bgfx/tools/geometryc/geometryc.cpp
2014-06-30 22:46:54 -07:00

908 lines
22 KiB
C++

/*
* Copyright 2011-2014 Branimir Karadzic. All rights reserved.
* License: http://www.opensource.org/licenses/BSD-2-Clause
*/
#include <bgfx.h>
#include "../../src/vertexdecl.h"
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <algorithm>
#include <vector>
#include <string>
#include <unordered_map>
#include <forsythtriangleorderoptimizer.h>
#if 0
# define BX_TRACE(_format, ...) \
do { \
printf(BX_FILE_LINE_LITERAL "BGFX " _format "\n", ##__VA_ARGS__); \
} while(0)
# define BX_WARN(_condition, _format, ...) \
do { \
if (!(_condition) ) \
{ \
BX_TRACE(BX_FILE_LINE_LITERAL "WARN " _format, ##__VA_ARGS__); \
} \
} while(0)
# define BX_CHECK(_condition, _format, ...) \
do { \
if (!(_condition) ) \
{ \
BX_TRACE(BX_FILE_LINE_LITERAL "CHECK " _format, ##__VA_ARGS__); \
bx::debugBreak(); \
} \
} while(0)
#endif // 0
#define EXPECT(_condition) \
do { \
if (!(_condition) ) \
{ \
printf("Error parsing at:\n" BX_FILE_LINE_LITERAL "\nExpected: " #_condition "\n"); \
exit(EXIT_FAILURE); \
} \
} while(0)
#include <bx/bx.h>
#include <bx/debug.h>
#include <bx/commandline.h>
#include <bx/timer.h>
#include <bx/readerwriter.h>
#include <bx/hash.h>
#include <bx/uint32_t.h>
#include <bx/fpumath.h>
#include <bx/tokenizecmd.h>
#include "bounds.h"
struct Vector3
{
float x;
float y;
float z;
};
typedef std::vector<Vector3> Vector3Array;
struct Index3
{
int32_t m_position;
int32_t m_texcoord;
int32_t m_normal;
int32_t m_vertexIndex;
};
typedef std::unordered_map<uint64_t, Index3> Index3Map;
struct Triangle
{
uint64_t m_index[3];
};
typedef std::vector<Triangle> TriangleArray;
struct Group
{
uint32_t m_startTriangle;
uint32_t m_numTriangles;
std::string m_name;
std::string m_material;
};
typedef std::vector<Group> GroupArray;
struct Primitive
{
uint32_t m_startVertex;
uint32_t m_startIndex;
uint32_t m_numVertices;
uint32_t m_numIndices;
std::string m_name;
};
typedef std::vector<Primitive> PrimitiveArray;
static uint32_t s_obbSteps = 17;
#define BGFX_CHUNK_MAGIC_GEO BX_MAKEFOURCC('G', 'E', 'O', 0x0)
#define BGFX_CHUNK_MAGIC_VB BX_MAKEFOURCC('V', 'B', ' ', 0x0)
#define BGFX_CHUNK_MAGIC_IB BX_MAKEFOURCC('I', 'B', ' ', 0x0)
#define BGFX_CHUNK_MAGIC_PRI BX_MAKEFOURCC('P', 'R', 'I', 0x0)
long int fsize(FILE* _file)
{
long int pos = ftell(_file);
fseek(_file, 0L, SEEK_END);
long int size = ftell(_file);
fseek(_file, pos, SEEK_SET);
return size;
}
void triangleReorder(uint16_t* _indices, uint32_t _numIndices, uint32_t _numVertices, uint16_t _cacheSize)
{
uint16_t* newIndexList = new uint16_t[_numIndices];
Forsyth::OptimizeFaces(_indices, _numIndices, _numVertices, newIndexList, _cacheSize);
memcpy(_indices, newIndexList, _numIndices*2);
delete [] newIndexList;
}
void calcTangents(void* _vertices, uint16_t _numVertices, bgfx::VertexDecl _decl, const uint16_t* _indices, uint32_t _numIndices)
{
struct PosTexcoord
{
float m_x;
float m_y;
float m_z;
float m_pad0;
float m_u;
float m_v;
float m_pad1;
float m_pad2;
};
float* tangents = new float[6*_numVertices];
memset(tangents, 0, 6*_numVertices*sizeof(float) );
PosTexcoord v0;
PosTexcoord v1;
PosTexcoord v2;
for (uint32_t ii = 0, num = _numIndices/3; ii < num; ++ii)
{
const uint16_t* indices = &_indices[ii*3];
uint32_t i0 = indices[0];
uint32_t i1 = indices[1];
