bgfx/tools/shaderc/shaderc_spirv.cpp
Branimir Karadžić a4bedea36c Fixed warning.
2018-09-02 22:34:04 -07:00

835 lines
20 KiB
C++

/*
* Copyright 2011-2018 Branimir Karadzic. All rights reserved.
* License: https://github.com/bkaradzic/bgfx#license-bsd-2-clause
*/
#include "shaderc.h"
BX_PRAGMA_DIAGNOSTIC_PUSH()
BX_PRAGMA_DIAGNOSTIC_IGNORED_MSVC(4100) // error C4100: 'inclusionDepth' : unreferenced formal parameter
BX_PRAGMA_DIAGNOSTIC_IGNORED_MSVC(4265) // error C4265: 'spv::spirvbin_t': class has virtual functions, but destructor is not virtual
BX_PRAGMA_DIAGNOSTIC_IGNORED_CLANG_GCC("-Wshadow") // warning: declaration of 'userData' shadows a member of 'glslang::TShader::Includer::IncludeResult'
#define ENABLE_OPT 1
#include <ShaderLang.h>
#include <ResourceLimits.h>
#include <SPIRV/SPVRemapper.h>
#include <SPIRV/GlslangToSpv.h>
BX_PRAGMA_DIAGNOSTIC_POP()
namespace bgfx
{
static bx::DefaultAllocator s_allocator;
bx::AllocatorI* g_allocator = &s_allocator;
struct TinyStlAllocator
{
static void* static_allocate(size_t _bytes);
static void static_deallocate(void* _ptr, size_t /*_bytes*/);
};
void* TinyStlAllocator::static_allocate(size_t _bytes)
{
return BX_ALLOC(g_allocator, _bytes);
}
void TinyStlAllocator::static_deallocate(void* _ptr, size_t /*_bytes*/)
{
if (NULL != _ptr)
{
BX_FREE(g_allocator, _ptr);
}
}
} // namespace bgfx
#define TINYSTL_ALLOCATOR bgfx::TinyStlAllocator
#include <tinystl/allocator.h>
#include <tinystl/string.h>
#include <tinystl/unordered_map.h>
#include <tinystl/vector.h>
namespace stl = tinystl;
#include "../../src/shader_spirv.h"
namespace bgfx { namespace spirv
{
const TBuiltInResource resourceLimits =
{
32, // MaxLights
6, // MaxClipPlanes
32, // MaxTextureUnits
32, // MaxTextureCoords
64, // MaxVertexAttribs
4096, // MaxVertexUniformComponents
64, // MaxVaryingFloats
32, // MaxVertexTextureImageUnits
80, // MaxCombinedTextureImageUnits
32, // MaxTextureImageUnits
4096, // MaxFragmentUniformComponents
32, // MaxDrawBuffers
128, // MaxVertexUniformVectors
8, // MaxVaryingVectors
16, // MaxFragmentUniformVectors
16, // MaxVertexOutputVectors
15, // MaxFragmentInputVectors
-8, // MinProgramTexelOffset
7, // MaxProgramTexelOffset
8, // MaxClipDistances
65535, // MaxComputeWorkGroupCountX
65535, // MaxComputeWorkGroupCountY
65535, // MaxComputeWorkGroupCountZ
1024, // MaxComputeWorkGroupSizeX
1024, // MaxComputeWorkGroupSizeY
64, // MaxComputeWorkGroupSizeZ
1024, // MaxComputeUniformComponents
16, // MaxComputeTextureImageUnits
8, // MaxComputeImageUniforms
8, // MaxComputeAtomicCounters
1, // MaxComputeAtomicCounterBuffers
60, // MaxVaryingComponents
64, // MaxVertexOutputComponents
64, // MaxGeometryInputComponents
128, // MaxGeometryOutputComponents
128, // MaxFragmentInputComponents
8, // MaxImageUnits
8, // MaxCombinedImageUnitsAndFragmentOutputs
8, // MaxCombinedShaderOutputResources
0, // MaxImageSamples
0, // MaxVertexImageUniforms
0, // MaxTessControlImageUniforms
0, // MaxTessEvaluationImageUniforms
0, // MaxGeometryImageUniforms
8, // MaxFragmentImageUniforms
8, // MaxCombinedImageUniforms
16, // MaxGeometryTextureImageUnits
256, // MaxGeometryOutputVertices
1024, // MaxGeometryTotalOutputComponents
1024, // MaxGeometryUniformComponents
64, // MaxGeometryVaryingComponents
128, // MaxTessControlInputComponents
128, // MaxTessControlOutputComponents
16, // MaxTessControlTextureImageUnits
1024, // MaxTessControlUniformComponents
4096, // MaxTessControlTotalOutputComponents
128, // MaxTessEvaluationInputComponents
128, // MaxTessEvaluationOutputComponents
