bgfx/3rdparty/spirv-cross/spirv_msl.cpp
Бранимир Караџић 7067b37a4f Updated spirv-cross.
2024-02-09 22:21:02 -08:00

18426 lines
657 KiB
C++

/*
* Copyright 2016-2021 The Brenwill Workshop Ltd.
* SPDX-License-Identifier: Apache-2.0 OR MIT
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
/*
* At your option, you may choose to accept this material under either:
* 1. The Apache License, Version 2.0, found at <http://www.apache.org/licenses/LICENSE-2.0>, or
* 2. The MIT License, found at <http://opensource.org/licenses/MIT>.
*/
#include "spirv_msl.hpp"
#include "GLSL.std.450.h"
#include <algorithm>
#include <assert.h>
#include <numeric>
using namespace spv;
using namespace SPIRV_CROSS_NAMESPACE;
using namespace std;
static const uint32_t k_unknown_location = ~0u;
static const uint32_t k_unknown_component = ~0u;
static const char *force_inline = "static inline __attribute__((always_inline))";
CompilerMSL::CompilerMSL(std::vector<uint32_t> spirv_)
: CompilerGLSL(std::move(spirv_))
{
}
CompilerMSL::CompilerMSL(const uint32_t *ir_, size_t word_count)
: CompilerGLSL(ir_, word_count)
{
}
CompilerMSL::CompilerMSL(const ParsedIR &ir_)
: CompilerGLSL(ir_)
{
}
CompilerMSL::CompilerMSL(ParsedIR &&ir_)
: CompilerGLSL(std::move(ir_))
{
}
void CompilerMSL::add_msl_shader_input(const MSLShaderInterfaceVariable &si)
{
inputs_by_location[{si.location, si.component}] = si;
if (si.builtin != BuiltInMax && !inputs_by_builtin.count(si.builtin))
inputs_by_builtin[si.builtin] = si;
}
void CompilerMSL::add_msl_shader_output(const MSLShaderInterfaceVariable &so)
{
outputs_by_location[{so.location, so.component}] = so;
if (so.builtin != BuiltInMax && !outputs_by_builtin.count(so.builtin))
outputs_by_builtin[so.builtin] = so;
}
void CompilerMSL::add_msl_resource_binding(const MSLResourceBinding &binding)
{
StageSetBinding tuple = { binding.stage, binding.desc_set, binding.binding };
resource_bindings[tuple] = { binding, false };
// If we might need to pad argument buffer members to positionally align
// arg buffer indexes, also maintain a lookup by argument buffer index.
if (msl_options.pad_argument_buffer_resources)
{
StageSetBinding arg_idx_tuple = { binding.stage, binding.desc_set, k_unknown_component };
#define ADD_ARG_IDX_TO_BINDING_NUM_LOOKUP(rez) \
arg_idx_tuple.binding = binding.msl_##rez; \
resource_arg_buff_idx_to_binding_number[arg_idx_tuple] = binding.binding
switch (binding.basetype)
{
case SPIRType::Void:
case SPIRType::Boolean:
case SPIRType::SByte:
case SPIRType::UByte:
case SPIRType::Short:
case SPIRType::UShort:
case SPIRType::Int:
case SPIRType::UInt:
case SPIRType::Int64:
case SPIRType::UInt64:
case SPIRType::AtomicCounter:
case SPIRType::Half:
case SPIRType::Float:
case SPIRType::Double:
ADD_ARG_IDX_TO_BINDING_NUM_LOOKUP(buffer);
break;
case SPIRType::Image:
ADD_ARG_IDX_TO_BINDING_NUM_LOOKUP(texture);
break;
case SPIRType::Sampler:
ADD_ARG_IDX_TO_BINDING_NUM_LOOKUP(sampler);
break;
case SPIRType::SampledImage:
ADD_ARG_IDX_TO_BINDING_NUM_LOOKUP(texture);
ADD_ARG_IDX_TO_BINDING_NUM_LOOKUP(sampler);
break;
default:
SPIRV_CROSS_THROW("Unexpected argument buffer resource base type. When padding argument buffer elements, "
"all descriptor set resources must be supplied with a base type by the app.");
}
#undef ADD_ARG_IDX_TO_BINDING_NUM_LOOKUP
}
}
void CompilerMSL::add_dynamic_buffer(uint32_t desc_set, uint32_t binding, uint32_t index)
{
SetBindingPair pair = { desc_set, binding };
buffers_requiring_dynamic_offset[pair] = { index, 0 };
}
void CompilerMSL::add_inline_uniform_block(uint32_t desc_set, uint32_t binding)
{
SetBindingPair pair = { desc_set, binding };
inline_uniform_blocks.insert(pair);
}
void CompilerMSL::add_discrete_descriptor_set(uint32_t desc_set)
{
if (desc_set < kMaxArgumentBuffers)
argument_buffer_discrete_mask |= 1u << desc_set;
}
void CompilerMSL::set_argument_buffer_device_address_space(uint32_t desc_set, bool device_storage)
{
if (desc_set < kMaxArgumentBuffers)
{
if (device_storage)
argument_buffer_device_storage_mask |= 1u << desc_set;
else
argument_buffer_device_storage_mask &= ~(1u << desc_set);
}
}
bool CompilerMSL::is_msl_shader_input_used(uint32_t location)
{
// Don't report internal location allocations to app.
return location_inputs_in_use.count(location) != 0 &&
location_inputs_in_use_fallback.count(location) == 0;
}
bool CompilerMSL::is_msl_shader_output_used(uint32_t location)
{
// Don't report internal location allocations to app.
return location_outputs_in_use.count(location) != 0 &&
location_outputs_in_use_fallback.count(location) == 0;
}
uint32_t CompilerMSL::get_automatic_builtin_input_location(spv::BuiltIn builtin) const
{
auto itr = builtin_to_automatic_input_location.find(builtin);
if (itr == builtin_to_automatic_input_location.end())
return k_unknown_location;
else
return itr->second;
}
uint32_t CompilerMSL::get_automatic_builtin_output_location(spv::BuiltIn builtin) const
{
auto itr = builtin_to_automatic_output_location.find(builtin);
if (itr == builtin_to_automatic_output_location.end())
return k_unknown_location;
else
return itr->second;
}
bool CompilerMSL::is_msl_resource_binding_used(ExecutionModel model, uint32_t desc_set, uint32_t binding) const
{
StageSetBinding tuple = { model, desc_set, binding };
auto itr = resource_bindings.find(tuple);
return itr != end(resource_bindings) && itr->second.second;
}
bool CompilerMSL::is_var_runtime_size_array(const SPIRVariable &var) const
{
auto& type = get_variable_data_type(var);
return is_runtime_size_array(type) && get_resource_array_size(type, var.self) == 0;
}
// Returns the size of the array of resources used by the variable with the specified type and id.
// The size is first retrieved from the type, but in the case of runtime array sizing,
// the size is retrieved from the resource binding added using add_msl_resource_binding().
uint32_t CompilerMSL::get_resource_array_size(const SPIRType &type, uint32_t id) const
{
uint32_t array_size = to_array_size_literal(type);
if (array_size)
return array_size;
StageSetBinding tuple = { get_entry_point().model, get_decoration(id, DecorationDescriptorSet),
get_decoration(id, DecorationBinding) };
auto itr = resource_bindings.find(tuple);
return itr != end(resource_bindings) ? itr->second.first.count : 0;
}
uint32_t CompilerMSL::get_automatic_msl_resource_binding(uint32_t id) const
{
return get_extended_decoration(id, SPIRVCrossDecorationResourceIndexPrimary);
}
uint32_t CompilerMSL::get_automatic_msl_resource_binding_secondary(uint32_t id) const
{
return get_extended_decoration(id, SPIRVCrossDecorationResourceIndexSecondary);
}
uint32_t CompilerMSL::get_automatic_msl_resource_binding_tertiary(uint32_t id) const
{
return get_extended_decoration(id, SPIRVCrossDecorationResourceIndexTertiary);
}
uint32_t CompilerMSL::get_automatic_msl_resource_binding_quaternary(uint32_t id) const
{
return get_extended_decoration(id, SPIRVCrossDecorationResourceIndexQuaternary);
}
void CompilerMSL::set_fragment_output_components(uint32_t location, uint32_t components)
{
fragment_output_components[location] = components;
}
bool CompilerMSL::builtin_translates_to_nonarray(spv::BuiltIn builtin) const
{
return (builtin == BuiltInSampleMask);
}
void CompilerMSL::build_implicit_builtins()
{
bool need_sample_pos = active_input_builtins.get(BuiltInSamplePosition);
bool need_vertex_params = capture_output_to_buffer && get_execution_model() == ExecutionModelVertex &&
!msl_options.vertex_for_tessellation;
bool need_tesc_params = is_tesc_shader();
bool need_tese_params = is_tese_shader() && msl_options.raw_buffer_tese_input;
bool need_subgroup_mask =
active_input_builtins.get(BuiltInSubgroupEqMask) || active_input_builtins.get(BuiltInSubgroupGeMask) ||
active_input_builtins.get(BuiltInSubgroupGtMask) || active_input_builtins.get(BuiltInSubgroupLeMask) ||
active_input_builtins.get(BuiltInSubgroupLtMask);
bool need_subgroup_ge_mask = !msl_options.is_ios() && (active_input_builtins.get(BuiltInSubgroupGeMask) ||
active_input_builtins.get(BuiltInSubgroupGtMask));
bool need_multiview = get_execution_model() == ExecutionModelVertex && !msl_options.view_index_from_device_index &&
msl_options.multiview_layered_rendering &&
(msl_options.multiview || active_input_builtins.get(BuiltInViewIndex));
bool need_dispatch_base =
msl_options.dispatch_base && get_execution_model() == ExecutionModelGLCompute &&
(active_input_builtins.get(BuiltInWorkgroupId) || active_input_builtins.get(BuiltInGlobalInvocationId));
bool need_grid_params = get_execution_model() == ExecutionModelVertex && msl_options.vertex_for_tessellation;
bool need_vertex_base_params =
need_grid_params &&
(active_input_builtins.get(BuiltInVertexId) || active_input_builtins.get(BuiltInVertexIndex) ||
active_input_builtins.get(BuiltInBaseVertex) || active_input_builtins.get(BuiltInInstanceId) ||
active_input_builtins.get(BuiltInInstanceIndex) || active_input_builtins.get(BuiltInBaseInstance));
bool need_local_invocation_index = msl_options.emulate_subgroups && active_input_builtins.get(BuiltInSubgroupId);
bool need_workgroup_size = msl_options.emulate_subgroups && active_input_builtins.get(BuiltInNumSubgroups);
if (need_subpass_input || need_sample_pos || need_subgroup_mask || need_vertex_params || need_tesc_params ||
need_tese_params || need_multiview || need_dispatch_base || need_vertex_base_params || need_grid_params ||
needs_sample_id || needs_subgroup_invocation_id || needs_subgroup_size || needs_helper_invocation ||
has_additional_fixed_sample_mask() || need_local_invocation_index || need_workgroup_size)
{
bool has_frag_coord = false;
bool has_sample_id = false;
bool has_vertex_idx = false;
bool has_base_vertex = false;
bool has_instance_idx = false;
bool has_base_instance = false;
bool has_invocation_id = false;
bool has_primitive_id = false;
bool has_subgroup_invocation_id = false;
bool has_subgroup_size = false;
bool has_view_idx = false;
bool has_layer = false;
bool has_helper_invocation = false;
bool has_local_invocation_index = false;
bool has_workgroup_size = false;
uint32_t workgroup_id_type = 0;
ir.for_each_typed_id<SPIRVariable>([&](uint32_t, SPIRVariable &var) {
if (var.storage != StorageClassInput && var.storage != StorageClassOutput)
return;
if (!interface_variable_exists_in_entry_point(var.self))
return;
if (!has_decoration(var.self, DecorationBuiltIn))
return;
BuiltIn builtin = ir.meta[var.self].decoration.builtin_type;
if (var.storage == StorageClassOutput)
{
if (has_additional_fixed_sample_mask() && builtin == BuiltInSampleMask)
{
builtin_sample_mask_id = var.self;
mark_implicit_builtin(StorageClassOutput, BuiltInSampleMask, var.self);
does_shader_write_sample_mask = true;
}
}
if (var.storage != StorageClassInput)
return;
// Use Metal's native frame-buffer fetch API for subpass inputs.
