bgfx/examples/39-assao/assao.cpp
Бранимир Караџић 74a599541c Cleanup.
2018-12-14 14:38:54 -08:00

1209 lines
44 KiB
C++

/*
* Copyright 2018 Attila Kocsis. All rights reserved.
* License: https://github.com/bkaradzic/bgfx#license-bsd-2-clause
*/
/*
* Reference(s):
* - ASSAO is a SSAO implementation tuned for scalability and flexibility.
* https://web.archive.org/web/20181214222937/https://software.intel.com/en-us/articles/adaptive-screen-space-ambient-occlusion
* https://github.com/GameTechDev/ASSAO
*/
#include <common.h>
#include <camera.h>
#include <bgfx_utils.h>
#include <imgui/imgui.h>
#include <bx/rng.h>
#include <bx/os.h>
#define USE_ASSAO 0
namespace
{
// Render passes
#define RENDER_PASS_GBUFFER 0 // GBuffer for normals and albedo
#define RENDER_PASS_COMBINE 1 // Directional light and final result
// Gbuffer has multiple render targets
#define GBUFFER_RT_NORMAL 0
#define GBUFFER_RT_COLOR 1
#define GBUFFER_RT_DEPTH 2
// Random meshes we draw
#define MODEL_COUNT 120 // In this demo, a model is a mesh plus a transform
#define SAMPLER_POINT_CLAMP (BGFX_SAMPLER_MIN_POINT|BGFX_SAMPLER_MAG_POINT|BGFX_SAMPLER_MIP_POINT|BGFX_SAMPLER_U_CLAMP| BGFX_SAMPLER_V_CLAMP | BGFX_SAMPLER_W_CLAMP)
#define SAMPLER_POINT_MIRROR (BGFX_SAMPLER_MIN_POINT|BGFX_SAMPLER_MAG_POINT|BGFX_SAMPLER_MIP_POINT|BGFX_SAMPLER_U_MIRROR| BGFX_SAMPLER_V_MIRROR | BGFX_SAMPLER_W_MIRROR)
#define SAMPLER_LINEAR_CLAMP (BGFX_SAMPLER_U_CLAMP| BGFX_SAMPLER_V_CLAMP | BGFX_SAMPLER_W_CLAMP)
#define SSAO_DEPTH_MIP_LEVELS 4
static const char * s_meshPaths[] =
{
"meshes/cube.bin",
"meshes/orb.bin",
"meshes/column.bin",
"meshes/bunny_decimated.bin",
"meshes/tree.bin",
"meshes/hollowcube.bin"
};
static const float s_meshScale[] =
{
0.25f,
0.5f,
0.05f,
0.5f,
0.05f,
0.25f
};
// Vertex decl for our screen space quad (used in deferred rendering)
struct PosTexCoord0Vertex
{
float m_x;
float m_y;
float m_z;
float m_u;
float m_v;
static void init()
{
ms_decl
.begin()
.add(bgfx::Attrib::Position, 3, bgfx::AttribType::Float)
.add(bgfx::Attrib::TexCoord0, 2, bgfx::AttribType::Float)
.end();
}
static bgfx::VertexDecl ms_decl;
};
bgfx::VertexDecl PosTexCoord0Vertex::ms_decl;
// Utility function to draw a screen space quad for deferred rendering
void screenSpaceQuad(float _textureWidth, float _textureHeight, float _texelHalf, bool _originBottomLeft, float _width = 1.0f, float _height = 1.0f)
{
if (3 == bgfx::getAvailTransientVertexBuffer(3, PosTexCoord0Vertex::ms_decl))
{
bgfx::TransientVertexBuffer vb;
bgfx::allocTransientVertexBuffer(&vb, 3, PosTexCoord0Vertex::ms_decl);
PosTexCoord0Vertex* vertex = (PosTexCoord0Vertex*)vb.data;
const float minx = -_width;
const float maxx = _width;
const float miny = 0.0f;
const float maxy = _height * 2.0f;
const float texelHalfW = _texelHalf / _textureWidth;
const float texelHalfH = _texelHalf / _textureHeight;
const float minu = -1.0f + texelHalfW;
const float maxu = 1.0f + texelHalfH;
const float zz = 0.0f;
float minv = texelHalfH;
float maxv = 2.0f + texelHalfH;
if (_originBottomLeft)
{
float temp = minv;
minv = maxv;
maxv = temp;
minv -= 1.0f;
maxv -= 1.0f;
}
vertex[0].m_x = minx;
vertex[0].m_y = miny;
vertex[0].m_z = zz;
vertex[0].m_u = minu;
vertex[0].m_v = minv;
vertex[1].m_x = maxx;
vertex[1].m_y = miny;
vertex[1].m_z = zz;
vertex[1].m_u = maxu;
vertex[1].m_v = minv;
vertex[2].m_x = maxx;
vertex[2].m_y = maxy;
vertex[2].m_z = zz;
vertex[2].m_u = maxu;
vertex[2].m_v = maxv;
bgfx::setVertexBuffer(0, &vb);
}
}
struct Settings
{
float m_radius; // [0.0, ~ ] World (view) space size of the occlusion sphere.
float m_shadowMultiplier; // [0.0, 5.0] Effect strength linear multiplier
float m_shadowPower; // [0.5, 5.0] Effect strength pow modifier
float m_shadowClamp; // [0.0, 1.0] Effect max limit (applied after multiplier but before blur)
float m_horizonAngleThreshold; // [0.0, 0.2] Limits self-shadowing (makes the sampling area less of a hemisphere, more of a spherical cone, to avoid self-shadowing and various artifacts due to low tessellation and depth buffer imprecision, etc.)
float m_fadeOutFrom; // [0.0, ~ ] Distance to start start fading out the effect.
float m_fadeOutTo; // [0.0, ~ ] Distance at which the effect is faded out.
int32_t m_qualityLevel; // [ -1, 3 ] Effect quality; -1 - lowest (low, half res checkerboard), 0 - low, 1 - medium, 2 - high, 3 - very high / adaptive; each quality level is roughly 2x more costly than the previous, except the q3 which is variable but, in general, above q2.
float m_adaptiveQualityLimit; // [0.0, 1.0] (only for Quality Level 3)
int32_t m_blurPassCount; // [ 0, 6] Number of edge-sensitive smart blur passes to apply. Quality 0 is an exception with only one 'dumb' blur pass used.
float m_sharpness; // [0.0, 1.0] (How much to bleed over edges; 1: not at all, 0.5: half-half; 0.0: completely ignore edges)
float m_temporalSupersamplingAngleOffset; // [0.0, PI] Used to rotate sampling kernel; If using temporal AA / supersampling, suggested to rotate by ( (frame%3)/3.0*PI ) or similar. Kernel is already symmetrical, which is why we use PI and not 2*PI.
float m_temporalSupersamplingRadiusOffset; // [0.0, 2.0] Used to scale sampling kernel; If using temporal AA / supersampling, suggested to scale by ( 1.0f + (((frame%3)-1.0)/3.0)*0.1 ) or similar.
float m_detailShadowStrength; // [0.0, 5.0] Used for high-res detail AO using neighboring depth pixels: adds a lot of detail but also reduces temporal stability (adds aliasing).
bool m_generateNormals; // [true/false] If true normals will be generated from depth.