16, // MaxTessEvaluationTextureImageUnits
1024, // MaxTessEvaluationUniformComponents
120, // MaxTessPatchComponents
32, // MaxPatchVertices
64, // MaxTessGenLevel
16, // MaxViewports
0, // MaxVertexAtomicCounters
0, // MaxTessControlAtomicCounters
0, // MaxTessEvaluationAtomicCounters
0, // MaxGeometryAtomicCounters
8, // MaxFragmentAtomicCounters
8, // MaxCombinedAtomicCounters
1, // MaxAtomicCounterBindings
0, // MaxVertexAtomicCounterBuffers
0, // MaxTessControlAtomicCounterBuffers
0, // MaxTessEvaluationAtomicCounterBuffers
0, // MaxGeometryAtomicCounterBuffers
1, // MaxFragmentAtomicCounterBuffers
1, // MaxCombinedAtomicCounterBuffers
16384, // MaxAtomicCounterBufferSize
4, // MaxTransformFeedbackBuffers
64, // MaxTransformFeedbackInterleavedComponents
8, // MaxCullDistances
8, // MaxCombinedClipAndCullDistances
4, // MaxSamples
{ // limits
1, // nonInductiveForLoops
1, // whileLoops
1, // doWhileLoops
1, // generalUniformIndexing
1, // generalAttributeMatrixVectorIndexing
1, // generalVaryingIndexing
1, // generalSamplerIndexing
1, // generalVariableIndexing
1, // generalConstantMatrixVectorIndexing
},
};
bool printAsm(uint32_t _offset, const SpvInstruction& _instruction, void* _userData)
{
BX_UNUSED(_userData);
char temp[512];
toString(temp, sizeof(temp), _instruction);
BX_TRACE("%5d: %s", _offset, temp);
return true;
}
struct SpvReflection
{
struct TypeId
{
enum Enum
{
Void,
Bool,
Int32,
Int64,
Uint32,
Uint64,
Float,
Double,
Vector,
Matrix,
Count
};
TypeId()
: baseType(Enum::Count)
, type(Enum::Count)
, numComponents(0)
{
}
Enum baseType;
Enum type;
uint32_t numComponents;
stl::string toString()
{
stl::string result;
switch (type)
{
case Float:
result.append("float");
break;
case Vector:
bx::stringPrintf(result, "vec%d"
, numComponents
);
break;
case Matrix:
bx::stringPrintf(result, "mat%d"
, numComponents
);
default:
break;
}
return result;
}
};
struct Id
{
struct Variable
{
Variable()
: decoration(SpvDecoration::Count)
, builtin(SpvBuiltin::Count)
, storageClass(SpvStorageClass::Count)
, location(UINT32_MAX)
, offset(UINT32_MAX)
, type(UINT32_MAX)
{
}
stl::string name;
SpvDecoration::Enum decoration;
SpvBuiltin::Enum builtin;
SpvStorageClass::Enum storageClass;
uint32_t location;
uint32_t offset;
uint32_t type;
};
typedef stl::vector<Variable> MemberArray;
Variable var;
MemberArray members;
};
typedef stl::unordered_map<uint32_t, TypeId> TypeIdMap;
typedef stl::unordered_map<uint32_t, Id> IdMap;
TypeIdMap typeIdMap;
IdMap idMap;
stl::string getTypeName(uint32_t _typeId)
{
return getTypeId(_typeId).toString();
}
Id& getId(uint32_t _id)
{
IdMap::iterator it = idMap.find(_id);
if (it == idMap.end() )
{
Id id;
stl::pair<IdMap::iterator, bool> result = idMap.insert(stl::make_pair(_id, id) );
it = result.first;
}
return it->second;
}
Id::Variable& get(uint32_t _id, uint32_t _idx)
{
Id& id = getId(_id);
id.members.resize(bx::uint32_max(_idx+1, uint32_t(id.members.size() ) ) );
return id.members[_idx];
}
TypeId& getTypeId(uint32_t _id)
{
TypeIdMap::iterator it = typeIdMap.find(_id);
if (it == typeIdMap.end() )
{
TypeId id;
stl::pair<TypeIdMap::iterator, bool> result = typeIdMap.insert(stl::make_pair(_id, id) );
it = result.first;
}
return it->second;
}
void update(uint32_t _id, const stl::string& _name)
{
getId(_id).var.name = _name;
}
BX_NO_INLINE void update(Id::Variable& _variable, SpvDecoration::Enum _decoration, uint32_t _literal)
{
_variable.decoration = _decoration;
switch (_decoration)
{
case SpvDecoration::Location:
_variable.location = _literal;
break;
case SpvDecoration::Offset:
_variable.offset = _literal;