if (need_subpass_input && (!msl_options.use_framebuffer_fetch_subpasses))
{
switch (builtin)
{
case BuiltInFragCoord:
mark_implicit_builtin(StorageClassInput, BuiltInFragCoord, var.self);
builtin_frag_coord_id = var.self;
has_frag_coord = true;
break;
case BuiltInLayer:
if (!msl_options.arrayed_subpass_input || msl_options.multiview)
break;
mark_implicit_builtin(StorageClassInput, BuiltInLayer, var.self);
builtin_layer_id = var.self;
has_layer = true;
break;
case BuiltInViewIndex:
if (!msl_options.multiview)
break;
mark_implicit_builtin(StorageClassInput, BuiltInViewIndex, var.self);
builtin_view_idx_id = var.self;
has_view_idx = true;
break;
default:
break;
}
}
if ((need_sample_pos || needs_sample_id) && builtin == BuiltInSampleId)
{
builtin_sample_id_id = var.self;
mark_implicit_builtin(StorageClassInput, BuiltInSampleId, var.self);
has_sample_id = true;
}
if (need_vertex_params)
{
switch (builtin)
{
case BuiltInVertexIndex:
builtin_vertex_idx_id = var.self;
mark_implicit_builtin(StorageClassInput, BuiltInVertexIndex, var.self);
has_vertex_idx = true;
break;
case BuiltInBaseVertex:
builtin_base_vertex_id = var.self;
mark_implicit_builtin(StorageClassInput, BuiltInBaseVertex, var.self);
has_base_vertex = true;
break;
case BuiltInInstanceIndex:
builtin_instance_idx_id = var.self;
mark_implicit_builtin(StorageClassInput, BuiltInInstanceIndex, var.self);
has_instance_idx = true;
break;
case BuiltInBaseInstance:
builtin_base_instance_id = var.self;
mark_implicit_builtin(StorageClassInput, BuiltInBaseInstance, var.self);
has_base_instance = true;
break;
default:
break;
}
}
if (need_tesc_params && builtin == BuiltInInvocationId)
{
builtin_invocation_id_id = var.self;
mark_implicit_builtin(StorageClassInput, BuiltInInvocationId, var.self);
has_invocation_id = true;
}
if ((need_tesc_params || need_tese_params) && builtin == BuiltInPrimitiveId)
{
builtin_primitive_id_id = var.self;
mark_implicit_builtin(StorageClassInput, BuiltInPrimitiveId, var.self);
has_primitive_id = true;
}
if (need_tese_params && builtin == BuiltInTessLevelOuter)
{
tess_level_outer_var_id = var.self;
}
if (need_tese_params && builtin == BuiltInTessLevelInner)
{
tess_level_inner_var_id = var.self;
}
if ((need_subgroup_mask || needs_subgroup_invocation_id) && builtin == BuiltInSubgroupLocalInvocationId)
{
builtin_subgroup_invocation_id_id = var.self;
mark_implicit_builtin(StorageClassInput, BuiltInSubgroupLocalInvocationId, var.self);
has_subgroup_invocation_id = true;
}
if ((need_subgroup_ge_mask || needs_subgroup_size) && builtin == BuiltInSubgroupSize)
{
builtin_subgroup_size_id = var.self;
mark_implicit_builtin(StorageClassInput, BuiltInSubgroupSize, var.self);
has_subgroup_size = true;
}
if (need_multiview)
{
switch (builtin)
{
case BuiltInInstanceIndex:
// The view index here is derived from the instance index.
builtin_instance_idx_id = var.self;
mark_implicit_builtin(StorageClassInput, BuiltInInstanceIndex, var.self);
has_instance_idx = true;
break;
case BuiltInBaseInstance:
// If a non-zero base instance is used, we need to adjust for it when calculating the view index.
builtin_base_instance_id = var.self;
mark_implicit_builtin(StorageClassInput, BuiltInBaseInstance, var.self);
has_base_instance = true;
break;
case BuiltInViewIndex:
builtin_view_idx_id = var.self;
mark_implicit_builtin(StorageClassInput, BuiltInViewIndex, var.self);
has_view_idx = true;
break;
default:
break;
}
}
if (needs_helper_invocation && builtin == BuiltInHelperInvocation)
{
builtin_helper_invocation_id = var.self;
mark_implicit_builtin(StorageClassInput, BuiltInHelperInvocation, var.self);
has_helper_invocation = true;
}
if (need_local_invocation_index && builtin == BuiltInLocalInvocationIndex)
{
builtin_local_invocation_index_id = var.self;
mark_implicit_builtin(StorageClassInput, BuiltInLocalInvocationIndex, var.self);
has_local_invocation_index = true;
}
if (need_workgroup_size && builtin == BuiltInLocalInvocationId)
{
builtin_workgroup_size_id = var.self;
mark_implicit_builtin(StorageClassInput, BuiltInWorkgroupSize, var.self);
has_workgroup_size = true;
}
// The base workgroup needs to have the same type and vector size
// as the workgroup or invocation ID, so keep track of the type that
// was used.
if (need_dispatch_base && workgroup_id_type == 0 &&
(builtin == BuiltInWorkgroupId || builtin == BuiltInGlobalInvocationId))
workgroup_id_type = var.basetype;
});
// Use Metal's native frame-buffer fetch API for subpass inputs.
if ((!has_frag_coord || (msl_options.multiview && !has_view_idx) ||
(msl_options.arrayed_subpass_input && !msl_options.multiview && !has_layer)) &&
(!msl_options.use_framebuffer_fetch_subpasses) && need_subpass_input)
{
if (!has_frag_coord)
{
uint32_t offset = ir.increase_bound_by(3);
uint32_t type_id = offset;
uint32_t type_ptr_id = offset + 1;
uint32_t var_id = offset + 2;
// Create gl_FragCoord.
SPIRType vec4_type { OpTypeVector };
vec4_type.basetype = SPIRType::Float;
vec4_type.width = 32;
vec4_type.vecsize = 4;
set<SPIRType>(type_id, vec4_type);
SPIRType vec4_type_ptr = vec4_type;
vec4_type_ptr.op = OpTypePointer;
vec4_type_ptr.pointer = true;
vec4_type_ptr.pointer_depth++;
vec4_type_ptr.parent_type = type_id;
vec4_type_ptr.storage = StorageClassInput;
auto &ptr_type = set<SPIRType>(type_ptr_id, vec4_type_ptr);
ptr_type.self = type_id;
set<SPIRVariable>(var_id, type_ptr_id, StorageClassInput);
set_decoration(var_id, DecorationBuiltIn, BuiltInFragCoord);
builtin_frag_coord_id = var_id;
mark_implicit_builtin(StorageClassInput, BuiltInFragCoord, var_id);
}
if (!has_layer && msl_options.arrayed_subpass_input && !msl_options.multiview)
{
uint32_t offset = ir.increase_bound_by(2);
uint32_t type_ptr_id = offset;
uint32_t var_id = offset + 1;
// Create gl_Layer.
SPIRType uint_type_ptr = get_uint_type();
uint_type_ptr.op = OpTypePointer;
uint_type_ptr.pointer = true;
uint_type_ptr.pointer_depth++;
uint_type_ptr.parent_type = get_uint_type_id();
uint_type_ptr.storage = StorageClassInput;
auto &ptr_type = set<SPIRType>(type_ptr_id, uint_type_ptr);
ptr_type.self = get_uint_type_id();
set<SPIRVariable>(var_id, type_ptr_id, StorageClassInput);
set_decoration(var_id, DecorationBuiltIn, BuiltInLayer);
builtin_layer_id = var_id;
mark_implicit_builtin(StorageClassInput, BuiltInLayer, var_id);
}
if (!has_view_idx && msl_options.multiview)
{
uint32_t offset = ir.increase_bound_by(2);
uint32_t type_ptr_id = offset;
uint32_t var_id = offset + 1;
// Create gl_ViewIndex.
SPIRType uint_type_ptr = get_uint_type();
uint_type_ptr.op = OpTypePointer;
uint_type_ptr.pointer = true;
uint_type_ptr.pointer_depth++;
uint_type_ptr.parent_type = get_uint_type_id();
uint_type_ptr.storage = StorageClassInput;
auto &ptr_type = set<SPIRType>(type_ptr_id, uint_type_ptr);
ptr_type.self = get_uint_type_id();
set<SPIRVariable>(var_id, type_ptr_id, StorageClassInput);
set_decoration(var_id, DecorationBuiltIn, BuiltInViewIndex);
builtin_view_idx_id = var_id;
mark_implicit_builtin(StorageClassInput, BuiltInViewIndex, var_id);
}
}
if (!has_sample_id && (need_sample_pos || needs_sample_id))
{
uint32_t offset = ir.increase_bound_by(2);
uint32_t type_ptr_id = offset;
uint32_t var_id = offset + 1;
// Create gl_SampleID.
SPIRType uint_type_ptr = get_uint_type();
uint_type_ptr.op = OpTypePointer;
uint_type_ptr.pointer = true;
uint_type_ptr.pointer_depth++;
uint_type_ptr.parent_type = get_uint_type_id();
uint_type_ptr.storage = StorageClassInput;
auto &ptr_type = set<SPIRType>(type_ptr_id, uint_type_ptr);
ptr_type.self = get_uint_type_id();
set<SPIRVariable>(var_id, type_ptr_id, StorageClassInput);
set_decoration(var_id, DecorationBuiltIn, BuiltInSampleId);
builtin_sample_id_id = var_id;
mark_implicit_builtin(StorageClassInput, BuiltInSampleId, var_id);
}
if ((need_vertex_params && (!has_vertex_idx || !has_base_vertex || !has_instance_idx || !has_base_instance)) ||
(need_multiview && (!has_instance_idx || !has_base_instance || !has_view_idx)))
{
uint32_t type_ptr_id = ir.increase_bound_by(1);
SPIRType uint_type_ptr = get_uint_type();
uint_type_ptr.op = OpTypePointer;
uint_type_ptr.pointer = true;
uint_type_ptr.pointer_depth++;
uint_type_ptr.parent_type = get_uint_type_id();
uint_type_ptr.storage = StorageClassInput;
auto &ptr_type = set<SPIRType>(type_ptr_id, uint_type_ptr);
ptr_type.self = get_uint_type_id();
if (need_vertex_params && !has_vertex_idx)
{
uint32_t var_id = ir.increase_bound_by(1);
// Create gl_VertexIndex.
set<SPIRVariable>(var_id, type_ptr_id, StorageClassInput);
set_decoration(var_id, DecorationBuiltIn, BuiltInVertexIndex);
builtin_vertex_idx_id = var_id;
mark_implicit_builtin(StorageClassInput, BuiltInVertexIndex, var_id);
}
if (need_vertex_params && !has_base_vertex)
{
uint32_t var_id = ir.increase_bound_by(1);
// Create gl_BaseVertex.
set<SPIRVariable>(var_id, type_ptr_id, StorageClassInput);
set_decoration(var_id, DecorationBuiltIn, BuiltInBaseVertex);
builtin_base_vertex_id = var_id;
mark_implicit_builtin(StorageClassInput, BuiltInBaseVertex, var_id);
}
if (!has_instance_idx) // Needed by both multiview and tessellation
{
uint32_t var_id = ir.increase_bound_by(1);
// Create gl_InstanceIndex.
set<SPIRVariable>(var_id, type_ptr_id, StorageClassInput);
set_decoration(var_id, DecorationBuiltIn, BuiltInInstanceIndex);
builtin_instance_idx_id = var_id;
mark_implicit_builtin(StorageClassInput, BuiltInInstanceIndex, var_id);
}
if (!has_base_instance) // Needed by both multiview and tessellation
{
uint32_t var_id = ir.increase_bound_by(1);
// Create gl_BaseInstance.
set<SPIRVariable>(var_id, type_ptr_id, StorageClassInput);
set_decoration(var_id, DecorationBuiltIn, BuiltInBaseInstance);
builtin_base_instance_id = var_id;
mark_implicit_builtin(StorageClassInput, BuiltInBaseInstance, var_id);
}
if (need_multiview)
{
// Multiview shaders are not allowed to write to gl_Layer, ostensibly because
// it is implicitly written from gl_ViewIndex, but we have to do that explicitly.
