511 lines
17 KiB
C++
511 lines
17 KiB
C++
// Copyright (c) 2017 The Khronos Group Inc.
|
|
// Copyright (c) 2017 Valve Corporation
|
|
// Copyright (c) 2017 LunarG Inc.
|
|
//
|
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
|
// you may not use this file except in compliance with the License.
|
|
// You may obtain a copy of the License at
|
|
//
|
|
// http://www.apache.org/licenses/LICENSE-2.0
|
|
//
|
|
// Unless required by applicable law or agreed to in writing, software
|
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
// See the License for the specific language governing permissions and
|
|
// limitations under the License.
|
|
|
|
#include "source/opt/mem_pass.h"
|
|
|
|
#include <memory>
|
|
#include <set>
|
|
#include <vector>
|
|
|
|
#include "OpenCLDebugInfo100.h"
|
|
#include "source/cfa.h"
|
|
#include "source/opt/basic_block.h"
|
|
#include "source/opt/dominator_analysis.h"
|
|
#include "source/opt/ir_context.h"
|
|
#include "source/opt/iterator.h"
|
|
|
|
namespace spvtools {
|
|
namespace opt {
|
|
|
|
namespace {
|
|
|
|
const uint32_t kCopyObjectOperandInIdx = 0;
|
|
const uint32_t kTypePointerStorageClassInIdx = 0;
|
|
const uint32_t kTypePointerTypeIdInIdx = 1;
|
|
|
|
} // namespace
|
|
|
|
bool MemPass::IsBaseTargetType(const Instruction* typeInst) const {
|
|
switch (typeInst->opcode()) {
|
|
case SpvOpTypeInt:
|
|
case SpvOpTypeFloat:
|
|
case SpvOpTypeBool:
|
|
case SpvOpTypeVector:
|
|
case SpvOpTypeMatrix:
|
|
case SpvOpTypeImage:
|
|
case SpvOpTypeSampler:
|
|
case SpvOpTypeSampledImage:
|
|
case SpvOpTypePointer:
|
|
return true;
|
|
default:
|
|
break;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
bool MemPass::IsTargetType(const Instruction* typeInst) const {
|
|
if (IsBaseTargetType(typeInst)) return true;
|
|
if (typeInst->opcode() == SpvOpTypeArray) {
|
|
if (!IsTargetType(
|
|
get_def_use_mgr()->GetDef(typeInst->GetSingleWordOperand(1)))) {
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
if (typeInst->opcode() != SpvOpTypeStruct) return false;
|
|
// All struct members must be math type
|
|
return typeInst->WhileEachInId([this](const uint32_t* tid) {
|
|
Instruction* compTypeInst = get_def_use_mgr()->GetDef(*tid);
|
|
if (!IsTargetType(compTypeInst)) return false;
|
|
return true;
|
|
});
|
|
}
|
|
|
|
bool MemPass::IsNonPtrAccessChain(const SpvOp opcode) const {
|
|
return opcode == SpvOpAccessChain || opcode == SpvOpInBoundsAccessChain;
|
|
}
|
|
|
|
bool MemPass::IsPtr(uint32_t ptrId) {
|
|
uint32_t varId = ptrId;
|
|
Instruction* ptrInst = get_def_use_mgr()->GetDef(varId);
|
|
while (ptrInst->opcode() == SpvOpCopyObject) {
|
|
varId = ptrInst->GetSingleWordInOperand(kCopyObjectOperandInIdx);
|
|
ptrInst = get_def_use_mgr()->GetDef(varId);
|
|
}
|
|
const SpvOp op = ptrInst->opcode();
|
|
if (op == SpvOpVariable || IsNonPtrAccessChain(op)) return true;
|
|
if (op != SpvOpFunctionParameter) return false;
|
|
const uint32_t varTypeId = ptrInst->type_id();
|
|
const Instruction* varTypeInst = get_def_use_mgr()->GetDef(varTypeId);
|
|
return varTypeInst->opcode() == SpvOpTypePointer;
|
|
}
|
|
|
|
Instruction* MemPass::GetPtr(uint32_t ptrId, uint32_t* varId) {
|
|
*varId = ptrId;
|
|
Instruction* ptrInst = get_def_use_mgr()->GetDef(*varId);
|
|
Instruction* varInst;
|
|
|
|
if (ptrInst->opcode() == SpvOpConstantNull) {
|
|
*varId = 0;
|
|
return ptrInst;
|
|
}
|
|
|
|
if (ptrInst->opcode() != SpvOpVariable &&
|
|
ptrInst->opcode() != SpvOpFunctionParameter) {
|
|
varInst = ptrInst->GetBaseAddress();
|
|
} else {
|
|
varInst = ptrInst;
|
|
}
|
|
if (varInst->opcode() == SpvOpVariable) {
|
|
*varId = varInst->result_id();
|
|
} else {
|
|
*varId = 0;
|
|
}
|
|
|
|
while (ptrInst->opcode() == SpvOpCopyObject) {
|
|
uint32_t temp = ptrInst->GetSingleWordInOperand(0);
|
|
ptrInst = get_def_use_mgr()->GetDef(temp);
|
|
}
|
|
|
|
return ptrInst;
|
|
}
|
|
|
|
Instruction* MemPass::GetPtr(Instruction* ip, uint32_t* varId) {
|
|
assert(ip->opcode() == SpvOpStore || ip->opcode() == SpvOpLoad ||
|
|
ip->opcode() == SpvOpImageTexelPointer || ip->IsAtomicWithLoad());
|
|
|
|
// All of these opcode place the pointer in position 0.
