bgfx/examples/14-shadowvolumes/shadowvolumes.cpp
2014-03-09 21:21:53 -07:00

2968 lines
80 KiB
C++

/*
* Copyright 2013-2014 Dario Manesku. All rights reserved.
* License: http://www.opensource.org/licenses/BSD-2-Clause
*/
#include <stdio.h>
#include <string.h>
#include <string>
#include <vector>
#include <unordered_map>
#include <map>
namespace std { namespace tr1 {} }
using namespace std::tr1;
#include "common.h"
#include <bgfx.h>
#include <bx/timer.h>
#include <bx/readerwriter.h>
#include <bx/allocator.h>
#include <bx/hash.h>
#include <bx/float4_t.h>
#include "entry/entry.h"
#include "entry/camera.h"
#include "fpumath.h"
#include "imgui/imgui.h"
#define SV_USE_SIMD 1
#define MAX_INSTANCE_COUNT 25
#define MAX_LIGHTS_COUNT 5
#define VIEWID_RANGE1_PASS0 1
#define VIEWID_RANGE1_RT_PASS1 2
#define VIEWID_RANGE15_PASS2 3
#define VIEWID_RANGE1_PASS3 20
uint32_t packUint32(uint8_t _x, uint8_t _y, uint8_t _z, uint8_t _w)
{
union
{
uint32_t ui32;
uint8_t arr[4];
} un;
un.arr[0] = _x;
un.arr[1] = _y;
un.arr[2] = _z;
un.arr[3] = _w;
return un.ui32;
}
uint32_t packF4u(float _x, float _y = 0.0f, float _z = 0.0f, float _w = 0.0f)
{
const uint8_t xx = uint8_t(_x*127.0f + 128.0f);
const uint8_t yy = uint8_t(_y*127.0f + 128.0f);
const uint8_t zz = uint8_t(_z*127.0f + 128.0f);
const uint8_t ww = uint8_t(_w*127.0f + 128.0f);
return packUint32(xx, yy, zz, ww);
}
struct PosNormalTexcoordVertex
{
float m_x;
float m_y;
float m_z;
uint32_t m_normal;
float m_u;
float m_v;
};
static const float s_texcoord = 50.0f;
static const uint32_t s_numHPlaneVertices = 4;
static PosNormalTexcoordVertex s_hplaneVertices[s_numHPlaneVertices] =
{
{ -1.0f, 0.0f, 1.0f, packF4u(0.0f, 1.0f, 0.0f), s_texcoord, s_texcoord },
{ 1.0f, 0.0f, 1.0f, packF4u(0.0f, 1.0f, 0.0f), s_texcoord, 0.0f },
{ -1.0f, 0.0f, -1.0f, packF4u(0.0f, 1.0f, 0.0f), 0.0f, s_texcoord },
{ 1.0f, 0.0f, -1.0f, packF4u(0.0f, 1.0f, 0.0f), 0.0f, 0.0f },
};
static const uint32_t s_numVPlaneVertices = 4;
static PosNormalTexcoordVertex s_vplaneVertices[s_numVPlaneVertices] =
{
{ -1.0f, 1.0f, 0.0f, packF4u(0.0f, 0.0f, -1.0f), 1.0f, 1.0f },
{ 1.0f, 1.0f, 0.0f, packF4u(0.0f, 0.0f, -1.0f), 1.0f, 0.0f },
{ -1.0f, -1.0f, 0.0f, packF4u(0.0f, 0.0f, -1.0f), 0.0f, 1.0f },
{ 1.0f, -1.0f, 0.0f, packF4u(0.0f, 0.0f, -1.0f), 0.0f, 0.0f },
};
static const uint32_t s_numPlaneIndices = 6;
static const uint16_t s_planeIndices[s_numPlaneIndices] =
{
0, 1, 2,
1, 3, 2,
};
static const char* s_shaderPath = NULL;
static bool s_flipV = false;
static float s_texelHalf = 0.0f;
static uint32_t s_viewMask = 0;
static bgfx::UniformHandle u_texColor;
static bgfx::UniformHandle u_texStencil;
static bgfx::FrameBufferHandle s_stencilFb;
inline uint32_t uint32_max(uint32_t _a, uint32_t _b)
{
return _a > _b ? _a : _b;
}
static void shaderFilePath(char* _out, const char* _name)
{
strcpy(_out, s_shaderPath);
strcat(_out, _name);
strcat(_out, ".bin");
}
long int fsize(FILE* _file)
{
long int pos = ftell(_file);
fseek(_file, 0L, SEEK_END);
long int size = ftell(_file);
fseek(_file, pos, SEEK_SET);
return size;
}
static const bgfx::Memory* load(const char* _filePath)
{
FILE* file = fopen(_filePath, "rb");
if (NULL != file)
{
uint32_t size = (uint32_t)fsize(file);
const bgfx::Memory* mem = bgfx::alloc(size+1);
size_t ignore = fread(mem->data, 1, size, file);
BX_UNUSED(ignore);
fclose(file);
mem->data[mem->size-1] = '\0';
return mem;
}
return NULL;
}
static const bgfx::Memory* loadShader(const char* _name)
{
char filePath[512];
shaderFilePath(filePath, _name);
return load(filePath);
}
static const bgfx::Memory* loadTexture(const char* _name)
{
char filePath[512];
strcpy(filePath, "textures/");
strcat(filePath, _name);
return load(filePath);
}
static bgfx::ProgramHandle loadProgram(const char* _vsName, const char* _fsName)
{
const bgfx::Memory* mem;
// Load vertex shader.
mem = loadShader(_vsName);
bgfx::VertexShaderHandle vsh = bgfx::createVertexShader(mem);
// Load fragment shader.
mem = loadShader(_fsName);
bgfx::FragmentShaderHandle fsh = bgfx::createFragmentShader(mem);
// Create program from shaders.
bgfx::ProgramHandle program = bgfx::createProgram(vsh, fsh);
// We can destroy vertex and fragment shader here since
// their reference is kept inside bgfx after calling createProgram.
// Vertex and fragment shader will be destroyed once program is
// destroyed.
bgfx::destroyVertexShader(vsh);
bgfx::destroyFragmentShader(fsh);
return program;
}
void mtxScaleRotateTranslate(float* _result
, const float _scaleX
, const float _scaleY
, const float _scaleZ
, const float _rotX
, const float _rotY
, const float _rotZ
, const float _translateX
, const float _translateY
, const float _translateZ
)
{
float mtxRotateTranslate[16];
float mtxScale[16];
mtxRotateXYZ(mtxRotateTranslate, _rotX, _rotY, _rotZ);
mtxRotateTranslate[12] = _translateX;
mtxRotateTranslate[13] = _translateY;
mtxRotateTranslate[14] = _translateZ;
memset(mtxScale, 0, 16*sizeof(float) );
mtxScale[0] = _scaleX;
mtxScale[5] = _scaleY;
mtxScale[10] = _scaleZ;
mtxScale[15] = 1.0f;
mtxMul(_result, mtxScale, mtxRotateTranslate);
}
void mtxBillboard(float* __restrict _result
, const float* __restrict _view
, const float* __restrict _pos
, const float* __restrict _scale
)
{
_result[ 0] = _view[0] * _scale[0];
_result[ 1] = _view[4] * _scale[0];
_result[ 2] = _view[8] * _scale[0];
_result[ 3] = 0.0f;
_result[ 4] = _view[1] * _scale[1];
_result[ 5] = _view[5] * _scale[1];
_result[ 6] = _view[9] * _scale[1];
_result[ 7] = 0.0f;
_result[ 8] = _view[2] * _scale[2];
_result[ 9] = _view[6] * _scale[2];
_result[10] = _view[10] * _scale[2];
_result[11] = 0.0f;
_result[12] = _pos[0];
_result[13] = _pos[1];
_result[14] = _pos[2];
_result[15] = 1.0f;
}
void planeNormal(float* __restrict _result
, const float* __restrict _v0
, const float* __restrict _v1
, const float* __restrict _v2
)
{
float vec0[3], vec1[3];
float cross[3];
vec0[0] = _v1[0] - _v0[0];
vec0[1] = _v1[1] - _v0[1];
vec0[2] = _v1[2] - _v0[2];
vec1[0] = _v2[0] - _v1[0];
vec1[1] = _v2[1] - _v1[1];
vec1[2] = _v2[2] - _v1[2];
vec3Cross(cross, vec0, vec1);
vec3Norm(_result, cross);
_result[3] = -vec3Dot(_result, _v0);
}
struct Uniforms
{
void init()
{
m_params.m_ambientPass = 1.0f;
m_params.m_lightningPass = 1.0f;
m_params.m_texelHalf = 0.0f;
m_ambient[0] = 0.05f;
m_ambient[1] = 0.05f;
m_ambient[2] = 0.05f;
m_ambient[3] = 0.0f; //unused
m_diffuse[0] = 0.8f;
m_diffuse[1] = 0.8f;
m_diffuse[2] = 0.8f;
m_diffuse[3] = 0.0f; //unused
m_specular_shininess[0] = 1.0f;
m_specular_shininess[1] = 1.0f;
m_specular_shininess[2] = 1.0f;
m_specular_shininess[3] = 25.0f; //shininess
m_fog[0] = 0.0f; //color
m_fog[1] = 0.0f;
m_fog[2] = 0.0f;
m_fog[3] = 0.0055f; //density
m_color[0] = 1.0f;
m_color[1] = 1.0f;
m_color[2] = 1.0f;
m_color[3] = 1.0f;
m_time = 0.0f;
m_flipV = float(s_flipV) * 2.0f - 1.0f;
m_lightPosRadius[0] = 0.0f;
m_lightPosRadius[1] = 0.0f;
m_lightPosRadius[2] = 0.0f;
m_lightPosRadius[3] = 1.0f;
m_lightRgbInnerR[0] = 0.0f;
m_lightRgbInnerR[1] = 0.0f;
m_lightRgbInnerR[2] = 0.0f;
m_lightRgbInnerR[3] = 1.0f;
m_virtualLightPos_extrusionDist[0] = 0.0f;
m_virtualLightPos_extrusionDist[1] = 0.0f;
m_virtualLightPos_extrusionDist[2] = 0.0f;
m_virtualLightPos_extrusionDist[3] = 100.0f;
u_params = bgfx::createUniform("u_params", bgfx::UniformType::Uniform4fv);
u_svparams = bgfx::createUniform("u_svparams", bgfx::UniformType::Uniform4fv);
u_ambient = bgfx::createUniform("u_ambient", bgfx::UniformType::Uniform4fv);
u_diffuse = bgfx::createUniform("u_diffuse", bgfx::UniformType::Uniform4fv);
u_specular_shininess = bgfx::createUniform("u_specular_shininess", bgfx::UniformType::Uniform4fv);
u_fog = bgfx::createUniform("u_fog", bgfx::UniformType::Uniform4fv);
u_color = bgfx::createUniform("u_color", bgfx::UniformType::Uniform4fv);
u_time = bgfx::createUniform("u_time", bgfx::UniformType::Uniform1f );
u_flipV = bgfx::createUniform("u_flipV", bgfx::UniformType::Uniform1f );
u_lightPosRadius = bgfx::createUniform("u_lightPosRadius", bgfx::UniformType::Uniform4fv);
