos.curr[2] += diff[2];
m_pos.dest[0] += diff[0];
m_pos.dest[1] += diff[1];
m_pos.dest[2] += diff[2];
}
void update(float _dt)
{
const float amount = bx::fmin(_dt/0.12f, 1.0f);
consumeOrbit(amount);
m_target.curr[0] = bx::flerp(m_target.curr[0], m_target.dest[0], amount);
m_target.curr[1] = bx::flerp(m_target.curr[1], m_target.dest[1], amount);
m_target.curr[2] = bx::flerp(m_target.curr[2], m_target.dest[2], amount);
m_pos.curr[0] = bx::flerp(m_pos.curr[0], m_pos.dest[0], amount);
m_pos.curr[1] = bx::flerp(m_pos.curr[1], m_pos.dest[1], amount);
m_pos.curr[2] = bx::flerp(m_pos.curr[2], m_pos.dest[2], amount);
}
void envViewMtx(float* _mtx)
{
const float toTarget[3] =
{
m_target.curr[0] - m_pos.curr[0],
m_target.curr[1] - m_pos.curr[1],
m_target.curr[2] - m_pos.curr[2],
};
const float toTargetLen = bx::vec3Length(toTarget);
const float invToTargetLen = 1.0f/(toTargetLen+FLT_MIN);
const float toTargetNorm[3] =
{
toTarget[0]*invToTargetLen,
toTarget[1]*invToTargetLen,
toTarget[2]*invToTargetLen,
};
float tmp[3];
const float fakeUp[3] = { 0.0f, 1.0f, 0.0f };
float right[3];
bx::vec3Cross(tmp, fakeUp, toTargetNorm);
bx::vec3Norm(right, tmp);
float up[3];
bx::vec3Cross(tmp, toTargetNorm, right);
bx::vec3Norm(up, tmp);
_mtx[ 0] = right[0];
_mtx[ 1] = right[1];
_mtx[ 2] = right[2];
_mtx[ 3] = 0.0f;
_mtx[ 4] = up[0];
_mtx[ 5] = up[1];
_mtx[ 6] = up[2];
_mtx[ 7] = 0.0f;
_mtx[ 8] = toTargetNorm[0];
_mtx[ 9] = toTargetNorm[1];
_mtx[10] = toTargetNorm[2];
_mtx[11] = 0.0f;
_mtx[12] = 0.0f;
_mtx[13] = 0.0f;
_mtx[14] = 0.0f;
_mtx[15] = 1.0f;
}
static inline void vecFromLatLong(float _vec[3], float _u, float _v)
{
const float phi = _u * 2.0f*bx::pi;
const float theta = _v * bx::pi;
const float st = bx::fsin(theta);
const float sp = bx::fsin(phi);
const float ct = bx::fcos(theta);
const float cp = bx::fcos(phi);
_vec[0] = -st*sp;
_vec[1] = ct;
_vec[2] = -st*cp;
}
static inline void latLongFromVec(float& _u, float& _v, const float _vec[3])
{
const float phi = bx::fatan2(_vec[0], _vec[2]);
const float theta = bx::facos(_vec[1]);
_u = (bx::pi + phi)*bx::invPi*0.5f;
_v = theta*bx::invPi;
}
struct Interp3f
{
float curr[3];
float dest[3];
};
Interp3f m_target;
Interp3f m_pos;
float m_orbit[2];
};
struct Mouse
{
Mouse()
: m_dx(0.0f)
, m_dy(0.0f)
, m_prevMx(0.0f)
, m_prevMy(0.0f)
, m_scroll(0)
, m_scrollPrev(0)
{
}
void update(float _mx, float _my, int32_t _mz, uint32_t _width, uint32_t _height)
{
const float widthf = float(int32_t(_width));
const float heightf = float(int32_t(_height));
// Delta movement.
m_dx = float(_mx - m_prevMx)/widthf;
m_dy = float(_my - m_prevMy)/heightf;
m_prevMx = _mx;
m_prevMy = _my;
// Scroll.
m_scroll = _mz - m_scrollPrev;
m_scrollPrev = _mz;
}
float m_dx; // Screen space.