|
|
const uint32_t ptrId = ip->GetSingleWordInOperand(0);
|
|
return GetPtr(ptrId, varId);
|
|
}
|
|
|
|
bool MemPass::HasOnlyNamesAndDecorates(uint32_t id) const {
|
|
return get_def_use_mgr()->WhileEachUser(id, [this](Instruction* user) {
|
|
SpvOp op = user->opcode();
|
|
if (op != SpvOpName && !IsNonTypeDecorate(op)) {
|
|
return false;
|
|
}
|
|
return true;
|
|
});
|
|
}
|
|
|
|
void MemPass::KillAllInsts(BasicBlock* bp, bool killLabel) {
|
|
bp->KillAllInsts(killLabel);
|
|
}
|
|
|
|
bool MemPass::HasLoads(uint32_t varId) const {
|
|
return !get_def_use_mgr()->WhileEachUser(varId, [this](Instruction* user) {
|
|
SpvOp op = user->opcode();
|
|
// TODO(): The following is slightly conservative. Could be
|
|
// better handling of non-store/name.
|
|
if (IsNonPtrAccessChain(op) || op == SpvOpCopyObject) {
|
|
if (HasLoads(user->result_id())) {
|
|
return false;
|
|
}
|
|
} else if (op != SpvOpStore && op != SpvOpName && !IsNonTypeDecorate(op)) {
|
|
return false;
|
|
}
|
|
return true;
|
|
});
|
|
}
|
|
|
|
bool MemPass::IsLiveVar(uint32_t varId) const {
|
|
const Instruction* varInst = get_def_use_mgr()->GetDef(varId);
|
|
// assume live if not a variable eg. function parameter
|
|
if (varInst->opcode() != SpvOpVariable) return true;
|
|
// non-function scope vars are live
|
|
const uint32_t varTypeId = varInst->type_id();
|
|
const Instruction* varTypeInst = get_def_use_mgr()->GetDef(varTypeId);
|
|
if (varTypeInst->GetSingleWordInOperand(kTypePointerStorageClassInIdx) !=
|
|
SpvStorageClassFunction)
|
|
return true;
|
|
// test if variable is loaded from
|
|
return HasLoads(varId);
|
|
}
|
|
|
|
void MemPass::AddStores(uint32_t ptr_id, std::queue<Instruction*>* insts) {
|
|
get_def_use_mgr()->ForEachUser(ptr_id, [this, insts](Instruction* user) {
|
|
SpvOp op = user->opcode();
|
|
if (IsNonPtrAccessChain(op)) {
|
|
AddStores(user->result_id(), insts);
|
|
} else if (op == SpvOpStore) {
|
|
insts->push(user);
|
|
}
|
|
});
|
|
}
|
|
|
|
void MemPass::DCEInst(Instruction* inst,
|
|
const std::function<void(Instruction*)>& call_back) {
|
|
std::queue<Instruction*> deadInsts;
|
|
deadInsts.push(inst);
|
|
while (!deadInsts.empty()) {
|
|
Instruction* di = deadInsts.front();
|
|
// Don't delete labels
|
|
if (di->opcode() == SpvOpLabel) {
|
|
deadInsts.pop();
|
|
continue;
|
|
}
|
|
// Remember operands
|
|
std::set<uint32_t> ids;
|
|
di->ForEachInId([&ids](uint32_t* iid) { ids.insert(*iid); });
|
|
uint32_t varId = 0;
|
|
// Remember variable if dead load
|
|
if (di->opcode() == SpvOpLoad) (void)GetPtr(di, &varId);
|
|
if (call_back) {
|
|
call_back(di);
|
|
}
|
|
context()->KillInst(di);
|
|
// For all operands with no remaining uses, add their instruction
|
|
// to the dead instruction queue.