// Note that we can't just abuse gl_ViewIndex for this purpose: it's an input, but
// gl_Layer is an output in vertex-pipeline shaders.
uint32_t type_ptr_out_id = ir.increase_bound_by(2);
SPIRType uint_type_ptr_out = get_uint_type();
uint_type_ptr.op = OpTypePointer;
uint_type_ptr_out.pointer = true;
uint_type_ptr_out.pointer_depth++;
uint_type_ptr_out.parent_type = get_uint_type_id();
uint_type_ptr_out.storage = StorageClassOutput;
auto &ptr_out_type = set<SPIRType>(type_ptr_out_id, uint_type_ptr_out);
ptr_out_type.self = get_uint_type_id();
uint32_t var_id = type_ptr_out_id + 1;
set<SPIRVariable>(var_id, type_ptr_out_id, StorageClassOutput);
set_decoration(var_id, DecorationBuiltIn, BuiltInLayer);
builtin_layer_id = var_id;
mark_implicit_builtin(StorageClassOutput, BuiltInLayer, var_id);
}
if (need_multiview && !has_view_idx)
{
uint32_t var_id = ir.increase_bound_by(1);
// Create gl_ViewIndex.
set<SPIRVariable>(var_id, type_ptr_id, StorageClassInput);
set_decoration(var_id, DecorationBuiltIn, BuiltInViewIndex);
builtin_view_idx_id = var_id;
mark_implicit_builtin(StorageClassInput, BuiltInViewIndex, var_id);
}
}
if ((need_tesc_params && (msl_options.multi_patch_workgroup || !has_invocation_id || !has_primitive_id)) ||
(need_tese_params && !has_primitive_id) || need_grid_params)
{
uint32_t type_ptr_id = ir.increase_bound_by(1);
SPIRType uint_type_ptr = get_uint_type();
uint_type_ptr.op = OpTypePointer;
uint_type_ptr.pointer = true;
uint_type_ptr.pointer_depth++;
uint_type_ptr.parent_type = get_uint_type_id();
uint_type_ptr.storage = StorageClassInput;
auto &ptr_type = set<SPIRType>(type_ptr_id, uint_type_ptr);
ptr_type.self = get_uint_type_id();
if ((need_tesc_params && msl_options.multi_patch_workgroup) || need_grid_params)
{
uint32_t var_id = ir.increase_bound_by(1);
// Create gl_GlobalInvocationID.
set<SPIRVariable>(var_id, type_ptr_id, StorageClassInput);
set_decoration(var_id, DecorationBuiltIn, BuiltInGlobalInvocationId);
builtin_invocation_id_id = var_id;
mark_implicit_builtin(StorageClassInput, BuiltInGlobalInvocationId, var_id);
}
else if (need_tesc_params && !has_invocation_id)
{
uint32_t var_id = ir.increase_bound_by(1);
// Create gl_InvocationID.
set<SPIRVariable>(var_id, type_ptr_id, StorageClassInput);
set_decoration(var_id, DecorationBuiltIn, BuiltInInvocationId);
builtin_invocation_id_id = var_id;
mark_implicit_builtin(StorageClassInput, BuiltInInvocationId, var_id);
}
if ((need_tesc_params || need_tese_params) && !has_primitive_id)
{
uint32_t var_id = ir.increase_bound_by(1);
// Create gl_PrimitiveID.
set<SPIRVariable>(var_id, type_ptr_id, StorageClassInput);
set_decoration(var_id, DecorationBuiltIn, BuiltInPrimitiveId);
builtin_primitive_id_id = var_id;
mark_implicit_builtin(StorageClassInput, BuiltInPrimitiveId, var_id);
}
if (need_grid_params)
{
uint32_t var_id = ir.increase_bound_by(1);
set<SPIRVariable>(var_id, build_extended_vector_type(get_uint_type_id(), 3), StorageClassInput);
set_extended_decoration(var_id, SPIRVCrossDecorationBuiltInStageInputSize);
get_entry_point().interface_variables.push_back(var_id);
set_name(var_id, "spvStageInputSize");
builtin_stage_input_size_id = var_id;
}
}
if (!has_subgroup_invocation_id && (need_subgroup_mask || needs_subgroup_invocation_id))
{
uint32_t offset = ir.increase_bound_by(2);
uint32_t type_ptr_id = offset;
uint32_t var_id = offset + 1;
// Create gl_SubgroupInvocationID.
SPIRType uint_type_ptr = get_uint_type();
uint_type_ptr.op = OpTypePointer;
uint_type_ptr.pointer = true;
uint_type_ptr.pointer_depth++;
uint_type_ptr.parent_type = get_uint_type_id();
uint_type_ptr.storage = StorageClassInput;
auto &ptr_type = set<SPIRType>(type_ptr_id, uint_type_ptr);
ptr_type.self = get_uint_type_id();
set<SPIRVariable>(var_id, type_ptr_id, StorageClassInput);
set_decoration(var_id, DecorationBuiltIn, BuiltInSubgroupLocalInvocationId);
builtin_subgroup_invocation_id_id = var_id;
mark_implicit_builtin(StorageClassInput, BuiltInSubgroupLocalInvocationId, var_id);
}
if (!has_subgroup_size && (need_subgroup_ge_mask || needs_subgroup_size))
{
uint32_t offset = ir.increase_bound_by(2);
uint32_t type_ptr_id = offset;
uint32_t var_id = offset + 1;
// Create gl_SubgroupSize.
SPIRType uint_type_ptr = get_uint_type();
uint_type_ptr.op = OpTypePointer;
uint_type_ptr.pointer = true;
uint_type_ptr.pointer_depth++;
uint_type_ptr.parent_type = get_uint_type_id();
uint_type_ptr.storage = StorageClassInput;
auto &ptr_type = set<SPIRType>(type_ptr_id, uint_type_ptr);
ptr_type.self = get_uint_type_id();
set<SPIRVariable>(var_id, type_ptr_id, StorageClassInput);
set_decoration(var_id, DecorationBuiltIn, BuiltInSubgroupSize);
builtin_subgroup_size_id = var_id;
mark_implicit_builtin(StorageClassInput, BuiltInSubgroupSize, var_id);
}
if (need_dispatch_base || need_vertex_base_params)
{
if (workgroup_id_type == 0)
workgroup_id_type = build_extended_vector_type(get_uint_type_id(), 3);
uint32_t var_id;
if (msl_options.supports_msl_version(1, 2))
{
// If we have MSL 1.2, we can (ab)use the [[grid_origin]] builtin
// to convey this information and save a buffer slot.
uint32_t offset = ir.increase_bound_by(1);
var_id = offset;
set<SPIRVariable>(var_id, workgroup_id_type, StorageClassInput);
set_extended_decoration(var_id, SPIRVCrossDecorationBuiltInDispatchBase);
get_entry_point().interface_variables.push_back(var_id);
}
else
{
// Otherwise, we need to fall back to a good ol' fashioned buffer.
uint32_t offset = ir.increase_bound_by(2);
var_id = offset;
uint32_t type_id = offset + 1;
SPIRType var_type = get<SPIRType>(workgroup_id_type);
var_type.storage = StorageClassUniform;
set<SPIRType>(type_id, var_type);
set<SPIRVariable>(var_id, type_id, StorageClassUniform);
// This should never match anything.
set_decoration(var_id, DecorationDescriptorSet, ~(5u));
set_decoration(var_id, DecorationBinding, msl_options.indirect_params_buffer_index);
set_extended_decoration(var_id, SPIRVCrossDecorationResourceIndexPrimary,
msl_options.indirect_params_buffer_index);
}
set_name(var_id, "spvDispatchBase");
builtin_dispatch_base_id = var_id;
}
if (has_additional_fixed_sample_mask() && !does_shader_write_sample_mask)
{
uint32_t offset = ir.increase_bound_by(2);
uint32_t var_id = offset + 1;
// Create gl_SampleMask.
SPIRType uint_type_ptr_out = get_uint_type();
uint_type_ptr_out.op = OpTypePointer;
uint_type_ptr_out.pointer = true;
uint_type_ptr_out.pointer_depth++;
uint_type_ptr_out.parent_type = get_uint_type_id();
uint_type_ptr_out.storage = StorageClassOutput;
auto &ptr_out_type = set<SPIRType>(offset, uint_type_ptr_out);
ptr_out_type.self = get_uint_type_id();
set<SPIRVariable>(var_id, offset, StorageClassOutput);
set_decoration(var_id, DecorationBuiltIn, BuiltInSampleMask);
builtin_sample_mask_id = var_id;
mark_implicit_builtin(StorageClassOutput, BuiltInSampleMask, var_id);
}
if (!has_helper_invocation && needs_helper_invocation)
{
uint32_t offset = ir.increase_bound_by(3);
uint32_t type_id = offset;
uint32_t type_ptr_id = offset + 1;
uint32_t var_id = offset + 2;
// Create gl_HelperInvocation.
SPIRType bool_type { OpTypeBool };
bool_type.basetype = SPIRType::Boolean;
bool_type.width = 8;
bool_type.vecsize = 1;
set<SPIRType>(type_id, bool_type);
SPIRType bool_type_ptr_in = bool_type;
bool_type_ptr_in.op = spv::OpTypePointer;
bool_type_ptr_in.pointer = true;
bool_type_ptr_in.pointer_depth++;
bool_type_ptr_in.parent_type = type_id;
bool_type_ptr_in.storage = StorageClassInput;
auto &ptr_in_type = set<SPIRType>(type_ptr_id, bool_type_ptr_in);
ptr_in_type.self = type_id;
set<SPIRVariable>(var_id, type_ptr_id, StorageClassInput);
set_decoration(var_id, DecorationBuiltIn, BuiltInHelperInvocation);
builtin_helper_invocation_id = var_id;
mark_implicit_builtin(StorageClassInput, BuiltInHelperInvocation, var_id);
}
if (need_local_invocation_index && !has_local_invocation_index)
{
uint32_t offset = ir.increase_bound_by(2);
uint32_t type_ptr_id = offset;
uint32_t var_id = offset + 1;
// Create gl_LocalInvocationIndex.
SPIRType uint_type_ptr = get_uint_type();
uint_type_ptr.op = OpTypePointer;
uint_type_ptr.pointer = true;
uint_type_ptr.pointer_depth++;
uint_type_ptr.parent_type = get_uint_type_id();
uint_type_ptr.storage = StorageClassInput;
auto &ptr_type = set<SPIRType>(type_ptr_id, uint_type_ptr);
ptr_type.self = get_uint_type_id();
set<SPIRVariable>(var_id, type_ptr_id, StorageClassInput);
set_decoration(var_id, DecorationBuiltIn, BuiltInLocalInvocationIndex);
builtin_local_invocation_index_id = var_id;
mark_implicit_builtin(StorageClassInput, BuiltInLocalInvocationIndex, var_id);
}
if (need_workgroup_size && !has_workgroup_size)
{
uint32_t offset = ir.increase_bound_by(2);
uint32_t type_ptr_id = offset;
uint32_t var_id = offset + 1;
// Create gl_WorkgroupSize.
uint32_t type_id = build_extended_vector_type(get_uint_type_id(), 3);
SPIRType uint_type_ptr = get<SPIRType>(type_id);
uint_type_ptr.op = OpTypePointer;
uint_type_ptr.pointer = true;
uint_type_ptr.pointer_depth++;
uint_type_ptr.parent_type = type_id;
uint_type_ptr.storage = StorageClassInput;
auto &ptr_type = set<SPIRType>(type_ptr_id, uint_type_ptr);
ptr_type.self = type_id;
set<SPIRVariable>(var_id, type_ptr_id, StorageClassInput);
set_decoration(var_id, DecorationBuiltIn, BuiltInWorkgroupSize);
builtin_workgroup_size_id = var_id;
mark_implicit_builtin(StorageClassInput, BuiltInWorkgroupSize, var_id);
}
}
if (needs_swizzle_buffer_def)
{
uint32_t var_id = build_constant_uint_array_pointer();
set_name(var_id, "spvSwizzleConstants");
// This should never match anything.
set_decoration(var_id, DecorationDescriptorSet, kSwizzleBufferBinding);
set_decoration(var_id, DecorationBinding, msl_options.swizzle_buffer_index);
set_extended_decoration(var_id, SPIRVCrossDecorationResourceIndexPrimary, msl_options.swizzle_buffer_index);
swizzle_buffer_id = var_id;
}
if (needs_buffer_size_buffer())
{
uint32_t var_id = build_constant_uint_array_pointer();
set_name(var_id, "spvBufferSizeConstants");
// This should never match anything.
set_decoration(var_id, DecorationDescriptorSet, kBufferSizeBufferBinding);
set_decoration(var_id, DecorationBinding, msl_options.buffer_size_buffer_index);
set_extended_decoration(var_id, SPIRVCrossDecorationResourceIndexPrimary, msl_options.buffer_size_buffer_index);
buffer_size_buffer_id = var_id;
}
if (needs_view_mask_buffer())
{
uint32_t var_id = build_constant_uint_array_pointer();
set_name(var_id, "spvViewMask");
// This should never match anything.
set_decoration(var_id, DecorationDescriptorSet, ~(4u));
set_decoration(var_id, DecorationBinding, msl_options.view_mask_buffer_index);
set_extended_decoration(var_id, SPIRVCrossDecorationResourceIndexPrimary, msl_options.view_mask_buffer_index);
view_mask_buffer_id = var_id;
}
if (!buffers_requiring_dynamic_offset.empty())
{
uint32_t var_id = build_constant_uint_array_pointer();
set_name(var_id, "spvDynamicOffsets");
// This should never match anything.
set_decoration(var_id, DecorationDescriptorSet, ~(5u));
set_decoration(var_id, DecorationBinding, msl_options.dynamic_offsets_buffer_index);
set_extended_decoration(var_id, SPIRVCrossDecorationResourceIndexPrimary,
msl_options.dynamic_offsets_buffer_index);
dynamic_offsets_buffer_id = var_id;
}
// If we're returning a struct from a vertex-like entry point, we must return a position attribute.
bool need_position = (get_execution_model() == ExecutionModelVertex || is_tese_shader()) &&
!capture_output_to_buffer && !get_is_rasterization_disabled() &&
!active_output_builtins.get(BuiltInPosition);
if (need_position)
{
// If we can get away with returning void from entry point, we don't need to care.