float m_dy;
float m_prevMx;
float m_prevMy;
int32_t m_scroll;
int32_t m_scrollPrev;
};
int _main_(int _argc, char** _argv)
{
Args args(_argc, _argv);
uint32_t width = 1280;
uint32_t height = 720;
uint32_t debug = BGFX_DEBUG_TEXT;
uint32_t reset = 0
| BGFX_RESET_VSYNC
| BGFX_RESET_MSAA_X16
;
bgfx::init(args.m_type, args.m_pciId);
bgfx::reset(width, height, reset);
// Enable debug text.
bgfx::setDebug(debug);
// Set views clear state.
bgfx::setViewClear(0
, BGFX_CLEAR_COLOR|BGFX_CLEAR_DEPTH
, 0x303030ff
, 1.0f
, 0
);
// Imgui.
imguiCreate();
// Uniforms.
Uniforms uniforms;
uniforms.init();
// Vertex declarations.
PosColorTexCoord0Vertex::init();
LightProbe lightProbes[LightProbe::Count];
lightProbes[LightProbe::Bolonga].load("bolonga");
lightProbes[LightProbe::Kyoto ].load("kyoto");
LightProbe::Enum currentLightProbe = LightProbe::Bolonga;
bgfx::UniformHandle u_mtx = bgfx::createUniform("u_mtx", bgfx::UniformType::Mat4);
bgfx::UniformHandle u_params = bgfx::createUniform("u_params", bgfx::UniformType::Vec4);
bgfx::UniformHandle u_flags = bgfx::createUniform("u_flags", bgfx::UniformType::Vec4);
bgfx::UniformHandle u_camPos = bgfx::createUniform("u_camPos", bgfx::UniformType::Vec4);
bgfx::UniformHandle s_texCube = bgfx::createUniform("s_texCube", bgfx::UniformType::Int1);
bgfx::UniformHandle s_texCubeIrr = bgfx::createUniform("s_texCubeIrr", bgfx::UniformType::Int1);
bgfx::ProgramHandle programMesh = loadProgram("vs_ibl_mesh", "fs_ibl_mesh");
bgfx::ProgramHandle programSky = loadProgram("vs_ibl_skybox", "fs_ibl_skybox");
Mesh* meshBunny;
meshBunny = meshLoad("meshes/bunny.bin");
Mesh* meshOrb;
meshOrb = meshLoad("meshes/orb.bin");
Camera camera;
Mouse mouse;
struct Settings
{
Settings()
{
m_envRotCurr = 0.0f;
m_envRotDest = 0.0f;
m_lightDir[0] = -0.8f;
m_lightDir[1] = 0.2f;
m_lightDir[2] = -0.5f;
m_lightCol[0] = 1.0f;
m_lightCol[1] = 1.0f;
m_lightCol[2] = 1.0f;
m_glossiness = 0.7f;
m_exposure = 0.0f;
m_bgType = 3.0f;
m_radianceSlider = 2.0f;
m_reflectivity = 0.85f;
m_rgbDiff[0] = 1.0f;
m_rgbDiff[1] = 1.0f;
m_rgbDiff[2] = 1.0f;
m_rgbSpec[0] = 1.0f;
m_rgbSpec[1] = 1.0f;
m_rgbSpec[2] = 1.0f;
m_lod = 0.0f;
m_doDiffuse = false;
m_doSpecular = false;
m_doDiffuseIbl = true;
m_doSpecularIbl = true;
m_showLightColorWheel = true;
m_showDiffColorWheel = true;
m_showSpecColorWheel = true;
m_metalOrSpec = 0;
m_meshSelection = 0;
m_crossCubemapPreview = ImguiCubemap::Latlong;
}
float m_envRotCurr;
float m_envRotDest;
float m_lightDir[3];
float m_lightCol[3];
float m_glossiness;
float m_exposure;
float m_radianceSlider;
float m_bgType;
float m_reflectivity;
float m_rgbDiff[3];
float m_rgbSpec[3];
float m_lod;
bool m_doDiffuse;
bool m_doSpecular;
bool m_doDiffuseIbl;
bool m_doSpecularIbl;
bool m_showLightColorWheel;
bool m_showDiffColorWheel;
bool m_showSpecColorWheel;
uint8_t m_metalOrSpec;
uint8_t m_meshSelection;
ImguiCubemap::Enum m_crossCubemapPreview;
};
Settings settings;
int32_t leftScrollArea = 0;
entry::MouseState mouseState;