Settings()
{
m_radius = 1.2f;
m_shadowMultiplier = 1.0f;
m_shadowPower = 1.50f;
m_shadowClamp = 0.98f;
m_horizonAngleThreshold = 0.06f;
m_fadeOutFrom = 50.0f;
m_fadeOutTo = 200.0f;
m_adaptiveQualityLimit = 0.45f;
m_qualityLevel = 3;
m_blurPassCount = 2;
m_sharpness = 0.98f;
m_temporalSupersamplingAngleOffset = 0.0f;
m_temporalSupersamplingRadiusOffset = 1.0f;
m_detailShadowStrength = 0.5f;
m_generateNormals = true;
}
};
struct Uniforms
{
enum { NumVec4 = 19 };
void init()
{
u_params = bgfx::createUniform("u_params", bgfx::UniformType::Vec4, NumVec4);
}
void submit()
{
bgfx::setUniform(u_params, m_params, NumVec4);
}
void destroy()
{
bgfx::destroy(u_params);
}
union
{
struct
{
/* 0 */ struct { float m_viewportPixelSize[2]; float m_halfViewportPixelSize[2]; };
/* 1 */ struct { float m_depthUnpackConsts[2]; float m_unused0[2]; };
/* 2 */ struct { float m_ndcToViewMul[2]; float m_ndcToViewAdd[2]; };
/* 3 */ struct { float m_perPassFullResCoordOffset[2]; float m_perPassFullResUVOffset[2]; };
/* 4 */ struct { float m_viewport2xPixelSize[2]; float m_viewport2xPixelSize_x_025[2]; };
/* 5 */ struct { float m_effectRadius; float m_effectShadowStrength; float m_effectShadowPow; float m_effectShadowClamp; };
/* 6 */ struct { float m_effectFadeOutMul; float m_effectFadeOutAdd; float m_effectHorizonAngleThreshold; float m_effectSamplingRadiusNearLimitRec; };
/* 7 */ struct { float m_depthPrecisionOffsetMod; float m_negRecEffectRadius; float m_loadCounterAvgDiv; float m_adaptiveSampleCountLimit; };
/* 8 */ struct { float m_invSharpness; float m_passIndex; float m_quarterResPixelSize[2]; };
/* 9-13 */ struct { float m_patternRotScaleMatrices[5][4]; };
/* 14 */ struct { float m_normalsUnpackMul; float m_normalsUnpackAdd; float m_detailAOStrength; float m_layer; };
/* 15-18 */ struct { float m_normalsWorldToViewspaceMatrix[16]; };
};
float m_params[NumVec4 * 4];
};
bgfx::UniformHandle u_params;
};
void vec2Set(float* _v, float _x, float _y)
{
_v[0] = _x;
_v[1] = _y;
}
void vec4Set(float* _v, float _x, float _y, float _z, float _w)
{
_v[0] = _x;
_v[1] = _y;
_v[2] = _z;
_v[3] = _w;
}
void vec4iSet(int32_t* _v, int32_t _x, int32_t _y, int32_t _z, int32_t _w)
{
_v[0] = _x;
_v[1] = _y;
_v[2] = _z;
_v[3] = _w;
}
static const int32_t cMaxBlurPassCount = 6;
class ExampleASSAO : public entry::AppI
{
public:
ExampleASSAO(const char* _name, const char* _description)
: entry::AppI(_name, _description)
, m_currFrame(UINT32_MAX)
, m_enableSSAO(true)
, m_enableTexturing(true)
, m_texelHalf(0.0f)
, m_framebufferGutter(true)
{
}
void init(int32_t _argc, const char* const* _argv, uint32_t _width, uint32_t _height) override
{
Args args(_argc, _argv);
m_width = _width;
m_height = _height;
m_debug = BGFX_DEBUG_NONE;
m_reset = BGFX_RESET_VSYNC;
bgfx::Init init;
init.type = args.m_type;
init.vendorId = args.m_pciId;
init.resolution.width = m_width;
init.resolution.height = m_height;
init.resolution.reset = m_reset;
bgfx::init(init);
// Enable debug text.
bgfx::setDebug(m_debug);
// Labeling for renderdoc captures, etc
bgfx::setViewName(RENDER_PASS_GBUFFER, "gbuffer");
bgfx::setViewName(RENDER_PASS_COMBINE, "post combine");
// Set up screen clears
bgfx::setViewClear(RENDER_PASS_GBUFFER
, BGFX_CLEAR_COLOR | BGFX_CLEAR_DEPTH
, 0
, 1.0f
, 0
);
// Create uniforms
u_combineParams = bgfx::createUniform("u_combineParams", bgfx::UniformType::Vec4, 2);
u_rect = bgfx::createUniform("u_rect", bgfx::UniformType::Vec4); // viewport/scissor rect for compute
m_uniforms.init();
// Create texture sampler uniforms (used when we bind textures)
s_normal = bgfx::createUniform("s_normal", bgfx::UniformType::Int1); // Normal gbuffer
s_depth = bgfx::createUniform("s_depth", bgfx::UniformType::Int1); // Normal gbuffer
s_color = bgfx::createUniform("s_color", bgfx::UniformType::Int1); // Color (albedo) gbuffer
s_albedo = bgfx::createUniform("s_albedo", bgfx::UniformType::Int1);
s_ao = bgfx::createUniform("s_ao", bgfx::UniformType::Int1);
s_blurInput = bgfx::createUniform("s_blurInput", bgfx::UniformType::Int1);
s_finalSSAO = bgfx::createUniform("s_finalSSAO", bgfx::UniformType::Int1);
s_depthSource = bgfx::createUniform("s_depthSource", bgfx::UniformType::Int1);
s_viewspaceDepthSource = bgfx::createUniform("s_viewspaceDepthSource", bgfx::UniformType::Int1);
s_viewspaceDepthSourceMirror = bgfx::createUniform("s_viewspaceDepthSourceMirror", bgfx::UniformType::Int1);
s_importanceMap = bgfx::createUniform("s_importanceMap", bgfx::UniformType::Int1);
// Create program from shaders.
