bgfx/3rdparty/spirv-tools/source/opt/instruction.cpp
Бранимир Караџић aaf0fdf7cf Updated spirv-tools.
2023-06-24 09:55:06 -07:00

1091 lines
35 KiB
C++

// Copyright (c) 2016 Google Inc.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "source/opt/instruction.h"
#include <initializer_list>
#include "OpenCLDebugInfo100.h"
#include "source/disassemble.h"
#include "source/opt/fold.h"
#include "source/opt/ir_context.h"
#include "source/opt/reflect.h"
namespace spvtools {
namespace opt {
namespace {
// Indices used to get particular operands out of instructions using InOperand.
constexpr uint32_t kTypeImageDimIndex = 1;
constexpr uint32_t kLoadBaseIndex = 0;
constexpr uint32_t kPointerTypeStorageClassIndex = 0;
constexpr uint32_t kVariableStorageClassIndex = 0;
constexpr uint32_t kTypeImageSampledIndex = 5;
// Constants for OpenCL.DebugInfo.100 / NonSemantic.Shader.DebugInfo.100
// extension instructions.
constexpr uint32_t kExtInstSetIdInIdx = 0;
constexpr uint32_t kExtInstInstructionInIdx = 1;
constexpr uint32_t kDebugScopeNumWords = 7;
constexpr uint32_t kDebugScopeNumWordsWithoutInlinedAt = 6;
constexpr uint32_t kDebugNoScopeNumWords = 5;
// Number of operands of an OpBranchConditional instruction
// with weights.
constexpr uint32_t kOpBranchConditionalWithWeightsNumOperands = 5;
} // namespace
Instruction::Instruction(IRContext* c)
: utils::IntrusiveNodeBase<Instruction>(),
context_(c),
opcode_(spv::Op::OpNop),
has_type_id_(false),
has_result_id_(false),
unique_id_(c->TakeNextUniqueId()),
dbg_scope_(kNoDebugScope, kNoInlinedAt) {}
Instruction::Instruction(IRContext* c, spv::Op op)
: utils::IntrusiveNodeBase<Instruction>(),
context_(c),
opcode_(op),
has_type_id_(false),
has_result_id_(false),
unique_id_(c->TakeNextUniqueId()),
dbg_scope_(kNoDebugScope, kNoInlinedAt) {}
Instruction::Instruction(IRContext* c, const spv_parsed_instruction_t& inst,
std::vector<Instruction>&& dbg_line)
: utils::IntrusiveNodeBase<Instruction>(),
context_(c),
opcode_(static_cast<spv::Op>(inst.opcode)),
has_type_id_(inst.type_id != 0),
has_result_id_(inst.result_id != 0),
unique_id_(c->TakeNextUniqueId()),
dbg_line_insts_(std::move(dbg_line)),
dbg_scope_(kNoDebugScope, kNoInlinedAt) {
operands_.reserve(inst.num_operands);
for (uint32_t i = 0; i < inst.num_operands; ++i) {
const auto& current_payload = inst.operands[i];
operands_.emplace_back(
current_payload.type, inst.words + current_payload.offset,
inst.words + current_payload.offset + current_payload.num_words);
}
assert((!IsLineInst() || dbg_line.empty()) &&
"Op(No)Line attaching to Op(No)Line found");
}
Instruction::Instruction(IRContext* c, const spv_parsed_instruction_t& inst,
const DebugScope& dbg_scope)
: utils::IntrusiveNodeBase<Instruction>(),
context_(c),
opcode_(static_cast<spv::Op>(inst.opcode)),
has_type_id_(inst.type_id != 0),
has_result_id_(inst.result_id != 0),
unique_id_(c->TakeNextUniqueId()),
dbg_scope_(dbg_scope) {
operands_.reserve(inst.num_operands);
for (uint32_t i = 0; i < inst.num_operands; ++i) {
const auto& current_payload = inst.operands[i];
operands_.emplace_back(
current_payload.type, inst.words + current_payload.offset,
inst.words + current_payload.offset + current_payload.num_words);
}
}
Instruction::Instruction(IRContext* c, spv::Op op, uint32_t ty_id,
uint32_t res_id, const OperandList& in_operands)
: utils::IntrusiveNodeBase<Instruction>(),
context_(c),
opcode_(op),
has_type_id_(ty_id != 0),
has_result_id_(res_id != 0),
unique_id_(c->TakeNextUniqueId()),
operands_(),
dbg_scope_(kNoDebugScope, kNoInlinedAt) {
size_t operands_size = in_operands.size();
if (has_type_id_) {
operands_size++;
}
if (has_result_id_) {
operands_size++;
}
operands_.reserve(operands_size);
if (has_type_id_) {
operands_.emplace_back(spv_operand_type_t::SPV_OPERAND_TYPE_TYPE_ID,
std::initializer_list<uint32_t>{ty_id});
}
if (has_result_id_) {
operands_.emplace_back(spv_operand_type_t::SPV_OPERAND_TYPE_RESULT_ID,
std::initializer_list<uint32_t>{res_id});
}
operands_.insert(operands_.end(), in_operands.begin(), in_operands.end());
}
Instruction::Instruction(Instruction&& that)
: utils::IntrusiveNodeBase<Instruction>(),
context_(that.context_),