uint32_t i2 = indices[2];
bgfx::vertexUnpack(&v0.m_x, bgfx::Attrib::Position, _decl, _vertices, i0);
bgfx::vertexUnpack(&v0.m_u, bgfx::Attrib::TexCoord0, _decl, _vertices, i0);
bgfx::vertexUnpack(&v1.m_x, bgfx::Attrib::Position, _decl, _vertices, i1);
bgfx::vertexUnpack(&v1.m_u, bgfx::Attrib::TexCoord0, _decl, _vertices, i1);
bgfx::vertexUnpack(&v2.m_x, bgfx::Attrib::Position, _decl, _vertices, i2);
bgfx::vertexUnpack(&v2.m_u, bgfx::Attrib::TexCoord0, _decl, _vertices, i2);
const float bax = v1.m_x - v0.m_x;
const float bay = v1.m_y - v0.m_y;
const float baz = v1.m_z - v0.m_z;
const float bau = v1.m_u - v0.m_u;
const float bav = v1.m_v - v0.m_v;
const float cax = v2.m_x - v0.m_x;
const float cay = v2.m_y - v0.m_y;
const float caz = v2.m_z - v0.m_z;
const float cau = v2.m_u - v0.m_u;
const float cav = v2.m_v - v0.m_v;
const float det = (bau * cav - bav * cau);
const float invDet = 1.0f / det;
const float tx = (bax * cav - cax * bav) * invDet;
const float ty = (bay * cav - cay * bav) * invDet;
const float tz = (baz * cav - caz * bav) * invDet;
const float bx = (cax * bau - bax * cau) * invDet;
const float by = (cay * bau - bay * cau) * invDet;
const float bz = (caz * bau - baz * cau) * invDet;
for (uint32_t jj = 0; jj < 3; ++jj)
{
float* tanu = &tangents[indices[jj]*6];
float* tanv = &tanu[3];
tanu[0] += tx;
tanu[1] += ty;
tanu[2] += tz;
tanv[0] += bx;
tanv[1] += by;
tanv[2] += bz;
}
}
for (uint32_t ii = 0; ii < _numVertices; ++ii)
{
const float* tanu = &tangents[ii*6];
const float* tanv = &tangents[ii*6 + 3];
float normal[4];
bgfx::vertexUnpack(normal, bgfx::Attrib::Normal, _decl, _vertices, ii);
float ndt = bx::vec3Dot(normal, tanu);
float nxt[3];
bx::vec3Cross(nxt, normal, tanu);
float tmp[3];
tmp[0] = tanu[0] - normal[0] * ndt;
tmp[1] = tanu[1] - normal[1] * ndt;
tmp[2] = tanu[2] - normal[2] * ndt;
float tangent[4];
bx::vec3Norm(tangent, tmp);
tangent[3] = bx::vec3Dot(nxt, tanv) < 0.0f ? -1.0f : 1.0f;
bgfx::vertexPack(tangent, true, bgfx::Attrib::Tangent, _decl, _vertices, ii);
}
delete [] tangents;
}
void writeBounds(bx::WriterI* _writer, const void* _vertices, uint32_t _numVertices, uint32_t _stride)
{
Sphere maxSphere;
calcMaxBoundingSphere(maxSphere, _vertices, _numVertices, _stride);
Sphere minSphere;
calcMinBoundingSphere(minSphere, _vertices, _numVertices, _stride);
if (minSphere.m_radius > maxSphere.m_radius)
{
bx::write(_writer, maxSphere);
}
else
{
bx::write(_writer, minSphere);
}
Aabb aabb;
calcAabb(aabb, _vertices, _numVertices, _stride);
bx::write(_writer, aabb);
Obb obb;
calcObb(obb, _vertices, _numVertices, _stride, s_obbSteps);
bx::write(_writer, obb);
}
void write(bx::WriterI* _writer, const uint8_t* _vertices, uint32_t _numVertices, const bgfx::VertexDecl& _decl, const uint16_t* _indices, uint32_t _numIndices, const std::string& _material, const PrimitiveArray& _primitives)
{
uint32_t stride = _decl.getStride();
bx::write(_writer, BGFX_CHUNK_MAGIC_VB);
writeBounds(_writer, _vertices, _numVertices, stride);
bx::write(_writer, _decl);
bx::write(_writer, uint16_t(_numVertices) );
bx::write(_writer, _vertices, _numVertices*stride);
bx::write(_writer, BGFX_CHUNK_MAGIC_IB);
bx::write(_writer, _numIndices);
bx::write(_writer, _indices, _numIndices*2);
bx::write(_writer, BGFX_CHUNK_MAGIC_PRI);
uint16_t nameLen = uint16_t(_material.size() );
bx::write(_writer, nameLen);