m_gbufferProgram = loadProgram("vs_assao_gbuffer", "fs_assao_gbuffer"); // Gbuffer
m_combineProgram = loadProgram("vs_assao", "fs_assao_deferred_combine");
m_prepareDepthsProgram = loadProgram("cs_assao_prepare_depths", NULL);
m_prepareDepthsAndNormalsProgram = loadProgram("cs_assao_prepare_depths_and_normals", NULL);
m_prepareDepthsHalfProgram = loadProgram("cs_assao_prepare_depths_half", NULL);
m_prepareDepthsAndNormalsHalfProgram = loadProgram("cs_assao_prepare_depths_and_normals_half", NULL);
m_prepareDepthMipProgram = loadProgram("cs_assao_prepare_depth_mip", NULL);
m_generateQ0Program = loadProgram("cs_assao_generate_q0", NULL);
m_generateQ1Program = loadProgram("cs_assao_generate_q1", NULL);
m_generateQ2Program = loadProgram("cs_assao_generate_q2", NULL);
m_generateQ3Program = loadProgram("cs_assao_generate_q3", NULL);
m_generateQ3BaseProgram = loadProgram("cs_assao_generate_q3base", NULL);
m_smartBlurProgram = loadProgram("cs_assao_smart_blur", NULL);
m_smartBlurWideProgram = loadProgram("cs_assao_smart_blur_wide", NULL);
m_nonSmartBlurProgram = loadProgram("cs_assao_non_smart_blur", NULL);
m_applyProgram = loadProgram("cs_assao_apply", NULL);
m_nonSmartApplyProgram = loadProgram("cs_assao_non_smart_apply", NULL);
m_nonSmartHalfApplyProgram = loadProgram("cs_assao_non_smart_half_apply", NULL);
m_generateImportanceMapProgram = loadProgram("cs_assao_generate_importance_map", NULL);
m_postprocessImportanceMapAProgram = loadProgram("cs_assao_postprocess_importance_map_a", NULL);
m_postprocessImportanceMapBProgram = loadProgram("cs_assao_postprocess_importance_map_b", NULL);
m_loadCounterClearProgram = loadProgram("cs_assao_load_counter_clear", NULL);
// Load some meshes
for (uint32_t ii = 0; ii < BX_COUNTOF(s_meshPaths); ++ii)
{
m_meshes[ii] = meshLoad(s_meshPaths[ii]);
}
// Randomly create some models
bx::RngMwc mwc; // Random number generator
for (uint32_t ii = 0; ii < BX_COUNTOF(m_models); ++ii)
{
Model& model = m_models[ii];
model.mesh = 1 + mwc.gen() % (BX_COUNTOF(s_meshPaths) - 1);
model.position[0] = (((mwc.gen() % 256)) - 128.0f) / 20.0f;
model.position[1] = 0;
model.position[2] = (((mwc.gen() % 256)) - 128.0f) / 20.0f;
}
// Load ground. We'll just use the cube since I don't have a ground model right now
m_ground = meshLoad("meshes/cube.bin");
m_groundTexture = loadTexture("textures/fieldstone-rgba.dds");
const bgfx::Memory* mem = bgfx::alloc(4);
bx::memSet(mem->data, 0xc0, 4);
m_modelTexture = bgfx::createTexture2D(1,1, false, 1, bgfx::TextureFormat::RGBA8, 0, mem);
m_recreateFrameBuffers = false;
createFramebuffers();
m_loadCounter = bgfx::createTexture2D(1, 1, false, 1, bgfx::TextureFormat::R32U, BGFX_TEXTURE_COMPUTE_WRITE);
// Vertex decl
PosTexCoord0Vertex::init();
// Init camera
cameraCreate();
float camPos[] = { 0.0f, 1.5f, 0.0f };
cameraSetPosition(camPos);
cameraSetVerticalAngle(-0.3f);
m_fovY = 60.0f;
// Get renderer capabilities info.
const bgfx::RendererType::Enum renderer = bgfx::getRendererType();
m_texelHalf = bgfx::RendererType::Direct3D9 == renderer ? 0.5f : 0.0f;
imguiCreate();
}
int32_t shutdown() override
{
for (uint32_t ii = 0; ii < BX_COUNTOF(s_meshPaths); ++ii)
{
meshUnload(m_meshes[ii]);
}
meshUnload(m_ground);
bgfx::destroy(m_groundTexture);
bgfx::destroy(m_modelTexture);
// Cleanup.
bgfx::destroy(m_gbufferProgram);
bgfx::destroy(m_combineProgram);
bgfx::destroy(m_prepareDepthsProgram);
bgfx::destroy(m_prepareDepthsAndNormalsProgram);
bgfx::destroy(m_prepareDepthsHalfProgram);
bgfx::destroy(m_prepareDepthsAndNormalsHalfProgram);
bgfx::destroy(m_prepareDepthMipProgram);
bgfx::destroy(m_generateQ0Program);
bgfx::destroy(m_generateQ1Program);
bgfx::destroy(m_generateQ2Program);
bgfx::destroy(m_generateQ3Program);
bgfx::destroy(m_generateQ3BaseProgram);
bgfx::destroy(m_smartBlurProgram);
bgfx::destroy(m_smartBlurWideProgram);
bgfx::destroy(m_nonSmartBlurProgram);
bgfx::destroy(m_applyProgram);
bgfx::destroy(m_nonSmartApplyProgram);
bgfx::destroy(m_nonSmartHalfApplyProgram);
bgfx::destroy(m_generateImportanceMapProgram);
bgfx::destroy(m_postprocessImportanceMapAProgram);
bgfx::destroy(m_postprocessImportanceMapBProgram);
bgfx::destroy(m_loadCounterClearProgram);
bgfx::destroy(m_combineProgram);
m_uniforms.destroy();
bgfx::destroy(u_combineParams);
bgfx::destroy(u_rect);
bgfx::destroy(s_normal);
bgfx::destroy(s_depth);
bgfx::destroy(s_color);
bgfx::destroy(s_albedo);
bgfx::destroy(s_ao);
bgfx::destroy(s_blurInput);
bgfx::destroy(s_finalSSAO);
bgfx::destroy(s_depthSource);
bgfx::destroy(s_viewspaceDepthSource);
bgfx::destroy(s_viewspaceDepthSourceMirror);
bgfx::destroy(s_importanceMap);
bgfx::destroy(m_loadCounter);
destroyFramebuffers();
cameraDestroy();
imguiDestroy();
// Shutdown bgfx.