break;
case SpvDecoration::BuiltIn:
_variable.builtin = SpvBuiltin::Enum(_literal);
break;
default:
break;
}
}
BX_NO_INLINE void update(Id::Variable& _variable, uint32_t _type, SpvStorageClass::Enum _storageClass)
{
_variable.type = _type;
_variable.storageClass = _storageClass;
}
void update(uint32_t _id, SpvDecoration::Enum _decoration, uint32_t _literal)
{
update(getId(_id).var, _decoration, _literal);
}
void update(uint32_t _id, uint32_t _type, SpvStorageClass::Enum _storageClass)
{
update(getId(_id).var, _type, _storageClass);
}
void update(uint32_t _id, uint32_t _idx, const stl::string& _name)
{
Id::Variable& var = get(_id, _idx);
var.name = _name;
}
BX_NO_INLINE void update(uint32_t _id, uint32_t _idx, SpvDecoration::Enum _decoration, uint32_t _literal)
{
update(get(_id, _idx), _decoration, _literal);
}
void update(uint32_t _id, TypeId::Enum _type)
{
TypeId& type = getTypeId(_id);
type.type = _type;
}
void update(uint32_t _id, TypeId::Enum _type, uint32_t _baseTypeId, uint32_t _numComonents)
{
TypeId& type = getTypeId(_id);
type.type = _type;
type.baseType = getTypeId(_baseTypeId).type;
type.numComponents = _numComonents;
}
};
bool spvParse(uint32_t _offset, const SpvInstruction& _instruction, void* _userData)
{
BX_UNUSED(_offset);
SpvReflection* spv = (SpvReflection*)_userData;
switch (_instruction.opcode)
{
case SpvOpcode::Name:
spv->update(_instruction.result
, _instruction.operand[0].literalString
);
break;
case SpvOpcode::Decorate:
spv->update(_instruction.operand[0].data
, SpvDecoration::Enum(_instruction.operand[1].data)
, _instruction.operand[2].data
);
break;
case SpvOpcode::MemberName:
spv->update(_instruction.result
, _instruction.operand[0].data
, _instruction.operand[1].literalString
);
break;
case SpvOpcode::MemberDecorate:
spv->update(_instruction.operand[0].data
, _instruction.operand[1].data
, SpvDecoration::Enum(_instruction.operand[2].data)
, _instruction.operand[3].data
);
break;
case SpvOpcode::Variable:
spv->update(_instruction.result
, _instruction.type
, SpvStorageClass::Enum(_instruction.operand[0].data)
);
break;
case SpvOpcode::TypeVoid:
spv->update(_instruction.result, SpvReflection::TypeId::Void);
break;
case SpvOpcode::TypeBool:
spv->update(_instruction.result, SpvReflection::TypeId::Bool);
break;
case SpvOpcode::TypeInt:
spv->update(_instruction.result
, 32 == _instruction.operand[0].data
? 0 == _instruction.operand[1].data
? SpvReflection::TypeId::Uint32
: SpvReflection::TypeId::Int32
: 0 == _instruction.operand[1].data
? SpvReflection::TypeId::Uint64
: SpvReflection::TypeId::Int64
);
break;
case SpvOpcode::TypeFloat:
spv->update(_instruction.result
, 32 == _instruction.operand[0].data
? SpvReflection::TypeId::Float
: SpvReflection::TypeId::Double
);
break;
case SpvOpcode::TypeVector:
spv->update(_instruction.result
, SpvReflection::TypeId::Vector
, _instruction.operand[0].data
, _instruction.operand[1].data
);
break;
case SpvOpcode::TypeMatrix:
spv->update(_instruction.result
, SpvReflection::TypeId::Matrix
, _instruction.operand[0].data
, _instruction.operand[1].data
);
break;
case SpvOpcode::TypeImage:
case SpvOpcode::TypeSampler:
case SpvOpcode::TypeSampledImage:
break;
case SpvOpcode::TypeStruct:
for (uint32_t ii = 0, num = _instruction.numOperands; ii < num; ++ii)
{
SpvReflection::Id::Variable& var = spv->get(_instruction.result, ii);
var.type = _instruction.operand[ii].data;
}
break;
default:
break;
}
return true;
}
#define DBG(...) // bx::debugPrintf(__VA_ARGS__)
void disassemble(bx::WriterI* _writer, bx::ReaderSeekerI* _reader, bx::Error* _err)
