bgfx/examples/31-rsm/reflectiveshadowmap.cpp
2018-01-13 15:33:50 -08:00

759 lines
22 KiB
C++

/*
* Copyright 2016 Joseph Cherlin. All rights reserved.
* License: https://github.com/bkaradzic/bgfx#license-bsd-2-clause
*/
#include <common.h>
#include <camera.h>
#include <bgfx_utils.h>
#include <imgui/imgui.h>
#include <bx/rng.h>
namespace
{
/*
* Intro
* =====
*
* RSM (reflective shadow map) is a technique for global illumination.
* It is similar to shadow map. It piggybacks on the shadow map, in fact.
*
* RSM is compatible with any type of lighting which can handle handle
* a lot of point lights. This sample happens to use a deferred renderer,
* but other types would work.
*
* Overview:
*
* - Draw into G-Buffer
* - Draw Shadow Map (with RSM piggybacked on)
* - Populate light buffer
* - Deferred "combine" pass.
*
* Details
* =======
*
* ## G-Buffer
*
* Typical G-Buffer with normals, color, depth.
*
* ## RSM
*
* A typical shadow map, except it also outputs to a "RSM" buffer.
* The RSM contains the color of the item drawn, as well as a scalar value which represents
* how much light would bounce off of the surface if it were hit with light from the origin
* of the shadow map.
*
* ## Light Buffer
*
* We draw a lot of spheres into the light buffer. These spheres are called VPL (virtual
* point lights). VPLs represent bounced light, and let us eliminate the classic "ambient"
* term. Instead of us supplying their world space position in a transform matrix,
* VPLs gain their position from the shadow map from step 2, using an unprojection. They gain
* their color from the RSM. You could also store their position in a buffer while drawing shadows,
* I'm just using depth to keep the sample smaller.
*
* ## Deferred combine
*
* Typical combine used in almost any sort of deferred renderer.
*
* References
* ==========
*
* http: *www.bpeers.com/blog/?itemid=517
*
*/
// Render passes
#define RENDER_PASS_GBUFFER 0 // GBuffer for normals and albedo
#define RENDER_PASS_SHADOW_MAP 1 // Draw into the shadow map (RSM and regular shadow map at same time)
#define RENDER_PASS_LIGHT_BUFFER 2 // Light buffer for point lights
#define RENDER_PASS_COMBINE 3 // Directional light and final result
// Gbuffer has multiple render targets
#define GBUFFER_RT_NORMAL 0
#define GBUFFER_RT_COLOR 1
#define GBUFFER_RT_DEPTH 2
// Shadow map has multiple render targets
#define SHADOW_RT_RSM 0 // In this algorithm, shadows write lighting info as well.
#define SHADOW_RT_DEPTH 1 // Shadow maps always write a depth
// Random meshes we draw
#define MODEL_COUNT 222 // In this demo, a model is a mesh plus a transform and a color
#define SHADOW_MAP_DIM 512
#define LIGHT_DIST 10.0f
static const char * s_meshPaths[] =
{
"meshes/cube.bin",
"meshes/orb.bin",
"meshes/column.bin",
"meshes/bunny.bin",
"meshes/tree.bin",
"meshes/hollowcube.bin"
};
static const float s_meshScale[] =
{
0.25f,
0.5f,
0.05f,
0.5f,
0.05f,
0.05f
};
// Vertex decl for our screen space quad (used in deferred rendering)
struct PosTexCoord0Vertex
{
float m_x;
float m_y;
float m_z;
float m_u;
float m_v;
static void init()
{
ms_decl
.begin()
.add(bgfx::Attrib::Position, 3, bgfx::AttribType::Float)
.add(bgfx::Attrib::TexCoord0, 2, bgfx::AttribType::Float)
.end();
}
static bgfx::VertexDecl ms_decl;
};
bgfx::VertexDecl PosTexCoord0Vertex::ms_decl;
// Utility function to draw a screen space quad for deferred rendering
void screenSpaceQuad(float _textureWidth, float _textureHeight, float _texelHalf, bool _originBottomLeft, float _width = 1.0f, float _height = 1.0f)
{
if (3 == bgfx::getAvailTransientVertexBuffer(3, PosTexCoord0Vertex::ms_decl) )
{
bgfx::TransientVertexBuffer vb;