// If there is at least one other stage output, we need to return [[position]],
// so we need to create one if it doesn't appear in the SPIR-V. Before adding the
// implicit variable, check if it actually exists already, but just has not been used
// or initialized, and if so, mark it as active, and do not create the implicit variable.
bool has_output = false;
ir.for_each_typed_id<SPIRVariable>([&](uint32_t, SPIRVariable &var) {
if (var.storage == StorageClassOutput && interface_variable_exists_in_entry_point(var.self))
{
has_output = true;
// Check if the var is the Position builtin
if (has_decoration(var.self, DecorationBuiltIn) && get_decoration(var.self, DecorationBuiltIn) == BuiltInPosition)
active_output_builtins.set(BuiltInPosition);
// If the var is a struct, check if any members is the Position builtin
auto &var_type = get_variable_element_type(var);
if (var_type.basetype == SPIRType::Struct)
{
auto mbr_cnt = var_type.member_types.size();
for (uint32_t mbr_idx = 0; mbr_idx < mbr_cnt; mbr_idx++)
{
auto builtin = BuiltInMax;
bool is_builtin = is_member_builtin(var_type, mbr_idx, &builtin);
if (is_builtin && builtin == BuiltInPosition)
active_output_builtins.set(BuiltInPosition);
}
}
}
});
need_position = has_output && !active_output_builtins.get(BuiltInPosition);
}
if (need_position)
{
uint32_t offset = ir.increase_bound_by(3);
uint32_t type_id = offset;
uint32_t type_ptr_id = offset + 1;
uint32_t var_id = offset + 2;
// Create gl_Position.
SPIRType vec4_type { OpTypeVector };
vec4_type.basetype = SPIRType::Float;
vec4_type.width = 32;
vec4_type.vecsize = 4;
set<SPIRType>(type_id, vec4_type);
SPIRType vec4_type_ptr = vec4_type;
vec4_type_ptr.op = OpTypePointer;
vec4_type_ptr.pointer = true;
vec4_type_ptr.pointer_depth++;
vec4_type_ptr.parent_type = type_id;
vec4_type_ptr.storage = StorageClassOutput;
auto &ptr_type = set<SPIRType>(type_ptr_id, vec4_type_ptr);
ptr_type.self = type_id;
set<SPIRVariable>(var_id, type_ptr_id, StorageClassOutput);
set_decoration(var_id, DecorationBuiltIn, BuiltInPosition);
mark_implicit_builtin(StorageClassOutput, BuiltInPosition, var_id);
}
}
// Checks if the specified builtin variable (e.g. gl_InstanceIndex) is marked as active.
// If not, it marks it as active and forces a recompilation.
// This might be used when the optimization of inactive builtins was too optimistic (e.g. when "spvOut" is emitted).
void CompilerMSL::ensure_builtin(spv::StorageClass storage, spv::BuiltIn builtin)
{
Bitset *active_builtins = nullptr;
switch (storage)
{
case StorageClassInput:
active_builtins = &active_input_builtins;
break;
case StorageClassOutput:
active_builtins = &active_output_builtins;
break;
default:
break;
}
// At this point, the specified builtin variable must have already been declared in the entry point.
// If not, mark as active and force recompile.
if (active_builtins != nullptr && !active_builtins->get(builtin))
{
active_builtins->set(builtin);
force_recompile();
}
}
void CompilerMSL::mark_implicit_builtin(StorageClass storage, BuiltIn builtin, uint32_t id)
{
Bitset *active_builtins = nullptr;
switch (storage)
{
case StorageClassInput:
active_builtins = &active_input_builtins;
break;
case StorageClassOutput:
active_builtins = &active_output_builtins;
break;
default:
break;
}
assert(active_builtins != nullptr);
active_builtins->set(builtin);
auto &var = get_entry_point().interface_variables;
if (find(begin(var), end(var), VariableID(id)) == end(var))
var.push_back(id);
}
uint32_t CompilerMSL::build_constant_uint_array_pointer()
{
uint32_t offset = ir.increase_bound_by(3);
uint32_t type_ptr_id = offset;
uint32_t type_ptr_ptr_id = offset + 1;
uint32_t var_id = offset + 2;
// Create a buffer to hold extra data, including the swizzle constants.
SPIRType uint_type_pointer = get_uint_type();
uint_type_pointer.op = OpTypePointer;
uint_type_pointer.pointer = true;
uint_type_pointer.pointer_depth++;
uint_type_pointer.parent_type = get_uint_type_id();
uint_type_pointer.storage = StorageClassUniform;
set<SPIRType>(type_ptr_id, uint_type_pointer);
set_decoration(type_ptr_id, DecorationArrayStride, 4);
SPIRType uint_type_pointer2 = uint_type_pointer;
uint_type_pointer2.pointer_depth++;
uint_type_pointer2.parent_type = type_ptr_id;
set<SPIRType>(type_ptr_ptr_id, uint_type_pointer2);
set<SPIRVariable>(var_id, type_ptr_ptr_id, StorageClassUniformConstant);
return var_id;
}
static string create_sampler_address(const char *prefix, MSLSamplerAddress addr)
{
switch (addr)
{
case MSL_SAMPLER_ADDRESS_CLAMP_TO_EDGE:
return join(prefix, "address::clamp_to_edge");
case MSL_SAMPLER_ADDRESS_CLAMP_TO_ZERO:
return join(prefix, "address::clamp_to_zero");
case MSL_SAMPLER_ADDRESS_CLAMP_TO_BORDER:
return join(prefix, "address::clamp_to_border");
case MSL_SAMPLER_ADDRESS_REPEAT:
return join(prefix, "address::repeat");
case MSL_SAMPLER_ADDRESS_MIRRORED_REPEAT:
return join(prefix, "address::mirrored_repeat");
default:
SPIRV_CROSS_THROW("Invalid sampler addressing mode.");
}
}
SPIRType &CompilerMSL::get_stage_in_struct_type()
{
auto &si_var = get<SPIRVariable>(stage_in_var_id);
return get_variable_data_type(si_var);
}
SPIRType &CompilerMSL::get_stage_out_struct_type()
{
auto &so_var = get<SPIRVariable>(stage_out_var_id);
return get_variable_data_type(so_var);
}
SPIRType &CompilerMSL::get_patch_stage_in_struct_type()
{
auto &si_var = get<SPIRVariable>(patch_stage_in_var_id);
return get_variable_data_type(si_var);
}
SPIRType &CompilerMSL::get_patch_stage_out_struct_type()
{
auto &so_var = get<SPIRVariable>(patch_stage_out_var_id);
return get_variable_data_type(so_var);
}
std::string CompilerMSL::get_tess_factor_struct_name()
{
if (is_tessellating_triangles())
return "MTLTriangleTessellationFactorsHalf";
return "MTLQuadTessellationFactorsHalf";
}
SPIRType &CompilerMSL::get_uint_type()
{
return get<SPIRType>(get_uint_type_id());
}
uint32_t CompilerMSL::get_uint_type_id()
{
if (uint_type_id != 0)
return uint_type_id;
uint_type_id = ir.increase_bound_by(1);
SPIRType type { OpTypeInt };
type.basetype = SPIRType::UInt;
type.width = 32;
set<SPIRType>(uint_type_id, type);
return uint_type_id;
}
void CompilerMSL::emit_entry_point_declarations()
{
// FIXME: Get test coverage here ...
// Constant arrays of non-primitive types (i.e. matrices) won't link properly into Metal libraries
declare_complex_constant_arrays();
// Emit constexpr samplers here.
for (auto &samp : constexpr_samplers_by_id)
{
auto &var = get<SPIRVariable>(samp.first);
auto &type = get<SPIRType>(var.basetype);
if (type.basetype == SPIRType::Sampler)
add_resource_name(samp.first);
SmallVector<string> args;
auto &s = samp.second;
if (s.coord != MSL_SAMPLER_COORD_NORMALIZED)
args.push_back("coord::pixel");
if (s.min_filter == s.mag_filter)
{
if (s.min_filter != MSL_SAMPLER_FILTER_NEAREST)
args.push_back("filter::linear");
}
else
{
if (s.min_filter != MSL_SAMPLER_FILTER_NEAREST)
args.push_back("min_filter::linear");
if (s.mag_filter != MSL_SAMPLER_FILTER_NEAREST)
args.push_back("mag_filter::linear");
}
switch (s.mip_filter)
{
case MSL_SAMPLER_MIP_FILTER_NONE:
// Default
break;
case MSL_SAMPLER_MIP_FILTER_NEAREST:
args.push_back("mip_filter::nearest");
break;
case MSL_SAMPLER_MIP_FILTER_LINEAR:
args.push_back("mip_filter::linear");
break;
default:
SPIRV_CROSS_THROW("Invalid mip filter.");
}
if (s.s_address == s.t_address && s.s_address == s.r_address)
{
if (s.s_address != MSL_SAMPLER_ADDRESS_CLAMP_TO_EDGE)
args.push_back(create_sampler_address("", s.s_address));
}
else
{
if (s.s_address != MSL_SAMPLER_ADDRESS_CLAMP_TO_EDGE)
args.push_back(create_sampler_address("s_", s.s_address));
if (s.t_address != MSL_SAMPLER_ADDRESS_CLAMP_TO_EDGE)
args.push_back(create_sampler_address("t_", s.t_address));
if (s.r_address != MSL_SAMPLER_ADDRESS_CLAMP_TO_EDGE)
args.push_back(create_sampler_address("r_", s.r_address));
}
if (s.compare_enable)
{
switch (s.compare_func)
{
case MSL_SAMPLER_COMPARE_FUNC_ALWAYS:
args.push_back("compare_func::always");
break;
case MSL_SAMPLER_COMPARE_FUNC_NEVER:
args.push_back("compare_func::never");
break;
case MSL_SAMPLER_COMPARE_FUNC_EQUAL:
args.push_back("compare_func::equal");
break;
case MSL_SAMPLER_COMPARE_FUNC_NOT_EQUAL:
args.push_back("compare_func::not_equal");
break;
case MSL_SAMPLER_COMPARE_FUNC_LESS:
args.push_back("compare_func::less");
break;
case MSL_SAMPLER_COMPARE_FUNC_LESS_EQUAL:
args.push_back("compare_func::less_equal");
break;
case MSL_SAMPLER_COMPARE_FUNC_GREATER:
args.push_back("compare_func::greater");
break;
case MSL_SAMPLER_COMPARE_FUNC_GREATER_EQUAL:
args.push_back("compare_func::greater_equal");
break;
default:
SPIRV_CROSS_THROW("Invalid sampler compare function.");
}
}
if (s.s_address == MSL_SAMPLER_ADDRESS_CLAMP_TO_BORDER || s.t_address == MSL_SAMPLER_ADDRESS_CLAMP_TO_BORDER ||
s.r_address == MSL_SAMPLER_ADDRESS_CLAMP_TO_BORDER)
{
switch (s.border_color)
{
case MSL_SAMPLER_BORDER_COLOR_OPAQUE_BLACK:
args.push_back("border_color::opaque_black");
break;
case MSL_SAMPLER_BORDER_COLOR_OPAQUE_WHITE:
args.push_back("border_color::opaque_white");
break;
case MSL_SAMPLER_BORDER_COLOR_TRANSPARENT_BLACK:
args.push_back("border_color::transparent_black");
break;
default:
SPIRV_CROSS_THROW("Invalid sampler border color.");
}
}
if (s.anisotropy_enable)
args.push_back(join("max_anisotropy(", s.max_anisotropy, ")"));
if (s.lod_clamp_enable)
{
args.push_back(join("lod_clamp(", format_float(s.lod_clamp_min), ", ", format_float(s.lod_clamp_max), ")"));
}
// If we would emit no arguments, then omit the parentheses entirely. Otherwise,
// we'll wind up with a "most vexing parse" situation.
if (args.empty())
statement("constexpr sampler ",
type.basetype == SPIRType::SampledImage ? to_sampler_expression(samp.first) : to_name(samp.first),
";");
else
statement("constexpr sampler ",
type.basetype == SPIRType::SampledImage ? to_sampler_expression(samp.first) : to_name(samp.first),
"(", merge(args), ");");
}
// Emit dynamic buffers here.
for (auto &dynamic_buffer : buffers_requiring_dynamic_offset)
{
if (!dynamic_buffer.second.second)
{
// Could happen if no buffer was used at requested binding point.
continue;
}
const auto &var = get<SPIRVariable>(dynamic_buffer.second.second);
uint32_t var_id = var.self;
const auto &type = get_variable_data_type(var);
string name = to_name(var.self);
uint32_t desc_set = get_decoration(var.self, DecorationDescriptorSet);
uint32_t arg_id = argument_buffer_ids[desc_set];
uint32_t base_index = dynamic_buffer.second.first;
if (!type.array.empty())
{
// This is complicated, because we need to support arrays of arrays.