bgfx::shutdown();
return 0;
}
bool update() override
{
if (!entry::processEvents(m_width, m_height, m_debug, m_reset, &m_mouseState))
{
// Update frame timer
int64_t now = bx::getHPCounter();
static int64_t last = now;
const int64_t frameTime = now - last;
last = now;
const double freq = double(bx::getHPFrequency());
const float deltaTime = float(frameTime / freq);
const bgfx::Caps* caps = bgfx::getCaps();
if (m_size[0] != (int32_t)m_width + 2*m_border
|| m_size[1] != (int32_t)m_height + 2*m_border
|| m_recreateFrameBuffers)
{
destroyFramebuffers();
createFramebuffers();
m_recreateFrameBuffers = false;
}
// Update camera
cameraUpdate(deltaTime*0.15f, m_mouseState);
// Set up matrices for gbuffer
cameraGetViewMtx(m_view);
bx::mtxProj(m_proj, m_fovY, float(m_size[0]) / float(m_size[1]), 0.1f, 100.0f, bgfx::getCaps()->homogeneousDepth);
bx::mtxProj(m_proj2, m_fovY, float(m_size[0]) / float(m_size[1]), 0.1f, 100.0f, false);
bgfx::setViewRect(RENDER_PASS_GBUFFER, 0, 0, uint16_t(m_size[0]), uint16_t(m_size[1]));
bgfx::setViewTransform(RENDER_PASS_GBUFFER, m_view, m_proj);
// Make sure when we draw it goes into gbuffer and not backbuffer
bgfx::setViewFrameBuffer(RENDER_PASS_GBUFFER, m_gbuffer);
// Draw everything into g-buffer
drawAllModels(RENDER_PASS_GBUFFER, m_gbufferProgram);
// Set up transform matrix for fullscreen quad
#if USE_ASSAO == 1
float orthoProj[16];
bx::mtxOrtho(orthoProj, 0.0f, 1.0f, 1.0f, 0.0f, 0.0f, 1.0f, 0.0f, caps->homogeneousDepth);
bgfx::setViewTransform(RENDER_PASS_COMBINE, NULL, orthoProj);
bgfx::setViewRect(RENDER_PASS_COMBINE, 0, 0, uint16_t(m_width), uint16_t(m_height));
// Bind vertex buffer and draw quad
screenSpaceQuad((float)m_width, (float)m_height, m_texelHalf, caps->originBottomLeft);
//bgfx::submit(RENDER_PASS_COMBINE, m_combineProgram);
bgfx::touch(RENDER_PASS_COMBINE);
BX_UNUSED(orthoProj, caps)
#endif
// ASSAO passes
#if USE_ASSAO == 0
updateUniforms(0);
bgfx::ViewId view = 2;
bgfx::setViewName(view, "ASSAO");
{
bgfx::setTexture(0, s_depthSource, bgfx::getTexture(m_gbuffer, GBUFFER_RT_DEPTH), SAMPLER_POINT_CLAMP);
m_uniforms.submit();
if (m_settings.m_generateNormals)
{
bgfx::setImage(5, m_normals, 0, bgfx::Access::Write, bgfx::TextureFormat::RGBA8);
}
if (m_settings.m_qualityLevel < 0)
{
for (int32_t j = 0; j < 2; ++j)
{
bgfx::setImage((uint8_t)(j + 1), m_halfDepths[j == 0 ? 0 : 3], 0, bgfx::Access::Write, bgfx::TextureFormat::R16F);
}
bgfx::dispatch(view, m_settings.m_generateNormals ? m_prepareDepthsAndNormalsHalfProgram : m_prepareDepthsHalfProgram, (m_halfSize[0] + 7) / 8, (m_halfSize[1] + 7) / 8);
}
else
{
for(int32_t j = 0; j < 4; ++j)
{
bgfx::setImage((uint8_t)(j+1), m_halfDepths[j], 0, bgfx::Access::Write, bgfx::TextureFormat::R16F);
}
bgfx::dispatch(view, m_settings.m_generateNormals ? m_prepareDepthsAndNormalsProgram : m_prepareDepthsProgram, (m_halfSize[0] + 7) / 8, (m_halfSize[1] + 7) / 8);
}
}
// only do mipmaps for higher quality levels (not beneficial on quality level 1, and detrimental on quality level 0)
if (m_settings.m_qualityLevel > 1)
{
uint16_t mipWidth = (uint16_t)m_halfSize[0];
uint16_t mipHeight = (uint16_t)m_halfSize[1];
for (uint8_t i = 1; i < SSAO_DEPTH_MIP_LEVELS; i++)
{
mipWidth = (uint16_t)bx::max(1, mipWidth >> 1);
mipHeight = (uint16_t)bx::max(1, mipHeight >> 1);
for (uint8_t j = 0; j < 4; ++j)
{
bgfx::setImage(j, m_halfDepths[j], i-1, bgfx::Access::Read, bgfx::TextureFormat::R16F);
bgfx::setImage(j + 4, m_halfDepths[j], i, bgfx::Access::Write, bgfx::TextureFormat::R16F);
}
m_uniforms.submit();
float rect[4] = { 0.0f, 0.0f, (float)mipWidth, (float)mipHeight };
bgfx::setUniform(u_rect, rect);
bgfx::dispatch(view, m_prepareDepthMipProgram, (mipWidth + 7) / 8, (mipHeight + 7) / 8);
}
}
// for adaptive quality, importance map pass
for (int32_t ssaoPass = 0; ssaoPass < 2; ++ssaoPass)
{
if (ssaoPass == 0
&& m_settings.m_qualityLevel < 3)
{
continue;
}
bool adaptiveBasePass = (ssaoPass == 0);
BX_UNUSED(adaptiveBasePass);
int32_t passCount = 4;
int32_t halfResNumX = (m_halfResOutScissorRect[2] - m_halfResOutScissorRect[0] + 7) / 8;
int32_t halfResNumY = (m_halfResOutScissorRect[3] - m_halfResOutScissorRect[1] + 7) / 8;
float halfResRect[4] = { (float)m_halfResOutScissorRect[0], (float)m_halfResOutScissorRect[1], (float)m_halfResOutScissorRect[2], (float)m_halfResOutScissorRect[3] };
for (int32_t pass = 0; pass < passCount; pass++)
{
if (m_settings.m_qualityLevel < 0
&& (pass == 1 || pass == 2) )
{
continue;
}
int32_t blurPasses = m_settings.m_blurPassCount;
blurPasses = bx::min(blurPasses, cMaxBlurPassCount);
if (m_settings.m_qualityLevel == 3)
{
// if adaptive, at least one blur pass needed as the first pass needs to read the final texture results - kind of awkward
if (adaptiveBasePass)
{
blurPasses = 0;
}
else
{
blurPasses = bx::max(1, blurPasses);
}
}
else if (m_settings.m_qualityLevel <= 0)
{
// just one blur pass allowed for minimum quality
blurPasses = bx::min(1, m_settings.m_blurPassCount);
}
updateUniforms(pass);
bgfx::TextureHandle pPingRT = m_pingPongHalfResultA;
bgfx::TextureHandle pPongRT = m_pingPongHalfResultB;
// Generate
{