opcode_(that.opcode_),
has_type_id_(that.has_type_id_),
has_result_id_(that.has_result_id_),
unique_id_(that.unique_id_),
operands_(std::move(that.operands_)),
dbg_line_insts_(std::move(that.dbg_line_insts_)),
dbg_scope_(that.dbg_scope_) {
for (auto& i : dbg_line_insts_) {
i.dbg_scope_ = that.dbg_scope_;
}
}
Instruction& Instruction::operator=(Instruction&& that) {
context_ = that.context_;
opcode_ = that.opcode_;
has_type_id_ = that.has_type_id_;
has_result_id_ = that.has_result_id_;
unique_id_ = that.unique_id_;
operands_ = std::move(that.operands_);
dbg_line_insts_ = std::move(that.dbg_line_insts_);
dbg_scope_ = that.dbg_scope_;
return *this;
}
Instruction* Instruction::Clone(IRContext* c) const {
Instruction* clone = new Instruction(c);
clone->opcode_ = opcode_;
clone->has_type_id_ = has_type_id_;
clone->has_result_id_ = has_result_id_;
clone->unique_id_ = c->TakeNextUniqueId();
clone->operands_ = operands_;
clone->dbg_line_insts_ = dbg_line_insts_;
for (auto& i : clone->dbg_line_insts_) {
i.unique_id_ = c->TakeNextUniqueId();
if (i.IsDebugLineInst()) i.SetResultId(c->TakeNextId());
}
clone->dbg_scope_ = dbg_scope_;
return clone;
}
uint32_t Instruction::GetSingleWordOperand(uint32_t index) const {
const auto& words = GetOperand(index).words;
assert(words.size() == 1 && "expected the operand only taking one word");
return words.front();
}
uint32_t Instruction::NumInOperandWords() const {
uint32_t size = 0;
for (uint32_t i = TypeResultIdCount(); i < operands_.size(); ++i)
size += static_cast<uint32_t>(operands_[i].words.size());
return size;
}
bool Instruction::HasBranchWeights() const {
if (opcode_ == spv::Op::OpBranchConditional &&
NumOperands() == kOpBranchConditionalWithWeightsNumOperands) {
return true;
}
return false;
}
void Instruction::ToBinaryWithoutAttachedDebugInsts(
std::vector<uint32_t>* binary) const {
const uint32_t num_words = 1 + NumOperandWords();
binary->push_back((num_words << 16) | static_cast<uint16_t>(opcode_));
for (const auto& operand : operands_) {
binary->insert(binary->end(), operand.words.begin(), operand.words.end());
}
}
void Instruction::ReplaceOperands(const OperandList& new_operands) {
operands_.clear();
operands_.insert(operands_.begin(), new_operands.begin(), new_operands.end());
}
bool Instruction::IsReadOnlyLoad() const {
if (IsLoad()) {
Instruction* address_def = GetBaseAddress();
if (!address_def) {
return false;
}
if (address_def->opcode() == spv::Op::OpVariable) {
if (address_def->IsReadOnlyPointer()) {
return true;
}
}
if (address_def->opcode() == spv::Op::OpLoad) {
const analysis::Type* address_type =
context()->get_type_mgr()->GetType(address_def->type_id());
if (address_type->AsSampledImage() != nullptr) {
const auto* image_type =
address_type->AsSampledImage()->image_type()->AsImage();
if (image_type->sampled() == 1) {
return true;
}
}
}
}
return false;
}
Instruction* Instruction::GetBaseAddress() const {
uint32_t base = GetSingleWordInOperand(kLoadBaseIndex);
Instruction* base_inst = context()->get_def_use_mgr()->GetDef(base);
bool done = false;
while (!done) {
switch (base_inst->opcode()) {
case spv::Op::OpAccessChain:
case spv::Op::OpInBoundsAccessChain:
case spv::Op::OpPtrAccessChain:
case spv::Op::OpInBoundsPtrAccessChain:
case spv::Op::OpImageTexelPointer:
case spv::Op::OpCopyObject:
// All of these instructions have the base pointer use a base pointer
// in in-operand 0.
base = base_inst->GetSingleWordInOperand(0);
base_inst = context()->get_def_use_mgr()->GetDef(base);
break;
default:
done = true;
break;
}
}
return base_inst;
}
bool Instruction::IsReadOnlyPointer() const {
if (context()->get_feature_mgr()->HasCapability(spv::Capability::Shader))
return IsReadOnlyPointerShaders();
else
return IsReadOnlyPointerKernel();
}
bool Instruction::IsVulkanStorageImage() const {
if (opcode() != spv::Op::OpTypePointer) {
return false;
}
spv::StorageClass storage_class =
spv::StorageClass(GetSingleWordInOperand(kPointerTypeStorageClassIndex));
if (storage_class != spv::StorageClass::UniformConstant) {
return false;
}
Instruction* base_type =
context()->get_def_use_mgr()->GetDef(GetSingleWordInOperand(1));
// Unpack the optional layer of arraying.