bx::write(_writer, _material.c_str(), nameLen);
bx::write(_writer, uint16_t(_primitives.size() ) );
for (PrimitiveArray::const_iterator primIt = _primitives.begin(); primIt != _primitives.end(); ++primIt)
{
const Primitive& prim = *primIt;
nameLen = uint16_t(prim.m_name.size() );
bx::write(_writer, nameLen);
bx::write(_writer, prim.m_name.c_str(), nameLen);
bx::write(_writer, prim.m_startIndex);
bx::write(_writer, prim.m_numIndices);
bx::write(_writer, prim.m_startVertex);
bx::write(_writer, prim.m_numVertices);
writeBounds(_writer, &_vertices[prim.m_startVertex*stride], prim.m_numVertices, stride);
}
}
void help(const char* _error = NULL)
{
if (NULL != _error)
{
fprintf(stderr, "Error:\n%s\n\n", _error);
}
fprintf(stderr
, "geometryc, bgfx geometry compiler tool\n"
"Copyright 2011-2014 Branimir Karadzic. All rights reserved.\n"
"License: http://www.opensource.org/licenses/BSD-2-Clause\n\n"
);
fprintf(stderr
, "Usage: geometryc -f <in> -o <out>\n"
"\n"
"Supported input file types:\n"
" *.obj Wavefront\n"
"\n"
"Options:\n"
" -f <file path> Input file path.\n"
" -o <file path> Output file path.\n"
" -s, --scale <num> Scale factor.\n"
" --ccw Counter-clockwise winding order.\n"
" --flipv Flip texture coordinate V.\n"
" --obb <num> Number of steps for calculating oriented bounding box.\n"
" Default value is 17. Less steps less precise OBB is.\n"
" More steps slower calculation.\n"
" --packnormal <num> Normal packing.\n"
" 0 - unpacked 12 bytes (default).\n"
" 1 - packed 4 bytes.\n"
" --packuv <num> Texture coordinate packing.\n"
" 0 - unpacked 8 bytes (default).\n"
" 1 - packed 4 bytes.\n"
" --tangent Calculate tangent vectors (packing mode is the same as normal).\n"
"\n"
"For additional information, see https://github.com/bkaradzic/bgfx\n"
);
}
inline uint32_t rgbaToAbgr(uint8_t _r, uint8_t _g, uint8_t _b, uint8_t _a)
{
return (uint32_t(_r)<<0)
| (uint32_t(_g)<<8)
| (uint32_t(_b)<<16)
| (uint32_t(_a)<<24)
;
}
struct GroupSortByMaterial
{
bool operator()(const Group& _lhs, const Group& _rhs)
{
return _lhs.m_material < _rhs.m_material;
}
};
int main(int _argc, const char* _argv[])
{
bx::CommandLine cmdLine(_argc, _argv);
const char* filePath = cmdLine.findOption('f');
if (NULL == filePath)
{
help("Input file name must be specified.");
return EXIT_FAILURE;
}
const char* outFilePath = cmdLine.findOption('o');
if (NULL == outFilePath)
{
help("Output file name must be specified.");
return EXIT_FAILURE;
}
float scale = 1.0f;
const char* scaleArg = cmdLine.findOption('s', "scale");
if (NULL != scaleArg)
{
scale = (float)atof(scaleArg);
}
cmdLine.hasArg(s_obbSteps, '\0', "obb");
s_obbSteps = bx::uint32_min(bx::uint32_max(s_obbSteps, 1), 90);
uint32_t packNormal = 0;
cmdLine.hasArg(packNormal, '\0', "packnormal");
uint32_t packUv = 0;
cmdLine.hasArg(packUv, '\0', "packuv");
bool ccw = cmdLine.hasArg("ccw");
bool flipV = cmdLine.hasArg("flipv");
bool hasTangent = cmdLine.hasArg("tangent");
FILE* file = fopen(filePath, "r");
if (NULL == file)
{
printf("Unable to open input file '%s'.", filePath);
exit(EXIT_FAILURE);
}
int64_t parseElapsed = -bx::getHPCounter();
int64_t triReorderElapsed = 0;
uint32_t size = (uint32_t)fsize(file);
char* data = new char[size+1];
size = (uint32_t)fread(data, 1, size, file);
data[size] = '\0';
fclose(file);
// https://en.wikipedia.org/wiki/Wavefront_.obj_file