u_lightRgbInnerR = bgfx::createUniform("u_lightRgbInnerR", bgfx::UniformType::Uniform4fv);
u_virtualLightPos_extrusionDist = bgfx::createUniform("u_virtualLightPos_extrusionDist", bgfx::UniformType::Uniform4fv);
}
//call this once at initialization
void submitConstUniforms()
{
bgfx::setUniform(u_ambient, &m_ambient);
bgfx::setUniform(u_diffuse, &m_diffuse);
bgfx::setUniform(u_specular_shininess, &m_specular_shininess);
bgfx::setUniform(u_fog, &m_fog);
bgfx::setUniform(u_flipV, &m_flipV);
}
//call this once per frame
void submitPerFrameUniforms()
{
bgfx::setUniform(u_time, &m_time);
}
//call this before each draw call
void submitPerDrawUniforms()
{
bgfx::setUniform(u_params, &m_params);
bgfx::setUniform(u_svparams, &m_svparams);
bgfx::setUniform(u_color, &m_color);
bgfx::setUniform(u_lightPosRadius, &m_lightPosRadius);
bgfx::setUniform(u_lightRgbInnerR, &m_lightRgbInnerR);
bgfx::setUniform(u_virtualLightPos_extrusionDist, &m_virtualLightPos_extrusionDist);
}
void destroy()
{
bgfx::destroyUniform(u_params);
bgfx::destroyUniform(u_svparams);
bgfx::destroyUniform(u_ambient);
bgfx::destroyUniform(u_diffuse);
bgfx::destroyUniform(u_specular_shininess);
bgfx::destroyUniform(u_fog);
bgfx::destroyUniform(u_color);
bgfx::destroyUniform(u_time);
bgfx::destroyUniform(u_flipV);
bgfx::destroyUniform(u_lightPosRadius);
bgfx::destroyUniform(u_lightRgbInnerR);
bgfx::destroyUniform(u_virtualLightPos_extrusionDist);
}
struct Params
{
float m_ambientPass;
float m_lightningPass;
float m_texelHalf;
float m_unused00;
};
struct SvParams
{
float m_useStencilTex;
float m_dfail;
float m_unused10;
float m_unused11;
};
Params m_params;
SvParams m_svparams;
float m_ambient[4];
float m_diffuse[4];
float m_specular_shininess[4];
float m_fog[4];
float m_color[4];
float m_time;
float m_flipV;
float m_lightPosRadius[4];
float m_lightRgbInnerR[4];
float m_virtualLightPos_extrusionDist[4];
/**
* u_params.x - u_ambientPass
* u_params.y - u_lightningPass
* u_params.z - u_texelHalf
* u_params.w - unused
* u_svparams.x - u_useStencilTex
* u_svparams.y - u_dfail
* u_svparams.z - unused
* u_svparams.w - unused
*/
bgfx::UniformHandle u_params;
bgfx::UniformHandle u_svparams;
bgfx::UniformHandle u_ambient;
bgfx::UniformHandle u_diffuse;
bgfx::UniformHandle u_specular_shininess;
bgfx::UniformHandle u_fog;
bgfx::UniformHandle u_color;
bgfx::UniformHandle u_time;
bgfx::UniformHandle u_flipV;
bgfx::UniformHandle u_lightPosRadius;
bgfx::UniformHandle u_lightRgbInnerR;
bgfx::UniformHandle u_virtualLightPos_extrusionDist;
};
static Uniforms s_uniforms;
struct RenderState
{
enum Enum
{
ShadowVolume_UsingStencilTexture_DrawAmbient = 0,
ShadowVolume_UsingStencilTexture_BuildDepth,
ShadowVolume_UsingStencilTexture_CraftStencil_DepthPass,
ShadowVolume_UsingStencilTexture_CraftStencil_DepthFail,
ShadowVolume_UsingStencilTexture_DrawDiffuse,
ShadowVolume_UsingStencilBuffer_DrawAmbient,
ShadowVolume_UsingStencilBuffer_CraftStencil_DepthPass,
ShadowVolume_UsingStencilBuffer_CraftStencil_DepthFail,
ShadowVolume_UsingStencilBuffer_DrawDiffuse,
Custom_Default,
Custom_BlendLightTexture,
Custom_DrawPlaneBottom,
Custom_DrawShadowVolume_Lines,
Count
};
uint64_t m_state;
uint32_t m_blendFactorRgba;
uint32_t m_fstencil;
uint32_t m_bstencil;
};
static void setRenderState(const RenderState& _renderState)
{
bgfx::setStencil(_renderState.m_fstencil, _renderState.m_bstencil);
bgfx::setState(_renderState.m_state, _renderState.m_blendFactorRgba);
}
static RenderState s_renderStates[RenderState::Count] =
{
{ // ShadowVolume_UsingStencilTexture_DrawAmbient
BGFX_STATE_RGB_WRITE
| BGFX_STATE_ALPHA_WRITE
| BGFX_STATE_DEPTH_WRITE
| BGFX_STATE_DEPTH_TEST_LESS
| BGFX_STATE_CULL_CCW
| BGFX_STATE_MSAA
, UINT32_MAX
, BGFX_STENCIL_NONE
, BGFX_STENCIL_NONE
},
{ // ShadowVolume_UsingStencilTexture_BuildDepth
BGFX_STATE_DEPTH_WRITE
| BGFX_STATE_DEPTH_TEST_LESS
| BGFX_STATE_CULL_CCW
| BGFX_STATE_MSAA
, UINT32_MAX
, BGFX_STENCIL_NONE
, BGFX_STENCIL_NONE
},
{ // ShadowVolume_UsingStencilTexture_CraftStencil_DepthPass
BGFX_STATE_RGB_WRITE
| BGFX_STATE_ALPHA_WRITE
| BGFX_STATE_BLEND_FUNC(BGFX_STATE_BLEND_ONE, BGFX_STATE_BLEND_ONE)
| BGFX_STATE_DEPTH_TEST_LEQUAL
| BGFX_STATE_MSAA
, UINT32_MAX
, BGFX_STENCIL_NONE
, BGFX_STENCIL_NONE
},
{ // ShadowVolume_UsingStencilTexture_CraftStencil_DepthFail
BGFX_STATE_RGB_WRITE
| BGFX_STATE_ALPHA_WRITE
| BGFX_STATE_BLEND_FUNC(BGFX_STATE_BLEND_ONE, BGFX_STATE_BLEND_ONE)
| BGFX_STATE_DEPTH_TEST_GEQUAL
| BGFX_STATE_MSAA
, UINT32_MAX
, BGFX_STENCIL_NONE
, BGFX_STENCIL_NONE
},
{ // ShadowVolume_UsingStencilTexture_DrawDiffuse
BGFX_STATE_RGB_WRITE
| BGFX_STATE_ALPHA_WRITE
| BGFX_STATE_BLEND_FUNC(BGFX_STATE_BLEND_ONE, BGFX_STATE_BLEND_ONE)
| BGFX_STATE_DEPTH_WRITE
| BGFX_STATE_DEPTH_TEST_EQUAL
| BGFX_STATE_CULL_CCW
| BGFX_STATE_MSAA
, UINT32_MAX
, BGFX_STENCIL_NONE
, BGFX_STENCIL_NONE
},
{ // ShadowVolume_UsingStencilBuffer_DrawAmbient
BGFX_STATE_RGB_WRITE
| BGFX_STATE_ALPHA_WRITE
| BGFX_STATE_DEPTH_WRITE
| BGFX_STATE_DEPTH_TEST_LESS
| BGFX_STATE_CULL_CCW
| BGFX_STATE_MSAA
, UINT32_MAX
, BGFX_STENCIL_NONE
, BGFX_STENCIL_NONE
},
{ // ShadowVolume_UsingStencilBuffer_CraftStencil_DepthPass
BGFX_STATE_DEPTH_TEST_LEQUAL
| BGFX_STATE_MSAA
, UINT32_MAX
, BGFX_STENCIL_TEST_ALWAYS
| BGFX_STENCIL_FUNC_REF(1)
| BGFX_STENCIL_FUNC_RMASK(0xff)
| BGFX_STENCIL_OP_FAIL_S_KEEP
| BGFX_STENCIL_OP_FAIL_Z_KEEP
| BGFX_STENCIL_OP_PASS_Z_DECR
, BGFX_STENCIL_TEST_ALWAYS
| BGFX_STENCIL_FUNC_REF(1)
| BGFX_STENCIL_FUNC_RMASK(0xff)
| BGFX_STENCIL_OP_FAIL_S_KEEP
| BGFX_STENCIL_OP_FAIL_Z_KEEP
| BGFX_STENCIL_OP_PASS_Z_INCR
},
{ // ShadowVolume_UsingStencilBuffer_CraftStencil_DepthFail
BGFX_STATE_DEPTH_TEST_LEQUAL
| BGFX_STATE_MSAA
, UINT32_MAX
, BGFX_STENCIL_TEST_ALWAYS
| BGFX_STENCIL_FUNC_REF(1)
| BGFX_STENCIL_FUNC_RMASK(0xff)
| BGFX_STENCIL_OP_FAIL_S_KEEP
| BGFX_STENCIL_OP_FAIL_Z_INCR
| BGFX_STENCIL_OP_PASS_Z_KEEP
, BGFX_STENCIL_TEST_ALWAYS
| BGFX_STENCIL_FUNC_REF(1)
| BGFX_STENCIL_FUNC_RMASK(0xff)
| BGFX_STENCIL_OP_FAIL_S_KEEP
| BGFX_STENCIL_OP_FAIL_Z_DECR
| BGFX_STENCIL_OP_PASS_Z_KEEP
},
{ // ShadowVolume_UsingStencilBuffer_DrawDiffuse
BGFX_STATE_RGB_WRITE
| BGFX_STATE_ALPHA_WRITE
| BGFX_STATE_BLEND_FUNC(BGFX_STATE_BLEND_ONE, BGFX_STATE_BLEND_ONE)
| BGFX_STATE_DEPTH_TEST_EQUAL
| BGFX_STATE_CULL_CCW
| BGFX_STATE_MSAA
, UINT32_MAX
, BGFX_STENCIL_TEST_EQUAL
| BGFX_STENCIL_FUNC_REF(0)
| BGFX_STENCIL_FUNC_RMASK(0xff)
| BGFX_STENCIL_OP_FAIL_S_KEEP
| BGFX_STENCIL_OP_FAIL_Z_KEEP
| BGFX_STENCIL_OP_PASS_Z_KEEP
, BGFX_STENCIL_NONE
},
{ // Custom_Default
BGFX_STATE_RGB_WRITE
| BGFX_STATE_ALPHA_WRITE
| BGFX_STATE_DEPTH_WRITE
| BGFX_STATE_DEPTH_TEST_LESS
| BGFX_STATE_CULL_CCW
| BGFX_STATE_MSAA
, UINT32_MAX
, BGFX_STENCIL_NONE
, BGFX_STENCIL_NONE
},
{ // Custom_BlendLightTexture
BGFX_STATE_RGB_WRITE
| BGFX_STATE_ALPHA_WRITE
| BGFX_STATE_DEPTH_WRITE
| BGFX_STATE_DEPTH_TEST_LESS
| BGFX_STATE_BLEND_FUNC(BGFX_STATE_BLEND_SRC_COLOR, BGFX_STATE_BLEND_INV_SRC_COLOR)
| BGFX_STATE_CULL_CCW
| BGFX_STATE_MSAA
, UINT32_MAX
, BGFX_STENCIL_NONE
, BGFX_STENCIL_NONE
},
{ // Custom_DrawPlaneBottom
BGFX_STATE_RGB_WRITE
| BGFX_STATE_ALPHA_WRITE
| BGFX_STATE_DEPTH_WRITE
| BGFX_STATE_CULL_CW
| BGFX_STATE_MSAA
, UINT32_MAX
, BGFX_STENCIL_NONE
, BGFX_STENCIL_NONE
},
{ // Custom_DrawShadowVolume_Lines
BGFX_STATE_RGB_WRITE
| BGFX_STATE_DEPTH_TEST_LESS
| BGFX_STATE_BLEND_FUNC(BGFX_STATE_BLEND_FACTOR, BGFX_STATE_BLEND_SRC_ALPHA)
| BGFX_STATE_PT_LINES
| BGFX_STATE_MSAA
, 0x0f0f0fff
, BGFX_STENCIL_NONE
, BGFX_STENCIL_NONE
}
};
struct ViewState
{
ViewState(uint32_t _width = 1280, uint32_t _height = 720)
: m_width(_width)
, m_height(_height)
{
}
uint32_t m_width;
uint32_t m_height;
float m_view[16];
float m_proj[16];
};
struct ClearValues
{
uint32_t m_clearRgba;
float m_clearDepth;
uint8_t m_clearStencil;
};
void submit(uint8_t _id, int32_t _depth = 0)
{
bgfx::submit(_id, _depth);
// Keep track of submited view ids.
s_viewMask |= 1 << _id;
}
void submitMask(uint32_t _viewMask, int32_t _depth = 0)
{
bgfx::submitMask(_viewMask, _depth);
// Keep track of submited view ids.