bgfx::setImage(6, blurPasses == 0 ? m_finalResults : pPingRT, 0, bgfx::Access::Write, bgfx::TextureFormat::RG8);
bgfx::setUniform(u_rect, halfResRect);
bgfx::setTexture(0, s_viewspaceDepthSource, m_halfDepths[pass], SAMPLER_POINT_CLAMP);
bgfx::setTexture(1, s_viewspaceDepthSourceMirror, m_halfDepths[pass], SAMPLER_POINT_MIRROR);
if (m_settings.m_generateNormals)
bgfx::setImage(2, m_normals,0, bgfx::Access::Read, bgfx::TextureFormat::RGBA8);
else
bgfx::setImage(2, bgfx::getTexture(m_gbuffer, GBUFFER_RT_NORMAL), 0, bgfx::Access::Read, bgfx::TextureFormat::RGBA8);
if (!adaptiveBasePass && (m_settings.m_qualityLevel == 3))
{
bgfx::setImage(3, m_loadCounter, 0, bgfx::Access::Read, bgfx::TextureFormat::R32U);
bgfx::setTexture(4, s_importanceMap, m_importanceMap, SAMPLER_LINEAR_CLAMP);
bgfx::setImage(5, m_finalResults, 0, bgfx::Access::Read, bgfx::TextureFormat::RG8);
}
bgfx::ProgramHandle programs[5] = { m_generateQ0Program, m_generateQ1Program , m_generateQ2Program , m_generateQ3Program , m_generateQ3BaseProgram };
int32_t programIndex = bx::max(0, (!adaptiveBasePass) ? (m_settings.m_qualityLevel) : (4));
m_uniforms.m_layer = blurPasses == 0 ? (float)pass : 0.0f;
m_uniforms.submit();
bgfx::dispatch(view, programs[programIndex], halfResNumX, halfResNumY);
}
// Blur
if (blurPasses > 0)
{
int32_t wideBlursRemaining = bx::max(0, blurPasses - 2);
for (int32_t i = 0; i < blurPasses; i++)
{
bgfx::setViewFrameBuffer(view, BGFX_INVALID_HANDLE);
bgfx::touch(view);
m_uniforms.m_layer = ((i == (blurPasses - 1)) ? (float)pass : 0.0f);
m_uniforms.submit();
bgfx::setUniform(u_rect, halfResRect);
bgfx::setImage(0, i == (blurPasses - 1) ? m_finalResults : pPongRT, 0, bgfx::Access::Write, bgfx::TextureFormat::RG8);
bgfx::setTexture(1, s_blurInput, pPingRT, m_settings.m_qualityLevel > 0 ? SAMPLER_POINT_MIRROR : SAMPLER_LINEAR_CLAMP);
if (m_settings.m_qualityLevel > 0)
{
if (wideBlursRemaining > 0)
{
bgfx::dispatch(view, m_smartBlurWideProgram, halfResNumX, halfResNumY);
wideBlursRemaining--;
}
else
{
bgfx::dispatch(view, m_smartBlurProgram, halfResNumX, halfResNumY);
}
}
else
{
bgfx::dispatch(view, m_nonSmartBlurProgram, halfResNumX, halfResNumY); // just for quality level 0 (and -1)
}
bgfx::TextureHandle temp = pPingRT;
pPingRT = pPongRT;
pPongRT = temp;
}
}
}
if (ssaoPass == 0 && m_settings.m_qualityLevel == 3)
{ // Generate importance map
m_uniforms.submit();
bgfx::setImage(0, m_importanceMap, 0, bgfx::Access::Write, bgfx::TextureFormat::R8);
bgfx::setTexture(1, s_finalSSAO, m_finalResults, SAMPLER_POINT_CLAMP);
bgfx::dispatch(view, m_generateImportanceMapProgram, (m_quarterSize[0] + 7) / 8, (m_quarterSize[1] + 7) / 8);
m_uniforms.submit();
bgfx::setImage(0, m_importanceMapPong, 0, bgfx::Access::Write, bgfx::TextureFormat::R8);
bgfx::setTexture(1, s_importanceMap, m_importanceMap);
bgfx::dispatch(view, m_postprocessImportanceMapAProgram, (m_quarterSize[0] + 7) / 8, (m_quarterSize[1] + 7) / 8);
bgfx::setImage(0, m_loadCounter, 0, bgfx::Access::ReadWrite, bgfx::TextureFormat::R32U);
bgfx::dispatch(view, m_loadCounterClearProgram, 1,1);
m_uniforms.submit();
bgfx::setImage(0, m_importanceMap, 0, bgfx::Access::Write, bgfx::TextureFormat::R8);
bgfx::setTexture(1, s_importanceMap, m_importanceMapPong);
bgfx::setImage(2, m_loadCounter, 0, bgfx::Access::ReadWrite, bgfx::TextureFormat::R32U);
bgfx::dispatch(view, m_postprocessImportanceMapBProgram, (m_quarterSize[0]+7) / 8, (m_quarterSize[1]+7) / 8);
++view;
}
}
// Apply
{
// select 4 deinterleaved AO textures (texture array)
bgfx::setImage(0, m_aoMap, 0, bgfx::Access::Write, bgfx::TextureFormat::R8);
bgfx::setTexture(1, s_finalSSAO, m_finalResults);
m_uniforms.submit();
float rect[4] = {(float)m_fullResOutScissorRect[0], (float)m_fullResOutScissorRect[1], (float)m_fullResOutScissorRect[2], (float)m_fullResOutScissorRect[3] };
bgfx::setUniform(u_rect, rect);
bgfx::ProgramHandle program;
if (m_settings.m_qualityLevel < 0)
program = m_nonSmartHalfApplyProgram;
else if (m_settings.m_qualityLevel == 0)
program = m_nonSmartApplyProgram;
else
program = m_applyProgram;
bgfx::dispatch(view, program, (m_fullResOutScissorRect[2]- m_fullResOutScissorRect[0] + 7) / 8,
(m_fullResOutScissorRect[3] - m_fullResOutScissorRect[1] + 7) / 8);
++view;
}
{ // combine
bgfx::setViewFrameBuffer(view, BGFX_INVALID_HANDLE);
bgfx::setViewName(view, "Combine");
bgfx::setViewRect(view, 0, 0, (uint16_t)m_width, (uint16_t)m_height);
float orthoProj[16];
bx::mtxOrtho(orthoProj, 0.0f, 1.0f, 1.0f, 0.0f, 0.0f, 1.0f, 0.0f, caps->homogeneousDepth);
bgfx::setViewTransform(view, NULL, orthoProj);
bgfx::setTexture(0, s_color, bgfx::getTexture(m_gbuffer, GBUFFER_RT_COLOR), SAMPLER_POINT_CLAMP);
bgfx::setTexture(1, s_normal, bgfx::getTexture(m_gbuffer, GBUFFER_RT_NORMAL), SAMPLER_POINT_CLAMP);
bgfx::setTexture(2, s_ao, m_aoMap, SAMPLER_POINT_CLAMP);
m_uniforms.submit();
float combineParams[8] = { m_enableTexturing ? 1.0f : 0.0f, m_enableSSAO ? 1.0f : 0.0f, 0.0f,0.0f,
(float)(m_size[0]-2*m_border) / (float)m_size[0], (float)(m_size[1] - 2 * m_border) / (float)m_size[1],
(float)m_border / (float)m_size[0], (float)m_border / (float)m_size[1] };
bgfx::setUniform(u_combineParams, combineParams, 2);