bgfx::allocTransientVertexBuffer(&vb, 3, PosTexCoord0Vertex::ms_decl);
PosTexCoord0Vertex* vertex = (PosTexCoord0Vertex*)vb.data;
const float minx = -_width;
const float maxx = _width;
const float miny = 0.0f;
const float maxy = _height*2.0f;
const float texelHalfW = _texelHalf/_textureWidth;
const float texelHalfH = _texelHalf/_textureHeight;
const float minu = -1.0f + texelHalfW;
const float maxu = 1.0f + texelHalfH;
const float zz = 0.0f;
float minv = texelHalfH;
float maxv = 2.0f + texelHalfH;
if (_originBottomLeft)
{
float temp = minv;
minv = maxv;
maxv = temp;
minv -= 1.0f;
maxv -= 1.0f;
}
vertex[0].m_x = minx;
vertex[0].m_y = miny;
vertex[0].m_z = zz;
vertex[0].m_u = minu;
vertex[0].m_v = minv;
vertex[1].m_x = maxx;
vertex[1].m_y = miny;
vertex[1].m_z = zz;
vertex[1].m_u = maxu;
vertex[1].m_v = minv;
vertex[2].m_x = maxx;
vertex[2].m_y = maxy;
vertex[2].m_z = zz;
vertex[2].m_u = maxu;
vertex[2].m_v = maxv;
bgfx::setVertexBuffer(0, &vb);
}
}
class ExampleRSM : public entry::AppI
{
public:
ExampleRSM(const char* _name, const char* _description)
: entry::AppI(_name, _description)
, m_reading(0)
, m_currFrame(UINT32_MAX)
, m_cameraSpin(false)
, m_lightElevation(35.0f)
, m_lightAzimuth(215.0f)
, m_rsmAmount(0.25f)
, m_vplRadius(3.0f)
, m_texelHalf(0.0f)
{
}
void init(int32_t _argc, const char* const* _argv, uint32_t _width, uint32_t _height) override
{
Args args(_argc, _argv);
m_width = _width;
m_height = _height;
m_debug = BGFX_DEBUG_NONE;
m_reset = BGFX_RESET_VSYNC;
bgfx::init(args.m_type, args.m_pciId);
bgfx::reset(m_width, m_height, m_reset);
// Enable debug text.
bgfx::setDebug(m_debug);
// Labeling for renderdoc captures, etc
bgfx::setViewName(RENDER_PASS_GBUFFER, "gbuffer" );
bgfx::setViewName(RENDER_PASS_SHADOW_MAP, "shadow map" );
bgfx::setViewName(RENDER_PASS_LIGHT_BUFFER, "light buffer");
bgfx::setViewName(RENDER_PASS_COMBINE, "post combine");
// Set up screen clears
bgfx::setViewClear(RENDER_PASS_GBUFFER
, BGFX_CLEAR_COLOR|BGFX_CLEAR_DEPTH
, 0
, 1.0f
, 0
);
bgfx::setViewClear(RENDER_PASS_LIGHT_BUFFER
, BGFX_CLEAR_COLOR|BGFX_CLEAR_DEPTH
, 0
, 1.0f
, 0
);
bgfx::setViewClear(RENDER_PASS_SHADOW_MAP
, BGFX_CLEAR_COLOR|BGFX_CLEAR_DEPTH
, 0
, 1.0f
, 0
);
// Create uniforms
u_tint = bgfx::createUniform("u_tint", bgfx::UniformType::Vec4); // Tint for when you click on items
u_lightDir = bgfx::createUniform("u_lightDir", bgfx::UniformType::Vec4); // Single directional light for entire scene
u_sphereInfo = bgfx::createUniform("u_sphereInfo", bgfx::UniformType::Vec4); // Info for RSM
u_invMvp = bgfx::createUniform("u_invMvp", bgfx::UniformType::Mat4); // Matrix needed in light buffer
u_invMvpShadow = bgfx::createUniform("u_invMvpShadow", bgfx::UniformType::Mat4); // Matrix needed in light buffer
u_lightMtx = bgfx::createUniform("u_lightMtx", bgfx::UniformType::Mat4); // Matrix needed to use shadow map (world to shadow space)
u_shadowDimsInv = bgfx::createUniform("u_shadowDimsInv", bgfx::UniformType::Vec4); // Used in PCF
u_rsmAmount = bgfx::createUniform("u_rsmAmount", bgfx::UniformType::Vec4); // How much RSM to use vs directional light
// Create texture sampler uniforms (used when we bind textures)
s_normal = bgfx::createUniform("s_normal", bgfx::UniformType::Int1); // Normal gbuffer
s_depth = bgfx::createUniform("s_depth", bgfx::UniformType::Int1); // Normal gbuffer
s_color = bgfx::createUniform("s_color", bgfx::UniformType::Int1); // Color (albedo) gbuffer
s_light = bgfx::createUniform("s_light", bgfx::UniformType::Int1); // Light buffer
s_shadowMap = bgfx::createUniform("s_shadowMap", bgfx::UniformType::Int1); // Shadow map
s_rsm = bgfx::createUniform("s_rsm", bgfx::UniformType::Int1); // Reflective shadow map
// Create program from shaders.