if (base_type->opcode() == spv::Op::OpTypeArray ||
base_type->opcode() == spv::Op::OpTypeRuntimeArray) {
base_type = context()->get_def_use_mgr()->GetDef(
base_type->GetSingleWordInOperand(0));
}
if (base_type->opcode() != spv::Op::OpTypeImage) {
return false;
}
if (spv::Dim(base_type->GetSingleWordInOperand(kTypeImageDimIndex)) ==
spv::Dim::Buffer) {
return false;
}
// Check if the image is sampled. If we do not know for sure that it is,
// then assume it is a storage image.
return base_type->GetSingleWordInOperand(kTypeImageSampledIndex) != 1;
}
bool Instruction::IsVulkanSampledImage() const {
if (opcode() != spv::Op::OpTypePointer) {
return false;
}
spv::StorageClass storage_class =
spv::StorageClass(GetSingleWordInOperand(kPointerTypeStorageClassIndex));
if (storage_class != spv::StorageClass::UniformConstant) {
return false;
}
Instruction* base_type =
context()->get_def_use_mgr()->GetDef(GetSingleWordInOperand(1));
// Unpack the optional layer of arraying.
if (base_type->opcode() == spv::Op::OpTypeArray ||
base_type->opcode() == spv::Op::OpTypeRuntimeArray) {
base_type = context()->get_def_use_mgr()->GetDef(
base_type->GetSingleWordInOperand(0));
}
if (base_type->opcode() != spv::Op::OpTypeImage) {
return false;
}
if (spv::Dim(base_type->GetSingleWordInOperand(kTypeImageDimIndex)) ==
spv::Dim::Buffer) {
return false;
}
// Check if the image is sampled. If we know for sure that it is,
// then return true.
return base_type->GetSingleWordInOperand(kTypeImageSampledIndex) == 1;
}
bool Instruction::IsVulkanStorageTexelBuffer() const {
if (opcode() != spv::Op::OpTypePointer) {
return false;
}
spv::StorageClass storage_class =
spv::StorageClass(GetSingleWordInOperand(kPointerTypeStorageClassIndex));
if (storage_class != spv::StorageClass::UniformConstant) {
return false;
}
Instruction* base_type =
context()->get_def_use_mgr()->GetDef(GetSingleWordInOperand(1));
// Unpack the optional layer of arraying.
if (base_type->opcode() == spv::Op::OpTypeArray ||
base_type->opcode() == spv::Op::OpTypeRuntimeArray) {
base_type = context()->get_def_use_mgr()->GetDef(
base_type->GetSingleWordInOperand(0));
}
if (base_type->opcode() != spv::Op::OpTypeImage) {
return false;
}
if (spv::Dim(base_type->GetSingleWordInOperand(kTypeImageDimIndex)) !=
spv::Dim::Buffer) {
return false;
}
// Check if the image is sampled. If we do not know for sure that it is,
// then assume it is a storage texel buffer.
return base_type->GetSingleWordInOperand(kTypeImageSampledIndex) != 1;
}
bool Instruction::IsVulkanStorageBuffer() const {
// Is there a difference between a "Storage buffer" and a "dynamic storage
// buffer" in SPIR-V and do we care about the difference?
if (opcode() != spv::Op::OpTypePointer) {
return false;
}
Instruction* base_type =
context()->get_def_use_mgr()->GetDef(GetSingleWordInOperand(1));
// Unpack the optional layer of arraying.
if (base_type->opcode() == spv::Op::OpTypeArray ||
base_type->opcode() == spv::Op::OpTypeRuntimeArray) {
base_type = context()->get_def_use_mgr()->GetDef(
base_type->GetSingleWordInOperand(0));
}
if (base_type->opcode() != spv::Op::OpTypeStruct) {
return false;
}
spv::StorageClass storage_class =
spv::StorageClass(GetSingleWordInOperand(kPointerTypeStorageClassIndex));
if (storage_class == spv::StorageClass::Uniform) {
bool is_buffer_block = false;
context()->get_decoration_mgr()->ForEachDecoration(
base_type->result_id(), uint32_t(spv::Decoration::BufferBlock),
[&is_buffer_block](const Instruction&) { is_buffer_block = true; });
return is_buffer_block;
} else if (storage_class == spv::StorageClass::StorageBuffer) {
bool is_block = false;
context()->get_decoration_mgr()->ForEachDecoration(
base_type->result_id(), uint32_t(spv::Decoration::Block),
[&is_block](const Instruction&) { is_block = true; });
return is_block;
}
return false;
}
bool Instruction::IsVulkanStorageBufferVariable() const {
if (opcode() != spv::Op::OpVariable) {
return false;
}
spv::StorageClass storage_class =
spv::StorageClass(GetSingleWordInOperand(kVariableStorageClassIndex));
if (storage_class == spv::StorageClass::StorageBuffer ||
storage_class == spv::StorageClass::Uniform) {
Instruction* var_type = context()->get_def_use_mgr()->GetDef(type_id());
return var_type != nullptr && var_type->IsVulkanStorageBuffer();
}
return false;
}
bool Instruction::IsVulkanUniformBuffer() const {
if (opcode() != spv::Op::OpTypePointer) {
return false;
}
spv::StorageClass storage_class =
spv::StorageClass(GetSingleWordInOperand(kPointerTypeStorageClassIndex));
if (storage_class != spv::StorageClass::Uniform) {
return false;
}
Instruction* base_type =
context()->get_def_use_mgr()->GetDef(GetSingleWordInOperand(1));
// Unpack the optional layer of arraying.