s_viewMask |= _viewMask;
}
struct Aabb
{
float m_min[3];
float m_max[3];
};
struct Obb
{
float m_mtx[16];
};
struct Sphere
{
float m_center[3];
float m_radius;
};
struct Primitive
{
uint32_t m_startIndex;
uint32_t m_numIndices;
uint32_t m_startVertex;
uint32_t m_numVertices;
Sphere m_sphere;
Aabb m_aabb;
Obb m_obb;
};
typedef std::vector<Primitive> PrimitiveArray;
struct Face
{
uint16_t m_i[3];
float m_plane[4];
};
typedef std::vector<Face> FaceArray;
struct Edge
{
bool m_faceReverseOrder[2];
uint8_t m_faceIndex;
uint16_t m_i0, m_i1;
};
struct Plane
{
float m_plane[4];
};
struct HalfEdge
{
#define INVALID_EDGE_INDEX UINT16_MAX
uint16_t m_secondIndex;
bool m_marked;
};
struct HalfEdges
{
HalfEdges()
: m_data()
, m_offsets()
, m_endPtr()
{
}
void init(uint16_t* _indices, uint32_t _numIndices)
{
m_data = (HalfEdge*)malloc(2 * _numIndices * sizeof(HalfEdge) );
std::unordered_map<uint16_t, std::vector<uint16_t> > edges;
for (uint32_t ii = 0; ii < _numIndices; ii+=3)
{
uint16_t idx0 = _indices[ii];
uint16_t idx1 = _indices[ii+1];
uint16_t idx2 = _indices[ii+2];
edges[idx0].push_back(idx1);
edges[idx1].push_back(idx2);
edges[idx2].push_back(idx0);
}
uint32_t numRows = (uint32_t)edges.size();
m_offsets = (uint32_t*)malloc(numRows * sizeof(uint32_t) );
HalfEdge* he = m_data;
for (uint32_t ii = 0; ii < numRows; ++ii)
{
m_offsets[ii] = uint32_t(he - m_data);
std::vector<uint16_t>& row = edges[ii];
for (uint32_t jj = 0, end = (uint32_t)row.size(); jj < end; ++jj)
{
he->m_secondIndex = row[jj];
he->m_marked = false;
++he;
}
he->m_secondIndex = INVALID_EDGE_INDEX;
++he;
}
he->m_secondIndex = 0;
m_endPtr = he;
}
void destroy()
{
free(m_data);
m_data = NULL;
free(m_offsets);
m_offsets = NULL;
}
void mark(uint16_t _firstIndex, uint16_t _secondIndex)
{
HalfEdge* ptr = &m_data[m_offsets[_firstIndex]];
while (INVALID_EDGE_INDEX != ptr->m_secondIndex)
{
if (ptr->m_secondIndex == _secondIndex)
{
ptr->m_marked = true;
break;
}
++ptr;
}
}
bool unmark(uint16_t _firstIndex, uint16_t _secondIndex)
{
bool ret = false;
HalfEdge* ptr = &m_data[m_offsets[_firstIndex]];
while (INVALID_EDGE_INDEX != ptr->m_secondIndex)
{
if (ptr->m_secondIndex == _secondIndex && ptr->m_marked)
{
ptr->m_marked = false;
ret = true;
break;
}
++ptr;
}
return ret;
}
inline HalfEdge* begin() const
{
return m_data;
}
inline HalfEdge* end() const
{
return m_endPtr;
}
HalfEdge* m_data;
uint32_t* m_offsets;
HalfEdge* m_endPtr;
};
struct WeldedVertex
{
uint16_t m_v;
bool m_welded;
};
inline float sqLength(const float _a[3], const float _b[3])
{
const float xx = _a[0] - _b[0];
const float yy = _a[1] - _b[1];
const float zz = _a[2] - _b[2];
return xx*xx + yy*yy + zz*zz;
}
uint16_t weldVertices(WeldedVertex* _output, const bgfx::VertexDecl& _decl, const void* _data, uint16_t _num, float _epsilon)
{
const uint32_t hashSize = bx::uint32_nextpow2(_num);
const uint32_t hashMask = hashSize-1;
const float epsilonSq = _epsilon*_epsilon;
uint32_t numVertices = 0;
const uint32_t size = sizeof(uint16_t)*(hashSize + _num);
uint16_t* hashTable = (uint16_t*)alloca(size);
memset(hashTable, 0xff, size);
uint16_t* next = hashTable + hashSize;
for (uint32_t ii = 0; ii < _num; ++ii)
{
float pos[4];
vertexUnpack(pos, bgfx::Attrib::Position, _decl, _data, ii);
uint32_t hashValue = bx::hashMurmur2A(pos, 3*sizeof(float) ) & hashMask;
uint16_t offset = hashTable[hashValue];
for (; UINT16_MAX != offset; offset = next[offset])
{
float test[4];
vertexUnpack(test, bgfx::Attrib::Position, _decl, _data, _output[offset].m_v);
if (sqLength(test, pos) < epsilonSq)
{
_output[ii].m_v = _output[offset].m_v;
_output[ii].m_welded = true;
break;
}
}
if (UINT16_MAX == offset)
{
_output[ii].m_v = ii;
_output[ii].m_welded = false;
next[ii] = hashTable[hashValue];
hashTable[hashValue] = ii;
numVertices++;
}
}
return numVertices;
}
struct Group
{
Group()
{
reset();
}
void reset()
{
m_vbh.idx = bgfx::invalidHandle;
m_ibh.idx = bgfx::invalidHandle;
m_numVertices = 0;
m_vertices = NULL;
m_numIndices = 0;
m_indices = NULL;
m_numEdges = 0;
m_edges = NULL;
m_edgePlanesUnalignedPtr = NULL;
m_prims.clear();
}
typedef struct { float f[6]; } f6_t;
struct EdgeAndPlane
{
EdgeAndPlane(uint16_t _i0, uint16_t _i1)
: m_faceIndex(0)
, m_i0(_i0)
, m_i1(_i1)
{
}
bool m_faceReverseOrder[2];
uint8_t m_faceIndex;
uint16_t m_i0, m_i1;
Plane m_plane[2];
};
void fillStructures(const bgfx::VertexDecl& _decl)
{
uint16_t stride = _decl.getStride();
m_faces.clear();
m_halfEdges.destroy();
//Init halfedges.
m_halfEdges.init(m_indices, m_numIndices);
//Init faces and edges.
m_faces.reserve(m_numIndices/3); //1 face = 3 indices
m_edges = (Edge*)malloc(m_numIndices * sizeof(Edge)); //1 triangle = 3 indices = 3 edges.
m_edgePlanesUnalignedPtr = (Plane*)malloc(m_numIndices * sizeof(Plane) + 15);
m_edgePlanes = (Plane*)bx::alignPtr(m_edgePlanesUnalignedPtr, 0, 16);
typedef std::map<std::pair<uint16_t, uint16_t>, EdgeAndPlane> EdgeMap;
EdgeMap edgeMap;
//Get unique indices.
WeldedVertex* uniqueVertices = (WeldedVertex*)malloc(m_numVertices*sizeof(WeldedVertex) );
::weldVertices(uniqueVertices, _decl, m_vertices, m_numVertices, 0.0001f);
uint16_t* uniqueIndices = (uint16_t*)malloc(m_numIndices*sizeof(uint16_t) );
for (uint32_t ii = 0; ii < m_numIndices; ++ii)
{
uint16_t index = m_indices[ii];
if (uniqueVertices[index].m_welded)
{
uniqueIndices[ii] = uniqueVertices[index].m_v;
}
else
{
uniqueIndices[ii] = index;
}
}
free(uniqueVertices);
for (uint32_t ii = 0, size = m_numIndices/3; ii < size; ++ii)
{
const uint16_t* indices = &m_indices[ii*3];
const uint16_t i0 = indices[0];
const uint16_t i1 = indices[1];
const uint16_t i2 = indices[2];
const float* v0 = (float*)&m_vertices[i0*stride];
const float* v1 = (float*)&m_vertices[i1*stride];
const float* v2 = (float*)&m_vertices[i2*stride];
float plane[4];
planeNormal(plane, v0, v2, v1);
Face face;
face.m_i[0] = i0;
face.m_i[1] = i1;
face.m_i[2] = i2;
memcpy(face.m_plane, plane, 4*sizeof(float) );
m_faces.push_back(face);
//Use unique indices for EdgeMap.
const uint16_t* uindices = &uniqueIndices[ii*3];
const uint16_t ui0 = uindices[0];
const uint16_t ui1 = uindices[1];
const uint16_t ui2 = uindices[2];
const uint16_t triangleEdge[3][2] =
{
{ui0, ui1},
{ui1, ui2},
{ui2, ui0},
};
for (uint8_t jj = 0; jj < 3; ++jj)
{
const uint16_t ui0 = triangleEdge[jj][0];
const uint16_t ui1 = triangleEdge[jj][1];
std::pair<uint16_t, uint16_t> key = std::make_pair(ui0, ui1);
std::pair<uint16_t, uint16_t> keyInv = std::make_pair(ui1, ui0);
EdgeMap::iterator iter = edgeMap.find(keyInv);
if (iter != edgeMap.end())
{
EdgeAndPlane& ep = iter->second;
memcpy(ep.m_plane[ep.m_faceIndex].m_plane, plane, 4*sizeof(float) );
ep.m_faceReverseOrder[ep.m_faceIndex] = true;
}
else
{
std::pair<EdgeMap::iterator, bool> result = edgeMap.insert(std::make_pair(key, EdgeAndPlane(ui0, ui1) ) );
EdgeAndPlane& ep = result.first->second;
memcpy(ep.m_plane[ep.m_faceIndex].m_plane, plane, 4*sizeof(float) );
ep.m_faceReverseOrder[ep.m_faceIndex] = false;
ep.m_faceIndex++;
}
}
}
free(uniqueIndices);
uint32_t index = 0;
for (EdgeMap::const_iterator iter = edgeMap.begin(), end = edgeMap.end(); iter != end; ++iter)
{
Edge* edge = &m_edges[m_numEdges];
Plane* plane = &m_edgePlanes[index];
memcpy(edge, iter->second.m_faceReverseOrder, sizeof(Edge));
memcpy(plane, iter->second.m_plane, 2 * sizeof(Plane));
m_numEdges++;
index += 2;
}
}
void unload()
{
bgfx::destroyVertexBuffer(m_vbh);
if (bgfx::invalidHandle != m_ibh.idx)
{
bgfx::destroyIndexBuffer(m_ibh);
}
free(m_vertices);
m_vertices = NULL;
free(m_indices);
m_indices = NULL;
free(m_edges);
m_edges = NULL;
free(m_edgePlanesUnalignedPtr);
m_edgePlanesUnalignedPtr = NULL;
m_halfEdges.destroy();
}
bgfx::VertexBufferHandle m_vbh;
bgfx::IndexBufferHandle m_ibh;
uint16_t m_numVertices;
uint8_t* m_vertices;
uint32_t m_numIndices;
uint16_t* m_indices;
Sphere m_sphere;
Aabb m_aabb;
Obb m_obb;
PrimitiveArray m_prims;
uint32_t m_numEdges;
Edge* m_edges;
Plane* m_edgePlanesUnalignedPtr;
Plane* m_edgePlanes;
FaceArray m_faces;
HalfEdges m_halfEdges;
};
typedef std::vector<Group> GroupArray;
struct Mesh
{
void load(const void* _vertices, uint32_t _numVertices, const bgfx::VertexDecl _decl, const uint16_t* _indices, uint32_t _numIndices)
{
Group group;
const bgfx::Memory* mem;
uint32_t size;
//vertices
group.m_numVertices = _numVertices;
size = _numVertices*_decl.getStride();
group.m_vertices = (uint8_t*)malloc(size);
memcpy(group.m_vertices, _vertices, size);
mem = bgfx::makeRef(group.m_vertices, size);
group.m_vbh = bgfx::createVertexBuffer(mem, _decl);
//indices
group.m_numIndices = _numIndices;
size = _numIndices*2;
group.m_indices = (uint16_t*)malloc(size);
memcpy(group.m_indices, _indices, size);
mem = bgfx::makeRef(group.m_indices, size);
group.m_ibh = bgfx::createIndexBuffer(mem);
m_groups.push_back(group);
}
void load(const char* _filePath)
{
#define BGFX_CHUNK_MAGIC_VB BX_MAKEFOURCC('V', 'B', ' ', 0x0)
#define BGFX_CHUNK_MAGIC_IB BX_MAKEFOURCC('I', 'B', ' ', 0x0)
#define BGFX_CHUNK_MAGIC_PRI BX_MAKEFOURCC('P', 'R', 'I', 0x0)
bx::CrtFileReader reader;
reader.open(_filePath);
Group group;
uint32_t chunk;
while (4 == bx::read(&reader, chunk) )
{
switch (chunk)
{
case BGFX_CHUNK_MAGIC_VB:
{
bx::read(&reader, group.m_sphere);
bx::read(&reader, group.m_aabb);
bx::read(&reader, group.m_obb);
bx::read(&reader, m_decl);
uint16_t stride = m_decl.getStride();
bx::read(&reader, group.m_numVertices);
const uint32_t size = group.m_numVertices*stride;
group.m_vertices = (uint8_t*)malloc(size);
bx::read(&reader, group.m_vertices, size);
const bgfx::Memory* mem = bgfx::makeRef(group.m_vertices, size);
group.m_vbh = bgfx::createVertexBuffer(mem, m_decl);
}
break;
case BGFX_CHUNK_MAGIC_IB:
{
bx::read(&reader, group.m_numIndices);
const uint32_t size = group.m_numIndices*2;
group.m_indices = (uint16_t*)malloc(size);
bx::read(&reader, group.m_indices, size);
const bgfx::Memory* mem = bgfx::makeRef(group.m_indices, size);
group.m_ibh = bgfx::createIndexBuffer(mem);
}
break;
case BGFX_CHUNK_MAGIC_PRI:
{
uint16_t len;
bx::read(&reader, len);
std::string material;
material.resize(len);
bx::read(&reader, const_cast<char*>(material.c_str() ), len);
uint16_t num;
bx::read(&reader, num);
for (uint32_t ii = 0; ii < num; ++ii)
{
bx::read(&reader, len);
std::string name;
name.resize(len);
bx::read(&reader, const_cast<char*>(name.c_str() ), len);
Primitive prim;
bx::read(&reader, prim.m_startIndex);
bx::read(&reader, prim.m_numIndices);
bx::read(&reader, prim.m_startVertex);
bx::read(&reader, prim.m_numVertices);
bx::read(&reader, prim.m_sphere);
bx::read(&reader, prim.m_aabb);
bx::read(&reader, prim.m_obb);
group.m_prims.push_back(prim);
}
m_groups.push_back(group);
group.reset();
}
break;
default:
DBG("%08x at %d", chunk, reader.seek() );
break;
}
}
reader.close();
for (GroupArray::iterator it = m_groups.begin(), itEnd = m_groups.end(); it != itEnd; ++it)
{
it->fillStructures(m_decl);
}
}
void unload()
{
for (GroupArray::iterator it = m_groups.begin(), itEnd = m_groups.end(); it != itEnd; ++it)
{
it->unload();
}
m_groups.clear();
}
bgfx::VertexDecl m_decl;
GroupArray m_groups;
};
struct Model
{
Model()
{
m_program.idx = bgfx::invalidHandle;
m_texture.idx = bgfx::invalidHandle;
}