m_gbufferProgram = loadProgram("vs_rsm_gbuffer", "fs_rsm_gbuffer"); // Gbuffer
m_shadowProgram = loadProgram("vs_rsm_shadow", "fs_rsm_shadow" ); // Drawing shadow map
m_lightProgram = loadProgram("vs_rsm_lbuffer", "fs_rsm_lbuffer"); // Light buffer
m_combineProgram = loadProgram("vs_rsm_combine", "fs_rsm_combine"); // Combiner
// Load some meshes
for (uint32_t ii = 0; ii < BX_COUNTOF(s_meshPaths); ++ii)
{
m_meshes[ii] = meshLoad(s_meshPaths[ii]);
}
// Randomly create some models
bx::RngMwc mwc; // Random number generator
for (uint32_t ii = 0; ii < BX_COUNTOF(m_models); ++ii)
{
Model& model = m_models[ii];
uint32_t rr = mwc.gen() % 256;
uint32_t gg = mwc.gen() % 256;
uint32_t bb = mwc.gen() % 256;
model.mesh = 1+mwc.gen()%(BX_COUNTOF(s_meshPaths)-1);
model.color[0] = rr/255.0f;
model.color[1] = gg/255.0f;
model.color[2] = bb/255.0f;
model.color[3] = 1.0f;
model.position[0] = (((mwc.gen() % 256)) - 128.0f)/20.0f;
model.position[1] = 0;
model.position[2] = (((mwc.gen() % 256)) - 128.0f)/20.0f;
}
// Load ground. We'll just use the cube since I don't have a ground model right now
m_ground = meshLoad("meshes/cube.bin");
// Light sphere
m_lightSphere = meshLoad("meshes/unit_sphere.bin");
const uint32_t samplerFlags = 0
| BGFX_TEXTURE_RT
| BGFX_TEXTURE_MIN_POINT
| BGFX_TEXTURE_MAG_POINT
| BGFX_TEXTURE_MIP_POINT
| BGFX_TEXTURE_U_CLAMP
| BGFX_TEXTURE_V_CLAMP
;
// Make gbuffer and related textures
m_gbufferTex[GBUFFER_RT_NORMAL] = bgfx::createTexture2D(bgfx::BackbufferRatio::Equal, false, 1, bgfx::TextureFormat::BGRA8, samplerFlags);
m_gbufferTex[GBUFFER_RT_COLOR] = bgfx::createTexture2D(bgfx::BackbufferRatio::Equal, false, 1, bgfx::TextureFormat::BGRA8, samplerFlags);
m_gbufferTex[GBUFFER_RT_DEPTH] = bgfx::createTexture2D(bgfx::BackbufferRatio::Equal, false, 1, bgfx::TextureFormat::D24, samplerFlags);
m_gbuffer = bgfx::createFrameBuffer(BX_COUNTOF(m_gbufferTex), m_gbufferTex, true);
// Make light buffer
m_lightBufferTex = bgfx::createTexture2D(bgfx::BackbufferRatio::Equal, false, 1, bgfx::TextureFormat::BGRA8, samplerFlags);
bgfx::TextureHandle lightBufferRTs[] = {
m_lightBufferTex
};
m_lightBuffer = bgfx::createFrameBuffer(BX_COUNTOF(lightBufferRTs), lightBufferRTs, true);
// Make shadow buffer
const uint32_t rsmFlags = 0
| BGFX_TEXTURE_RT
| BGFX_TEXTURE_MIN_POINT
| BGFX_TEXTURE_MAG_POINT
| BGFX_TEXTURE_MIP_POINT
| BGFX_TEXTURE_U_CLAMP
| BGFX_TEXTURE_V_CLAMP
;
// Reflective shadow map
m_shadowBufferTex[SHADOW_RT_RSM] = bgfx::createTexture2D(
SHADOW_MAP_DIM
, SHADOW_MAP_DIM
, false
, 1
, bgfx::TextureFormat::BGRA8,
rsmFlags
);
// Typical shadow map
m_shadowBufferTex[SHADOW_RT_DEPTH] = bgfx::createTexture2D(
SHADOW_MAP_DIM
, SHADOW_MAP_DIM
, false
, 1
, bgfx::TextureFormat::D16,
BGFX_TEXTURE_RT/* | BGFX_TEXTURE_COMPARE_LEQUAL*/
); // Note I'm not setting BGFX_TEXTURE_COMPARE_LEQUAL. Why?