Vector3Array positions;
Vector3Array normals;
Vector3Array texcoords;
Index3Map indexMap;
TriangleArray triangles;
GroupArray groups;
uint32_t num = 0;
Group group;
group.m_startTriangle = 0;
group.m_numTriangles = 0;
char commandLine[2048];
uint32_t len = sizeof(commandLine);
int argc;
char* argv[64];
const char* next = data;
do
{
next = bx::tokenizeCommandLine(next, commandLine, len, argc, argv, BX_COUNTOF(argv), '\n');
if (0 < argc)
{
if (0 == strcmp(argv[0], "#") )
{
if (2 < argc
&& 0 == strcmp(argv[2], "polygons") )
{
}
}
else if (0 == strcmp(argv[0], "f") )
{
Triangle triangle;
memset(&triangle, 0, sizeof(Triangle) );
for (uint32_t edge = 0, numEdges = argc-1; edge < numEdges; ++edge)
{
Index3 index;
index.m_texcoord = -1;
index.m_normal = -1;
index.m_vertexIndex = -1;
char* vertex = argv[edge+1];
char* texcoord = strchr(vertex, '/');
if (NULL != texcoord)
{
*texcoord++ = '\0';
char* normal = strchr(texcoord, '/');
if (NULL != normal)
{
*normal++ = '\0';
index.m_normal = atoi(normal)-1;
}
index.m_texcoord = atoi(texcoord)-1;
}
index.m_position = atoi(vertex)-1;
uint64_t hash0 = index.m_position;
uint64_t hash1 = uint64_t(index.m_texcoord)<<20;
uint64_t hash2 = uint64_t(index.m_normal)<<40;
uint64_t hash = hash0^hash1^hash2;
std::pair<Index3Map::iterator, bool> result = indexMap.insert(std::make_pair(hash, index) );
if (!result.second)
{
Index3& oldIndex = result.first->second;
BX_UNUSED(oldIndex);
BX_CHECK(oldIndex.m_position == index.m_position
&& oldIndex.m_texcoord == index.m_texcoord
&& oldIndex.m_normal == index.m_normal
, "Hash collision!"
);
}
switch (edge)
{
case 0:
case 1:
case 2:
triangle.m_index[edge] = hash;
if (2 == edge)
{
if (ccw)
{
std::swap(triangle.m_index[1], triangle.m_index[2]);
}
triangles.push_back(triangle);
}
break;
default:
if (ccw)
{
triangle.m_index[2] = triangle.m_index[1];
triangle.m_index[1] = hash;
}
else
{
triangle.m_index[1] = triangle.m_index[2];
triangle.m_index[2] = hash;
}
triangles.push_back(triangle);
break;
}
}
}
else if (0 == strcmp(argv[0], "g") )
{
EXPECT(1 < argc);
group.m_name = argv[1];
}
else if (*argv[0] == 'v')
{
group.m_numTriangles = (uint32_t)(triangles.size() ) - group.m_startTriangle;
if (0 < group.m_numTriangles)
{
groups.push_back(group);
group.m_startTriangle = (uint32_t)(triangles.size() );
group.m_numTriangles = 0;
}
if (0 == strcmp(argv[0], "vn") )
{
Vector3 normal;
normal.x = (float)atof(argv[1]);
normal.y = (float)atof(argv[2]);
normal.z = (float)atof(argv[3]);
normals.push_back(normal);
}
else if (0 == strcmp(argv[0], "vp") )
{
static bool once = true;
if (once)
{
once = false;
printf("warning: 'parameter space vertices' are unsupported.\n");
}
}
else if (0 == strcmp(argv[0], "vt") )
{
Vector3 texcoord;
texcoord.x = (float)atof(argv[1]);
texcoord.y = 0.0f;
texcoord.z = 0.0f;
switch (argc)
{
case 4:
texcoord.z = (float)atof(argv[3]);
// fallthrough
case 3:
texcoord.y = (float)atof(argv[2]);
break;
default:
break;
}
texcoords.push_back(texcoord);
}
else
{
float px = (float)atof(argv[1]);
float py = (float)atof(argv[2]);
float pz = (float)atof(argv[3]);
float pw = 1.0f;
if (argc > 4)
{
pw = (float)atof(argv[4]);
}
float invW = scale/pw;
px *= invW;
py *= invW;
pz *= invW;
Vector3 pos;
pos.x = px;
pos.y = py;
pos.z = pz;
positions.push_back(pos);
}
}
else if (0 == strcmp(argv[0], "usemtl") )