screenSpaceQuad((float)m_width, (float)m_height, m_texelHalf, caps->originBottomLeft);
bgfx::setState(BGFX_STATE_WRITE_RGB | BGFX_STATE_WRITE_A | BGFX_STATE_DEPTH_TEST_ALWAYS);
bgfx::submit(view, m_combineProgram);
++view;
}
#endif
// Draw UI
imguiBeginFrame(m_mouseState.m_mx
, m_mouseState.m_my
, (m_mouseState.m_buttons[entry::MouseButton::Left] ? IMGUI_MBUT_LEFT : 0)
| (m_mouseState.m_buttons[entry::MouseButton::Right] ? IMGUI_MBUT_RIGHT : 0)
| (m_mouseState.m_buttons[entry::MouseButton::Middle] ? IMGUI_MBUT_MIDDLE : 0)
, m_mouseState.m_mz
, uint16_t(m_width)
, uint16_t(m_height)
);
showExampleDialog(this);
ImGui::SetNextWindowPos(
ImVec2(m_width - m_width / 4.0f - 10.0f, 10.0f)
, ImGuiCond_FirstUseEver
);
ImGui::SetNextWindowSize(
ImVec2(m_width / 4.0f, m_height / 2.0f)
, ImGuiCond_FirstUseEver
);
ImGui::Begin("Settings"
, NULL
, 0
);
ImGui::PushItemWidth(ImGui::GetWindowWidth() * 0.5f);
ImGui::Checkbox("Enable SSAO", &m_enableSSAO);
ImGui::Checkbox("Enable Texturing & Lighting", &m_enableTexturing);
ImGui::Separator();
int32_t quality = m_settings.m_qualityLevel + 1;
if (ImGui::Combo("Quality Level", &quality, "lowest(half res)\0low\0medium\0high\0very high / adaptive\0\0"))
{
m_settings.m_qualityLevel = quality - 1;
}
ImGui::Checkbox("Generate Normals", &m_settings.m_generateNormals);
if (ImGui::Checkbox("Framebuffer Gutter", &m_framebufferGutter))
{
m_recreateFrameBuffers = true;
}
ImGui::SliderFloat("Effect Radius", &m_settings.m_radius, 0.0f, 4.0f);
ImGui::SliderFloat("Effect Strength", &m_settings.m_shadowMultiplier, 0.0f, 5.0f);
ImGui::SliderFloat("Effect Power", &m_settings.m_shadowPower, 0.5f, 4.0f);
ImGui::SliderFloat("Effect Max Limit", &m_settings.m_shadowClamp, 0.0f, 1.0f);
ImGui::SliderFloat("Horizon Angle Threshold", &m_settings.m_horizonAngleThreshold, 0.0f, 0.2f);
ImGui::SliderFloat("Fade Out From", &m_settings.m_fadeOutFrom, 0.0f, 100.0f);
ImGui::SliderFloat("Fade Out To", &m_settings.m_fadeOutTo, 0.0f, 300.0f);
if ( m_settings.m_qualityLevel == 3)
{
ImGui::SliderFloat("Adaptive Quality Limit", &m_settings.m_adaptiveQualityLimit, 0.0f, 1.0f);
}
ImGui::SliderInt("Blur Pass Count", &m_settings.m_blurPassCount, 0, 6);
ImGui::SliderFloat("Sharpness", &m_settings.m_sharpness, 0.0f, 1.0f);
ImGui::SliderFloat("Temporal Supersampling Angle Offset", &m_settings.m_temporalSupersamplingAngleOffset, 0.0f, bx::kPi);
ImGui::SliderFloat("Temporal Supersampling Radius Offset", &m_settings.m_temporalSupersamplingRadiusOffset, 0.0f, 2.0f);
ImGui::SliderFloat("Detail Shadow Strength", &m_settings.m_detailShadowStrength, 0.0f, 4.0f);
ImGui::End();
imguiEndFrame();
// Advance to next frame. Rendering thread will be kicked to
// process submitted rendering primitives.
m_currFrame = bgfx::frame();
return true;
}
return false;
}
void drawAllModels(uint8_t _pass, bgfx::ProgramHandle _program)
{
for (uint32_t ii = 0; ii < BX_COUNTOF(m_models); ++ii)
{
const Model& model = m_models[ii];
// Set up transform matrix for each model
float scale = s_meshScale[model.mesh];
float mtx[16];
bx::mtxSRT(mtx
, scale
, scale
, scale
, 0.0f
, 0.0f
, 0.0f
, model.position[0]
, model.position[1]
, model.position[2]
);
// Submit mesh to gbuffer
bgfx::setTexture(0, s_albedo, m_modelTexture);
meshSubmit(m_meshes[model.mesh], _pass, _program, mtx);
}
// Draw ground
float mtxScale[16];
float scale = 10.0;
bx::mtxScale(mtxScale
, scale
, scale
, scale
);
float mtxTrans[16];
bx::mtxTranslate(mtxTrans
, 0.0f
, -10.0f
, 0.0f
);
float mtx[16];
bx::mtxMul(mtx, mtxScale, mtxTrans);
bgfx::setTexture(0, s_albedo, m_groundTexture);
meshSubmit(m_ground, _pass, _program, mtx);
}
void createFramebuffers()
{
// update resolution and camera FOV if there's border expansion
const int32_t drawResolutionBorderExpansionFactor = 12; // will be expanded by Height / expansionFactor
const float fovY = 60.0f;
m_border = 0;
if (m_framebufferGutter)
{
m_border = (bx::min(m_width, m_height) / drawResolutionBorderExpansionFactor) / 2 * 2;
int32_t expandedSceneResolutionY = m_height + m_border * 2;
float yScaleDueToBorder = (expandedSceneResolutionY * 0.5f) / (float)(m_height * 0.5f);
float nonExpandedTan = bx::tan(bx::toRad(fovY / 2.0f));
m_fovY = bx::toDeg(bx::atan(nonExpandedTan * yScaleDueToBorder) * 2.0f);
}
else
{
m_fovY = fovY;
}
m_size[0] = m_width + 2 * m_border;
m_size[1] = m_height + 2 * m_border;
m_halfSize[0] = (m_size[0] + 1) / 2;
m_halfSize[1] = (m_size[1] + 1) / 2;
m_quarterSize[0] = (m_halfSize[0] + 1) / 2;
m_quarterSize[1] = (m_halfSize[1] + 1) / 2;
vec4iSet(m_fullResOutScissorRect, m_border, m_border, m_width + m_border, m_height + m_border);
vec4iSet(m_halfResOutScissorRect, m_fullResOutScissorRect[0] / 2, m_fullResOutScissorRect[1] / 2, (m_fullResOutScissorRect[2] + 1) / 2, (m_fullResOutScissorRect[3] + 1) / 2);
int32_t blurEnlarge = cMaxBlurPassCount + bx::max(0, cMaxBlurPassCount - 2); // +1 for max normal blurs, +2 for wide blurs
vec4iSet(m_halfResOutScissorRect, bx::max(0, m_halfResOutScissorRect[0] - blurEnlarge), bx::max(0, m_halfResOutScissorRect[1] - blurEnlarge),
bx::min(m_halfSize[0], m_halfResOutScissorRect[2] + blurEnlarge), bx::min(m_halfSize[1], m_halfResOutScissorRect[3] + blurEnlarge));