// Normally a PCF shadow map such as this requires a compare. However, this sample also
// reads from this texture in the lighting pass, and only uses the PCF capabilites in the
// combine pass, so the flag is disabled by default.
m_shadowBuffer = bgfx::createFrameBuffer(BX_COUNTOF(m_shadowBufferTex), m_shadowBufferTex, true);
// Vertex decl
PosTexCoord0Vertex::init();
// Init camera
cameraCreate();
float camPos[] = {0.0f, 1.5f, 0.0f};
cameraSetPosition(camPos);
cameraSetVerticalAngle(-0.3f);
// Init directional light
updateLightDir();
// Get renderer capabilities info.
m_caps = bgfx::getCaps();
const bgfx::RendererType::Enum renderer = bgfx::getRendererType();
m_texelHalf = bgfx::RendererType::Direct3D9 == renderer ? 0.5f : 0.0f;
imguiCreate();
}
int shutdown() override
{
for (uint32_t ii = 0; ii < BX_COUNTOF(s_meshPaths); ++ii)
{
meshUnload(m_meshes[ii]);
}
meshUnload(m_ground);
meshUnload(m_lightSphere);
// Cleanup.
bgfx::destroy(m_gbufferProgram);
bgfx::destroy(m_lightProgram);
bgfx::destroy(m_combineProgram);
bgfx::destroy(m_shadowProgram);
bgfx::destroy(u_tint);
bgfx::destroy(u_lightDir);
bgfx::destroy(u_sphereInfo);
bgfx::destroy(u_invMvp);
bgfx::destroy(u_invMvpShadow);
bgfx::destroy(u_lightMtx);
bgfx::destroy(u_shadowDimsInv);
bgfx::destroy(u_rsmAmount);
bgfx::destroy(s_normal);
bgfx::destroy(s_depth);
bgfx::destroy(s_light);
bgfx::destroy(s_color);
bgfx::destroy(s_shadowMap);
bgfx::destroy(s_rsm);
bgfx::destroy(m_gbuffer);
bgfx::destroy(m_lightBuffer);
bgfx::destroy(m_shadowBuffer);
for (uint32_t ii = 0; ii < BX_COUNTOF(m_gbufferTex); ++ii)
{
bgfx::destroy(m_gbufferTex[ii]);
}
bgfx::destroy(m_lightBufferTex);
for (uint32_t ii = 0; ii < BX_COUNTOF(m_shadowBufferTex); ++ii)
{
bgfx::destroy(m_shadowBufferTex[ii]);
}
cameraDestroy();
imguiDestroy();
// Shutdown bgfx.