if (base_type->opcode() == spv::Op::OpTypeArray ||
base_type->opcode() == spv::Op::OpTypeRuntimeArray) {
base_type = context()->get_def_use_mgr()->GetDef(
base_type->GetSingleWordInOperand(0));
}
if (base_type->opcode() != spv::Op::OpTypeStruct) {
return false;
}
bool is_block = false;
context()->get_decoration_mgr()->ForEachDecoration(
base_type->result_id(), uint32_t(spv::Decoration::Block),
[&is_block](const Instruction&) { is_block = true; });
return is_block;
}
bool Instruction::IsReadOnlyPointerShaders() const {
if (type_id() == 0) {
return false;
}
Instruction* type_def = context()->get_def_use_mgr()->GetDef(type_id());
if (type_def->opcode() != spv::Op::OpTypePointer) {
return false;
}
spv::StorageClass storage_class = spv::StorageClass(
type_def->GetSingleWordInOperand(kPointerTypeStorageClassIndex));
switch (storage_class) {
case spv::StorageClass::UniformConstant:
if (!type_def->IsVulkanStorageImage() &&
!type_def->IsVulkanStorageTexelBuffer()) {
return true;
}
break;
case spv::StorageClass::Uniform:
if (!type_def->IsVulkanStorageBuffer()) {
return true;
}
break;
case spv::StorageClass::PushConstant:
case spv::StorageClass::Input:
return true;
default:
break;
}
bool is_nonwritable = false;
context()->get_decoration_mgr()->ForEachDecoration(
result_id(), uint32_t(spv::Decoration::NonWritable),
[&is_nonwritable](const Instruction&) { is_nonwritable = true; });
return is_nonwritable;
}
bool Instruction::IsReadOnlyPointerKernel() const {
if (type_id() == 0) {
return false;
}
Instruction* type_def = context()->get_def_use_mgr()->GetDef(type_id());
if (type_def->opcode() != spv::Op::OpTypePointer) {
return false;
}
spv::StorageClass storage_class = spv::StorageClass(
type_def->GetSingleWordInOperand(kPointerTypeStorageClassIndex));
return storage_class == spv::StorageClass::UniformConstant;
}
void Instruction::UpdateLexicalScope(uint32_t scope) {
dbg_scope_.SetLexicalScope(scope);
for (auto& i : dbg_line_insts_) {
i.dbg_scope_.SetLexicalScope(scope);
}
if (!IsLineInst() &&
context()->AreAnalysesValid(IRContext::kAnalysisDebugInfo)) {
context()->get_debug_info_mgr()->AnalyzeDebugInst(this);
}
}
void Instruction::UpdateDebugInlinedAt(uint32_t new_inlined_at) {
dbg_scope_.SetInlinedAt(new_inlined_at);
for (auto& i : dbg_line_insts_) {
i.dbg_scope_.SetInlinedAt(new_inlined_at);
}
if (!IsLineInst() &&
context()->AreAnalysesValid(IRContext::kAnalysisDebugInfo)) {
context()->get_debug_info_mgr()->AnalyzeDebugInst(this);
}
}
void Instruction::ClearDbgLineInsts() {
if (context()->AreAnalysesValid(IRContext::kAnalysisDefUse)) {
auto def_use_mgr = context()->get_def_use_mgr();
for (auto& l_inst : dbg_line_insts_) def_use_mgr->ClearInst(&l_inst);
}
clear_dbg_line_insts();
}
void Instruction::UpdateDebugInfoFrom(const Instruction* from) {
if (from == nullptr) return;
ClearDbgLineInsts();
if (!from->dbg_line_insts().empty())
AddDebugLine(&from->dbg_line_insts().back());
SetDebugScope(from->GetDebugScope());
if (!IsLineInst() &&
context()->AreAnalysesValid(IRContext::kAnalysisDebugInfo)) {
context()->get_debug_info_mgr()->AnalyzeDebugInst(this);
}
}
void Instruction::AddDebugLine(const Instruction* inst) {
dbg_line_insts_.push_back(*inst);
dbg_line_insts_.back().unique_id_ = context()->TakeNextUniqueId();
if (inst->IsDebugLineInst())
dbg_line_insts_.back().SetResultId(context_->TakeNextId());
if (context()->AreAnalysesValid(IRContext::kAnalysisDefUse))
context()->get_def_use_mgr()->AnalyzeInstDefUse(&dbg_line_insts_.back());
}
bool Instruction::IsDebugLineInst() const {
NonSemanticShaderDebugInfo100Instructions ext_opt = GetShader100DebugOpcode();
return ((ext_opt == NonSemanticShaderDebugInfo100DebugLine) ||
(ext_opt == NonSemanticShaderDebugInfo100DebugNoLine));
}
bool Instruction::IsLineInst() const { return IsLine() || IsNoLine(); }
bool Instruction::IsLine() const {
if (opcode() == spv::Op::OpLine) return true;