while (!entry::processEvents(width, height, debug, reset, &mouseState) )
{
imguiBeginFrame(mouseState.m_mx
, mouseState.m_my
, (mouseState.m_buttons[entry::MouseButton::Left ] ? IMGUI_MBUT_LEFT : 0)
| (mouseState.m_buttons[entry::MouseButton::Right ] ? IMGUI_MBUT_RIGHT : 0)
| (mouseState.m_buttons[entry::MouseButton::Middle] ? IMGUI_MBUT_MIDDLE : 0)
, mouseState.m_mz
, uint16_t(width)
, uint16_t(height)
);
static int32_t rightScrollArea = 0;
imguiBeginScrollArea("", width - 256 - 10, 10, 256, 700, &rightScrollArea);
imguiLabel("Environment light:");
imguiIndent();
imguiBool("IBL Diffuse", settings.m_doDiffuseIbl);
imguiBool("IBL Specular", settings.m_doSpecularIbl);
currentLightProbe = LightProbe::Enum(imguiTabs(
uint8_t(currentLightProbe)
, true
, ImguiAlign::LeftIndented
, 16
, 2
, 2
, "Bolonga"
, "Kyoto"
) );
if (imguiCube(lightProbes[currentLightProbe].m_tex, settings.m_lod, settings.m_crossCubemapPreview, true) )
{
settings.m_crossCubemapPreview = ImguiCubemap::Enum( (settings.m_crossCubemapPreview+1) % ImguiCubemap::Count);
}
imguiSlider("Texture LOD", settings.m_lod, 0.0f, 10.1f, 0.1f);
imguiUnindent();
imguiSeparator(8);
imguiLabel("Directional light:");
imguiIndent();
imguiBool("Diffuse", settings.m_doDiffuse);
imguiBool("Specular", settings.m_doSpecular);
const bool doDirectLighting = settings.m_doDiffuse || settings.m_doSpecular;
imguiSlider("Light direction X", settings.m_lightDir[0], -1.0f, 1.0f, 0.1f, doDirectLighting);
imguiSlider("Light direction Y", settings.m_lightDir[1], -1.0f, 1.0f, 0.1f, doDirectLighting);
imguiSlider("Light direction Z", settings.m_lightDir[2], -1.0f, 1.0f, 0.1f, doDirectLighting);
imguiColorWheel("Color:", settings.m_lightCol, settings.m_showLightColorWheel, 0.6f, doDirectLighting);
imguiUnindent();
imguiSeparator(8);
imguiLabel("Background:");
imguiIndent();
{
int32_t selection;
if (0.0f == settings.m_bgType) { selection = UINT8_C(0); }
else if (7.0f == settings.m_bgType) { selection = UINT8_C(2); }
else { selection = UINT8_C(1); }
selection = imguiTabs(
uint8_t(selection)
, true
, ImguiAlign::LeftIndented
, 16
, 2
, 3
, "Skybox"
, "Radiance"
, "Irradiance"
);
if (0 == selection) { settings.m_bgType = 0.0f; }
else if (2 == selection) { settings.m_bgType = 7.0f; }
else { settings.m_bgType = settings.m_radianceSlider; }
const bool isRadiance = (selection == 1);
imguiSlider("Mip level", settings.m_radianceSlider, 1.0f, 6.0f, 0.1f, isRadiance);
}
imguiUnindent();
imguiSeparator(8);
imguiLabel("Post processing:");
imguiIndent();
imguiSlider("Exposure", settings.m_exposure, -4.0f, 4.0f, 0.1f);
imguiUnindent();
imguiSeparator();
imguiEndScrollArea();
imguiBeginScrollArea("", 10, 70, 256, 636, &leftScrollArea);
imguiLabel("Mesh:");
imguiIndent();
settings.m_meshSelection = uint8_t(imguiChoose(settings.m_meshSelection, "Bunny", "Orbs") );
imguiUnindent();
const bool isBunny = (0 == settings.m_meshSelection);
if (!isBunny)
{
settings.m_metalOrSpec = 0;
}
imguiSeparator(4);