bgfx::shutdown();
return 0;
}
bool update() override
{
if (!entry::processEvents(m_width, m_height, m_debug, m_reset, &m_mouseState) )
{
// Update frame timer
int64_t now = bx::getHPCounter();
static int64_t last = now;
const int64_t frameTime = now - last;
last = now;
const double freq = double(bx::getHPFrequency());
const float deltaTime = float(frameTime/freq);
// Update camera
cameraUpdate(deltaTime*0.15f, m_mouseState);
// Set up matrices for gbuffer
float view[16];
cameraGetViewMtx(view);
float proj[16];
bx::mtxProj(proj, 60.0f, float(m_width)/float(m_height), 0.1f, 100.0f, bgfx::getCaps()->homogeneousDepth);
bgfx::setViewRect(RENDER_PASS_GBUFFER, 0, 0, uint16_t(m_width), uint16_t(m_height));
bgfx::setViewTransform(RENDER_PASS_GBUFFER, view, proj);
// Make sure when we draw it goes into gbuffer and not backbuffer
bgfx::setViewFrameBuffer(RENDER_PASS_GBUFFER, m_gbuffer);
// Draw everything into g-buffer
drawAllModels(RENDER_PASS_GBUFFER, m_gbufferProgram);
// Draw shadow map
// Set up transforms for shadow map
float smView[16], smProj[16], lightEye[3], lightAt[3];
lightEye[0] = m_lightDir[0]*LIGHT_DIST;
lightEye[1] = m_lightDir[1]*LIGHT_DIST;
lightEye[2] = m_lightDir[2]*LIGHT_DIST;
lightAt[0] = 0.0f;
lightAt[1] = 0.0f;
lightAt[2] = 0.0f;
bx::mtxLookAt(smView, lightEye, lightAt);
const float area = 10.0f;
const bgfx::Caps* caps = bgfx::getCaps();
bx::mtxOrtho(smProj, -area, area, -area, area, -100.0f, 100.0f, 0.0f, caps->homogeneousDepth);
bgfx::setViewTransform(RENDER_PASS_SHADOW_MAP, smView, smProj);
bgfx::setViewFrameBuffer(RENDER_PASS_SHADOW_MAP, m_shadowBuffer);
bgfx::setViewRect(RENDER_PASS_SHADOW_MAP, 0, 0, SHADOW_MAP_DIM, SHADOW_MAP_DIM);
drawAllModels(RENDER_PASS_SHADOW_MAP, m_shadowProgram);
// Next draw light buffer
// Set up matrices for light buffer
bgfx::setViewRect(RENDER_PASS_LIGHT_BUFFER, 0, 0, uint16_t(m_width), uint16_t(m_height));
bgfx::setViewTransform(RENDER_PASS_LIGHT_BUFFER, view, proj); // Notice, same view and proj as gbuffer
// Set drawing into light buffer
bgfx::setViewFrameBuffer(RENDER_PASS_LIGHT_BUFFER, m_lightBuffer);
// Inverse view projection is needed in shader so set that up
float vp[16], invMvp[16];
bx::mtxMul(vp, view, proj);
bx::mtxInverse(invMvp, vp);
// Light matrix used in combine pass and inverse used in light pass
float lightMtx[16]; // World space to light space (shadow map space)
bx::mtxMul(lightMtx, smView, smProj);
float invMvpShadow[16];
bx::mtxInverse(invMvpShadow, lightMtx);
// Draw some lights (these should really be instanced but for this example they aren't...)
const uint32_t kMaxSpheres = 32;
for (uint32_t i = 0; i < kMaxSpheres; i++)
{
for (uint32_t j = 0; j < kMaxSpheres; j++)
{
// These are used in the fragment shader
bgfx::setTexture(0, s_normal, bgfx::getTexture(m_gbuffer, GBUFFER_RT_NORMAL) ); // Normal for lighting calculations
bgfx::setTexture(1, s_depth, bgfx::getTexture(m_gbuffer, GBUFFER_RT_DEPTH) ); // Depth to reconstruct world position
// Thse are used in the vert shader
bgfx::setTexture(2, s_shadowMap, bgfx::getTexture(m_shadowBuffer, SHADOW_RT_DEPTH) ); // Used to place sphere
bgfx::setTexture(3, s_rsm, bgfx::getTexture(m_shadowBuffer, SHADOW_RT_RSM) ); // Used to scale/color sphere
bgfx::setUniform(u_invMvp, invMvp);
bgfx::setUniform(u_invMvpShadow, invMvpShadow);
float sphereInfo[4];
sphereInfo[0] = ((float)i/(kMaxSpheres-1));
sphereInfo[1] = ((float)j/(kMaxSpheres-1));
sphereInfo[2] = m_vplRadius;
sphereInfo[3] = 0.0; // Unused
bgfx::setUniform(u_sphereInfo, sphereInfo);
const uint64_t lightDrawState = 0
| BGFX_STATE_RGB_WRITE
| BGFX_STATE_BLEND_ADD // <=== Overlapping lights contribute more
| BGFX_STATE_ALPHA_WRITE
| BGFX_STATE_CULL_CW // <=== If we go into the lights, there will be problems, so we draw the far back face.