// And it's even worse if the outermost dimension is a runtime array, because now
// all this complicated goop has to go into the shader itself. (FIXME)
if (!type.array[type.array.size() - 1])
SPIRV_CROSS_THROW("Runtime arrays with dynamic offsets are not supported yet.");
else
{
is_using_builtin_array = true;
statement(get_argument_address_space(var), " ", type_to_glsl(type), "* ", to_restrict(var_id, true), name,
type_to_array_glsl(type), " =");
uint32_t dim = uint32_t(type.array.size());
uint32_t j = 0;
for (SmallVector<uint32_t> indices(type.array.size());
indices[type.array.size() - 1] < to_array_size_literal(type); j++)
{
while (dim > 0)
{
begin_scope();
--dim;
}
string arrays;
for (uint32_t i = uint32_t(type.array.size()); i; --i)
arrays += join("[", indices[i - 1], "]");
statement("(", get_argument_address_space(var), " ", type_to_glsl(type), "* ",
to_restrict(var_id, false), ")((", get_argument_address_space(var), " char* ",
to_restrict(var_id, false), ")", to_name(arg_id), ".", ensure_valid_name(name, "m"),
arrays, " + ", to_name(dynamic_offsets_buffer_id), "[", base_index + j, "]),");
while (++indices[dim] >= to_array_size_literal(type, dim) && dim < type.array.size() - 1)
{
end_scope(",");
indices[dim++] = 0;
}
}
end_scope_decl();
statement_no_indent("");
is_using_builtin_array = false;
}
}
else
{
statement(get_argument_address_space(var), " auto& ", to_restrict(var_id, true), name, " = *(",
get_argument_address_space(var), " ", type_to_glsl(type), "* ", to_restrict(var_id, false), ")((",
get_argument_address_space(var), " char* ", to_restrict(var_id, false), ")", to_name(arg_id), ".",
ensure_valid_name(name, "m"), " + ", to_name(dynamic_offsets_buffer_id), "[", base_index, "]);");
}
}
bool has_runtime_array_declaration = false;
for (SPIRVariable *arg : entry_point_bindings)
{
const auto &var = *arg;
const auto &type = get_variable_data_type(var);
const auto &buffer_type = get_variable_element_type(var);
const string name = to_name(var.self);
if (is_var_runtime_size_array(var))
{
if (msl_options.argument_buffers_tier < Options::ArgumentBuffersTier::Tier2)
{
SPIRV_CROSS_THROW("Unsized array of descriptors requires argument buffer tier 2");
}
string resource_name;
if (descriptor_set_is_argument_buffer(get_decoration(var.self, DecorationDescriptorSet)))
resource_name = ir.meta[var.self].decoration.qualified_alias;
else
resource_name = name + "_";
switch (type.basetype)
{
case SPIRType::Image:
case SPIRType::Sampler:
case SPIRType::AccelerationStructure:
statement("spvDescriptorArray<", type_to_glsl(buffer_type), "> ", name, " {", resource_name, "};");
break;
case SPIRType::SampledImage:
statement("spvDescriptorArray<", type_to_glsl(buffer_type), "> ", name, " {", resource_name, "};");
// Unsupported with argument buffer for now.
statement("spvDescriptorArray<sampler> ", name, "Smplr {", name, "Smplr_};");
break;
case SPIRType::Struct:
statement("spvDescriptorArray<", get_argument_address_space(var), " ", type_to_glsl(buffer_type), "*> ",
name, " {", resource_name, "};");
break;
default:
break;
}
has_runtime_array_declaration = true;
}
else if (!type.array.empty() && type.basetype == SPIRType::Struct)
{
// Emit only buffer arrays here.
statement(get_argument_address_space(var), " ", type_to_glsl(buffer_type), "* ",
to_restrict(var.self, true), name, "[] =");
begin_scope();
uint32_t array_size = get_resource_array_size(type, var.self);
for (uint32_t i = 0; i < array_size; ++i)
statement(name, "_", i, ",");
end_scope_decl();
statement_no_indent("");
}
}
if (has_runtime_array_declaration)
statement_no_indent("");
// Emit buffer aliases here.
for (auto &var_id : buffer_aliases_discrete)
{
const auto &var = get<SPIRVariable>(var_id);
const auto &type = get_variable_data_type(var);
auto addr_space = get_argument_address_space(var);
auto name = to_name(var_id);
uint32_t desc_set = get_decoration(var_id, DecorationDescriptorSet);
uint32_t desc_binding = get_decoration(var_id, DecorationBinding);
auto alias_name = join("spvBufferAliasSet", desc_set, "Binding", desc_binding);
statement(addr_space, " auto& ", to_restrict(var_id, true),
name,
" = *(", addr_space, " ", type_to_glsl(type), "*)", alias_name, ";");
}
// Discrete descriptors are processed in entry point emission every compiler iteration.
buffer_aliases_discrete.clear();
for (auto &var_pair : buffer_aliases_argument)
{
uint32_t var_id = var_pair.first;
uint32_t alias_id = var_pair.second;
const auto &var = get<SPIRVariable>(var_id);
const auto &type = get_variable_data_type(var);
auto addr_space = get_argument_address_space(var);
if (type.array.empty())
{
statement(addr_space, " auto& ", to_restrict(var_id, true), to_name(var_id), " = (", addr_space, " ",
type_to_glsl(type), "&)", ir.meta[alias_id].decoration.qualified_alias, ";");
}
else
{
const char *desc_addr_space = descriptor_address_space(var_id, var.storage, "thread");
// Esoteric type cast. Reference to array of pointers.
// Auto here defers to UBO or SSBO. The address space of the reference needs to refer to the
// address space of the argument buffer itself, which is usually constant, but can be const device for
// large argument buffers.
is_using_builtin_array = true;
statement(desc_addr_space, " auto& ", to_restrict(var_id, true), to_name(var_id), " = (", addr_space, " ",
type_to_glsl(type), "* ", desc_addr_space, " (&)",
type_to_array_glsl(type), ")", ir.meta[alias_id].decoration.qualified_alias, ";");
is_using_builtin_array = false;
}
}
// Emit disabled fragment outputs.
std::sort(disabled_frag_outputs.begin(), disabled_frag_outputs.end());
for (uint32_t var_id : disabled_frag_outputs)
{
auto &var = get<SPIRVariable>(var_id);
add_local_variable_name(var_id);
statement(CompilerGLSL::variable_decl(var), ";");
var.deferred_declaration = false;
}
}
string CompilerMSL::compile()
{
replace_illegal_entry_point_names();
ir.fixup_reserved_names();
// Do not deal with GLES-isms like precision, older extensions and such.
options.vulkan_semantics = true;
options.es = false;
options.version = 450;
backend.null_pointer_literal = "nullptr";
backend.float_literal_suffix = false;
backend.uint32_t_literal_suffix = true;
backend.int16_t_literal_suffix = "";
backend.uint16_t_literal_suffix = "";
backend.basic_int_type = "int";
backend.basic_uint_type = "uint";
backend.basic_int8_type = "char";
backend.basic_uint8_type = "uchar";
backend.basic_int16_type = "short";
backend.basic_uint16_type = "ushort";
backend.boolean_mix_function = "select";
backend.swizzle_is_function = false;
backend.shared_is_implied = false;
backend.use_initializer_list = true;
backend.use_typed_initializer_list = true;
backend.native_row_major_matrix = false;
backend.unsized_array_supported = false;
backend.can_declare_arrays_inline = false;
backend.allow_truncated_access_chain = true;
backend.comparison_image_samples_scalar = true;
backend.native_pointers = true;
backend.nonuniform_qualifier = "";
backend.support_small_type_sampling_result = true;
backend.supports_empty_struct = true;
backend.support_64bit_switch = true;
backend.boolean_in_struct_remapped_type = SPIRType::Short;
// Allow Metal to use the array<T> template unless we force it off.
backend.can_return_array = !msl_options.force_native_arrays;
backend.array_is_value_type = !msl_options.force_native_arrays;
// Arrays which are part of buffer objects are never considered to be value types (just plain C-style).
backend.array_is_value_type_in_buffer_blocks = false;
backend.support_pointer_to_pointer = true;
backend.implicit_c_integer_promotion_rules = true;
capture_output_to_buffer = msl_options.capture_output_to_buffer;
is_rasterization_disabled = msl_options.disable_rasterization || capture_output_to_buffer;
// Initialize array here rather than constructor, MSVC 2013 workaround.
for (auto &id : next_metal_resource_ids)
id = 0;
fixup_anonymous_struct_names();
fixup_type_alias();
replace_illegal_names();
sync_entry_point_aliases_and_names();
build_function_control_flow_graphs_and_analyze();
update_active_builtins();
analyze_image_and_sampler_usage();
analyze_sampled_image_usage();
analyze_interlocked_resource_usage();
preprocess_op_codes();
build_implicit_builtins();
if (needs_manual_helper_invocation_updates() &&
(active_input_builtins.get(BuiltInHelperInvocation) || needs_helper_invocation))
{
string discard_expr =
join(builtin_to_glsl(BuiltInHelperInvocation, StorageClassInput), " = true, discard_fragment()");
backend.discard_literal = discard_expr;
backend.demote_literal = discard_expr;
}
else
{
backend.discard_literal = "discard_fragment()";
backend.demote_literal = "discard_fragment()";
}
fixup_image_load_store_access();
set_enabled_interface_variables(get_active_interface_variables());
if (msl_options.force_active_argument_buffer_resources)
activate_argument_buffer_resources();
if (swizzle_buffer_id)
add_active_interface_variable(swizzle_buffer_id);
if (buffer_size_buffer_id)
add_active_interface_variable(buffer_size_buffer_id);
if (view_mask_buffer_id)
add_active_interface_variable(view_mask_buffer_id);
if (dynamic_offsets_buffer_id)
add_active_interface_variable(dynamic_offsets_buffer_id);
if (builtin_layer_id)
add_active_interface_variable(builtin_layer_id);
if (builtin_dispatch_base_id && !msl_options.supports_msl_version(1, 2))
add_active_interface_variable(builtin_dispatch_base_id);
if (builtin_sample_mask_id)
add_active_interface_variable(builtin_sample_mask_id);
// Create structs to hold input, output and uniform variables.