NonSemanticShaderDebugInfo100Instructions ext_opt = GetShader100DebugOpcode();
return ext_opt == NonSemanticShaderDebugInfo100DebugLine;
}
bool Instruction::IsNoLine() const {
if (opcode() == spv::Op::OpNoLine) return true;
NonSemanticShaderDebugInfo100Instructions ext_opt = GetShader100DebugOpcode();
return ext_opt == NonSemanticShaderDebugInfo100DebugNoLine;
}
Instruction* Instruction::InsertBefore(std::unique_ptr<Instruction>&& inst) {
inst.get()->InsertBefore(this);
return inst.release();
}
Instruction* Instruction::InsertBefore(
std::vector<std::unique_ptr<Instruction>>&& list) {
Instruction* first_node = list.front().get();
for (auto& inst : list) {
inst.release()->InsertBefore(this);
}
list.clear();
return first_node;
}
bool Instruction::IsValidBasePointer() const {
uint32_t tid = type_id();
if (tid == 0) {
return false;
}
Instruction* type = context()->get_def_use_mgr()->GetDef(tid);
if (type->opcode() != spv::Op::OpTypePointer) {
return false;
}
auto feature_mgr = context()->get_feature_mgr();
if (feature_mgr->HasCapability(spv::Capability::Addresses)) {
// TODO: The rules here could be more restrictive.
return true;
}
if (opcode() == spv::Op::OpVariable ||
opcode() == spv::Op::OpFunctionParameter) {
return true;
}
// With variable pointers, there are more valid base pointer objects.
// Variable pointers implicitly declares Variable pointers storage buffer.
spv::StorageClass storage_class =
static_cast<spv::StorageClass>(type->GetSingleWordInOperand(0));
if ((feature_mgr->HasCapability(
spv::Capability::VariablePointersStorageBuffer) &&
storage_class == spv::StorageClass::StorageBuffer) ||
(feature_mgr->HasCapability(spv::Capability::VariablePointers) &&
storage_class == spv::StorageClass::Workgroup)) {
switch (opcode()) {
case spv::Op::OpPhi:
case spv::Op::OpSelect:
case spv::Op::OpFunctionCall:
case spv::Op::OpConstantNull:
return true;
default:
break;
}
}
uint32_t pointee_type_id = type->GetSingleWordInOperand(1);
Instruction* pointee_type_inst =
context()->get_def_use_mgr()->GetDef(pointee_type_id);
if (pointee_type_inst->IsOpaqueType()) {
return true;
}
return false;
}
OpenCLDebugInfo100Instructions Instruction::GetOpenCL100DebugOpcode() const {
if (opcode() != spv::Op::OpExtInst) {
return OpenCLDebugInfo100InstructionsMax;
}
if (!context()->get_feature_mgr()->GetExtInstImportId_OpenCL100DebugInfo()) {
return OpenCLDebugInfo100InstructionsMax;
}
if (GetSingleWordInOperand(kExtInstSetIdInIdx) !=
context()->get_feature_mgr()->GetExtInstImportId_OpenCL100DebugInfo()) {
return OpenCLDebugInfo100InstructionsMax;
}
return OpenCLDebugInfo100Instructions(
GetSingleWordInOperand(kExtInstInstructionInIdx));
}
NonSemanticShaderDebugInfo100Instructions Instruction::GetShader100DebugOpcode()
const {
if (opcode() != spv::Op::OpExtInst) {
return NonSemanticShaderDebugInfo100InstructionsMax;
}
if (!context()->get_feature_mgr()->GetExtInstImportId_Shader100DebugInfo()) {
return NonSemanticShaderDebugInfo100InstructionsMax;
}
if (GetSingleWordInOperand(kExtInstSetIdInIdx) !=
context()->get_feature_mgr()->GetExtInstImportId_Shader100DebugInfo()) {
return NonSemanticShaderDebugInfo100InstructionsMax;
}
uint32_t opcode = GetSingleWordInOperand(kExtInstInstructionInIdx);
if (opcode >= NonSemanticShaderDebugInfo100InstructionsMax) {
return NonSemanticShaderDebugInfo100InstructionsMax;
}
return NonSemanticShaderDebugInfo100Instructions(opcode);
}
CommonDebugInfoInstructions Instruction::GetCommonDebugOpcode() const {
if (opcode() != spv::Op::OpExtInst) {
return CommonDebugInfoInstructionsMax;
}
const uint32_t opencl_set_id =
context()->get_feature_mgr()->GetExtInstImportId_OpenCL100DebugInfo();
const uint32_t shader_set_id =
context()->get_feature_mgr()->GetExtInstImportId_Shader100DebugInfo();
if (!opencl_set_id && !shader_set_id) {
return CommonDebugInfoInstructionsMax;
}
const uint32_t used_set_id = GetSingleWordInOperand(kExtInstSetIdInIdx);