;
meshSubmit(
m_lightSphere
, RENDER_PASS_LIGHT_BUFFER
, m_lightProgram
, NULL
, lightDrawState
);
}
}
// Draw combine pass
// Texture inputs for combine pass
bgfx::setTexture(0, s_normal, bgfx::getTexture(m_gbuffer, GBUFFER_RT_NORMAL) );
bgfx::setTexture(1, s_color, bgfx::getTexture(m_gbuffer, GBUFFER_RT_COLOR) );
bgfx::setTexture(2, s_light, bgfx::getTexture(m_lightBuffer, 0) );
bgfx::setTexture(3, s_depth, bgfx::getTexture(m_gbuffer, GBUFFER_RT_DEPTH) );
bgfx::setTexture(4, s_shadowMap, bgfx::getTexture(m_shadowBuffer, SHADOW_RT_DEPTH)
, BGFX_TEXTURE_COMPARE_LEQUAL
);
// Uniforms for combine pass
bgfx::setUniform(u_lightDir, m_lightDir);
bgfx::setUniform(u_invMvp, invMvp);
bgfx::setUniform(u_lightMtx, lightMtx);
const float invDim[4] = {1.0f/SHADOW_MAP_DIM, 0.0f, 0.0f, 0.0f};
bgfx::setUniform(u_shadowDimsInv, invDim);
float rsmAmount[4] = {m_rsmAmount,m_rsmAmount,m_rsmAmount,m_rsmAmount};
bgfx::setUniform(u_rsmAmount, rsmAmount);
// Set up state for combine pass
// point of this is to avoid doing depth test, which is in the default state
bgfx::setState(0
| BGFX_STATE_RGB_WRITE
| BGFX_STATE_ALPHA_WRITE
);
// Set up transform matrix for fullscreen quad
float orthoProj[16];
bx::mtxOrtho(orthoProj, 0.0f, 1.0f, 1.0f, 0.0f, 0.0f, 100.0f, 0.0f, caps->homogeneousDepth);
bgfx::setViewTransform(RENDER_PASS_COMBINE, NULL, orthoProj);
bgfx::setViewRect(RENDER_PASS_COMBINE, 0, 0, uint16_t(m_width), uint16_t(m_height) );
// Bind vertex buffer and draw quad
screenSpaceQuad( (float)m_width, (float)m_height, m_texelHalf, m_caps->originBottomLeft);
bgfx::submit(RENDER_PASS_COMBINE, m_combineProgram);
// Draw UI
imguiBeginFrame(m_mouseState.m_mx
, m_mouseState.m_my
, (m_mouseState.m_buttons[entry::MouseButton::Left] ? IMGUI_MBUT_LEFT : 0)
| (m_mouseState.m_buttons[entry::MouseButton::Right] ? IMGUI_MBUT_RIGHT : 0)
| (m_mouseState.m_buttons[entry::MouseButton::Middle] ? IMGUI_MBUT_MIDDLE : 0)
, m_mouseState.m_mz
, uint16_t(m_width)
, uint16_t(m_height)
);
showExampleDialog(this);
ImGui::SetNextWindowPos(
ImVec2(m_width - m_width / 5.0f - 10.0f, 10.0f)
, ImGuiCond_FirstUseEver
);
ImGui::SetNextWindowSize(
ImVec2(m_width / 5.0f, m_height / 3.0f)
, ImGuiCond_FirstUseEver
);
ImGui::Begin("Settings"
, NULL
, 0
);
ImGui::SliderFloat("RSM Amount", &m_rsmAmount, 0.0f, 0.7f);
ImGui::SliderFloat("VPL Radius", &m_vplRadius, 0.25f, 20.0f);
ImGui::SliderFloat("Light Azimuth", &m_lightAzimuth, 0.0f, 360.0f);
ImGui::SliderFloat("Light Elevation", &m_lightElevation, 35.0f, 90.0f);
ImGui::End();
imguiEndFrame();
updateLightDir();
// Advance to next frame. Rendering thread will be kicked to
// process submitted rendering primitives.