void load(const void* _vertices, uint32_t _numVertices, const bgfx::VertexDecl _decl, const uint16_t* _indices, uint32_t _numIndices)
{
m_mesh.load(_vertices, _numVertices, _decl, _indices, _numIndices);
}
void load(const char* _meshFilePath)
{
m_mesh.load(_meshFilePath);
}
void unload()
{
m_mesh.unload();
}
void submit(uint8_t _viewId, float* _mtx, const RenderState& _renderState)
{
for (GroupArray::const_iterator it = m_mesh.m_groups.begin(), itEnd = m_mesh.m_groups.end(); it != itEnd; ++it)
{
const Group& group = *it;
// Set uniforms
s_uniforms.submitPerDrawUniforms();
// Set program
BX_CHECK(bgfx::invalidHandle != m_program, "Error, program is not set.");
bgfx::setProgram(m_program);
// Set transform
bgfx::setTransform(_mtx);
// Set buffers
bgfx::setIndexBuffer(group.m_ibh);
bgfx::setVertexBuffer(group.m_vbh);
// Set textures
if (bgfx::invalidHandle != m_texture.idx)
{
bgfx::setTexture(0, u_texColor, m_texture);
}
bgfx::setTexture(7, u_texStencil, s_stencilFb);
// Apply render state
::setRenderState(_renderState);
// Submit
::submit(_viewId);
}
}
Mesh m_mesh;
bgfx::ProgramHandle m_program;
bgfx::TextureHandle m_texture;
};
struct Instance
{
Instance()
: m_svExtrusionDistance(150.0f)
{
m_color[0] = 1.0f;
m_color[1] = 1.0f;
m_color[2] = 1.0f;
}
void submit(uint8_t _viewId, const RenderState& _renderState)
{
memcpy(s_uniforms.m_color, m_color, 3*sizeof(float) );
float mtx[16];
mtxScaleRotateTranslate(mtx
, m_scale[0]
, m_scale[1]
, m_scale[2]
, m_rotation[0]
, m_rotation[1]
, m_rotation[2]
, m_pos[0]
, m_pos[1]
, m_pos[2]
);
BX_CHECK(NULL != m_model, "Instance model cannot be NULL!");
m_model->submit(_viewId, mtx, _renderState);
}
float m_scale[3];
float m_rotation[3];
float m_pos[3];
float m_color[3];
float m_svExtrusionDistance;
Model* m_model;
};
#define SV_INSTANCE_MEM_SIZE (1500 << 10)
#define SV_INSTANCE_COUNT ( (25 > MAX_INSTANCE_COUNT) ? 25 : MAX_INSTANCE_COUNT)
#define SV_PAGE_SIZE (SV_INSTANCE_MEM_SIZE * SV_INSTANCE_COUNT * MAX_LIGHTS_COUNT)
struct ShadowVolumeAllocator
{
ShadowVolumeAllocator()
{
m_mem = (uint8_t*)malloc(SV_PAGE_SIZE*2);
m_ptr = m_mem;
m_firstPage = true;
}
~ShadowVolumeAllocator()
{
free(m_mem);
}
void* alloc(uint32_t _size)
{
void* ret = (void*)m_ptr;
m_ptr += _size;
BX_CHECK(m_ptr - m_mem < (m_firstPage ? SV_PAGE_SIZE : 2 * SV_PAGE_SIZE), "Buffer overflow!");
return ret;
}
void swap()
{
m_ptr = m_firstPage ? m_mem + SV_PAGE_SIZE : m_mem;
m_firstPage = !m_firstPage;
}
uint8_t* m_mem;
uint8_t* m_ptr;
bool m_firstPage;
};
static ShadowVolumeAllocator s_svAllocator;
struct ShadowVolumeImpl
{
enum Enum
{
DepthPass,
DepthFail,
};
};
struct ShadowVolumeAlgorithm
{
enum Enum
{
FaceBased,
EdgeBased,
};
};
struct ShadowVolume
{
bgfx::VertexBufferHandle m_vbSides;
bgfx::IndexBufferHandle m_ibSides;
bgfx::IndexBufferHandle m_ibFrontCap;
bgfx::IndexBufferHandle m_ibBackCap;
uint32_t m_numVertices;
uint32_t m_numIndices;
const float* m_mtx;
const float* m_lightPos;
bool m_cap;
};
void shadowVolumeLightTransform(float* __restrict _outLightPos
, const float* __restrict _scale
, const float* __restrict _rotate
, const float* __restrict _translate
, const float* __restrict _lightPos // world pos
)
{
/**
* Instead of transforming all the vertices, transform light instead:
* mtx = pivotTranslate -> rotateZYX -> invScale
* light = mtx * origin
*/
float pivot[16];
mtxTranslate(pivot
, _lightPos[0] - _translate[0]
, _lightPos[1] - _translate[1]
, _lightPos[2] - _translate[2]
);
float mzyx[16];
mtxRotateZYX(mzyx
, -_rotate[0]
, -_rotate[1]
, -_rotate[2]
);
float invScale[16];
mtxScale(invScale
, 1.0f / _scale[0]
, 1.0f / _scale[1]
, 1.0f / _scale[2]
);
float tmp0[16];
mtxMul(tmp0, pivot, mzyx);
float mtx[16];
mtxMul(mtx, tmp0, invScale);
float origin[3] = { 0.0f, 0.0f, 0.0f };
vec3MulMtx(_outLightPos, origin, mtx);
}
void shadowVolumeCreate(ShadowVolume& _shadowVolume
, Group& _group
, uint16_t _stride
, const float* _mtx
, const float* _light // in model space
, ShadowVolumeImpl::Enum _impl = ShadowVolumeImpl::DepthPass
, ShadowVolumeAlgorithm::Enum _algo = ShadowVolumeAlgorithm::FaceBased
, bool _textureAsStencil = false
)
{
const uint8_t* vertices = _group.m_vertices;
const FaceArray& faces = _group.m_faces;
const Edge* edges = _group.m_edges;
const Plane* edgePlanes = _group.m_edgePlanes;
const uint32_t numEdges = _group.m_numEdges;
HalfEdges& halfEdges = _group.m_halfEdges;
struct VertexData
{
VertexData()
{
}
VertexData(const float* _v3, float _extrude = 0.0f, float _k = 1.0f)
{
memcpy(m_v, _v3, 3*sizeof(float) );
m_extrude = _extrude;
m_k = _k;
}
float m_v[3];
float m_extrude;
float m_k;
};
bool cap = (ShadowVolumeImpl::DepthFail == _impl);
VertexData* verticesSide = (VertexData*) s_svAllocator.alloc(20000 * sizeof(VertexData) );
uint16_t* indicesSide = (uint16_t*) s_svAllocator.alloc(20000 * 3*sizeof(uint16_t) );
uint16_t* indicesFrontCap = 0;
uint16_t* indicesBackCap = 0;
if (cap)
{
indicesFrontCap = (uint16_t*)s_svAllocator.alloc(80000 * 3*sizeof(uint16_t) );
indicesBackCap = (uint16_t*)s_svAllocator.alloc(80000 * 3*sizeof(uint16_t) );
}
uint32_t vsideI = 0;
uint32_t sideI = 0;
uint32_t frontCapI = 0;
uint32_t backCapI = 0;
uint16_t indexSide = 0;
if (ShadowVolumeAlgorithm::FaceBased == _algo)
{
for (FaceArray::const_iterator iter = faces.begin(), end = faces.end(); iter != end; ++iter)
{
const Face& face = *iter;
bool frontFacing = false;
float f = vec3Dot(face.m_plane, _light) + face.m_plane[3];
if (f > 0.0f)
{
frontFacing = true;
uint16_t triangleEdges[3][2] =
{
{ face.m_i[0], face.m_i[1] },
{ face.m_i[1], face.m_i[2] },
{ face.m_i[2], face.m_i[0] },
};
for (uint8_t ii = 0; ii < 3; ++ii)
{
uint16_t first = triangleEdges[ii][0];
uint16_t second = triangleEdges[ii][1];
if (!halfEdges.unmark(second, first) )
{
halfEdges.mark(first, second);
}
}
}
if (cap)
{
if (frontFacing)
{
indicesFrontCap[frontCapI++] = face.m_i[0];
indicesFrontCap[frontCapI++] = face.m_i[1];
indicesFrontCap[frontCapI++] = face.m_i[2];
}
else
{
indicesBackCap[backCapI++] = face.m_i[0];
indicesBackCap[backCapI++] = face.m_i[1];
indicesBackCap[backCapI++] = face.m_i[2];
}
/**
* if '_useFrontFacingFacesAsBackCap' is needed, implement it as such:
*
* bool condition0 = frontFacing && _useFrontFacingFacesAsBackCap;
* bool condition1 = !frontFacing && !_useFrontFacingFacesAsBackCap;
* if (condition0 || condition1)
* {
* indicesBackCap[backCapI++] = face.m_i[0];
* indicesBackCap[backCapI++] = face.m_i[1+condition0];
* indicesBackCap[backCapI++] = face.m_i[2-condition0];
* }
*/
}
}
// Fill side arrays.
uint16_t firstIndex = 0;
HalfEdge* he = halfEdges.begin();
while (halfEdges.end() != he)
{
if (he->m_marked)
{
he->m_marked = false;
const float* v0 = (float*)&vertices[firstIndex*_stride];
const float* v1 = (float*)&vertices[he->m_secondIndex*_stride];
verticesSide[vsideI++] = VertexData(v0, 0.0f);
verticesSide[vsideI++] = VertexData(v0, 1.0f);
verticesSide[vsideI++] = VertexData(v1, 0.0f);
verticesSide[vsideI++] = VertexData(v1, 1.0f);
indicesSide[sideI++] = indexSide+0;
indicesSide[sideI++] = indexSide+1;
indicesSide[sideI++] = indexSide+2;
indicesSide[sideI++] = indexSide+2;
indicesSide[sideI++] = indexSide+1;
indicesSide[sideI++] = indexSide+3;
indexSide += 4;
}
++he;
if (INVALID_EDGE_INDEX == he->m_secondIndex)
{
++he;
++firstIndex;
}
}
}
else // ShadowVolumeAlgorithm::EdgeBased:
{
uint32_t ii = 0;
#if SV_USE_SIMD
uint32_t numEdgesRounded = numEdges & (~0x1);
using namespace bx;
const float4_t lx = float4_splat(_light[0]);
const float4_t ly = float4_splat(_light[1]);
const float4_t lz = float4_splat(_light[2]);
for (; ii < numEdgesRounded; ii+=2)
{
const Edge& edge0 = edges[ii];
const Edge& edge1 = edges[ii+1];
const Plane* edgePlane0 = &edgePlanes[ii*2];
const Plane* edgePlane1 = &edgePlanes[ii*2 + 2];
const float4_t reverse = float4_ild(edge0.m_faceReverseOrder[0]
, edge1.m_faceReverseOrder[0]
, edge0.m_faceReverseOrder[1]
, edge1.m_faceReverseOrder[1]
);
const float4_t v0 = float4_ld(edgePlane0[0].m_plane);
const float4_t v1 = float4_ld(edgePlane1[0].m_plane);
const float4_t v2 = float4_ld(edgePlane0[1].m_plane);
const float4_t v3 = float4_ld(edgePlane1[1].m_plane);
const float4_t xxyy0 = float4_shuf_xAyB(v0, v2);
const float4_t zzww0 = float4_shuf_zCwD(v0, v2);
const float4_t xxyy1 = float4_shuf_xAyB(v1, v3);
const float4_t zzww1 = float4_shuf_zCwD(v1, v3);
const float4_t vX = float4_shuf_xAyB(xxyy0, xxyy1);
const float4_t vY = float4_shuf_zCwD(xxyy0, xxyy1);
const float4_t vZ = float4_shuf_xAyB(zzww0, zzww1);
const float4_t vW = float4_shuf_zCwD(zzww0, zzww1);
const float4_t r0 = float4_mul(vX, lx);
const float4_t r1 = float4_mul(vY, ly);
const float4_t r2 = float4_mul(vZ, lz);
const float4_t dot = float4_add(r0, float4_add(r1, r2));
const float4_t f = float4_add(dot, vW);
const float4_t zero = float4_zero();
const float4_t mask = float4_cmpgt(f, zero);
const float4_t onef = float4_splat(1.0f);
const float4_t tmp0 = float4_and(mask, onef);
const float4_t tmp1 = float4_ftoi(tmp0);
const float4_t tmp2 = float4_xor(tmp1, reverse);
const float4_t tmp3 = float4_sll(tmp2, 1);
const float4_t onei = float4_isplat(1);
const float4_t tmp4 = float4_isub(tmp3, onei);
BX_ALIGN_STRUCT_16(int32_t res[4]);
float4_st(&res, tmp4);
for (uint16_t jj = 0; jj < 2; ++jj)
{
int16_t k = res[jj] + res[jj+2];
if (k != 0)
{
float* v0 = (float*)&vertices[edges[ii+jj].m_i0*_stride];
float* v1 = (float*)&vertices[edges[ii+jj].m_i1*_stride];
verticesSide[vsideI++] = VertexData(v0, 0.0f, float(k));
verticesSide[vsideI++] = VertexData(v0, 1.0f, float(k));
verticesSide[vsideI++] = VertexData(v1, 0.0f, float(k));
verticesSide[vsideI++] = VertexData(v1, 1.0f, float(k));
k = _textureAsStencil ? 1 : k;
uint16_t winding = uint16_t(k > 0);
for (uint8_t ii = 0, end = abs(k); ii < end; ++ii)
{
indicesSide[sideI++] = indexSide;
indicesSide[sideI++] = indexSide + 2 - winding;
indicesSide[sideI++] = indexSide + 1 + winding;
indicesSide[sideI++] = indexSide + 2;
indicesSide[sideI++] = indexSide + 3 - winding*2;
indicesSide[sideI++] = indexSide + 1 + winding*2;
}
indexSide += 4;
}
}
}
#endif
for (; ii < numEdges; ++ii)
{
const Edge& edge = edges[ii];
const Plane* edgePlane = &edgePlanes[ii*2];
int16_t s0 = ( (vec3Dot(edgePlane[0].m_plane, _light) + edgePlane[0].m_plane[3]) > 0.0f) ^ edge.m_faceReverseOrder[0];
int16_t s1 = ( (vec3Dot(edgePlane[1].m_plane, _light) + edgePlane[1].m_plane[3]) > 0.0f) ^ edge.m_faceReverseOrder[1];
int16_t k = ( (s0 + s1) << 1) - 2;
if (k != 0)
{
float* v0 = (float*)&vertices[edge.m_i0*_stride];
float* v1 = (float*)&vertices[edge.m_i1*_stride];
verticesSide[vsideI++] = VertexData(v0, 0.0f, k);
verticesSide[vsideI++] = VertexData(v0, 1.0f, k);
verticesSide[vsideI++] = VertexData(v1, 0.0f, k);
verticesSide[vsideI++] = VertexData(v1, 1.0f, k);
k = _textureAsStencil ? 1 : k;
uint16_t winding = uint16_t(k > 0);
for (uint8_t ii = 0, end = abs(k); ii < end; ++ii)
{
indicesSide[sideI++] = indexSide;
indicesSide[sideI++] = indexSide + 2 - winding;
indicesSide[sideI++] = indexSide + 1 + winding;
indicesSide[sideI++] = indexSide + 2;
indicesSide[sideI++] = indexSide + 3 - winding*2;
indicesSide[sideI++] = indexSide + 1 + winding*2;
}
indexSide += 4;
}
}
if (cap)
{
// This could/should be done on GPU!