// Do output first to ensure out. is declared at top of entry function.
qual_pos_var_name = "";
stage_out_var_id = add_interface_block(StorageClassOutput);
patch_stage_out_var_id = add_interface_block(StorageClassOutput, true);
stage_in_var_id = add_interface_block(StorageClassInput);
if (is_tese_shader())
patch_stage_in_var_id = add_interface_block(StorageClassInput, true);
if (is_tesc_shader())
stage_out_ptr_var_id = add_interface_block_pointer(stage_out_var_id, StorageClassOutput);
if (is_tessellation_shader())
stage_in_ptr_var_id = add_interface_block_pointer(stage_in_var_id, StorageClassInput);
// Metal vertex functions that define no output must disable rasterization and return void.
if (!stage_out_var_id)
is_rasterization_disabled = true;
// Convert the use of global variables to recursively-passed function parameters
localize_global_variables();
extract_global_variables_from_functions();
// Mark any non-stage-in structs to be tightly packed.
mark_packable_structs();
reorder_type_alias();
// Add fixup hooks required by shader inputs and outputs. This needs to happen before
// the loop, so the hooks aren't added multiple times.
fix_up_shader_inputs_outputs();
// If we are using argument buffers, we create argument buffer structures for them here.
// These buffers will be used in the entry point, not the individual resources.
if (msl_options.argument_buffers)
{
if (!msl_options.supports_msl_version(2, 0))
SPIRV_CROSS_THROW("Argument buffers can only be used with MSL 2.0 and up.");
analyze_argument_buffers();
}
uint32_t pass_count = 0;
do
{
reset(pass_count);
// Start bindings at zero.
next_metal_resource_index_buffer = 0;
next_metal_resource_index_texture = 0;
next_metal_resource_index_sampler = 0;
for (auto &id : next_metal_resource_ids)
id = 0;
// Move constructor for this type is broken on GCC 4.9 ...
buffer.reset();
emit_header();
emit_custom_templates();
emit_custom_functions();
emit_specialization_constants_and_structs();
emit_resources();
emit_function(get<SPIRFunction>(ir.default_entry_point), Bitset());
pass_count++;
} while (is_forcing_recompilation());
return buffer.str();
}
// Register the need to output any custom functions.
void CompilerMSL::preprocess_op_codes()
{
OpCodePreprocessor preproc(*this);
traverse_all_reachable_opcodes(get<SPIRFunction>(ir.default_entry_point), preproc);
suppress_missing_prototypes = preproc.suppress_missing_prototypes;
if (preproc.uses_atomics)
{
add_header_line("#include <metal_atomic>");
add_pragma_line("#pragma clang diagnostic ignored \"-Wunused-variable\"");
}
// Before MSL 2.1 (2.2 for textures), Metal vertex functions that write to
// resources must disable rasterization and return void.
if ((preproc.uses_buffer_write && !msl_options.supports_msl_version(2, 1)) ||
(preproc.uses_image_write && !msl_options.supports_msl_version(2, 2)))
is_rasterization_disabled = true;
// Tessellation control shaders are run as compute functions in Metal, and so
// must capture their output to a buffer.
if (is_tesc_shader() || (get_execution_model() == ExecutionModelVertex && msl_options.vertex_for_tessellation))
{
is_rasterization_disabled = true;
capture_output_to_buffer = true;
}
if (preproc.needs_subgroup_invocation_id)
needs_subgroup_invocation_id = true;
if (preproc.needs_subgroup_size)
needs_subgroup_size = true;
// build_implicit_builtins() hasn't run yet, and in fact, this needs to execute
// before then so that gl_SampleID will get added; so we also need to check if
// that function would add gl_FragCoord.
if (preproc.needs_sample_id || msl_options.force_sample_rate_shading ||
(is_sample_rate() && (active_input_builtins.get(BuiltInFragCoord) ||
(need_subpass_input_ms && !msl_options.use_framebuffer_fetch_subpasses))))
needs_sample_id = true;
if (preproc.needs_helper_invocation)
needs_helper_invocation = true;
// OpKill is removed by the parser, so we need to identify those by inspecting
// blocks.
ir.for_each_typed_id<SPIRBlock>([&preproc](uint32_t, SPIRBlock &block) {
if (block.terminator == SPIRBlock::Kill)
preproc.uses_discard = true;
});
// Fragment shaders that both write to storage resources and discard fragments
// need checks on the writes, to work around Metal allowing these writes despite
// the fragment being dead.
if (msl_options.check_discarded_frag_stores && preproc.uses_discard &&
(preproc.uses_buffer_write || preproc.uses_image_write))
{
frag_shader_needs_discard_checks = true;
needs_helper_invocation = true;
// Fragment discard store checks imply manual HelperInvocation updates.
msl_options.manual_helper_invocation_updates = true;
}
if (is_intersection_query())
{
add_header_line("#if __METAL_VERSION__ >= 230");
add_header_line("#include <metal_raytracing>");
add_header_line("using namespace metal::raytracing;");
add_header_line("#endif");
}
}
// Move the Private and Workgroup global variables to the entry function.
// Non-constant variables cannot have global scope in Metal.
void CompilerMSL::localize_global_variables()
{
auto &entry_func = get<SPIRFunction>(ir.default_entry_point);
auto iter = global_variables.begin();
while (iter != global_variables.end())
{
uint32_t v_id = *iter;
auto &var = get<SPIRVariable>(v_id);
if (var.storage == StorageClassPrivate || var.storage == StorageClassWorkgroup)
{
if (!variable_is_lut(var))
entry_func.add_local_variable(v_id);
iter = global_variables.erase(iter);
}
else
iter++;
}
}
// For any global variable accessed directly by a function,
// extract that variable and add it as an argument to that function.
void CompilerMSL::extract_global_variables_from_functions()
{
// Uniforms
unordered_set<uint32_t> global_var_ids;
ir.for_each_typed_id<SPIRVariable>([&](uint32_t, SPIRVariable &var) {
// Some builtins resolve directly to a function call which does not need any declared variables.
// Skip these.
if (var.storage == StorageClassInput && has_decoration(var.self, DecorationBuiltIn))
{
auto bi_type = BuiltIn(get_decoration(var.self, DecorationBuiltIn));
if (bi_type == BuiltInHelperInvocation && !needs_manual_helper_invocation_updates())
return;
if (bi_type == BuiltInHelperInvocation && needs_manual_helper_invocation_updates())
{
if (msl_options.is_ios() && !msl_options.supports_msl_version(2, 3))
SPIRV_CROSS_THROW("simd_is_helper_thread() requires version 2.3 on iOS.");
else if (msl_options.is_macos() && !msl_options.supports_msl_version(2, 1))
SPIRV_CROSS_THROW("simd_is_helper_thread() requires version 2.1 on macOS.");
// Make sure this is declared and initialized.
// Force this to have the proper name.
set_name(var.self, builtin_to_glsl(BuiltInHelperInvocation, StorageClassInput));
auto &entry_func = this->get<SPIRFunction>(ir.default_entry_point);
entry_func.add_local_variable(var.self);
vars_needing_early_declaration.push_back(var.self);
entry_func.fixup_hooks_in.push_back([this, &var]()
{ statement(to_name(var.self), " = simd_is_helper_thread();"); });
}
}
if (var.storage == StorageClassInput || var.storage == StorageClassOutput ||
var.storage == StorageClassUniform || var.storage == StorageClassUniformConstant ||
var.storage == StorageClassPushConstant || var.storage == StorageClassStorageBuffer)
{
global_var_ids.insert(var.self);
}
});
// Local vars that are declared in the main function and accessed directly by a function
auto &entry_func = get<SPIRFunction>(ir.default_entry_point);
for (auto &var : entry_func.local_variables)
if (get<SPIRVariable>(var).storage != StorageClassFunction)
global_var_ids.insert(var);
std::set<uint32_t> added_arg_ids;
unordered_set<uint32_t> processed_func_ids;
extract_global_variables_from_function(ir.default_entry_point, added_arg_ids, global_var_ids, processed_func_ids);
}
// MSL does not support the use of global variables for shader input content.
// For any global variable accessed directly by the specified function, extract that variable,
// add it as an argument to that function, and the arg to the added_arg_ids collection.
void CompilerMSL::extract_global_variables_from_function(uint32_t func_id, std::set<uint32_t> &added_arg_ids,
unordered_set<uint32_t> &global_var_ids,
unordered_set<uint32_t> &processed_func_ids)
{
// Avoid processing a function more than once
if (processed_func_ids.find(func_id) != processed_func_ids.end())
{
// Return function global variables
added_arg_ids = function_global_vars[func_id];
return;
}
processed_func_ids.insert(func_id);
auto &func = get<SPIRFunction>(func_id);
// Recursively establish global args added to functions on which we depend.
for (auto block : func.blocks)
{
auto &b = get<SPIRBlock>(block);
for (auto &i : b.ops)
{
auto ops = stream(i);
auto op = static_cast<Op>(i.op);
switch (op)
{
case OpLoad:
case OpInBoundsAccessChain:
case OpAccessChain:
case OpPtrAccessChain:
case OpArrayLength:
{
uint32_t base_id = ops[2];
if (global_var_ids.find(base_id) != global_var_ids.end())
added_arg_ids.insert(base_id);
// Use Metal's native frame-buffer fetch API for subpass inputs.
auto &type = get<SPIRType>(ops[0]);
if (type.basetype == SPIRType::Image && type.image.dim == DimSubpassData &&
(!msl_options.use_framebuffer_fetch_subpasses))
{
// Implicitly reads gl_FragCoord.
assert(builtin_frag_coord_id != 0);
added_arg_ids.insert(builtin_frag_coord_id);
if (msl_options.multiview)
{
// Implicitly reads gl_ViewIndex.
assert(builtin_view_idx_id != 0);
added_arg_ids.insert(builtin_view_idx_id);
}
else if (msl_options.arrayed_subpass_input)
{
// Implicitly reads gl_Layer.
assert(builtin_layer_id != 0);
added_arg_ids.insert(builtin_layer_id);
}
}
break;
}
case OpFunctionCall:
{
// First see if any of the function call args are globals
for (uint32_t arg_idx = 3; arg_idx < i.length; arg_idx++)
{
uint32_t arg_id = ops[arg_idx];
if (global_var_ids.find(arg_id) != global_var_ids.end())
added_arg_ids.insert(arg_id);
}
// Then recurse into the function itself to extract globals used internally in the function
uint32_t inner_func_id = ops[2];
std::set<uint32_t> inner_func_args;
extract_global_variables_from_function(inner_func_id, inner_func_args, global_var_ids,
processed_func_ids);
added_arg_ids.insert(inner_func_args.begin(), inner_func_args.end());
break;
}
case OpStore:
{
uint32_t base_id = ops[0];
if (global_var_ids.find(base_id) != global_var_ids.end())
added_arg_ids.insert(base_id);
uint32_t rvalue_id = ops[1];
if (global_var_ids.find(rvalue_id) != global_var_ids.end())
added_arg_ids.insert(rvalue_id);
if (needs_frag_discard_checks())
added_arg_ids.insert(builtin_helper_invocation_id);
break;
}
case OpSelect:
{
uint32_t base_id = ops[3];
if (global_var_ids.find(base_id) != global_var_ids.end())
added_arg_ids.insert(base_id);
base_id = ops[4];
if (global_var_ids.find(base_id) != global_var_ids.end())
added_arg_ids.insert(base_id);
break;
}
case OpAtomicExchange:
case OpAtomicCompareExchange:
case OpAtomicStore:
case OpAtomicIIncrement:
case OpAtomicIDecrement:
case OpAtomicIAdd:
case OpAtomicFAddEXT:
case OpAtomicISub:
case OpAtomicSMin:
case OpAtomicUMin:
case OpAtomicSMax:
case OpAtomicUMax:
case OpAtomicAnd:
case OpAtomicOr:
case OpAtomicXor:
case OpImageWrite:
{
if (needs_frag_discard_checks())
added_arg_ids.insert(builtin_helper_invocation_id);
uint32_t ptr = 0;
if (op == OpAtomicStore || op == OpImageWrite)
ptr = ops[0];
else
ptr = ops[2];
if (global_var_ids.find(ptr) != global_var_ids.end())
added_arg_ids.insert(ptr);
break;
}
// Emulate texture2D atomic operations
case OpImageTexelPointer:
{
// When using the pointer, we need to know which variable it is actually loaded from.
uint32_t base_id = ops[2];
auto *var = maybe_get_backing_variable(base_id);
if (var)
{
if (atomic_image_vars_emulated.count(var->self) &&
!get<SPIRType>(var->basetype).array.empty())
{
SPIRV_CROSS_THROW(
"Cannot emulate array of storage images with atomics. Use MSL 3.1 for native support.");
}
if (global_var_ids.find(base_id) != global_var_ids.end())
added_arg_ids.insert(base_id);
}
break;
}
case OpExtInst:
{
uint32_t extension_set = ops[2];
if (get<SPIRExtension>(extension_set).ext == SPIRExtension::GLSL)
{
auto op_450 = static_cast<GLSLstd450>(ops[3]);
switch (op_450)
{
case GLSLstd450InterpolateAtCentroid:
case GLSLstd450InterpolateAtSample:
case GLSLstd450InterpolateAtOffset:
{
// For these, we really need the stage-in block. It is theoretically possible to pass the
// interpolant object, but a) doing so would require us to create an entirely new variable
// with Interpolant type, and b) if we have a struct or array, handling all the members and
// elements could get unwieldy fast.