{
std::string material(argv[1]);
if (material != group.m_material)
{
group.m_numTriangles = (uint32_t)(triangles.size() ) - group.m_startTriangle;
if (0 < group.m_numTriangles)
{
groups.push_back(group);
group.m_startTriangle = (uint32_t)(triangles.size() );
group.m_numTriangles = 0;
}
}
group.m_material = material;
}
// unsupported tags
// else if (0 == strcmp(argv[0], "mtllib") )
// {
// }
// else if (0 == strcmp(argv[0], "o") )
// {
// }
// else if (0 == strcmp(argv[0], "s") )
// {
// }
}
++num;
}
while ('\0' != *next);
group.m_numTriangles = (uint32_t)(triangles.size() ) - group.m_startTriangle;
if (0 < group.m_numTriangles)
{
groups.push_back(group);
group.m_startTriangle = (uint32_t)(triangles.size() );
group.m_numTriangles = 0;
}
delete [] data;
int64_t now = bx::getHPCounter();
parseElapsed += now;
int64_t convertElapsed = -now;
std::sort(groups.begin(), groups.end(), GroupSortByMaterial() );
bool hasColor = false;
bool hasNormal;
bool hasTexcoord;
{
Index3Map::const_iterator it = indexMap.begin();
hasNormal = -1 != it->second.m_normal;
hasTexcoord = -1 != it->second.m_texcoord;
if (!hasTexcoord
&& texcoords.size() == positions.size() )
{
hasTexcoord = true;
for (Index3Map::iterator it = indexMap.begin(), itEnd = indexMap.end(); it != itEnd; ++it)
{
it->second.m_texcoord = it->second.m_position;
}
}
if (!hasNormal
&& normals.size() == positions.size() )
{
hasNormal = true;
for (Index3Map::iterator it = indexMap.begin(), itEnd = indexMap.end(); it != itEnd; ++it)
{
it->second.m_normal = it->second.m_position;
}
}
}
bgfx::VertexDecl decl;
decl.begin();
decl.add(bgfx::Attrib::Position, 3, bgfx::AttribType::Float);
if (hasColor)
{
decl.add(bgfx::Attrib::Color0, 4, bgfx::AttribType::Uint8, true);
}
if (hasTexcoord)
{
switch (packUv)
{
default:
case 0:
decl.add(bgfx::Attrib::TexCoord0, 2, bgfx::AttribType::Float);
break;
case 1:
decl.add(bgfx::Attrib::TexCoord0, 2, bgfx::AttribType::Half);
break;
}
}
if (hasNormal)
{
hasTangent &= hasTexcoord;
switch (packNormal)
{
default:
case 0:
decl.add(bgfx::Attrib::Normal, 3, bgfx::AttribType::Float);
if (hasTangent)
{
decl.add(bgfx::Attrib::Tangent, 4, bgfx::AttribType::Float);
}
break;
case 1:
decl.add(bgfx::Attrib::Normal, 4, bgfx::AttribType::Uint8, true, true);
if (hasTangent)
{
decl.add(bgfx::Attrib::Tangent, 4, bgfx::AttribType::Uint8, true, true);
}
break;
}
}
decl.end();
uint32_t stride = decl.getStride();
uint8_t* vertexData = new uint8_t[triangles.size() * 3 * stride];
uint16_t* indexData = new uint16_t[triangles.size() * 3];
int32_t numVertices = 0;
int32_t numIndices = 0;
int32_t numPrimitives = 0;
uint8_t* vertices = vertexData;
uint16_t* indices = indexData;
std::string material = groups.begin()->m_material;
PrimitiveArray primitives;
bx::CrtFileWriter writer;
if (0 != writer.open(outFilePath) )
{
printf("Unable to open output file '%s'.", outFilePath);
exit(EXIT_FAILURE);
}
Primitive prim;
prim.m_startVertex = 0;
prim.m_startIndex = 0;
uint32_t positionOffset = decl.getOffset(bgfx::Attrib::Position);
uint32_t color0Offset = decl.getOffset(bgfx::Attrib::Color0);
uint32_t ii = 0;
for (GroupArray::const_iterator groupIt = groups.begin(); groupIt != groups.end(); ++groupIt, ++ii)
{
for (uint32_t tri = groupIt->m_startTriangle, end = tri + groupIt->m_numTriangles; tri < end; ++tri)
{
if (material != groupIt->m_material