for (FaceArray::const_iterator iter = faces.begin(), end = faces.end(); iter != end; ++iter)
{
const Face& face = *iter;
float f = vec3Dot(face.m_plane, _light) + face.m_plane[3];
bool frontFacing = (f > 0.0f);
for (uint8_t ii = 0, end = 1 + uint8_t(!_textureAsStencil); ii < end; ++ii)
{
if (frontFacing)
{
indicesFrontCap[frontCapI++] = face.m_i[0];
indicesFrontCap[frontCapI++] = face.m_i[1];
indicesFrontCap[frontCapI++] = face.m_i[2];
}
else
{
indicesBackCap[backCapI++] = face.m_i[0];
indicesBackCap[backCapI++] = face.m_i[1];
indicesBackCap[backCapI++] = face.m_i[2];
}
}
}
}
}
bgfx::VertexDecl decl;
decl.begin();
decl.add(bgfx::Attrib::Position, 3, bgfx::AttribType::Float);
decl.add(bgfx::Attrib::TexCoord0, 2, bgfx::AttribType::Float);
decl.end();
//fill the structure
_shadowVolume.m_numVertices = vsideI;
_shadowVolume.m_numIndices = sideI + frontCapI + backCapI;
_shadowVolume.m_mtx = _mtx;
_shadowVolume.m_lightPos = _light;
_shadowVolume.m_cap = cap;
const bgfx::Memory* mem;
//sides
uint32_t vsize = vsideI * 5*sizeof(float);
uint32_t isize = sideI * sizeof(uint16_t);
mem = bgfx::makeRef(verticesSide, vsize);
_shadowVolume.m_vbSides = bgfx::createVertexBuffer(mem, decl);
mem = bgfx::makeRef(indicesSide, isize);
_shadowVolume.m_ibSides = bgfx::createIndexBuffer(mem);
// bgfx::destroy*Buffer doesn't actually destroy buffers now.
// Instead, these bgfx::destroy*Buffer commands get queued to be executed after the end of the next frame.
bgfx::destroyVertexBuffer(_shadowVolume.m_vbSides);
bgfx::destroyIndexBuffer(_shadowVolume.m_ibSides);
if (cap)
{
//front cap
isize = frontCapI * sizeof(uint16_t);
mem = bgfx::makeRef(indicesFrontCap, isize);
_shadowVolume.m_ibFrontCap = bgfx::createIndexBuffer(mem);
//gets destroyed after the end of the next frame
bgfx::destroyIndexBuffer(_shadowVolume.m_ibFrontCap);
//back cap
isize = backCapI * sizeof(uint16_t);
mem = bgfx::makeRef(indicesBackCap, isize);
_shadowVolume.m_ibBackCap = bgfx::createIndexBuffer(mem);
//gets destroyed after the end of the next frame
bgfx::destroyIndexBuffer(_shadowVolume.m_ibBackCap);
}
}
void createNearClipVolume(float* __restrict _outPlanes24f
, float* __restrict _lightPos
, float* __restrict _view
, float _fovy
, float _aspect
, float _near
)
{
float (*volumePlanes)[4] = (float(*)[4])_outPlanes24f;
float mtxViewInv[16];
float mtxViewTrans[16];
mtxInverse(mtxViewInv, _view);
mtxTranspose(mtxViewTrans, _view);
float lightPosV[4];
vec4MulMtx(lightPosV, _lightPos, _view);
const float delta = 0.1f;
float nearNormal[4] = { 0.0f, 0.0f, 1.0f, _near };
float d = vec3Dot(lightPosV, nearNormal) + lightPosV[3] * nearNormal[3];
// Light is:
// 1.0f - in front of near plane
// 0.0f - on the near plane
// -1.0f - behind near plane
float lightSide = float( (d > delta) - (d < -delta) );
float t = tanf(_fovy*( (float)M_PI/180.0f)*0.5f) * _near;
float b = -t;
float r = t * _aspect;
float l = -r;
float cornersV[4][3] =
{
{ r, t, _near },
{ l, t, _near },
{ l, b, _near },
{ r, b, _near },
};
float corners[4][3];
vec3MulMtx(corners[0], cornersV[0], mtxViewInv);
vec3MulMtx(corners[1], cornersV[1], mtxViewInv);
vec3MulMtx(corners[2], cornersV[2], mtxViewInv);
vec3MulMtx(corners[3], cornersV[3], mtxViewInv);
float planeNormals[4][3];
for (uint8_t ii = 0; ii < 4; ++ii)
{
float* normal = planeNormals[ii];
float* plane = volumePlanes[ii];
float planeVec[3];
vec3Sub(planeVec, corners[ii], corners[(ii-1)%4]);
float light[3];
float tmp[3];
vec3Mul(tmp, corners[ii], _lightPos[3]);
vec3Sub(light, _lightPos, tmp);
vec3Cross(normal, planeVec, light);
normal[0] *= lightSide;
normal[1] *= lightSide;
normal[2] *= lightSide;
float lenInv = 1.0f / sqrtf(vec3Dot(normal, normal) );
plane[0] = normal[0] * lenInv;
plane[1] = normal[1] * lenInv;
plane[2] = normal[2] * lenInv;
plane[3] = -vec3Dot(normal, corners[ii]) * lenInv;
}
float nearPlaneV[4] =
{
0.0f * lightSide,
0.0f * lightSide,
1.0f * lightSide,
_near * lightSide,
};
vec4MulMtx(volumePlanes[4], nearPlaneV, mtxViewTrans);
float* lightPlane = volumePlanes[5];
float lightPlaneNormal[3] = { 0.0f, 0.0f, -_near * lightSide };
float tmp[3];
vec3MulMtx(tmp, lightPlaneNormal, mtxViewInv);
vec3Sub(lightPlaneNormal, tmp, _lightPos);
float lenInv = 1.0f / sqrtf(vec3Dot(lightPlaneNormal, lightPlaneNormal) );
lightPlane[0] = lightPlaneNormal[0] * lenInv;
lightPlane[1] = lightPlaneNormal[1] * lenInv;
lightPlane[2] = lightPlaneNormal[2] * lenInv;
lightPlane[3] = -vec3Dot(lightPlaneNormal, _lightPos) * lenInv;
}
bool clipTest(const float* _planes, uint8_t _planeNum, const Mesh& _mesh, const float* _scale, const float* _translate)
{
float (*volumePlanes)[4] = (float(*)[4])_planes;
float scale = fmaxf(fmaxf(_scale[0], _scale[1]), _scale[2]);
const GroupArray& groups = _mesh.m_groups;
for (GroupArray::const_iterator it = groups.begin(), itEnd = groups.end(); it != itEnd; ++it)
{
const Group& group = *it;
Sphere sphere = group.m_sphere;
sphere.m_center[0] = sphere.m_center[0] * scale + _translate[0];
sphere.m_center[1] = sphere.m_center[1] * scale + _translate[1];
sphere.m_center[2] = sphere.m_center[2] * scale + _translate[2];
sphere.m_radius *= (scale+0.4f);
bool isInside = true;
for (uint8_t ii = 0; ii < _planeNum; ++ii)
{
const float* plane = volumePlanes[ii];
float positiveSide = vec3Dot(plane, sphere.m_center) + plane[3] + sphere.m_radius;
if (positiveSide < 0.0f)
{
isInside = false;
break;
}
}
if (isInside)
{
return true;
}
}
return false;
}
int _main_(int /*_argc*/, char** /*_argv*/)
{
ViewState viewState(1280, 720);
ClearValues clearValues = {0x00000000, 1.0f, 0};
uint32_t debug = BGFX_DEBUG_TEXT;
uint32_t reset = BGFX_RESET_VSYNC;
bgfx::init();
bgfx::reset(viewState.m_width, viewState.m_height, reset);
// Enable debug text.
bgfx::setDebug(debug);
// Setup root path for binary shaders. Shader binaries are different
// for each renderer.