|
|
for (auto id : ids)
|
|
if (HasOnlyNamesAndDecorates(id)) {
|
|
Instruction* odi = get_def_use_mgr()->GetDef(id);
|
|
if (context()->IsCombinatorInstruction(odi)) deadInsts.push(odi);
|
|
}
|
|
// if a load was deleted and it was the variable's
|
|
// last load, add all its stores to dead queue
|
|
if (varId != 0 && !IsLiveVar(varId)) AddStores(varId, &deadInsts);
|
|
deadInsts.pop();
|
|
}
|
|
}
|
|
|
|
MemPass::MemPass() {}
|
|
|
|
bool MemPass::HasOnlySupportedRefs(uint32_t varId) {
|
|
return get_def_use_mgr()->WhileEachUser(varId, [this](Instruction* user) {
|
|
auto dbg_op = user->GetOpenCL100DebugOpcode();
|
|
if (dbg_op == OpenCLDebugInfo100DebugDeclare ||
|
|
dbg_op == OpenCLDebugInfo100DebugValue) {
|
|
return true;
|
|
}
|
|
SpvOp op = user->opcode();
|
|
if (op != SpvOpStore && op != SpvOpLoad && op != SpvOpName &&
|
|
!IsNonTypeDecorate(op)) {
|
|
return false;
|
|
}
|
|
return true;
|
|
});
|
|
}
|
|
|
|
uint32_t MemPass::Type2Undef(uint32_t type_id) {
|
|
const auto uitr = type2undefs_.find(type_id);
|
|
if (uitr != type2undefs_.end()) return uitr->second;
|
|
const uint32_t undefId = TakeNextId();
|
|
if (undefId == 0) {
|
|
return 0;
|
|
}
|
|
|
|
std::unique_ptr<Instruction> undef_inst(
|
|
new Instruction(context(), SpvOpUndef, type_id, undefId, {}));
|
|
get_def_use_mgr()->AnalyzeInstDefUse(&*undef_inst);
|
|
get_module()->AddGlobalValue(std::move(undef_inst));
|
|
type2undefs_[type_id] = undefId;
|
|
return undefId;
|
|
}
|
|
|
|
bool MemPass::IsTargetVar(uint32_t varId) {
|
|
if (varId == 0) {
|
|
return false;
|
|
}
|
|
|
|
if (seen_non_target_vars_.find(varId) != seen_non_target_vars_.end())
|
|
return false;
|
|
if (seen_target_vars_.find(varId) != seen_target_vars_.end()) return true;
|
|
const Instruction* varInst = get_def_use_mgr()->GetDef(varId);
|
|
if (varInst->opcode() != SpvOpVariable) return false;
|
|
const uint32_t varTypeId = varInst->type_id();
|
|
const Instruction* varTypeInst = get_def_use_mgr()->GetDef(varTypeId);
|
|
if (varTypeInst->GetSingleWordInOperand(kTypePointerStorageClassInIdx) !=
|
|
SpvStorageClassFunction) {
|
|
seen_non_target_vars_.insert(varId);
|
|
return false;
|
|
}
|
|
const uint32_t varPteTypeId =
|
|
varTypeInst->GetSingleWordInOperand(kTypePointerTypeIdInIdx);
|
|
Instruction* varPteTypeInst = get_def_use_mgr()->GetDef(varPteTypeId);
|
|
if (!IsTargetType(varPteTypeInst)) {
|
|
seen_non_target_vars_.insert(varId);
|
|
return false;
|
|
}
|
|
seen_target_vars_.insert(varId);
|
|
return true;
|
|
}
|
|
|
|
// Remove all |phi| operands coming from unreachable blocks (i.e., blocks not in
|
|
// |reachable_blocks|). There are two types of removal that this function can
|
|
// perform:
|
|
//
|
|
// 1- Any operand that comes directly from an unreachable block is completely
|
|
// removed. Since the block is unreachable, the edge between the unreachable
|
|
// block and the block holding |phi| has been removed.
|
|
//
|
|
// 2- Any operand that comes via a live block and was defined at an unreachable
|
|
// block gets its value replaced with an OpUndef value. Since the argument
|
|
// was generated in an unreachable block, it no longer exists, so it cannot
|
|
// be referenced. However, since the value does not reach |phi| directly
|
|
// from the unreachable block, the operand cannot be removed from |phi|.