added_arg_ids.insert(stage_in_var_id);
break;
}
case GLSLstd450Modf:
case GLSLstd450Frexp:
{
uint32_t base_id = ops[5];
if (global_var_ids.find(base_id) != global_var_ids.end())
added_arg_ids.insert(base_id);
break;
}
default:
break;
}
}
break;
}
case OpGroupNonUniformInverseBallot:
{
added_arg_ids.insert(builtin_subgroup_invocation_id_id);
break;
}
case OpGroupNonUniformBallotFindLSB:
case OpGroupNonUniformBallotFindMSB:
{
added_arg_ids.insert(builtin_subgroup_size_id);
break;
}
case OpGroupNonUniformBallotBitCount:
{
auto operation = static_cast<GroupOperation>(ops[3]);
switch (operation)
{
case GroupOperationReduce:
added_arg_ids.insert(builtin_subgroup_size_id);
break;
case GroupOperationInclusiveScan:
case GroupOperationExclusiveScan:
added_arg_ids.insert(builtin_subgroup_invocation_id_id);
break;
default:
break;
}
break;
}
case OpDemoteToHelperInvocation:
if (needs_manual_helper_invocation_updates() &&
(active_input_builtins.get(BuiltInHelperInvocation) || needs_helper_invocation))
added_arg_ids.insert(builtin_helper_invocation_id);
break;
case OpIsHelperInvocationEXT:
if (needs_manual_helper_invocation_updates())
added_arg_ids.insert(builtin_helper_invocation_id);
break;
case OpRayQueryInitializeKHR:
case OpRayQueryProceedKHR:
case OpRayQueryTerminateKHR:
case OpRayQueryGenerateIntersectionKHR:
case OpRayQueryConfirmIntersectionKHR:
{
// Ray query accesses memory directly, need check pass down object if using Private storage class.
uint32_t base_id = ops[0];
if (global_var_ids.find(base_id) != global_var_ids.end())
added_arg_ids.insert(base_id);
break;
}
case OpRayQueryGetRayTMinKHR:
case OpRayQueryGetRayFlagsKHR:
case OpRayQueryGetWorldRayOriginKHR:
case OpRayQueryGetWorldRayDirectionKHR:
case OpRayQueryGetIntersectionCandidateAABBOpaqueKHR:
case OpRayQueryGetIntersectionTypeKHR:
case OpRayQueryGetIntersectionTKHR:
case OpRayQueryGetIntersectionInstanceCustomIndexKHR:
case OpRayQueryGetIntersectionInstanceIdKHR:
case OpRayQueryGetIntersectionInstanceShaderBindingTableRecordOffsetKHR:
case OpRayQueryGetIntersectionGeometryIndexKHR:
case OpRayQueryGetIntersectionPrimitiveIndexKHR:
case OpRayQueryGetIntersectionBarycentricsKHR:
case OpRayQueryGetIntersectionFrontFaceKHR:
case OpRayQueryGetIntersectionObjectRayDirectionKHR:
case OpRayQueryGetIntersectionObjectRayOriginKHR:
case OpRayQueryGetIntersectionObjectToWorldKHR:
case OpRayQueryGetIntersectionWorldToObjectKHR:
{
// Ray query accesses memory directly, need check pass down object if using Private storage class.
uint32_t base_id = ops[2];
if (global_var_ids.find(base_id) != global_var_ids.end())
added_arg_ids.insert(base_id);
break;
}
default:
break;
}
if (needs_manual_helper_invocation_updates() && b.terminator == SPIRBlock::Kill &&
(active_input_builtins.get(BuiltInHelperInvocation) || needs_helper_invocation))
added_arg_ids.insert(builtin_helper_invocation_id);
// TODO: Add all other operations which can affect memory.
// We should consider a more unified system here to reduce boiler-plate.
// This kind of analysis is done in several places ...
}
}
function_global_vars[func_id] = added_arg_ids;
// Add the global variables as arguments to the function
if (func_id != ir.default_entry_point)
{
bool control_point_added_in = false;
bool control_point_added_out = false;
bool patch_added_in = false;
bool patch_added_out = false;
for (uint32_t arg_id : added_arg_ids)
{
auto &var = get<SPIRVariable>(arg_id);
uint32_t type_id = var.basetype;
auto *p_type = &get<SPIRType>(type_id);
BuiltIn bi_type = BuiltIn(get_decoration(arg_id, DecorationBuiltIn));
bool is_patch = has_decoration(arg_id, DecorationPatch) || is_patch_block(*p_type);
bool is_block = has_decoration(p_type->self, DecorationBlock);
bool is_control_point_storage =
!is_patch && ((is_tessellation_shader() && var.storage == StorageClassInput) ||
(is_tesc_shader() && var.storage == StorageClassOutput));
bool is_patch_block_storage = is_patch && is_block && var.storage == StorageClassOutput;
bool is_builtin = is_builtin_variable(var);
bool variable_is_stage_io =
!is_builtin || bi_type == BuiltInPosition || bi_type == BuiltInPointSize ||
bi_type == BuiltInClipDistance || bi_type == BuiltInCullDistance ||
p_type->basetype == SPIRType::Struct;
bool is_redirected_to_global_stage_io = (is_control_point_storage || is_patch_block_storage) &&
variable_is_stage_io;
// If output is masked it is not considered part of the global stage IO interface.
if (is_redirected_to_global_stage_io && var.storage == StorageClassOutput)
is_redirected_to_global_stage_io = !is_stage_output_variable_masked(var);
if (is_redirected_to_global_stage_io)
{
// Tessellation control shaders see inputs and per-point outputs as arrays.
// Similarly, tessellation evaluation shaders see per-point inputs as arrays.
// We collected them into a structure; we must pass the array of this
// structure to the function.
std::string name;
if (is_patch)
name = var.storage == StorageClassInput ? patch_stage_in_var_name : patch_stage_out_var_name;
else
name = var.storage == StorageClassInput ? "gl_in" : "gl_out";
if (var.storage == StorageClassOutput && has_decoration(p_type->self, DecorationBlock))
{
// If we're redirecting a block, we might still need to access the original block
// variable if we're masking some members.
for (uint32_t mbr_idx = 0; mbr_idx < uint32_t(p_type->member_types.size()); mbr_idx++)
{
if (is_stage_output_block_member_masked(var, mbr_idx, true))
{
func.add_parameter(var.basetype, var.self, true);
break;
}
}
}
if (var.storage == StorageClassInput)
{
auto &added_in = is_patch ? patch_added_in : control_point_added_in;
if (added_in)
continue;
arg_id = is_patch ? patch_stage_in_var_id : stage_in_ptr_var_id;
added_in = true;
}
else if (var.storage == StorageClassOutput)
{
auto &added_out = is_patch ? patch_added_out : control_point_added_out;
if (added_out)
continue;
arg_id = is_patch ? patch_stage_out_var_id : stage_out_ptr_var_id;
added_out = true;
}
type_id = get<SPIRVariable>(arg_id).basetype;
uint32_t next_id = ir.increase_bound_by(1);
func.add_parameter(type_id, next_id, true);
set<SPIRVariable>(next_id, type_id, StorageClassFunction, 0, arg_id);
set_name(next_id, name);
if (is_tese_shader() && msl_options.raw_buffer_tese_input && var.storage == StorageClassInput)
set_decoration(next_id, DecorationNonWritable);
}
else if (is_builtin && has_decoration(p_type->self, DecorationBlock))
{
// Get the pointee type
type_id = get_pointee_type_id(type_id);
p_type = &get<SPIRType>(type_id);
uint32_t mbr_idx = 0;
for (auto &mbr_type_id : p_type->member_types)
{
BuiltIn builtin = BuiltInMax;
is_builtin = is_member_builtin(*p_type, mbr_idx, &builtin);
if (is_builtin && has_active_builtin(builtin, var.storage))
{
// Add a arg variable with the same type and decorations as the member
uint32_t next_ids = ir.increase_bound_by(2);
uint32_t ptr_type_id = next_ids + 0;
uint32_t var_id = next_ids + 1;
// Make sure we have an actual pointer type,
// so that we will get the appropriate address space when declaring these builtins.
auto &ptr = set<SPIRType>(ptr_type_id, get<SPIRType>(mbr_type_id));
ptr.self = mbr_type_id;
ptr.storage = var.storage;
ptr.pointer = true;
ptr.pointer_depth++;
ptr.parent_type = mbr_type_id;
func.add_parameter(mbr_type_id, var_id, true);
set<SPIRVariable>(var_id, ptr_type_id, StorageClassFunction);
ir.meta[var_id].decoration = ir.meta[type_id].members[mbr_idx];
}
mbr_idx++;
}
}
else
{
uint32_t next_id = ir.increase_bound_by(1);
func.add_parameter(type_id, next_id, true);
set<SPIRVariable>(next_id, type_id, StorageClassFunction, 0, arg_id);
// Ensure the new variable has all the same meta info
ir.meta[next_id] = ir.meta[arg_id];
}
}
}
}
// For all variables that are some form of non-input-output interface block, mark that all the structs
// that are recursively contained within the type referenced by that variable should be packed tightly.
void CompilerMSL::mark_packable_structs()
{
ir.for_each_typed_id<SPIRVariable>([&](uint32_t, SPIRVariable &var) {
if (var.storage != StorageClassFunction && !is_hidden_variable(var))
{
auto &type = this->get<SPIRType>(var.basetype);
if (type.pointer &&
(type.storage == StorageClassUniform || type.storage == StorageClassUniformConstant ||
type.storage == StorageClassPushConstant || type.storage == StorageClassStorageBuffer) &&
(has_decoration(type.self, DecorationBlock) || has_decoration(type.self, DecorationBufferBlock)))
mark_as_packable(type);
}
if (var.storage == StorageClassWorkgroup)
{
auto *type = &this->get<SPIRType>(var.basetype);
if (type->basetype == SPIRType::Struct)
mark_as_workgroup_struct(*type);
}
});
// Physical storage buffer pointers can appear outside of the context of a variable, if the address
// is calculated from a ulong or uvec2 and cast to a pointer, so check if they need to be packed too.
ir.for_each_typed_id<SPIRType>([&](uint32_t, SPIRType &type) {
if (type.basetype == SPIRType::Struct && type.pointer && type.storage == StorageClassPhysicalStorageBuffer)
mark_as_packable(type);
});
}
// If the specified type is a struct, it and any nested structs
// are marked as packable with the SPIRVCrossDecorationBufferBlockRepacked decoration,
void CompilerMSL::mark_as_packable(SPIRType &type)
{
// If this is not the base type (eg. it's a pointer or array), tunnel down
if (type.parent_type)
{
mark_as_packable(get<SPIRType>(type.parent_type));
return;
}
// Handle possible recursion when a struct contains a pointer to its own type nested somewhere.
if (type.basetype == SPIRType::Struct && !has_extended_decoration(type.self, SPIRVCrossDecorationBufferBlockRepacked))
{
set_extended_decoration(type.self, SPIRVCrossDecorationBufferBlockRepacked);
// Recurse
uint32_t mbr_cnt = uint32_t(type.member_types.size());
for (uint32_t mbr_idx = 0; mbr_idx < mbr_cnt; mbr_idx++)
{
uint32_t mbr_type_id = type.member_types[mbr_idx];
auto &mbr_type = get<SPIRType>(mbr_type_id);
mark_as_packable(mbr_type);
if (mbr_type.type_alias)
{
auto &mbr_type_alias = get<SPIRType>(mbr_type.type_alias);
mark_as_packable(mbr_type_alias);
}
}
}
}
// If the specified type is a struct, it and any nested structs
// are marked as used with workgroup storage using the SPIRVCrossDecorationWorkgroupStruct decoration.
void CompilerMSL::mark_as_workgroup_struct(SPIRType &type)
{
// If this is not the base type (eg. it's a pointer or array), tunnel down
if (type.parent_type)
{
mark_as_workgroup_struct(get<SPIRType>(type.parent_type));
return;
}
// Handle possible recursion when a struct contains a pointer to its own type nested somewhere.