switch (bgfx::getRendererType() )
{
default:
case bgfx::RendererType::Direct3D9:
s_shaderPath = "shaders/dx9/";
s_texelHalf = 0.5f;
break;
case bgfx::RendererType::Direct3D11:
s_shaderPath = "shaders/dx11/";
break;
case bgfx::RendererType::OpenGL:
s_shaderPath = "shaders/glsl/";
s_flipV = true;
break;
case bgfx::RendererType::OpenGLES2:
case bgfx::RendererType::OpenGLES3:
s_shaderPath = "shaders/gles/";
s_flipV = true;
break;
}
// Imgui
FILE* file = fopen("font/droidsans.ttf", "rb");
uint32_t size = (uint32_t)fsize(file);
void* data = malloc(size);
size_t ignore = fread(data, 1, size, file);
BX_UNUSED(ignore);
fclose(file);
imguiCreate(data, size);
free(data);
bgfx::VertexDecl PosNormalTexcoordDecl;
PosNormalTexcoordDecl.begin();
PosNormalTexcoordDecl.add(bgfx::Attrib::Position, 3, bgfx::AttribType::Float);
PosNormalTexcoordDecl.add(bgfx::Attrib::Normal, 4, bgfx::AttribType::Uint8, true, true);
PosNormalTexcoordDecl.add(bgfx::Attrib::TexCoord0, 2, bgfx::AttribType::Float);
PosNormalTexcoordDecl.end();
s_uniforms.init();
s_uniforms.submitConstUniforms();
const bgfx::Memory* mem;
mem = loadTexture("figure-rgba.dds");
bgfx::TextureHandle figureTex = bgfx::createTexture(mem);
mem = loadTexture("flare.dds");
bgfx::TextureHandle flareTex = bgfx::createTexture(mem);
mem = loadTexture("fieldstone-rgba.dds");
bgfx::TextureHandle fieldstoneTex = bgfx::createTexture(mem);
bgfx::TextureHandle fbtextures[] =
{
bgfx::createTexture2D(viewState.m_width, viewState.m_height, 1, bgfx::TextureFormat::BGRA8, BGFX_TEXTURE_U_CLAMP|BGFX_TEXTURE_V_CLAMP|BGFX_TEXTURE_RT),
bgfx::createTexture2D(viewState.m_width, viewState.m_height, 1, bgfx::TextureFormat::D16, BGFX_TEXTURE_RT_BUFFER_ONLY),
};
s_stencilFb = bgfx::createFrameBuffer(BX_COUNTOF(fbtextures), fbtextures, true);
u_texColor = bgfx::createUniform("u_texColor", bgfx::UniformType::Uniform1iv);
u_texStencil = bgfx::createUniform("u_texStencil", bgfx::UniformType::Uniform1iv);
bgfx::ProgramHandle programTextureLightning = loadProgram("vs_shadowvolume_texture_lightning", "fs_shadowvolume_texture_lightning");
bgfx::ProgramHandle programColorLightning = loadProgram("vs_shadowvolume_color_lightning", "fs_shadowvolume_color_lightning" );
bgfx::ProgramHandle programColorTexture = loadProgram("vs_shadowvolume_color_texture", "fs_shadowvolume_color_texture" );
bgfx::ProgramHandle programTexture = loadProgram("vs_shadowvolume_texture", "fs_shadowvolume_texture" );
bgfx::ProgramHandle programBackBlank = loadProgram("vs_shadowvolume_svback", "fs_shadowvolume_svbackblank" );
bgfx::ProgramHandle programSideBlank = loadProgram("vs_shadowvolume_svside", "fs_shadowvolume_svsideblank" );
bgfx::ProgramHandle programFrontBlank = loadProgram("vs_shadowvolume_svfront", "fs_shadowvolume_svfrontblank");
bgfx::ProgramHandle programBackColor = loadProgram("vs_shadowvolume_svback", "fs_shadowvolume_svbackcolor" );
bgfx::ProgramHandle programSideColor = loadProgram("vs_shadowvolume_svside", "fs_shadowvolume_svsidecolor" );
bgfx::ProgramHandle programFrontColor = loadProgram("vs_shadowvolume_svfront", "fs_shadowvolume_svfrontcolor");
bgfx::ProgramHandle programSideTex = loadProgram("vs_shadowvolume_svside", "fs_shadowvolume_svsidetex" );
bgfx::ProgramHandle programBackTex1 = loadProgram("vs_shadowvolume_svback", "fs_shadowvolume_svbacktex1" );
bgfx::ProgramHandle programBackTex2 = loadProgram("vs_shadowvolume_svback", "fs_shadowvolume_svbacktex2" );
bgfx::ProgramHandle programFrontTex1 = loadProgram("vs_shadowvolume_svfront", "fs_shadowvolume_svfronttex1" );
bgfx::ProgramHandle programFrontTex2 = loadProgram("vs_shadowvolume_svfront", "fs_shadowvolume_svfronttex2" );
struct ShadowVolumeProgramType
{
enum Enum
{
Blank = 0,
Color,
Tex1,
Tex2,
Count
};
};
struct ShadowVolumePart
{
enum Enum
{
Back = 0,
Side,
Front,
Count
};
};
bgfx::ProgramHandle svProgs[ShadowVolumeProgramType::Count][ShadowVolumePart::Count] =
{
{ programBackBlank, programSideBlank, programFrontBlank }, // Blank
{ programBackColor, programSideColor, programFrontColor }, // Color
{ programBackTex1, programSideTex, programFrontTex1 }, // Tex1
{ programBackTex2, programSideTex, programFrontTex2 }, // Tex2
};
Model bunnyLowPolyModel;
Model bunnyHighPolyModel;
Model columnModel;
Model platformModel;
Model cubeModel;
Model hplaneFieldModel;
Model hplaneFigureModel;
Model vplaneModel;
bunnyHighPolyModel.load("meshes/bunny_patched.bin");
bunnyHighPolyModel.m_program = programColorLightning;
bunnyLowPolyModel.load("meshes/bunny_decimated.bin");
bunnyLowPolyModel.m_program = programColorLightning;
columnModel.load("meshes/column.bin");
columnModel.m_program = programColorLightning;
platformModel.load("meshes/platform.bin");
platformModel.m_program = programTextureLightning;
platformModel.m_texture = figureTex;
cubeModel.load("meshes/cube.bin");
cubeModel.m_program = programTextureLightning;
cubeModel.m_texture = figureTex;
hplaneFieldModel.load(s_hplaneVertices, s_numHPlaneVertices, PosNormalTexcoordDecl, s_planeIndices, s_numPlaneIndices);
hplaneFieldModel.m_program = programTextureLightning;
hplaneFieldModel.m_texture = fieldstoneTex;
hplaneFigureModel.load(s_hplaneVertices, s_numHPlaneVertices, PosNormalTexcoordDecl, s_planeIndices, s_numPlaneIndices);
hplaneFigureModel.m_program = programTextureLightning;
hplaneFigureModel.m_texture = figureTex;
vplaneModel.load(s_vplaneVertices, s_numVPlaneVertices, PosNormalTexcoordDecl, s_planeIndices, s_numPlaneIndices);
vplaneModel.m_program = programColorTexture;
vplaneModel.m_texture = flareTex;
// Setup lights.
const float rgbInnerR[MAX_LIGHTS_COUNT][4] =
{
{ 1.0f, 0.7f, 0.2f, 0.0f }, //yellow
{ 0.7f, 0.2f, 1.0f, 0.0f }, //purple
{ 0.2f, 1.0f, 0.7f, 0.0f }, //cyan
{ 1.0f, 0.4f, 0.2f, 0.0f }, //orange
{ 0.7f, 0.7f, 0.7f, 0.0f }, //white
};
float lightRgbInnerR[MAX_LIGHTS_COUNT][4];
for (uint8_t ii = 0, jj = 0; ii < MAX_LIGHTS_COUNT; ++ii, ++jj)
{
const uint8_t index = jj%MAX_LIGHTS_COUNT;
lightRgbInnerR[ii][0] = rgbInnerR[index][0];
lightRgbInnerR[ii][1] = rgbInnerR[index][1];
lightRgbInnerR[ii][2] = rgbInnerR[index][2];
lightRgbInnerR[ii][3] = rgbInnerR[index][3];
}
int64_t profTime = 0;
int64_t timeOffset = bx::getHPCounter();
uint32_t numShadowVolumeVertices = 0;
uint32_t numShadowVolumeIndices = 0;
uint32_t oldWidth = 0;
uint32_t oldHeight = 0;
// Imgui.
bool settings_showHelp = false;
bool settings_updateLights = true;
bool settings_updateScene = true;
bool settings_mixedSvImpl = true;
bool settings_useStencilTexture = false;
bool settings_drawShadowVolumes = false;
float settings_numLights = 1.0f;
float settings_instanceCount = 9.0f;
ShadowVolumeImpl::Enum settings_shadowVolumeImpl = ShadowVolumeImpl::DepthFail;
ShadowVolumeAlgorithm::Enum settings_shadowVolumeAlgorithm = ShadowVolumeAlgorithm::EdgeBased;
int32_t scrollAreaRight = 0;
const char* titles[2] =
{
"Scene 0",
"Scene 1",
};
enum LightPattern
{
LightPattern0 = 0,
LightPattern1
};
enum MeshChoice
{
BunnyHighPoly = 0,
BunnyLowPoly
};
enum Scene
{
Scene0 = 0,
Scene1,
SceneCount
};
LightPattern lightPattern = LightPattern0;
MeshChoice currentMesh = BunnyLowPoly;
Scene currentScene = Scene0;
// Set view and projection matrices.
const float fov = 60.0f;
const float aspect = float(viewState.m_width)/float(viewState.m_height);
const float nearPlane = 1.0f;
const float farPlane = 1000.0f;
mtxProj(viewState.m_proj, fov, aspect, nearPlane, farPlane);
float initialPos[3] = { 3.0f, 20.0f, -58.0f };
cameraSetPosition(initialPos);
cameraSetVerticalAngle(-0.25f);
cameraUpdate(0.0f);
cameraGetViewMtx(viewState.m_view);
entry::MouseState mouseState;
while (!entry::processEvents(viewState.m_width, viewState.m_height, debug, reset, &mouseState) )
{
// Respond properly on resize.
if (oldWidth != viewState.m_width
|| oldHeight != viewState.m_height)
{
oldWidth = viewState.m_width;
oldHeight = viewState.m_height;
bgfx::destroyFrameBuffer(s_stencilFb);
fbtextures[0] = bgfx::createTexture2D(viewState.m_width, viewState.m_height, 1, bgfx::TextureFormat::BGRA8, BGFX_TEXTURE_U_CLAMP|BGFX_TEXTURE_V_CLAMP|BGFX_TEXTURE_RT);
fbtextures[1] = bgfx::createTexture2D(viewState.m_width, viewState.m_height, 1, bgfx::TextureFormat::D16, BGFX_TEXTURE_RT_BUFFER_ONLY);
s_stencilFb = bgfx::createFrameBuffer(BX_COUNTOF(fbtextures), fbtextures, true);
}
// Time.
int64_t now = bx::getHPCounter();
static int64_t last = now;
const int64_t frameTime = now - last;
last = now;
const double freq = double(bx::getHPFrequency() );
const double toMs = 1000.0/freq;
float time = (float)( (now - timeOffset)/double(bx::getHPFrequency() ) );
const float deltaTime = float(frameTime/freq);
s_uniforms.m_time = time;
// Update camera.
cameraUpdate(deltaTime);
cameraGetViewMtx(viewState.m_view);
imguiBeginFrame(mouseState.m_mx
, mouseState.m_my
, (mouseState.m_buttons[entry::MouseButton::Left ] ? IMGUI_MBUT_LEFT : 0)
| (mouseState.m_buttons[entry::MouseButton::Right ] ? IMGUI_MBUT_RIGHT : 0)
, 0
, viewState.m_width
, viewState.m_height
);
imguiBeginScrollArea("Settings", viewState.m_width - 256 - 10, 10, 256, 700, &scrollAreaRight);
if (imguiCheck(titles[Scene0], Scene0 == currentScene) )
{
currentScene = Scene0;
}
if (imguiCheck(titles[Scene1], Scene1 == currentScene) )
{
currentScene = Scene1;
}
imguiSlider("Lights", &settings_numLights, 1.0f, float(MAX_LIGHTS_COUNT), 1.0f);
if (imguiCheck("Update lights", settings_updateLights) )
{
settings_updateLights = !settings_updateLights;
}
imguiIndent();
if (imguiCheck("Light pattern 0", LightPattern0 == lightPattern, settings_updateLights) )
{
lightPattern = LightPattern0;
}
if (imguiCheck("Light pattern 1", LightPattern1 == lightPattern, settings_updateLights) )
{
lightPattern = LightPattern1;
}
imguiUnindent();
if (imguiCheck("Update scene", settings_updateScene, Scene0 == currentScene) )
{
settings_updateScene = !settings_updateScene;
}
imguiSeparatorLine();
imguiLabel("Stencil buffer implementation:");
settings_shadowVolumeImpl = (imguiCheck("Depth fail", ShadowVolumeImpl::DepthFail == settings_shadowVolumeImpl, !settings_mixedSvImpl) ? ShadowVolumeImpl::DepthFail : settings_shadowVolumeImpl);
settings_shadowVolumeImpl = (imguiCheck("Depth pass", ShadowVolumeImpl::DepthPass == settings_shadowVolumeImpl, !settings_mixedSvImpl) ? ShadowVolumeImpl::DepthPass : settings_shadowVolumeImpl);
settings_mixedSvImpl = (imguiCheck("Mixed", settings_mixedSvImpl) ? !settings_mixedSvImpl : settings_mixedSvImpl);
imguiLabel("Shadow volume implementation:");
settings_shadowVolumeAlgorithm = (imguiCheck("Face based impl.", ShadowVolumeAlgorithm::FaceBased == settings_shadowVolumeAlgorithm) ? ShadowVolumeAlgorithm::FaceBased : settings_shadowVolumeAlgorithm);
settings_shadowVolumeAlgorithm = (imguiCheck("Edge based impl.", ShadowVolumeAlgorithm::EdgeBased == settings_shadowVolumeAlgorithm) ? ShadowVolumeAlgorithm::EdgeBased : settings_shadowVolumeAlgorithm);
imguiLabel("Stencil:");
if (imguiCheck("Use stencil buffer", !settings_useStencilTexture) )
{
if (settings_useStencilTexture)
{
settings_useStencilTexture = false;
}
}
if (imguiCheck("Use texture as stencil", settings_useStencilTexture) )
{
if (!settings_useStencilTexture)
{
settings_useStencilTexture = true;
}
}
imguiSeparatorLine();
imguiLabel("Mesh:");
if (imguiCheck("Bunny - high poly", BunnyHighPoly == currentMesh) )
{
currentMesh = BunnyHighPoly;
}
if (imguiCheck("Bunny - low poly", BunnyLowPoly == currentMesh) )
{
currentMesh = BunnyLowPoly;
}
if (Scene1 == currentScene)
{
imguiSlider("Instance count", &settings_instanceCount, 1.0f, float(MAX_INSTANCE_COUNT), 1.0f);
}
imguiLabel("CPU Time: %7.1f [ms]", double(profTime)*toMs);
imguiLabel("Volume Vertices: %5.uk", numShadowVolumeVertices/1000);
imguiLabel("Volume Indices: %6.uk", numShadowVolumeIndices/1000);
numShadowVolumeVertices = 0;
numShadowVolumeIndices = 0;
imguiSeparatorLine();
settings_drawShadowVolumes = imguiCheck("Draw Shadow Volumes", settings_drawShadowVolumes)
? !settings_drawShadowVolumes
: settings_drawShadowVolumes
;
imguiIndent();
imguiUnindent();
imguiEndScrollArea();
static int32_t scrollAreaLeft = 0;
imguiBeginScrollArea("Show help:", 10, viewState.m_height - 77 - 10, 120, 77, &scrollAreaLeft);
settings_showHelp = imguiButton(settings_showHelp ? "ON" : "OFF")
? !settings_showHelp
: settings_showHelp
;
imguiEndScrollArea();
imguiEndFrame();
//update settings
s_uniforms.m_params.m_ambientPass = 1.0f;
s_uniforms.m_params.m_lightningPass = 1.0f;
s_uniforms.m_params.m_texelHalf = s_texelHalf;
s_uniforms.m_svparams.m_useStencilTex = float(settings_useStencilTexture);
s_uniforms.submitPerFrameUniforms();
//set picked bunny model
Model* bunnyModel = BunnyLowPoly == currentMesh ? &bunnyLowPolyModel : &bunnyHighPolyModel;
//update time accumulators
static float sceneTimeAccumulator = 0.0f;
if (settings_updateScene)
{
sceneTimeAccumulator += deltaTime;
}
static float lightTimeAccumulator = 0.0f;
if (settings_updateLights)
{
lightTimeAccumulator += deltaTime;
}
//setup light positions
float lightPosRadius[MAX_LIGHTS_COUNT][4];
if (LightPattern0 == lightPattern)
{
for (uint8_t ii = 0; ii < settings_numLights; ++ii)
{
lightPosRadius[ii][0] = cos(2.0f*float(M_PI)/settings_numLights * float(ii) + lightTimeAccumulator * 1.1f + 3.0f) * 20.0f;
lightPosRadius[ii][1] = 20.0f;
lightPosRadius[ii][2] = sin(2.0f*float(M_PI)/settings_numLights * float(ii) + lightTimeAccumulator * 1.1f + 3.0f) * 20.0f;
lightPosRadius[ii][3] = 20.0f;
}
}
else
{
for (uint8_t ii = 0; ii < settings_numLights; ++ii)
{
lightPosRadius[ii][0] = cos(float(ii) * 2.0f/settings_numLights + lightTimeAccumulator * 1.3f + float(M_PI) ) * 40.0f;
lightPosRadius[ii][1] = 20.0f;
lightPosRadius[ii][2] = sin(float(ii) * 2.0f/settings_numLights + lightTimeAccumulator * 1.3f + float(M_PI) ) * 40.0f;
lightPosRadius[ii][3] = 20.0f;
}
}
//use debug font to print information about this example.