// Make gbuffer and related textures
const uint64_t tsFlags = 0
| BGFX_TEXTURE_RT
| BGFX_SAMPLER_MIN_POINT
| BGFX_SAMPLER_MAG_POINT
| BGFX_SAMPLER_MIP_POINT
| BGFX_SAMPLER_U_CLAMP
| BGFX_SAMPLER_V_CLAMP
;
bgfx::TextureHandle gbufferTex[3];
gbufferTex[GBUFFER_RT_NORMAL] = bgfx::createTexture2D(uint16_t(m_size[0]), uint16_t(m_size[1]), false, 1, bgfx::TextureFormat::BGRA8, tsFlags);
gbufferTex[GBUFFER_RT_COLOR] = bgfx::createTexture2D(uint16_t(m_size[0]), uint16_t(m_size[1]), false, 1, bgfx::TextureFormat::BGRA8, tsFlags);
gbufferTex[GBUFFER_RT_DEPTH] = bgfx::createTexture2D(uint16_t(m_size[0]), uint16_t(m_size[1]), false, 1, bgfx::TextureFormat::D24, tsFlags);
m_gbuffer = bgfx::createFrameBuffer(BX_COUNTOF(gbufferTex), gbufferTex, true);
for (int32_t i = 0; i < 4; i++)
{
m_halfDepths[i] = bgfx::createTexture2D(uint16_t(m_halfSize[0]), uint16_t(m_halfSize[1]), true, 1, bgfx::TextureFormat::R16F, BGFX_TEXTURE_COMPUTE_WRITE | SAMPLER_POINT_CLAMP);
}
m_pingPongHalfResultA = bgfx::createTexture2D(uint16_t(m_halfSize[0]), uint16_t(m_halfSize[1]), false, 2, bgfx::TextureFormat::RG8, BGFX_TEXTURE_COMPUTE_WRITE);
m_pingPongHalfResultB = bgfx::createTexture2D(uint16_t(m_halfSize[0]), uint16_t(m_halfSize[1]), false, 2, bgfx::TextureFormat::RG8, BGFX_TEXTURE_COMPUTE_WRITE);
m_finalResults = bgfx::createTexture2D(uint16_t(m_halfSize[0]), uint16_t(m_halfSize[1]), false, 4, bgfx::TextureFormat::RG8, BGFX_TEXTURE_COMPUTE_WRITE | SAMPLER_LINEAR_CLAMP);
m_normals = bgfx::createTexture2D(uint16_t(m_size[0]), uint16_t(m_size[1]), false, 1, bgfx::TextureFormat::RGBA8, BGFX_TEXTURE_COMPUTE_WRITE);
m_importanceMap = bgfx::createTexture2D(uint16_t(m_quarterSize[0]), uint16_t(m_quarterSize[1]), false, 1, bgfx::TextureFormat::R8, BGFX_TEXTURE_COMPUTE_WRITE | SAMPLER_LINEAR_CLAMP);
m_importanceMapPong = bgfx::createTexture2D(uint16_t(m_quarterSize[0]), uint16_t(m_quarterSize[1]), false, 1, bgfx::TextureFormat::R8, BGFX_TEXTURE_COMPUTE_WRITE | SAMPLER_LINEAR_CLAMP);
m_aoMap = bgfx::createTexture2D(uint16_t(m_size[0]), uint16_t(m_size[1]), false, 1, bgfx::TextureFormat::R8, BGFX_TEXTURE_COMPUTE_WRITE | SAMPLER_POINT_CLAMP);
}
void destroyFramebuffers()
{
bgfx::destroy(m_gbuffer);
for (uint32_t ii = 0; ii < BX_COUNTOF(m_halfDepths); ++ii)
{
bgfx::destroy(m_halfDepths[ii]);
}
bgfx::destroy(m_pingPongHalfResultA);
bgfx::destroy(m_pingPongHalfResultB);
bgfx::destroy(m_finalResults);
bgfx::destroy(m_normals);
bgfx::destroy(m_aoMap);
bgfx::destroy(m_importanceMap);
bgfx::destroy(m_importanceMapPong);
}
void updateUniforms(int32_t _pass)
{
vec2Set(m_uniforms.m_viewportPixelSize, 1.0f / (float)m_size[0], 1.0f / (float)m_size[1]);
vec2Set(m_uniforms.m_halfViewportPixelSize, 1.0f / (float)m_halfSize[0], 1.0f / (float)m_halfSize[1]);
vec2Set(m_uniforms.m_viewport2xPixelSize, m_uniforms.m_viewportPixelSize[0] * 2.0f, m_uniforms.m_viewportPixelSize[1] * 2.0f);
vec2Set(m_uniforms.m_viewport2xPixelSize_x_025, m_uniforms.m_viewport2xPixelSize[0] * 0.25f, m_uniforms.m_viewport2xPixelSize[1] * 0.25f);
float depthLinearizeMul = -m_proj2[3*4+2]; // float depthLinearizeMul = ( clipFar * clipNear ) / ( clipFar - clipNear );
float depthLinearizeAdd = m_proj2[2*4+2]; // float depthLinearizeAdd = clipFar / ( clipFar - clipNear );
// correct the handedness issue. need to make sure this below is correct, but I think it is.
if (depthLinearizeMul * depthLinearizeAdd < 0)
{
depthLinearizeAdd = -depthLinearizeAdd;
}
vec2Set(m_uniforms.m_depthUnpackConsts, depthLinearizeMul, depthLinearizeAdd);
float tanHalfFOVY = 1.0f / m_proj2[1*4+1]; // = tanf( drawContext.Camera.GetYFOV( ) * 0.5f );
float tanHalfFOVX = 1.0F / m_proj2[0]; // = tanHalfFOVY * drawContext.Camera.GetAspect( );
if (bgfx::getRendererType() == bgfx::RendererType::OpenGL)
{
vec2Set(m_uniforms.m_ndcToViewMul, tanHalfFOVX * 2.0f, tanHalfFOVY * 2.0f);
vec2Set(m_uniforms.m_ndcToViewAdd, tanHalfFOVX * -1.0f, tanHalfFOVY * -1.0f);
}
else
{
vec2Set(m_uniforms.m_ndcToViewMul, tanHalfFOVX * 2.0f, tanHalfFOVY * -2.0f);
vec2Set(m_uniforms.m_ndcToViewAdd, tanHalfFOVX * -1.0f, tanHalfFOVY * 1.0f);
}
m_uniforms.m_effectRadius = bx::clamp(m_settings.m_radius, 0.0f, 100000.0f);
m_uniforms.m_effectShadowStrength = bx::clamp(m_settings.m_shadowMultiplier * 4.3f, 0.0f, 10.0f);
m_uniforms.m_effectShadowPow = bx::clamp(m_settings.m_shadowPower, 0.0f, 10.0f);
m_uniforms.m_effectShadowClamp = bx::clamp(m_settings.m_shadowClamp, 0.0f, 1.0f);
m_uniforms.m_effectFadeOutMul = -1.0f / (m_settings.m_fadeOutTo - m_settings.m_fadeOutFrom);
m_uniforms.m_effectFadeOutAdd = m_settings.m_fadeOutFrom / (m_settings.m_fadeOutTo - m_settings.m_fadeOutFrom) + 1.0f;
m_uniforms.m_effectHorizonAngleThreshold = bx::clamp(m_settings.m_horizonAngleThreshold, 0.0f, 1.0f);
// 1.2 seems to be around the best trade off - 1.0 means on-screen radius will stop/slow growing when the camera is at 1.0 distance, so, depending on FOV, basically filling up most of the screen
// This setting is viewspace-dependent and not screen size dependent intentionally, so that when you change FOV the effect stays (relatively) similar.