m_currFrame = bgfx::frame();
return true;
}
return false;
}
void drawAllModels(uint8_t _pass, bgfx::ProgramHandle _program)
{
for (uint32_t ii = 0; ii < BX_COUNTOF(m_models); ++ii)
{
const Model& model = m_models[ii];
// Set up transform matrix for each model
float scale = s_meshScale[model.mesh];
float mtx[16];
bx::mtxSRT(mtx
, scale
, scale
, scale
, 0.0f
, 0.0f
, 0.0f
, model.position[0]
, model.position[1]
, model.position[2]
);
// Submit mesh to gbuffer
bgfx::setUniform(u_tint, model.color);
meshSubmit(m_meshes[model.mesh], _pass, _program, mtx);
}
// Draw ground
const float white[4] = { 1.0f, 1.0f, 1.0f, 1.0f };
bgfx::setUniform(u_tint, white);
float mtxScale[16];
float scale = 10.0;
bx::mtxScale(mtxScale
, scale
, scale
, scale
);
float mtxTrans[16];
bx::mtxTranslate(mtxTrans
, 0.0f
, -10.0f
, 0.0f
);
float mtx[16];
bx::mtxMul(mtx, mtxScale, mtxTrans);
meshSubmit(m_ground, _pass, _program, mtx);
}
void updateLightDir()
{
float el = m_lightElevation * (bx::kPi/180.0f);
float az = m_lightAzimuth * (bx::kPi/180.0f);
m_lightDir[0] = bx::cos(el)*bx::cos(az);
m_lightDir[2] = bx::cos(el)*bx::sin(az);
m_lightDir[1] = bx::sin(el);
m_lightDir[3] = 0.0f;
}
uint32_t m_width;
uint32_t m_height;
uint32_t m_debug;
uint32_t m_reset;
entry::MouseState m_mouseState;
Mesh* m_ground;
Mesh* m_lightSphere; // Unit sphere
// Resource handles
bgfx::ProgramHandle m_gbufferProgram;
bgfx::ProgramHandle m_shadowProgram;
bgfx::ProgramHandle m_lightProgram;
bgfx::ProgramHandle m_combineProgram;
bgfx::FrameBufferHandle m_gbuffer;
bgfx::FrameBufferHandle m_lightBuffer;
bgfx::FrameBufferHandle m_shadowBuffer;
// Shader uniforms
bgfx::UniformHandle u_tint;
bgfx::UniformHandle u_invMvp;
bgfx::UniformHandle u_invMvpShadow;
bgfx::UniformHandle u_lightMtx;
bgfx::UniformHandle u_lightDir;
bgfx::UniformHandle u_sphereInfo;
bgfx::UniformHandle u_shadowDimsInv;
bgfx::UniformHandle u_rsmAmount;
// Uniforms to identify texture samples
bgfx::UniformHandle s_normal;
bgfx::UniformHandle s_depth;
bgfx::UniformHandle s_color;
bgfx::UniformHandle s_light;
bgfx::UniformHandle s_shadowMap;
bgfx::UniformHandle s_rsm;
// Various render targets
bgfx::TextureHandle m_gbufferTex[3];
bgfx::TextureHandle m_lightBufferTex;
bgfx::TextureHandle m_shadowBufferTex[2];
const bgfx::Caps* m_caps;
struct Model
{
uint32_t mesh; // Index of mesh in m_meshes
float color[4];
float position[3];
};
Model m_models[MODEL_COUNT];
Mesh * m_meshes[BX_COUNTOF(s_meshPaths)];
uint32_t m_reading;
uint32_t m_currFrame;
// UI
bool m_cameraSpin;
// Light position;
float m_lightDir[4];
float m_lightElevation;
float m_lightAzimuth;
float m_rsmAmount; // Amount of rsm
float m_vplRadius; // Radius of virtual point light
float m_texelHalf;
};
} // namespace
ENTRY_IMPLEMENT_MAIN(ExampleRSM, "31-rsm", "Global Illumination with Reflective Shadow Map.");