{
BX_UNUSED(_writer);
uint32_t magic;
bx::peek(_reader, magic);
SpvReflection spvx;
if (magic == SPV_CHUNK_HEADER)
{
SpirV spirv;
read(_reader, spirv, _err);
parse(spirv.shader, spvParse, &spvx, _err);
for (SpvReflection::IdMap::const_iterator it = spvx.idMap.begin(), itEnd = spvx.idMap.end(); it != itEnd; ++it)
{
const SpvReflection::Id& id = it->second;
uint32_t num = uint32_t(id.members.size() );
if (0 < num
&& 0 != bx::strCmp(id.var.name.c_str(), "gl_PerVertex") )
{
DBG("%3d: %s %d %s\n"
, it->first
, id.var.name.c_str()
, id.var.location
, getName(id.var.storageClass)
);
DBG("{\n");
for (uint32_t ii = 0; ii < num; ++ii)
{
const SpvReflection::Id::Variable& var = id.members[ii];
DBG("\t\t%s %s %d %s\n"
, spvx.getTypeName(var.type).c_str()
, var.name.c_str()
, var.offset
, getName(var.storageClass)
);
BX_UNUSED(var);
}
DBG("}\n");
}
}
}
}
static EShLanguage getLang(char _p)
{
switch (_p)
{
case 'c': return EShLangCompute;
case 'f': return EShLangFragment;
case 'v': return EShLangVertex;
default: return EShLangCount;
}
}
// static void printError(spv_message_level_t, const char*, const spv_position_t&, const char* _message)
// {
// fprintf(stderr, "%s\n", _message);
// }
static const char* s_attribName[] =
{
"a_position",
"a_normal",
"a_tangent",
"a_bitangent",
"a_color0",
"a_color1",
"a_color2",
"a_color3",
"a_indices",
"a_weight",
"a_texcoord0",
"a_texcoord1",
"a_texcoord2",
"a_texcoord3",
"a_texcoord4",
"a_texcoord5",
"a_texcoord6",
"a_texcoord7",
};
BX_STATIC_ASSERT(bgfx::Attrib::Count == BX_COUNTOF(s_attribName) );
bgfx::Attrib::Enum toAttribEnum(const bx::StringView& _name)
{
for (uint8_t ii = 0; ii < Attrib::Count; ++ii)
{
if (0 == bx::strCmp(s_attribName[ii], _name) )
{
return bgfx::Attrib::Enum(ii);
}
}
return bgfx::Attrib::Count;
}
static bool compile(const Options& _options, uint32_t _version, const std::string& _code, bx::WriterI* _writer, bool _firstPass)
{
BX_UNUSED(_version);
glslang::InitializeProcess();
glslang::TProgram* program = new glslang::TProgram;
EShLanguage stage = getLang(_options.shaderType);
if (EShLangCount == stage)
{
fprintf(stderr, "Error: Unknown shader type '%c'.\n", _options.shaderType);
return false;
}
glslang::TShader* shader = new glslang::TShader(stage);
EShMessages messages = EShMessages(0
| EShMsgDefault
| EShMsgReadHlsl
| EShMsgVulkanRules
| EShMsgSpvRules
);
shader->setEntryPoint("main");
const char* shaderStrings[] = { _code.c_str() };
shader->setStrings(
shaderStrings
, BX_COUNTOF(shaderStrings)
);
bool compiled = shader->parse(&resourceLimits
, 110
, false
, messages
);
bool linked = false;
bool validated = true;
if (!compiled)
{
const char* log = shader->getInfoLog();
if (NULL != log)
{
int32_t source = 0;
int32_t line = 0;
int32_t column = 0;
int32_t start = 0;
int32_t end = INT32_MAX;
const char* err = bx::strFind(log, "ERROR:");
bool found = false;
if (NULL != err)
{
found = 2 == sscanf(err, "ERROR: %u:%u: '", &source, &line);
if (found)
{
++line;
}
}
if (found)
{
start = bx::uint32_imax(1, line-10);
end = start + 20;
}
printCode(_code.c_str(), line, start, end, column);
fprintf(stderr, "%s\n", log);
}
}
else
{
program->addShader(shader);
linked = true
&& program->link(messages)
&& program->mapIO()
;
if (!linked)
{
const char* log = program->getInfoLog();
if (NULL != log)
{
fprintf(stderr, "%s\n", log);
}
}
else
{
uint16_t size = 0;
program->buildReflection();
if (_firstPass)
{
const size_t strLength = bx::strLen("uniform");
// first time through, we just find unused uniforms and get rid of them
std::string output;
bx::Error err;
LineReader reader(_code.c_str() );