|| 65533 < numVertices)
{
prim.m_numVertices = numVertices - prim.m_startVertex;
prim.m_numIndices = numIndices - prim.m_startIndex;
if (0 < prim.m_numVertices)
{
primitives.push_back(prim);
}
triReorderElapsed -= bx::getHPCounter();
for (PrimitiveArray::const_iterator primIt = primitives.begin(); primIt != primitives.end(); ++primIt)
{
const Primitive& prim = *primIt;
triangleReorder(indexData + prim.m_startIndex, prim.m_numIndices, numVertices, 32);
}
triReorderElapsed += bx::getHPCounter();
if (hasTangent)
{
calcTangents(vertexData, numVertices, decl, indexData, numIndices);
}
write(&writer, vertexData, numVertices, decl, indexData, numIndices, material, primitives);
primitives.clear();
for (Index3Map::iterator indexIt = indexMap.begin(); indexIt != indexMap.end(); ++indexIt)
{
indexIt->second.m_vertexIndex = -1;
}
vertices = vertexData;
indices = indexData;
numVertices = 0;
numIndices = 0;
prim.m_startVertex = 0;
prim.m_startIndex = 0;
++numPrimitives;
material = groupIt->m_material;
}
Triangle& triangle = triangles[tri];
for (uint32_t edge = 0; edge < 3; ++edge)
{
uint64_t hash = triangle.m_index[edge];
Index3& index = indexMap[hash];
if (index.m_vertexIndex == -1)
{
index.m_vertexIndex = numVertices++;
float* position = (float*)(vertices + positionOffset);
memcpy(position, &positions[index.m_position], 3*sizeof(float) );
if (hasColor)
{
uint32_t* color0 = (uint32_t*)(vertices + color0Offset);
*color0 = rgbaToAbgr(numVertices%255, numIndices%255, 0, 0xff);
}
if (hasTexcoord)
{
float uv[2];
memcpy(uv, &texcoords[index.m_texcoord], 2*sizeof(float) );
if (flipV)
{
uv[1] = -uv[1];
}
bgfx::vertexPack(uv, true, bgfx::Attrib::TexCoord0, decl, vertices);
}
if (hasNormal)
{
float normal[4];
bx::vec3Norm(normal, (float*)&normals[index.m_normal]);
bgfx::vertexPack(normal, true, bgfx::Attrib::Normal, decl, vertices);
}
vertices += stride;
}
*indices++ = (uint16_t)index.m_vertexIndex;
++numIndices;
}
}
if (0 < numVertices)
{
prim.m_numVertices = numVertices - prim.m_startVertex;
prim.m_numIndices = numIndices - prim.m_startIndex;
prim.m_name = groupIt->m_name;
primitives.push_back(prim);
prim.m_startVertex = numVertices;
prim.m_startIndex = numIndices;
}
BX_TRACE("%3d: s %5d, n %5d, %s\n"
, ii
, groupIt->m_startTriangle
, groupIt->m_numTriangles
, groupIt->m_material.c_str()
);
}
if (0 < primitives.size() )
{
triReorderElapsed -= bx::getHPCounter();
for (PrimitiveArray::const_iterator primIt = primitives.begin(); primIt != primitives.end(); ++primIt)
{
const Primitive& prim = *primIt;
triangleReorder(indexData + prim.m_startIndex, prim.m_numIndices, numVertices, 32);
}
triReorderElapsed += bx::getHPCounter();
if (hasTangent)
{
calcTangents(vertexData, numVertices, decl, indexData, numIndices);
}
write(&writer, vertexData, numVertices, decl, indexData, numIndices, material, primitives);
}
printf("size: %d\n", uint32_t(writer.seek() ) );
writer.close();
delete [] indexData;
delete [] vertexData;
now = bx::getHPCounter();
convertElapsed += now;
printf("parse %f [s]\ntri reorder %f [s]\nconvert %f [s]\n# %d, g %d, p %d, v %d, i %d\n"
, double(parseElapsed)/bx::getHPFrequency()
, double(triReorderElapsed)/bx::getHPFrequency()
, double(convertElapsed)/bx::getHPFrequency()
, num
, uint32_t(groups.size() )
, numPrimitives
, numVertices
, numIndices
);
return EXIT_SUCCESS;
}