bgfx::dbgTextClear();
bgfx::dbgTextPrintf(0, 1, 0x4f, "bgfx/examples/14-shadowvolumes");
bgfx::dbgTextPrintf(0, 2, 0x6f, "Description: Shadow volumes.");
bgfx::dbgTextPrintf(0, 3, 0x0f, "Frame: % 7.3f[ms]", double(frameTime)*toMs);
if (settings_showHelp)
{
uint8_t row = 5;
bgfx::dbgTextPrintf(3, row++, 0x0f, "Stencil buffer implementation:");
bgfx::dbgTextPrintf(8, row++, 0x0f, "Depth fail - Robust, but slower than 'Depth pass'. Requires computing and drawing of shadow volume caps.");
bgfx::dbgTextPrintf(8, row++, 0x0f, "Depth pass - Faster, but not stable. Shadows are wrong when camera is in the shadow.");
bgfx::dbgTextPrintf(8, row++, 0x0f, "Mixed - 'Depth pass' where possible, 'Depth fail' where necessary. Best of both words.");
row++;
bgfx::dbgTextPrintf(3, row++, 0x0f, "Shadow volume implementation:");
bgfx::dbgTextPrintf(8, row++, 0x0f, "Face Based - Slower. Works fine with either stencil buffer or texture as stencil.");
bgfx::dbgTextPrintf(8, row++, 0x0f, "Edge Based - Faster, but requires +2 incr/decr on stencil buffer. To avoid massive redraw, use RGBA texture as stencil.");
row++;
bgfx::dbgTextPrintf(3, row++, 0x0f, "Stencil:");
bgfx::dbgTextPrintf(8, row++, 0x0f, "Stencil buffer - Faster, but capable only of +1 incr.");
bgfx::dbgTextPrintf(8, row++, 0x0f, "Texture as stencil - Slower, but capable of +2 incr.");
}
// Setup instances
Instance shadowCasters[SceneCount][60];
uint16_t shadowCastersCount[SceneCount];
for (uint8_t ii = 0; ii < SceneCount; ++ii)
{
shadowCastersCount[ii] = 0;
}
Instance shadowReceivers[SceneCount][10];
uint16_t shadowReceiversCount[SceneCount];
for (uint8_t ii = 0; ii < SceneCount; ++ii)
{
shadowReceiversCount[ii] = 0;
}
// Scene 0 - shadow casters - Bunny
{
Instance& inst = shadowCasters[Scene0][shadowCastersCount[Scene0]++];
inst.m_scale[0] = 5.0f;
inst.m_scale[1] = 5.0f;
inst.m_scale[2] = 5.0f;
inst.m_rotation[0] = 0.0f;
inst.m_rotation[1] = float(4.0f - sceneTimeAccumulator * 0.7f);
inst.m_rotation[2] = 0.0f;
inst.m_pos[0] = 0.0f;
inst.m_pos[1] = 10.0f;
inst.m_pos[2] = 0.0f;
inst.m_color[0] = 0.68f;
inst.m_color[1] = 0.65f;
inst.m_color[2] = 0.60f;
inst.m_model = bunnyModel;
}
// Scene 0 - shadow casters - Cubes top.
const uint8_t numCubesTop = 9;
for (uint16_t ii = 0; ii < numCubesTop; ++ii)
{
Instance& inst = shadowCasters[Scene0][shadowCastersCount[Scene0]++];
inst.m_scale[0] = 1.0f;
inst.m_scale[1] = 1.0f;
inst.m_scale[2] = 1.0f;
inst.m_rotation[0] = 0.0f;
inst.m_rotation[1] = 0.0f;
inst.m_rotation[2] = 0.0f;
inst.m_pos[0] = sin(ii * 2.0f + 13.0f + sceneTimeAccumulator * 1.1f) * 13.0f;
inst.m_pos[1] = 6.0f;
inst.m_pos[2] = cos(ii * 2.0f + 13.0f + sceneTimeAccumulator * 1.1f) * 13.0f;
inst.m_model = &cubeModel;
}
// Scene 0 - shadow casters - Cubes bottom.
const uint8_t numCubesBottom = 9;
for (uint16_t ii = 0; ii < numCubesBottom; ++ii)
{
Instance& inst = shadowCasters[Scene0][shadowCastersCount[Scene0]++];
inst.m_scale[0] = 1.0f;
inst.m_scale[1] = 1.0f;
inst.m_scale[2] = 1.0f;
inst.m_rotation[0] = 0.0f;
inst.m_rotation[1] = 0.0f;
inst.m_rotation[2] = 0.0f;
inst.m_pos[0] = sin(ii * 2.0f + 13.0f + sceneTimeAccumulator * 1.1f) * 13.0f;
inst.m_pos[1] = 22.0f;
inst.m_pos[2] = cos(ii * 2.0f + 13.0f + sceneTimeAccumulator * 1.1f) * 13.0f;
inst.m_model = &cubeModel;
}
// Scene 0 - shadow casters - Columns.
const float dist = 16.0f;
const float columnPositions[4][3] =
{
{ dist, 3.3f, dist },
{ -dist, 3.3f, dist },
{ dist, 3.3f, -dist },
{ -dist, 3.3f, -dist },
};
for (uint8_t ii = 0; ii < 4; ++ii)
{
Instance& inst = shadowCasters[Scene0][shadowCastersCount[Scene0]++];
inst.m_scale[0] = 1.5f;
inst.m_scale[1] = 1.5f;
inst.m_scale[2] = 1.5f;
inst.m_rotation[0] = 0.0f;
inst.m_rotation[1] = 1.57f;
inst.m_rotation[2] = 0.0f;
inst.m_pos[0] = columnPositions[ii][0];
inst.m_pos[1] = columnPositions[ii][1];
inst.m_pos[2] = columnPositions[ii][2];
inst.m_color[0] = 0.25f;
inst.m_color[1] = 0.25f;
inst.m_color[2] = 0.25f;
inst.m_model = &columnModel;
}
// Scene 0 - shadow casters - Ceiling.
{
Instance& inst = shadowCasters[Scene0][shadowCastersCount[Scene0]++];
inst.m_scale[0] = 21.0f;
inst.m_scale[1] = 21.0f;
inst.m_scale[2] = 21.0f;
inst.m_rotation[0] = float(M_PI);
inst.m_rotation[1] = 0.0f;
inst.m_rotation[2] = 0.0f;
inst.m_pos[0] = 0.0f;
inst.m_pos[1] = 28.2f;
inst.m_pos[2] = 0.0f;
inst.m_model = &platformModel;
inst.m_svExtrusionDistance = 2.0f; //prevent culling on tight view frustum
}
// Scene 0 - shadow casters - Platform.
{
Instance& inst = shadowCasters[Scene0][shadowCastersCount[Scene0]++];
inst.m_scale[0] = 24.0f;
inst.m_scale[1] = 24.0f;
inst.m_scale[2] = 24.0f;
inst.m_rotation[0] = 0.0f;
inst.m_rotation[1] = 0.0f;
inst.m_rotation[2] = 0.0f;
inst.m_pos[0] = 0.0f;
inst.m_pos[1] = 0.0f;
inst.m_pos[2] = 0.0f;
inst.m_model = &platformModel;
inst.m_svExtrusionDistance = 2.0f; //prevent culling on tight view frustum
}
// Scene 0 - shadow receivers - Floor.
{
Instance& inst = shadowReceivers[Scene0][shadowReceiversCount[Scene0]++];
inst.m_scale[0] = 500.0f;
inst.m_scale[1] = 500.0f;
inst.m_scale[2] = 500.0f;
inst.m_rotation[0] = 0.0f;
inst.m_rotation[1] = 0.0f;
inst.m_rotation[2] = 0.0f;
inst.m_pos[0] = 0.0f;
inst.m_pos[1] = 0.0f;
inst.m_pos[2] = 0.0f;
inst.m_model = &hplaneFieldModel;
}
// Scene 1 - shadow casters - Bunny instances
{
enum Direction
{
Left = 0x0,
Down = 0x1,
Right = 0x2,
Up = 0x3,
};
const uint8_t directionMask = 0x3;
uint8_t currentDirection = Left;
float currX = 0.0f;
float currY = 0.0f;
const float stepX = 20.0f;
const float stepY = 20.0f;
uint8_t stateStep = 0;
uint8_t stateChange = 1;
for (uint8_t ii = 0; ii < settings_instanceCount; ++ii)
{
Instance& inst = shadowCasters[Scene1][shadowCastersCount[Scene1]++];
inst.m_scale[0] = 5.0f;
inst.m_scale[1] = 5.0f;
inst.m_scale[2] = 5.0f;
inst.m_rotation[0] = 0.0f;
inst.m_rotation[1] = float(M_PI);
inst.m_rotation[2] = 0.0f;
inst.m_pos[0] = currX;
inst.m_pos[1] = 0.0f;
inst.m_pos[2] = currY;
inst.m_model = bunnyModel;
++stateStep;
if (stateStep >= ( (stateChange & ~0x1) >> 1) )
{
currentDirection = (currentDirection + 1) & directionMask;
stateStep = 0;
++stateChange;
}
switch (currentDirection)
{
case Left: currX -= stepX; break;
case Down: currY -= stepY; break;
case Right: currX += stepX; break;
case Up: currY += stepY; break;
}
}
}
// Scene 1 - shadow receivers - Floor.