if (used_set_id != opencl_set_id && used_set_id != shader_set_id) {
return CommonDebugInfoInstructionsMax;
}
return CommonDebugInfoInstructions(
GetSingleWordInOperand(kExtInstInstructionInIdx));
}
bool Instruction::IsValidBaseImage() const {
uint32_t tid = type_id();
if (tid == 0) {
return false;
}
Instruction* type = context()->get_def_use_mgr()->GetDef(tid);
return (type->opcode() == spv::Op::OpTypeImage ||
type->opcode() == spv::Op::OpTypeSampledImage);
}
bool Instruction::IsOpaqueType() const {
if (opcode() == spv::Op::OpTypeStruct) {
bool is_opaque = false;
ForEachInOperand([&is_opaque, this](const uint32_t* op_id) {
Instruction* type_inst = context()->get_def_use_mgr()->GetDef(*op_id);
is_opaque |= type_inst->IsOpaqueType();
});
return is_opaque;
} else if (opcode() == spv::Op::OpTypeArray) {
uint32_t sub_type_id = GetSingleWordInOperand(0);
Instruction* sub_type_inst =
context()->get_def_use_mgr()->GetDef(sub_type_id);
return sub_type_inst->IsOpaqueType();
} else {
return opcode() == spv::Op::OpTypeRuntimeArray ||
spvOpcodeIsBaseOpaqueType(opcode());
}
}
bool Instruction::IsFoldable() const {
return IsFoldableByFoldScalar() || IsFoldableByFoldVector() ||
context()->get_instruction_folder().HasConstFoldingRule(this);
}
bool Instruction::IsFoldableByFoldScalar() const {
const InstructionFolder& folder = context()->get_instruction_folder();
if (!folder.IsFoldableOpcode(opcode())) {
return false;
}
Instruction* type = context()->get_def_use_mgr()->GetDef(type_id());
if (!folder.IsFoldableScalarType(type)) {
return false;
}
// Even if the type of the instruction is foldable, its operands may not be
// foldable (e.g., comparisons of 64bit types). Check that all operand types
// are foldable before accepting the instruction.
return WhileEachInOperand([&folder, this](const uint32_t* op_id) {
Instruction* def_inst = context()->get_def_use_mgr()->GetDef(*op_id);
Instruction* def_inst_type =
context()->get_def_use_mgr()->GetDef(def_inst->type_id());
return folder.IsFoldableScalarType(def_inst_type);
});
}
bool Instruction::IsFoldableByFoldVector() const {
const InstructionFolder& folder = context()->get_instruction_folder();
if (!folder.IsFoldableOpcode(opcode())) {
return false;
}
Instruction* type = context()->get_def_use_mgr()->GetDef(type_id());
if (!folder.IsFoldableVectorType(type)) {
return false;
}
// Even if the type of the instruction is foldable, its operands may not be
// foldable (e.g., comparisons of 64bit types). Check that all operand types
// are foldable before accepting the instruction.
return WhileEachInOperand([&folder, this](const uint32_t* op_id) {
Instruction* def_inst = context()->get_def_use_mgr()->GetDef(*op_id);
Instruction* def_inst_type =
context()->get_def_use_mgr()->GetDef(def_inst->type_id());
return folder.IsFoldableVectorType(def_inst_type);
});
}
bool Instruction::IsFloatingPointFoldingAllowed() const {
// TODO: Add the rules for kernels. For now it will be pessimistic.
// For now, do not support capabilities introduced by SPV_KHR_float_controls.
if (!context_->get_feature_mgr()->HasCapability(spv::Capability::Shader) ||
context_->get_feature_mgr()->HasCapability(
spv::Capability::DenormPreserve) ||
context_->get_feature_mgr()->HasCapability(
spv::Capability::DenormFlushToZero) ||
context_->get_feature_mgr()->HasCapability(
spv::Capability::SignedZeroInfNanPreserve) ||
context_->get_feature_mgr()->HasCapability(
spv::Capability::RoundingModeRTZ) ||
context_->get_feature_mgr()->HasCapability(
spv::Capability::RoundingModeRTE)) {
return false;
}
bool is_nocontract = false;
context_->get_decoration_mgr()->WhileEachDecoration(
result_id(), uint32_t(spv::Decoration::NoContraction),
[&is_nocontract](const Instruction&) {
is_nocontract = true;
return false;
});
return !is_nocontract;
}
std::string Instruction::PrettyPrint(uint32_t options) const {
// Convert the module to binary.