|
|
// Therefore, we replace the argument value with OpUndef.
|
|
//
|
|
// For example, in the switch() below, assume that we want to remove the
|
|
// argument with value %11 coming from block %41.
|
|
//
|
|
// [ ... ]
|
|
// %41 = OpLabel <--- Unreachable block
|
|
// %11 = OpLoad %int %y
|
|
// [ ... ]
|
|
// OpSelectionMerge %16 None
|
|
// OpSwitch %12 %16 10 %13 13 %14 18 %15
|
|
// %13 = OpLabel
|
|
// OpBranch %16
|
|
// %14 = OpLabel
|
|
// OpStore %outparm %int_14
|
|
// OpBranch %16
|
|
// %15 = OpLabel
|
|
// OpStore %outparm %int_15
|
|
// OpBranch %16
|
|
// %16 = OpLabel
|
|
// %30 = OpPhi %int %11 %41 %int_42 %13 %11 %14 %11 %15
|
|
//
|
|
// Since %41 is now an unreachable block, the first operand of |phi| needs to
|
|
// be removed completely. But the operands (%11 %14) and (%11 %15) cannot be
|
|
// removed because %14 and %15 are reachable blocks. Since %11 no longer exist,
|
|
// in those arguments, we replace all references to %11 with an OpUndef value.
|
|
// This results in |phi| looking like:
|
|
//
|
|
// %50 = OpUndef %int
|
|
// [ ... ]
|
|
// %30 = OpPhi %int %int_42 %13 %50 %14 %50 %15
|
|
void MemPass::RemovePhiOperands(
|
|
Instruction* phi, const std::unordered_set<BasicBlock*>& reachable_blocks) {
|
|
std::vector<Operand> keep_operands;
|
|
uint32_t type_id = 0;
|
|
// The id of an undefined value we've generated.
|
|
uint32_t undef_id = 0;
|
|
|
|
// Traverse all the operands in |phi|. Build the new operand vector by adding
|
|
// all the original operands from |phi| except the unwanted ones.
|
|
for (uint32_t i = 0; i < phi->NumOperands();) {
|
|
if (i < 2) {
|
|
// The first two arguments are always preserved.
|
|
keep_operands.push_back(phi->GetOperand(i));
|
|
++i;
|
|
continue;
|
|
}
|
|
|
|
// The remaining Phi arguments come in pairs. Index 'i' contains the
|
|
// variable id, index 'i + 1' is the originating block id.
|
|
assert(i % 2 == 0 && i < phi->NumOperands() - 1 &&
|
|
"malformed Phi arguments");
|
|
|
|
BasicBlock* in_block = cfg()->block(phi->GetSingleWordOperand(i + 1));
|
|
if (reachable_blocks.find(in_block) == reachable_blocks.end()) {
|
|
// If the incoming block is unreachable, remove both operands as this
|
|
// means that the |phi| has lost an incoming edge.
|
|
i += 2;
|
|
continue;
|
|
}
|
|
|
|
// In all other cases, the operand must be kept but may need to be changed.
|
|
uint32_t arg_id = phi->GetSingleWordOperand(i);
|
|
Instruction* arg_def_instr = get_def_use_mgr()->GetDef(arg_id);
|
|
BasicBlock* def_block = context()->get_instr_block(arg_def_instr);
|
|
if (def_block &&
|
|
reachable_blocks.find(def_block) == reachable_blocks.end()) {
|
|
// If the current |phi| argument was defined in an unreachable block, it
|
|
// means that this |phi| argument is no longer defined. Replace it with
|
|
// |undef_id|.
|
|
if (!undef_id) {
|
|
type_id = arg_def_instr->type_id();
|
|
undef_id = Type2Undef(type_id);
|
|
}
|
|
keep_operands.push_back(
|
|
Operand(spv_operand_type_t::SPV_OPERAND_TYPE_ID, {undef_id}));
|
|
} else {
|
|
// Otherwise, the argument comes from a reachable block or from no block
|
|
// at all (meaning that it was defined in the global section of the
|
|
// program). In both cases, keep the argument intact.
|
|
keep_operands.push_back(phi->GetOperand(i));
|
|
}
|
|
|
|
keep_operands.push_back(phi->GetOperand(i + 1));
|
|
|
|
i += 2;
|
|
}
|
|
|
|
context()->ForgetUses(phi);
|
|
phi->ReplaceOperands(keep_operands);
|
|
context()->AnalyzeUses(phi);
|
|
}
|
|
|
|
void MemPass::RemoveBlock(Function::iterator* bi) {
|
|
auto& rm_block = **bi;
|
|
|
|
// Remove instructions from the block.