float effectSamplingRadiusNearLimit = (m_settings.m_radius * 1.2f);
// if the depth precision is switched to 32bit float, this can be set to something closer to 1 (0.9999 is fine)
m_uniforms.m_depthPrecisionOffsetMod = 0.9992f;
// used to get average load per pixel; 9.0 is there to compensate for only doing every 9th InterlockedAdd in PSPostprocessImportanceMapB for performance reasons
m_uniforms.m_loadCounterAvgDiv = 9.0f / (float)(m_quarterSize[0] * m_quarterSize[1] * 255.0);
// Special settings for lowest quality level - just nerf the effect a tiny bit
if (m_settings.m_qualityLevel <= 0)
{
effectSamplingRadiusNearLimit *= 1.50f;
if (m_settings.m_qualityLevel < 0)
{
m_uniforms.m_effectRadius *= 0.8f;
}
}
effectSamplingRadiusNearLimit /= tanHalfFOVY; // to keep the effect same regardless of FOV
m_uniforms.m_effectSamplingRadiusNearLimitRec = 1.0f / effectSamplingRadiusNearLimit;
m_uniforms.m_adaptiveSampleCountLimit = m_settings.m_adaptiveQualityLimit;
m_uniforms.m_negRecEffectRadius = -1.0f / m_uniforms.m_effectRadius;
if (bgfx::getCaps()->originBottomLeft)
{
vec2Set(m_uniforms.m_perPassFullResCoordOffset, (float)(_pass % 2), 1.0f-(float)(_pass / 2));
vec2Set(m_uniforms.m_perPassFullResUVOffset, ((_pass % 2) - 0.0f) / m_size[0], (1.0f-((_pass / 2) - 0.0f)) / m_size[1]);
}
else
{
vec2Set(m_uniforms.m_perPassFullResCoordOffset, (float)(_pass % 2), (float)(_pass / 2));
vec2Set(m_uniforms.m_perPassFullResUVOffset, ((_pass % 2) - 0.0f) / m_size[0], ((_pass / 2) - 0.0f) / m_size[1]);
}
m_uniforms.m_invSharpness = bx::clamp(1.0f - m_settings.m_sharpness, 0.0f, 1.0f);
m_uniforms.m_passIndex = (float)_pass;
vec2Set(m_uniforms.m_quarterResPixelSize, 1.0f / (float)m_quarterSize[0], 1.0f / (float)m_quarterSize[1]);
float additionalAngleOffset = m_settings.m_temporalSupersamplingAngleOffset; // if using temporal supersampling approach (like "Progressive Rendering Using Multi-frame Sampling" from GPU Pro 7, etc.)
float additionalRadiusScale = m_settings.m_temporalSupersamplingRadiusOffset; // if using temporal supersampling approach (like "Progressive Rendering Using Multi-frame Sampling" from GPU Pro 7, etc.)
const int32_t subPassCount = 5;
for (int32_t subPass = 0; subPass < subPassCount; subPass++)
{
int32_t a = _pass;
int32_t b = subPass;
int32_t spmap[5]{ 0, 1, 4, 3, 2 };
b = spmap[subPass];
float ca, sa;
float angle0 = ((float)a + (float)b / (float)subPassCount) * (3.1415926535897932384626433832795f) * 0.5f;
angle0 += additionalAngleOffset;
ca = bx::cos(angle0);
sa = bx::sin(angle0);
float scale = 1.0f + (a - 1.5f + (b - (subPassCount - 1.0f) * 0.5f) / (float)subPassCount) * 0.07f;
scale *= additionalRadiusScale;
vec4Set(m_uniforms.m_patternRotScaleMatrices[subPass], scale * ca, scale * -sa, -scale * sa, -scale * ca);
}
m_uniforms.m_normalsUnpackMul = 2.0f;
m_uniforms.m_normalsUnpackAdd = -1.0f;
m_uniforms.m_detailAOStrength = m_settings.m_detailShadowStrength;
if (m_settings.m_generateNormals)
{
bx::mtxIdentity(m_uniforms.m_normalsWorldToViewspaceMatrix);
}
else
{
bx::mtxTranspose(m_uniforms.m_normalsWorldToViewspaceMatrix, m_view);
}
}
uint32_t m_width;
uint32_t m_height;
uint32_t m_debug;
uint32_t m_reset;
entry::MouseState m_mouseState;
Uniforms m_uniforms;
// Resource handles
bgfx::ProgramHandle m_gbufferProgram;
bgfx::ProgramHandle m_combineProgram;
bgfx::ProgramHandle m_prepareDepthsProgram;
bgfx::ProgramHandle m_prepareDepthsAndNormalsProgram;
bgfx::ProgramHandle m_prepareDepthsHalfProgram;
bgfx::ProgramHandle m_prepareDepthsAndNormalsHalfProgram;
bgfx::ProgramHandle m_prepareDepthMipProgram;
bgfx::ProgramHandle m_generateQ0Program;
bgfx::ProgramHandle m_generateQ1Program;
bgfx::ProgramHandle m_generateQ2Program;
bgfx::ProgramHandle m_generateQ3Program;
bgfx::ProgramHandle m_generateQ3BaseProgram;
bgfx::ProgramHandle m_smartBlurProgram;
bgfx::ProgramHandle m_smartBlurWideProgram;
bgfx::ProgramHandle m_nonSmartBlurProgram;
bgfx::ProgramHandle m_applyProgram;
bgfx::ProgramHandle m_nonSmartApplyProgram;
bgfx::ProgramHandle m_nonSmartHalfApplyProgram;
bgfx::ProgramHandle m_generateImportanceMapProgram;
bgfx::ProgramHandle m_postprocessImportanceMapAProgram;
bgfx::ProgramHandle m_postprocessImportanceMapBProgram;
bgfx::ProgramHandle m_loadCounterClearProgram;
bgfx::FrameBufferHandle m_gbuffer;
// Shader uniforms
bgfx::UniformHandle u_rect;
bgfx::UniformHandle u_combineParams;
// Uniforms to identify texture samples
bgfx::UniformHandle s_normal;
bgfx::UniformHandle s_depth;
bgfx::UniformHandle s_color;
bgfx::UniformHandle s_albedo;
bgfx::UniformHandle s_ao;
bgfx::UniformHandle s_blurInput;
bgfx::UniformHandle s_finalSSAO;
bgfx::UniformHandle s_depthSource;
bgfx::UniformHandle s_viewspaceDepthSource;
bgfx::UniformHandle s_viewspaceDepthSourceMirror;
bgfx::UniformHandle s_importanceMap;
// Various render targets
bgfx::TextureHandle m_halfDepths[4];
bgfx::TextureHandle m_pingPongHalfResultA;
bgfx::TextureHandle m_pingPongHalfResultB;
bgfx::TextureHandle m_finalResults;
bgfx::TextureHandle m_aoMap;
bgfx::TextureHandle m_normals;
// Only needed for quality level 3 (adaptive quality)
bgfx::TextureHandle m_importanceMap;
bgfx::TextureHandle m_importanceMapPong;
bgfx::TextureHandle m_loadCounter;
struct Model
{
uint32_t mesh; // Index of mesh in m_meshes
float position[3];
};
Model m_models[MODEL_COUNT];
Mesh* m_meshes[BX_COUNTOF(s_meshPaths)];
Mesh* m_ground;
bgfx::TextureHandle m_groundTexture;
bgfx::TextureHandle m_modelTexture;
uint32_t m_currFrame;
// UI
Settings m_settings;
bool m_enableSSAO;
bool m_enableTexturing;
float m_texelHalf;
float m_fovY;
bool m_framebufferGutter;
bool m_recreateFrameBuffers;
float m_view[16];
float m_proj[16];
float m_proj2[16];
int32_t m_size[2];
int32_t m_halfSize[2];
int32_t m_quarterSize[2];
int32_t m_fullResOutScissorRect[4];
int32_t m_halfResOutScissorRect[4];
int32_t m_border;
};
} // namespace
ENTRY_IMPLEMENT_MAIN(ExampleASSAO, "39-assao", "Adaptive Screen Space Ambient Occlusion.");