std::vector<uint32_t> module_binary;
context()->module()->ToBinary(&module_binary, /* skip_nop = */ false);
// Convert the instruction to binary. This is used to identify the correct
// stream of words to output from the module.
std::vector<uint32_t> inst_binary;
ToBinaryWithoutAttachedDebugInsts(&inst_binary);
// Do not generate a header.
return spvInstructionBinaryToText(
context()->grammar().target_env(), inst_binary.data(), inst_binary.size(),
module_binary.data(), module_binary.size(),
options | SPV_BINARY_TO_TEXT_OPTION_NO_HEADER);
}
std::ostream& operator<<(std::ostream& str, const Instruction& inst) {
str << inst.PrettyPrint();
return str;
}
void Instruction::Dump() const {
std::cerr << "Instruction #" << unique_id() << "\n" << *this << "\n";
}
bool Instruction::IsOpcodeCodeMotionSafe() const {
switch (opcode_) {
case spv::Op::OpNop:
case spv::Op::OpUndef:
case spv::Op::OpLoad:
case spv::Op::OpAccessChain:
case spv::Op::OpInBoundsAccessChain:
case spv::Op::OpArrayLength:
case spv::Op::OpVectorExtractDynamic:
case spv::Op::OpVectorInsertDynamic:
case spv::Op::OpVectorShuffle:
case spv::Op::OpCompositeConstruct:
case spv::Op::OpCompositeExtract:
case spv::Op::OpCompositeInsert:
case spv::Op::OpCopyObject:
case spv::Op::OpTranspose:
case spv::Op::OpConvertFToU:
case spv::Op::OpConvertFToS:
case spv::Op::OpConvertSToF:
case spv::Op::OpConvertUToF:
case spv::Op::OpUConvert:
case spv::Op::OpSConvert:
case spv::Op::OpFConvert:
case spv::Op::OpQuantizeToF16:
case spv::Op::OpBitcast:
case spv::Op::OpSNegate:
case spv::Op::OpFNegate:
case spv::Op::OpIAdd:
case spv::Op::OpFAdd:
case spv::Op::OpISub:
case spv::Op::OpFSub:
case spv::Op::OpIMul:
case spv::Op::OpFMul:
case spv::Op::OpUDiv:
case spv::Op::OpSDiv:
case spv::Op::OpFDiv:
case spv::Op::OpUMod:
case spv::Op::OpSRem:
case spv::Op::OpSMod:
case spv::Op::OpFRem:
case spv::Op::OpFMod:
case spv::Op::OpVectorTimesScalar:
case spv::Op::OpMatrixTimesScalar:
case spv::Op::OpVectorTimesMatrix:
case spv::Op::OpMatrixTimesVector:
case spv::Op::OpMatrixTimesMatrix:
case spv::Op::OpOuterProduct:
case spv::Op::OpDot:
case spv::Op::OpIAddCarry:
case spv::Op::OpISubBorrow:
case spv::Op::OpUMulExtended:
case spv::Op::OpSMulExtended:
case spv::Op::OpAny:
case spv::Op::OpAll:
case spv::Op::OpIsNan:
case spv::Op::OpIsInf:
case spv::Op::OpLogicalEqual:
case spv::Op::OpLogicalNotEqual:
case spv::Op::OpLogicalOr:
case spv::Op::OpLogicalAnd:
case spv::Op::OpLogicalNot:
case spv::Op::OpSelect:
case spv::Op::OpIEqual:
case spv::Op::OpINotEqual:
case spv::Op::OpUGreaterThan:
case spv::Op::OpSGreaterThan:
case spv::Op::OpUGreaterThanEqual:
case spv::Op::OpSGreaterThanEqual:
case spv::Op::OpULessThan:
case spv::Op::OpSLessThan:
case spv::Op::OpULessThanEqual:
case spv::Op::OpSLessThanEqual:
case spv::Op::OpFOrdEqual:
case spv::Op::OpFUnordEqual:
case spv::Op::OpFOrdNotEqual:
case spv::Op::OpFUnordNotEqual:
case spv::Op::OpFOrdLessThan:
case spv::Op::OpFUnordLessThan:
case spv::Op::OpFOrdGreaterThan:
case spv::Op::OpFUnordGreaterThan:
case spv::Op::OpFOrdLessThanEqual:
case spv::Op::OpFUnordLessThanEqual:
case spv::Op::OpFOrdGreaterThanEqual:
case spv::Op::OpFUnordGreaterThanEqual:
case spv::Op::OpShiftRightLogical:
case spv::Op::OpShiftRightArithmetic:
case spv::Op::OpShiftLeftLogical:
case spv::Op::OpBitwiseOr:
case spv::Op::OpBitwiseXor:
case spv::Op::OpBitwiseAnd:
case spv::Op::OpNot:
case spv::Op::OpBitFieldInsert:
case spv::Op::OpBitFieldSExtract:
case spv::Op::OpBitFieldUExtract:
case spv::Op::OpBitReverse:
case spv::Op::OpBitCount:
case spv::Op::OpSizeOf:
return true;
default:
return false;
}
}
bool Instruction::IsScalarizable() const {
if (spvOpcodeIsScalarizable(opcode())) {
return true;
}
if (opcode() == spv::Op::OpExtInst) {
uint32_t instSetId =
context()->get_feature_mgr()->GetExtInstImportId_GLSLstd450();
if (GetSingleWordInOperand(kExtInstSetIdInIdx) == instSetId) {
switch (GetSingleWordInOperand(kExtInstInstructionInIdx)) {
case GLSLstd450Round:
case GLSLstd450RoundEven:
case GLSLstd450Trunc:
case GLSLstd450FAbs:
case GLSLstd450SAbs:
case GLSLstd450FSign:
case GLSLstd450SSign:
case GLSLstd450Floor:
case GLSLstd450Ceil:
case GLSLstd450Fract:
case GLSLstd450Radians:
case GLSLstd450Degrees:
case GLSLstd450Sin:
case GLSLstd450Cos:
case GLSLstd450Tan:
case GLSLstd450Asin:
case GLSLstd450Acos:
case GLSLstd450Atan:
case GLSLstd450Sinh:
case GLSLstd450Cosh:
case GLSLstd450Tanh:
case GLSLstd450Asinh:
case GLSLstd450Acosh:
case GLSLstd450Atanh:
case GLSLstd450Atan2:
case GLSLstd450Pow:
case GLSLstd450Exp:
case GLSLstd450Log:
case GLSLstd450Exp2:
case GLSLstd450Log2:
case GLSLstd450Sqrt:
case GLSLstd450InverseSqrt:
case GLSLstd450Modf:
case GLSLstd450FMin:
case GLSLstd450UMin:
case GLSLstd450SMin:
case GLSLstd450FMax:
case GLSLstd450UMax:
case GLSLstd450SMax:
case GLSLstd450FClamp:
case GLSLstd450UClamp:
case GLSLstd450SClamp:
case GLSLstd450FMix:
case GLSLstd450Step:
case GLSLstd450SmoothStep:
case GLSLstd450Fma:
case GLSLstd450Frexp:
case GLSLstd450Ldexp:
case GLSLstd450FindILsb:
case GLSLstd450FindSMsb:
case GLSLstd450FindUMsb:
case GLSLstd450NMin:
case GLSLstd450NMax:
case GLSLstd450NClamp:
return true;
default:
return false;
}
}
}
return false;
}
bool Instruction::IsOpcodeSafeToDelete() const {
if (context()->IsCombinatorInstruction(this)) {
return true;
}
switch (opcode()) {
case spv::Op::OpDPdx:
case spv::Op::OpDPdy:
case spv::Op::OpFwidth:
case spv::Op::OpDPdxFine:
case spv::Op::OpDPdyFine:
case spv::Op::OpFwidthFine:
case spv::Op::OpDPdxCoarse:
case spv::Op::OpDPdyCoarse:
case spv::Op::OpFwidthCoarse:
case spv::Op::OpImageQueryLod:
return true;
default:
return false;
}
}
bool Instruction::IsNonSemanticInstruction() const {
if (!HasResultId()) return false;
if (opcode() != spv::Op::OpExtInst) return false;
auto import_inst =
context()->get_def_use_mgr()->GetDef(GetSingleWordInOperand(0));
std::string import_name = import_inst->GetInOperand(0).AsString();
return import_name.find("NonSemantic.") == 0;
}
void DebugScope::ToBinary(uint32_t type_id, uint32_t result_id,
uint32_t ext_set,
std::vector<uint32_t>* binary) const {
uint32_t num_words = kDebugScopeNumWords;
CommonDebugInfoInstructions dbg_opcode = CommonDebugInfoDebugScope;
if (GetLexicalScope() == kNoDebugScope) {
num_words = kDebugNoScopeNumWords;
dbg_opcode = CommonDebugInfoDebugNoScope;
} else if (GetInlinedAt() == kNoInlinedAt) {
num_words = kDebugScopeNumWordsWithoutInlinedAt;
}
std::vector<uint32_t> operands = {
(num_words << 16) | static_cast<uint16_t>(spv::Op::OpExtInst),
type_id,
result_id,
ext_set,
static_cast<uint32_t>(dbg_opcode),
};
binary->insert(binary->end(), operands.begin(), operands.end());
if (GetLexicalScope() != kNoDebugScope) {
binary->push_back(GetLexicalScope());
if (GetInlinedAt() != kNoInlinedAt) binary->push_back(GetInlinedAt());
}
}
} // namespace opt
} // namespace spvtools