imguiLabel("Workflow:");
imguiIndent();
if (imguiCheck("Metalness", 0 == settings.m_metalOrSpec, isBunny) ) { settings.m_metalOrSpec = 0; }
if (imguiCheck("Specular", 1 == settings.m_metalOrSpec, isBunny) ) { settings.m_metalOrSpec = 1; }
imguiUnindent();
imguiSeparator(4);
imguiLabel("Material:");
imguiIndent();
imguiSlider("Glossiness", settings.m_glossiness, 0.0f, 1.0f, 0.01f, isBunny);
imguiSlider(0 == settings.m_metalOrSpec ? "Metalness" : "Diffuse - Specular", settings.m_reflectivity, 0.0f, 1.0f, 0.01f, isBunny);
imguiUnindent();
imguiColorWheel("Diffuse:", &settings.m_rgbDiff[0], settings.m_showDiffColorWheel, 0.7f);
imguiSeparator();
imguiColorWheel("Specular:", &settings.m_rgbSpec[0], settings.m_showSpecColorWheel, 0.7f, (1 == settings.m_metalOrSpec) && isBunny);
imguiEndScrollArea();
imguiEndFrame();
uniforms.m_glossiness = settings.m_glossiness;
uniforms.m_reflectivity = settings.m_reflectivity;
uniforms.m_exposure = settings.m_exposure;
uniforms.m_bgType = settings.m_bgType;
uniforms.m_metalOrSpec = float(settings.m_metalOrSpec);
uniforms.m_doDiffuse = float(settings.m_doDiffuse);
uniforms.m_doSpecular = float(settings.m_doSpecular);
uniforms.m_doDiffuseIbl = float(settings.m_doDiffuseIbl);
uniforms.m_doSpecularIbl = float(settings.m_doSpecularIbl);
bx::memCopy(uniforms.m_rgbDiff, settings.m_rgbDiff, 3*sizeof(float) );
bx::memCopy(uniforms.m_rgbSpec, settings.m_rgbSpec, 3*sizeof(float) );
bx::memCopy(uniforms.m_lightDir, settings.m_lightDir, 3*sizeof(float) );
bx::memCopy(uniforms.m_lightCol, settings.m_lightCol, 3*sizeof(float) );
int64_t now = bx::getHPCounter();
static int64_t last = now;
const int64_t frameTime = now - last;
last = now;
const double freq = double(bx::getHPFrequency() );
const double toMs = 1000.0/freq;
const float deltaTimeSec = float(double(frameTime)/freq);
// Use debug font to print information about this example.
bgfx::dbgTextClear();
bgfx::dbgTextPrintf(0, 1, 0x4f, "bgfx/examples/18-ibl");
bgfx::dbgTextPrintf(0, 2, 0x6f, "Description: Image-based lighting.");
bgfx::dbgTextPrintf(0, 3, 0x0f, "Frame: % 7.3f[ms]", double(frameTime)*toMs);
// Camera.
const bool mouseOverGui = imguiMouseOverArea();
mouse.update(float(mouseState.m_mx), float(mouseState.m_my), mouseState.m_mz, width, height);
if (!mouseOverGui)
{
if (mouseState.m_buttons[entry::MouseButton::Left])
{
camera.orbit(mouse.m_dx, mouse.m_dy);
}
else if (mouseState.m_buttons[entry::MouseButton::Right])
{
camera.dolly(mouse.m_dx + mouse.m_dy);
}
else if (mouseState.m_buttons[entry::MouseButton::Middle])
{
settings.m_envRotDest += mouse.m_dx*2.0f;
}
else if (0 != mouse.m_scroll)
{
camera.dolly(float(mouse.m_scroll)*0.05f);
}
}
camera.update(deltaTimeSec);
bx::memCopy(uniforms.m_cameraPos, camera.m_pos.curr, 3*sizeof(float) );
// View Transform 0.
float view[16];
float proj[16];
bx::mtxIdentity(view);
bx::mtxOrtho(proj, 0.0f, 1.0f, 1.0f, 0.0f, 0.0f, 100.0f);
bgfx::setViewTransform(0, view, proj);
// View Transform 1.