while (err.isOk() )
{
char str[4096];
int32_t len = bx::read(&reader, str, BX_COUNTOF(str), &err);
if (err.isOk() )
{
std::string strLine(str, len);
size_t index = strLine.find("uniform ");
if (index != std::string::npos)
{
bool found = false;
for (int32_t ii = 0, num = program->getNumLiveUniformVariables(); ii < num; ++ii)
{
// matching lines like: uniform u_name;
// we want to replace "uniform" with "static" so that it's no longer
// included in the uniform blob that the application must upload
// we can't just remove them, because unused functions might still reference
// them and cause a compile error when they're gone
if (!!bx::findIdentifierMatch(strLine.c_str(), program->getUniformName(ii) ) )
{
found = true;
break;
}
}
if (!found)
{
strLine = strLine.replace(index, strLength, "static");
}
}
output += strLine;
}
}
// recompile with the unused uniforms converted to statics
return compile(_options, _version, output.c_str(), _writer, false);
}
{
uint16_t count = (uint16_t)program->getNumLiveUniformVariables();
bx::write(_writer, count);
uint32_t fragmentBit = _options.shaderType == 'f' ? BGFX_UNIFORM_FRAGMENTBIT : 0;
for (uint16_t ii = 0; ii < count; ++ii)
{
Uniform un;
un.name = program->getUniformName(ii);
un.num = uint8_t(program->getUniformArraySize(ii) );
const uint32_t offset = program->getUniformBufferOffset(ii);
un.regIndex = uint16_t(offset);
un.regCount = un.num;
switch (program->getUniformType(ii))
{
case 0x1404: // GL_INT:
un.type = UniformType::Int1;
break;
case 0x8B52: // GL_FLOAT_VEC4:
un.type = UniformType::Vec4;
break;
case 0x8B5B: // GL_FLOAT_MAT3:
un.type = UniformType::Mat3;
un.regCount *= 3;
break;
case 0x8B5C: // GL_FLOAT_MAT4:
un.type = UniformType::Mat4;
un.regCount *= 4;
break;
default:
un.type = UniformType::End;
break;
}
size += un.regCount*16;
uint8_t nameSize = (uint8_t)un.name.size();
bx::write(_writer, nameSize);
bx::write(_writer, un.name.c_str(), nameSize);
bx::write(_writer, uint8_t(un.type | fragmentBit));
bx::write(_writer, un.num);
bx::write(_writer, un.regIndex);
bx::write(_writer, un.regCount);
BX_TRACE("%s, %s, %d, %d, %d"
, un.name.c_str()
, getUniformTypeName(un.type)
, un.num
, un.regIndex
, un.regCount
);
}
}
if (g_verbose)
{
program->dumpReflection();
}
BX_UNUSED(spv::MemorySemanticsAllMemory);
glslang::TIntermediate* intermediate = program->getIntermediate(stage);
std::vector<uint32_t> spirv;
glslang::SpvOptions options;
options.disableOptimizer = false;
glslang::GlslangToSpv(*intermediate, spirv, &options);
bx::Error err;
bx::WriterI* writer = bx::getDebugOut();
bx::MemoryReader reader(spirv.data(), uint32_t(spirv.size()*4) );
disassemble(writer, &reader, &err);
uint32_t shaderSize = (uint32_t)spirv.size()*sizeof(uint32_t);
bx::write(_writer, shaderSize);
bx::write(_writer, spirv.data(), shaderSize);
uint8_t nul = 0;
bx::write(_writer, nul);
//
const uint8_t numAttr = (uint8_t)program->getNumLiveAttributes();
bx::write(_writer, numAttr);
for (uint8_t ii = 0; ii < numAttr; ++ii)
{
bgfx::Attrib::Enum attr = toAttribEnum(program->getAttributeName(ii) );
if (bgfx::Attrib::Count != attr)
{
bx::write(_writer, bgfx::attribToId(attr) );
}
else
{
bx::write(_writer, uint16_t(UINT16_MAX) );
}
}
bx::write(_writer, size);
}
}
delete program;
delete shader;
glslang::FinalizeProcess();
return compiled && linked && validated;
}
} // namespace spirv
bool compileSPIRVShader(const Options& _options, uint32_t _version, const std::string& _code, bx::WriterI* _writer)
{
return spirv::compile(_options, _version, _code, _writer, true);
}
} // namespace bgfx