{
Instance& inst = shadowReceivers[Scene1][shadowReceiversCount[Scene1]++];
inst.m_scale[0] = 500.0f;
inst.m_scale[1] = 500.0f;
inst.m_scale[2] = 500.0f;
inst.m_rotation[0] = 0.0f;
inst.m_rotation[1] = 0.0f;
inst.m_rotation[2] = 0.0f;
inst.m_pos[0] = 0.0f;
inst.m_pos[1] = 0.0f;
inst.m_pos[2] = 0.0f;
inst.m_model = &hplaneFigureModel;
}
// Make sure at the beginning everything gets cleared.
bgfx::setViewClear(0
, BGFX_CLEAR_COLOR_BIT
| BGFX_CLEAR_DEPTH_BIT
| BGFX_CLEAR_STENCIL_BIT
, clearValues.m_clearRgba
, clearValues.m_clearDepth
, clearValues.m_clearStencil
);
::submit(0);
// Draw ambient only.
s_uniforms.m_params.m_ambientPass = 1.0f;
s_uniforms.m_params.m_lightningPass = 0.0f;
s_uniforms.m_color[0] = 1.0f;
s_uniforms.m_color[1] = 1.0f;
s_uniforms.m_color[2] = 1.0f;
const RenderState& drawAmbient = (settings_useStencilTexture ?
s_renderStates[RenderState::ShadowVolume_UsingStencilTexture_DrawAmbient]:
s_renderStates[RenderState::ShadowVolume_UsingStencilBuffer_DrawAmbient]);
// Draw shadow casters.
for (uint8_t ii = 0; ii < shadowCastersCount[currentScene]; ++ii)
{
shadowCasters[currentScene][ii].submit(VIEWID_RANGE1_PASS0, drawAmbient);
}
// Draw shadow receivers.
for (uint8_t ii = 0; ii < shadowReceiversCount[currentScene]; ++ii)
{
shadowReceivers[currentScene][ii].submit(VIEWID_RANGE1_PASS0, drawAmbient);
}
// Using stencil texture requires rendering to separate render target. first pass is building depth buffer.
if (settings_useStencilTexture)
{
bgfx::setViewClear(VIEWID_RANGE1_RT_PASS1, BGFX_CLEAR_DEPTH_BIT, 0x00000000, 1.0f, 0);
bgfx::setViewFrameBuffer(VIEWID_RANGE1_RT_PASS1, s_stencilFb);
const RenderState& renderState = s_renderStates[RenderState::ShadowVolume_UsingStencilTexture_BuildDepth];
for (uint8_t ii = 0; ii < shadowCastersCount[currentScene]; ++ii)
{
shadowCasters[currentScene][ii].submit(VIEWID_RANGE1_RT_PASS1, renderState);
}
for (uint8_t ii = 0; ii < shadowReceiversCount[currentScene]; ++ii)
{
shadowReceivers[currentScene][ii].submit(VIEWID_RANGE1_RT_PASS1, renderState);
}
}
profTime = bx::getHPCounter();
/**
* For each light:
* 1. Compute and draw shadow volume to stencil buffer
* 2. Draw diffuse with stencil test
*/
for (uint8_t ii = 0, viewId = VIEWID_RANGE15_PASS2; ii < settings_numLights; ++ii, ++viewId)
{
const float* lightPos = lightPosRadius[ii];
memcpy(s_uniforms.m_lightPosRadius, lightPosRadius[ii], 4*sizeof(float) );
memcpy(s_uniforms.m_lightRgbInnerR, lightRgbInnerR[ii], 3*sizeof(float) );
memcpy(s_uniforms.m_color, lightRgbInnerR[ii], 3*sizeof(float) );
if (settings_useStencilTexture)
{
bgfx::setViewFrameBuffer(viewId, s_stencilFb);
bgfx::setViewClear(viewId
, BGFX_CLEAR_COLOR_BIT
, 0x00000000
, 1.0f
, 0
);
}
else
{
const bgfx::FrameBufferHandle invalid = BGFX_INVALID_HANDLE;
bgfx::setViewFrameBuffer(viewId, invalid);
bgfx::setViewClear(viewId
, BGFX_CLEAR_STENCIL_BIT
, clearValues.m_clearRgba
, clearValues.m_clearDepth
, clearValues.m_clearStencil
);
}
// Create near clip volume for current light.
float nearClipVolume[6 * 4] = {};
float pointLight[4];
if (settings_mixedSvImpl)
{
pointLight[0] = lightPos[0];
pointLight[1] = lightPos[1];
pointLight[2] = lightPos[2];
pointLight[3] = 1.0f;
createNearClipVolume(nearClipVolume, pointLight, viewState.m_view, fov, aspect, nearPlane);
}
for (uint8_t jj = 0; jj < shadowCastersCount[currentScene]; ++jj)
{
const Instance& instance = shadowCasters[currentScene][jj];
Model* model = instance.m_model;
ShadowVolumeImpl::Enum shadowVolumeImpl = settings_shadowVolumeImpl;
if (settings_mixedSvImpl)
{
// If instance is inside near clip volume, depth fail must be used, else depth pass is fine.
bool isInsideVolume = clipTest(nearClipVolume, 6, model->m_mesh, instance.m_scale, instance.m_pos);
shadowVolumeImpl = (isInsideVolume ? ShadowVolumeImpl::DepthFail : ShadowVolumeImpl::DepthPass);
}
s_uniforms.m_svparams.m_dfail = float(ShadowVolumeImpl::DepthFail == shadowVolumeImpl);
// Compute virtual light position for shadow volume generation.
float transformedLightPos[3];
shadowVolumeLightTransform(transformedLightPos
, instance.m_scale
, instance.m_rotation
, instance.m_pos
, lightPos
);
// Set virtual light pos.
memcpy(s_uniforms.m_virtualLightPos_extrusionDist, transformedLightPos, 3*sizeof(float) );
s_uniforms.m_virtualLightPos_extrusionDist[3] = instance.m_svExtrusionDistance;
// Compute transform for shadow volume.
float shadowVolumeMtx[16];
mtxScaleRotateTranslate(shadowVolumeMtx
, instance.m_scale[0]
, instance.m_scale[1]
, instance.m_scale[2]
, instance.m_rotation[0]
, instance.m_rotation[1]
, instance.m_rotation[2]
, instance.m_pos[0]
, instance.m_pos[1]
, instance.m_pos[2]
);
GroupArray& groups = model->m_mesh.m_groups;
const uint16_t stride = model->m_mesh.m_decl.getStride();
for (GroupArray::iterator it = groups.begin(), itEnd = groups.end(); it != itEnd; ++it)
{
Group& group = *it;
// Create shadow volume.
ShadowVolume shadowVolume;
shadowVolumeCreate(shadowVolume
, group
, stride
, shadowVolumeMtx
, transformedLightPos
, shadowVolumeImpl
, settings_shadowVolumeAlgorithm
, settings_useStencilTexture
);
numShadowVolumeVertices += shadowVolume.m_numVertices;
numShadowVolumeIndices += shadowVolume.m_numIndices;
ShadowVolumeProgramType::Enum programIndex = ShadowVolumeProgramType::Blank;
RenderState::Enum renderStateIndex;
if (settings_useStencilTexture)
{
renderStateIndex = ShadowVolumeImpl::DepthFail == shadowVolumeImpl
? RenderState::ShadowVolume_UsingStencilTexture_CraftStencil_DepthFail
: RenderState::ShadowVolume_UsingStencilTexture_CraftStencil_DepthPass
;
programIndex = ShadowVolumeAlgorithm::FaceBased == settings_shadowVolumeAlgorithm
? ShadowVolumeProgramType::Tex1
: ShadowVolumeProgramType::Tex2
;
}
else
{
renderStateIndex = ShadowVolumeImpl::DepthFail == shadowVolumeImpl
? RenderState::ShadowVolume_UsingStencilBuffer_CraftStencil_DepthFail
: RenderState::ShadowVolume_UsingStencilBuffer_CraftStencil_DepthPass
;
}
const RenderState& renderStateCraftStencil = s_renderStates[renderStateIndex];
s_uniforms.submitPerDrawUniforms();
bgfx::setProgram(svProgs[programIndex][ShadowVolumePart::Side]);
bgfx::setTransform(shadowVolumeMtx);
bgfx::setVertexBuffer(shadowVolume.m_vbSides);
bgfx::setIndexBuffer(shadowVolume.m_ibSides);
::setRenderState(renderStateCraftStencil);
::submit(viewId);
if (shadowVolume.m_cap)
{
s_uniforms.submitPerDrawUniforms();
bgfx::setProgram(svProgs[programIndex][ShadowVolumePart::Front]);
bgfx::setTransform(shadowVolumeMtx);
bgfx::setVertexBuffer(group.m_vbh);
bgfx::setIndexBuffer(shadowVolume.m_ibFrontCap);
::setRenderState(renderStateCraftStencil);
::submit(viewId);
s_uniforms.submitPerDrawUniforms();
bgfx::setProgram(svProgs[programIndex][ShadowVolumePart::Back]);
bgfx::setTransform(shadowVolumeMtx);
bgfx::setVertexBuffer(group.m_vbh);
bgfx::setIndexBuffer(shadowVolume.m_ibBackCap);
::setRenderState(renderStateCraftStencil);
::submit(viewId);
}
if (settings_drawShadowVolumes)
{
const RenderState& renderState = s_renderStates[RenderState::Custom_DrawShadowVolume_Lines];
s_uniforms.submitPerDrawUniforms();
bgfx::setProgram(svProgs[ShadowVolumeProgramType::Color][ShadowVolumePart::Side]);
bgfx::setTransform(shadowVolumeMtx);
bgfx::setVertexBuffer(shadowVolume.m_vbSides);
bgfx::setIndexBuffer(shadowVolume.m_ibSides);
::setRenderState(renderState);
::submit(VIEWID_RANGE1_PASS3);
if (shadowVolume.m_cap)
{
s_uniforms.submitPerDrawUniforms();
bgfx::setProgram(svProgs[ShadowVolumeProgramType::Color][ShadowVolumePart::Front]);
bgfx::setTransform(shadowVolumeMtx);
bgfx::setVertexBuffer(group.m_vbh);
bgfx::setIndexBuffer(shadowVolume.m_ibFrontCap);
::setRenderState(renderState);
::submit(VIEWID_RANGE1_PASS3);
s_uniforms.submitPerDrawUniforms();
bgfx::setProgram(svProgs[ShadowVolumeProgramType::Color][ShadowVolumePart::Back]);
bgfx::setTransform(shadowVolumeMtx);
bgfx::setVertexBuffer(group.m_vbh);
bgfx::setIndexBuffer(shadowVolume.m_ibBackCap);
::setRenderState(renderState);
::submit(VIEWID_RANGE1_PASS3);
}
}
}
}
// Draw diffuse only.
s_uniforms.m_params.m_ambientPass = 0.0f;
s_uniforms.m_params.m_lightningPass = 1.0f;
RenderState& drawDiffuse = settings_useStencilTexture
? s_renderStates[RenderState::ShadowVolume_UsingStencilTexture_DrawDiffuse]
: s_renderStates[RenderState::ShadowVolume_UsingStencilBuffer_DrawDiffuse]
;
// If using stencil texture, viewId is set to render target. Incr it to render to default back buffer.
viewId += uint8_t(settings_useStencilTexture);
// Draw shadow casters.
for (uint8_t ii = 0; ii < shadowCastersCount[currentScene]; ++ii)
{
shadowCasters[currentScene][ii].submit(viewId, drawDiffuse);
}
// Draw shadow receivers.
for (uint8_t ii = 0; ii < shadowReceiversCount[currentScene]; ++ii)
{
shadowReceivers[currentScene][ii].submit(viewId, drawDiffuse);
}
}
profTime = bx::getHPCounter() - profTime;
// Lights.
const float lightScale[3] = { 1.5f, 1.5f, 1.5f };
for (uint8_t ii = 0; ii < settings_numLights; ++ii)
{
memcpy(s_uniforms.m_color, lightRgbInnerR[ii], 3*sizeof(float) );
float lightMtx[16];
mtxBillboard(lightMtx, viewState.m_view, lightPosRadius[ii], lightScale);
vplaneModel.submit(VIEWID_RANGE1_PASS3, lightMtx, s_renderStates[RenderState::Custom_BlendLightTexture]);
}
// Setup view rect and transform for all used views.
bgfx::setViewRectMask(s_viewMask, 0, 0, viewState.m_width, viewState.m_height);
bgfx::setViewTransformMask(s_viewMask, viewState.m_view, viewState.m_proj);
s_viewMask = 0;
// Advance to next frame. Rendering thread will be kicked to
// process submitted rendering primitives.
bgfx::frame();
// Swap memory pages.
s_svAllocator.swap();
// Reset clear values.
bgfx::setViewClearMask(UINT32_MAX
, BGFX_CLEAR_NONE
, clearValues.m_clearRgba
, clearValues.m_clearDepth
, clearValues.m_clearStencil
);
}
// Cleanup
bunnyLowPolyModel.unload();
bunnyHighPolyModel.unload();
columnModel.unload();
cubeModel.unload();
platformModel.unload();
hplaneFieldModel.unload();
hplaneFigureModel.unload();
vplaneModel.unload();
s_uniforms.destroy();
bgfx::destroyUniform(u_texColor);
bgfx::destroyUniform(u_texStencil);
bgfx::destroyFrameBuffer(s_stencilFb);
bgfx::destroyTexture(figureTex);
bgfx::destroyTexture(fieldstoneTex);
bgfx::destroyTexture(flareTex);
bgfx::destroyProgram(programTextureLightning);
bgfx::destroyProgram(programColorLightning);
bgfx::destroyProgram(programColorTexture);
bgfx::destroyProgram(programTexture);
bgfx::destroyProgram(programBackBlank);
bgfx::destroyProgram(programSideBlank);
bgfx::destroyProgram(programFrontBlank);
bgfx::destroyProgram(programBackColor);
bgfx::destroyProgram(programSideColor);
bgfx::destroyProgram(programFrontColor);
bgfx::destroyProgram(programSideTex);
bgfx::destroyProgram(programBackTex1);
bgfx::destroyProgram(programBackTex2);
bgfx::destroyProgram(programFrontTex1);
bgfx::destroyProgram(programFrontTex2);
imguiDestroy();
// Shutdown bgfx.
bgfx::shutdown();
return 0;
}