camera.mtxLookAt(view);
bx::mtxProj(proj, 45.0f, float(width)/float(height), 0.1f, 100.0f, bgfx::getCaps()->homogeneousDepth);
bgfx::setViewTransform(1, view, proj);
// View rect.
bgfx::setViewRect(0, 0, 0, uint16_t(width), uint16_t(height) );
bgfx::setViewRect(1, 0, 0, uint16_t(width), uint16_t(height) );
// Env rotation.
const float amount = bx::fmin(deltaTimeSec/0.12f, 1.0f);
settings.m_envRotCurr = bx::flerp(settings.m_envRotCurr, settings.m_envRotDest, amount);
// Env mtx.
float mtxEnvView[16];
camera.envViewMtx(mtxEnvView);
float mtxEnvRot[16];
bx::mtxRotateY(mtxEnvRot, settings.m_envRotCurr);
bx::mtxMul(uniforms.m_mtx, mtxEnvView, mtxEnvRot); // Used for Skybox.
// Submit view 0.
bgfx::setTexture(0, s_texCube, lightProbes[currentLightProbe].m_tex);
bgfx::setTexture(1, s_texCubeIrr, lightProbes[currentLightProbe].m_texIrr);
bgfx::setState(BGFX_STATE_RGB_WRITE|BGFX_STATE_ALPHA_WRITE);
screenSpaceQuad( (float)width, (float)height, true);
uniforms.submit();
bgfx::submit(0, programSky);
// Submit view 1.
bx::memCopy(uniforms.m_mtx, mtxEnvRot, 16*sizeof(float)); // Used for IBL.
if (0 == settings.m_meshSelection)
{
// Submit bunny.
float mtx[16];
bx::mtxSRT(mtx, 1.0f, 1.0f, 1.0f, 0.0f, bx::pi, 0.0f, 0.0f, -0.80f, 0.0f);
bgfx::setTexture(0, s_texCube, lightProbes[currentLightProbe].m_tex);
bgfx::setTexture(1, s_texCubeIrr, lightProbes[currentLightProbe].m_texIrr);
uniforms.submit();
meshSubmit(meshBunny, 1, programMesh, mtx);
}
else
{
// Submit orbs.
for (float yy = 0, yend = 5.0f; yy < yend; yy+=1.0f)
{
for (float xx = 0, xend = 5.0f; xx < xend; xx+=1.0f)
{
const float scale = 1.2f;
const float spacing = 2.2f;
const float yAdj = -0.8f;
float mtx[16];
bx::mtxSRT(mtx
, scale/xend
, scale/xend
, scale/xend
, 0.0f
, 0.0f
, 0.0f
, 0.0f + (xx/xend)*spacing - (1.0f + (scale-1.0f)*0.5f - 1.0f/xend)
, yAdj/yend + (yy/yend)*spacing - (1.0f + (scale-1.0f)*0.5f - 1.0f/yend)
, 0.0f
);
uniforms.m_glossiness = xx*(1.0f/xend);
uniforms.m_reflectivity = (yend-yy)*(1.0f/yend);
uniforms.m_metalOrSpec = 0.0f;
uniforms.submit();
bgfx::setTexture(0, s_texCube, lightProbes[currentLightProbe].m_tex);
bgfx::setTexture(1, s_texCubeIrr, lightProbes[currentLightProbe].m_texIrr);
meshSubmit(meshOrb, 1, programMesh, mtx);
}
}
}
// Advance to next frame. Rendering thread will be kicked to
// process submitted rendering primitives.
bgfx::frame();
}
meshUnload(meshBunny);
meshUnload(meshOrb);
// Cleanup.
bgfx::destroyProgram(programMesh);
bgfx::destroyProgram(programSky);
bgfx::destroyUniform(u_camPos);
bgfx::destroyUniform(u_flags);
bgfx::destroyUniform(u_params);
bgfx::destroyUniform(u_mtx);
bgfx::destroyUniform(s_texCube);
bgfx::destroyUniform(s_texCubeIrr);
for (uint8_t ii = 0; ii < LightProbe::Count; ++ii)
{
lightProbes[ii].destroy();
}
uniforms.destroy();
imguiDestroy();
// Shutdown bgfx.
bgfx::shutdown();
return 0;
}