|
|
rm_block.ForEachInst([&rm_block, this](Instruction* inst) {
|
|
// Note that we do not kill the block label instruction here. The label
|
|
// instruction is needed to identify the block, which is needed by the
|
|
// removal of phi operands.
|
|
if (inst != rm_block.GetLabelInst()) {
|
|
context()->KillInst(inst);
|
|
}
|
|
});
|
|
|
|
// Remove the label instruction last.
|
|
auto label = rm_block.GetLabelInst();
|
|
context()->KillInst(label);
|
|
|
|
*bi = bi->Erase();
|
|
}
|
|
|
|
bool MemPass::RemoveUnreachableBlocks(Function* func) {
|
|
bool modified = false;
|
|
|
|
// Mark reachable all blocks reachable from the function's entry block.
|
|
std::unordered_set<BasicBlock*> reachable_blocks;
|
|
std::unordered_set<BasicBlock*> visited_blocks;
|
|
std::queue<BasicBlock*> worklist;
|
|
reachable_blocks.insert(func->entry().get());
|
|
|
|
// Initially mark the function entry point as reachable.
|
|
worklist.push(func->entry().get());
|
|
|
|
auto mark_reachable = [&reachable_blocks, &visited_blocks, &worklist,
|
|
this](uint32_t label_id) {
|
|
auto successor = cfg()->block(label_id);
|
|
if (visited_blocks.count(successor) == 0) {
|
|
reachable_blocks.insert(successor);
|
|
worklist.push(successor);
|
|
visited_blocks.insert(successor);
|
|
}
|
|
};
|
|
|
|
// Transitively mark all blocks reachable from the entry as reachable.
|
|
while (!worklist.empty()) {
|
|
BasicBlock* block = worklist.front();
|
|
worklist.pop();
|
|
|
|
// All the successors of a live block are also live.
|
|
static_cast<const BasicBlock*>(block)->ForEachSuccessorLabel(
|
|
mark_reachable);
|
|
|
|
// All the Merge and ContinueTarget blocks of a live block are also live.
|
|
block->ForMergeAndContinueLabel(mark_reachable);
|
|
}
|
|
|
|
// Update operands of Phi nodes that reference unreachable blocks.
|
|
for (auto& block : *func) {
|
|
// If the block is about to be removed, don't bother updating its
|
|
// Phi instructions.
|
|
if (reachable_blocks.count(&block) == 0) {
|
|
continue;
|
|
}
|
|
|
|
// If the block is reachable and has Phi instructions, remove all
|
|
// operands from its Phi instructions that reference unreachable blocks.
|
|
// If the block has no Phi instructions, this is a no-op.
|
|
block.ForEachPhiInst([&reachable_blocks, this](Instruction* phi) {
|
|
RemovePhiOperands(phi, reachable_blocks);
|
|
});
|
|
}
|
|
|
|
// Erase unreachable blocks.
|
|
for (auto ebi = func->begin(); ebi != func->end();) {
|
|
if (reachable_blocks.count(&*ebi) == 0) {
|
|
RemoveBlock(&ebi);
|
|
modified = true;
|
|
} else {
|
|
++ebi;
|
|
}
|
|
}
|
|
|
|
return modified;
|
|
}
|
|
|
|
bool MemPass::CFGCleanup(Function* func) {
|
|
bool modified = false;
|
|
modified |= RemoveUnreachableBlocks(func);
|
|
return modified;
|
|
}
|
|
|
|
void MemPass::CollectTargetVars(Function* func) {
|
|
seen_target_vars_.clear();
|
|
seen_non_target_vars_.clear();
|
|
type2undefs_.clear();
|
|
|
|
// Collect target (and non-) variable sets. Remove variables with
|
|
// non-load/store refs from target variable set
|
|
for (auto& blk : *func) {
|
|
for (auto& inst : blk) {
|
|
switch (inst.opcode()) {
|
|
case SpvOpStore:
|
|
case SpvOpLoad: {
|
|
uint32_t varId;
|
|
(void)GetPtr(&inst, &varId);
|
|
if (!IsTargetVar(varId)) break;
|
|
if (HasOnlySupportedRefs(varId)) break;
|
|
seen_non_target_vars_.insert(varId);
|
|
seen_target_vars_.erase(varId);
|
|
} break;
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
} // namespace opt
|
|
} // namespace spvtools
|