if (type.basetype == SPIRType::Struct && !has_extended_decoration(type.self, SPIRVCrossDecorationWorkgroupStruct))
{
set_extended_decoration(type.self, SPIRVCrossDecorationWorkgroupStruct);
// Recurse
uint32_t mbr_cnt = uint32_t(type.member_types.size());
for (uint32_t mbr_idx = 0; mbr_idx < mbr_cnt; mbr_idx++)
{
uint32_t mbr_type_id = type.member_types[mbr_idx];
auto &mbr_type = get<SPIRType>(mbr_type_id);
mark_as_workgroup_struct(mbr_type);
if (mbr_type.type_alias)
{
auto &mbr_type_alias = get<SPIRType>(mbr_type.type_alias);
mark_as_workgroup_struct(mbr_type_alias);
}
}
}
}
// If a shader input exists at the location, it is marked as being used by this shader
void CompilerMSL::mark_location_as_used_by_shader(uint32_t location, const SPIRType &type,
StorageClass storage, bool fallback)
{
uint32_t count = type_to_location_count(type);
switch (storage)
{
case StorageClassInput:
for (uint32_t i = 0; i < count; i++)
{
location_inputs_in_use.insert(location + i);
if (fallback)
location_inputs_in_use_fallback.insert(location + i);
}
break;
case StorageClassOutput:
for (uint32_t i = 0; i < count; i++)
{
location_outputs_in_use.insert(location + i);
if (fallback)
location_outputs_in_use_fallback.insert(location + i);
}
break;
default:
return;
}
}
uint32_t CompilerMSL::get_target_components_for_fragment_location(uint32_t location) const
{
auto itr = fragment_output_components.find(location);
if (itr == end(fragment_output_components))
return 4;
else
return itr->second;
}
uint32_t CompilerMSL::build_extended_vector_type(uint32_t type_id, uint32_t components, SPIRType::BaseType basetype)
{
assert(components > 1);
uint32_t new_type_id = ir.increase_bound_by(1);
const auto *p_old_type = &get<SPIRType>(type_id);
const SPIRType *old_ptr_t = nullptr;
const SPIRType *old_array_t = nullptr;
if (is_pointer(*p_old_type))
{
old_ptr_t = p_old_type;
p_old_type = &get_pointee_type(*old_ptr_t);
}
if (is_array(*p_old_type))
{
old_array_t = p_old_type;
p_old_type = &get_type(old_array_t->parent_type);
}
auto *type = &set<SPIRType>(new_type_id, *p_old_type);
assert(is_scalar(*type) || is_vector(*type));
type->op = OpTypeVector;
type->vecsize = components;
if (basetype != SPIRType::Unknown)
type->basetype = basetype;
type->self = new_type_id;
type->parent_type = type_id;
type->array.clear();
type->array_size_literal.clear();
type->pointer = false;
if (old_array_t)
{
uint32_t array_type_id = ir.increase_bound_by(1);
type = &set<SPIRType>(array_type_id, *type);
type->op = OpTypeArray;
type->parent_type = new_type_id;
type->array = old_array_t->array;
type->array_size_literal = old_array_t->array_size_literal;
new_type_id = array_type_id;
}
if (old_ptr_t)
{
uint32_t ptr_type_id = ir.increase_bound_by(1);
type = &set<SPIRType>(ptr_type_id, *type);
type->op = OpTypePointer;
type->parent_type = new_type_id;
type->storage = old_ptr_t->storage;
type->pointer = true;
type->pointer_depth++;
new_type_id = ptr_type_id;
}
return new_type_id;
}
uint32_t CompilerMSL::build_msl_interpolant_type(uint32_t type_id, bool is_noperspective)
{
uint32_t new_type_id = ir.increase_bound_by(1);
SPIRType &type = set<SPIRType>(new_type_id, get<SPIRType>(type_id));
type.basetype = SPIRType::Interpolant;
type.parent_type = type_id;
// In Metal, the pull-model interpolant type encodes perspective-vs-no-perspective in the type itself.
// Add this decoration so we know which argument to pass to the template.
if (is_noperspective)
set_decoration(new_type_id, DecorationNoPerspective);
return new_type_id;
}
bool CompilerMSL::add_component_variable_to_interface_block(spv::StorageClass storage, const std::string &ib_var_ref,
SPIRVariable &var,
const SPIRType &type,
InterfaceBlockMeta &meta)
{
// Deal with Component decorations.
const InterfaceBlockMeta::LocationMeta *location_meta = nullptr;
uint32_t location = ~0u;
if (has_decoration(var.self, DecorationLocation))
{
location = get_decoration(var.self, DecorationLocation);
auto location_meta_itr = meta.location_meta.find(location);
if (location_meta_itr != end(meta.location_meta))
location_meta = &location_meta_itr->second;
}
// Check if we need to pad fragment output to match a certain number of components.
if (location_meta)
{
bool pad_fragment_output = has_decoration(var.self, DecorationLocation) &&
msl_options.pad_fragment_output_components &&
get_entry_point().model == ExecutionModelFragment && storage == StorageClassOutput;
auto &entry_func = get<SPIRFunction>(ir.default_entry_point);
uint32_t start_component = get_decoration(var.self, DecorationComponent);
uint32_t type_components = type.vecsize;
uint32_t num_components = location_meta->num_components;
if (pad_fragment_output)
{
uint32_t locn = get_decoration(var.self, DecorationLocation);
num_components = max<uint32_t>(num_components, get_target_components_for_fragment_location(locn));
}
// We have already declared an IO block member as m_location_N.
// Just emit an early-declared variable and fixup as needed.
// Arrays need to be unrolled here since each location might need a different number of components.
entry_func.add_local_variable(var.self);
vars_needing_early_declaration.push_back(var.self);
if (var.storage == StorageClassInput)
{
entry_func.fixup_hooks_in.push_back([=, &type, &var]() {
if (!type.array.empty())
{
uint32_t array_size = to_array_size_literal(type);
for (uint32_t loc_off = 0; loc_off < array_size; loc_off++)
{
statement(to_name(var.self), "[", loc_off, "]", " = ", ib_var_ref,
".m_location_", location + loc_off,
vector_swizzle(type_components, start_component), ";");
}
}
else
{
statement(to_name(var.self), " = ", ib_var_ref, ".m_location_", location,
vector_swizzle(type_components, start_component), ";");
}
});
}
else
{
entry_func.fixup_hooks_out.push_back([=, &type, &var]() {
if (!type.array.empty())
{
uint32_t array_size = to_array_size_literal(type);
for (uint32_t loc_off = 0; loc_off < array_size; loc_off++)
{
statement(ib_var_ref, ".m_location_", location + loc_off,
vector_swizzle(type_components, start_component), " = ",
to_name(var.self), "[", loc_off, "];");
}
}
else
{
statement(ib_var_ref, ".m_location_", location,
vector_swizzle(type_components, start_component), " = ", to_name(var.self), ";");
}
});
}
return true;
}
else
return false;
}
void CompilerMSL::add_plain_variable_to_interface_block(StorageClass storage, const string &ib_var_ref,
SPIRType &ib_type, SPIRVariable &var, InterfaceBlockMeta &meta)
{
bool is_builtin = is_builtin_variable(var);
BuiltIn builtin = BuiltIn(get_decoration(var.self, DecorationBuiltIn));
bool is_flat = has_decoration(var.self, DecorationFlat);
bool is_noperspective = has_decoration(var.self, DecorationNoPerspective);
bool is_centroid = has_decoration(var.self, DecorationCentroid);
bool is_sample = has_decoration(var.self, DecorationSample);
// Add a reference to the variable type to the interface struct.
uint32_t ib_mbr_idx = uint32_t(ib_type.member_types.size());
uint32_t type_id = ensure_correct_builtin_type(var.basetype, builtin);
var.basetype = type_id;
type_id = get_pointee_type_id(var.basetype);
if (meta.strip_array && is_array(get<SPIRType>(type_id)))
type_id = get<SPIRType>(type_id).parent_type;
auto &type = get<SPIRType>(type_id);
uint32_t target_components = 0;
uint32_t type_components = type.vecsize;
bool padded_output = false;
bool padded_input = false;
uint32_t start_component = 0;
auto &entry_func = get<SPIRFunction>(ir.default_entry_point);
if (add_component_variable_to_interface_block(storage, ib_var_ref, var, type, meta))
return;
bool pad_fragment_output = has_decoration(var.self, DecorationLocation) &&
msl_options.pad_fragment_output_components &&
get_entry_point().model == ExecutionModelFragment && storage == StorageClassOutput;
if (pad_fragment_output)
{
uint32_t locn = get_decoration(var.self, DecorationLocation);
target_components = get_target_components_for_fragment_location(locn);
if (type_components < target_components)
{
// Make a new type here.
type_id = build_extended_vector_type(type_id, target_components);
padded_output = true;
}
}
if (storage == StorageClassInput && pull_model_inputs.count(var.self))
ib_type.member_types.push_back(build_msl_interpolant_type(type_id, is_noperspective));
else
ib_type.member_types.push_back(type_id);
// Give the member a name
string mbr_name = ensure_valid_name(to_expression(var.self), "m");
set_member_name(ib_type.self, ib_mbr_idx, mbr_name);
// Update the original variable reference to include the structure reference
string qual_var_name = ib_var_ref + "." + mbr_name;
// If using pull-model interpolation, need to add a call to the correct interpolation method.
if (storage == StorageClassInput && pull_model_inputs.count(var.self))
{
if (is_centroid)
qual_var_name += ".interpolate_at_centroid()";
else if (is_sample)
qual_var_name += join(".interpolate_at_sample(", to_expression(builtin_sample_id_id), ")");
else
qual_var_name += ".interpolate_at_center()";
}
if (padded_output || padded_input)
{
entry_func.add_local_variable(var.self);
vars_needing_early_declaration.push_back(var.self);
if (padded_output)
{
entry_func.fixup_hooks_out.push_back([=, &var]() {
statement(qual_var_name, vector_swizzle(type_components, start_component), " = ", to_name(var.self),
";");
});
}
else
{
entry_func.fixup_hooks_in.push_back([=, &var]() {
statement(to_name(var.self), " = ", qual_var_name, vector_swizzle(type_components, start_component),
";");
});
}
}
else if (!meta.strip_array)
ir.meta[var.self].decoration.qualified_alias = qual_var_name;
if (var.storage == StorageClassOutput && var.initializer != ID(0))
{
if (padded_output || padded_input)
{
entry_func.fixup_hooks_in.push_back(
[=, &var]() { statement(to_name(var.self), " = ", to_expression(var.initializer), ";"); });
}
else
{
if (meta.strip_array)
{
entry_func.fixup_hooks_in.push_back([=, &var]() {
uint32_t index = get_extended_decoration(var.self, SPIRVCrossDecorationInterfaceMemberIndex);
auto invocation = to_tesc_invocation_id();
statement(to_expression(stage_out_ptr_var_id), "[",
invocation, "].",
to_member_name(ib_type, index), " = ", to_expression(var.initializer), "[",
invocation, "];");
});
}
else
{
entry_func.fixup_hooks_in.push_back([=, &var]() {
statement(qual_var_name, " = ", to_expression(var.initializer), ";");
});
}
}
}
// Copy the variable location from the original variable to the member
if (get_decoration_bitset(var.self).get(DecorationLocation))
{
uint32_t locn = get_decoration(var.self, DecorationLocation);
uint32_t comp = get_decoration(var.self, DecorationComponent);
if (storage == StorageClassInput)
{
type_id = ensure_correct_input_type(var.basetype, locn, comp, 0, meta.strip_array);
var.basetype = type_id;
type_id = get_pointee_type_id(type_id);
if (meta.strip_array && is_array(get<SPIRType>(type_id)))
type_id = get<SPIRType>(type_id).parent_type;
if (pull_model_inputs.count(var.self))
ib_type.member_types[ib_mbr_idx] = build_msl_interpolant_type(type_id, is_noperspective);
else
ib_type.member_types[ib_mbr_idx] = type_id;
}
set_member_decoration(ib_type.self, ib_mbr_idx, DecorationLocation, locn);
if (comp)
set_member_decoration(ib_type.self, ib_mbr_idx, DecorationComponent, comp);
mark_location_as_used_by_shader(locn, get<SPIRType>(type_id), storage);
}
else if (is_builtin && is_tessellation_shader() && storage == StorageClassInput && inputs_by_builtin.count(builtin))
{
uint32_t locn = inputs_by_builtin[builtin].location;
set_member_decoration(ib_type.self, ib_mbr_idx, DecorationLocation, locn);
mark_location_as_used_by_shader(locn, type, storage);
}
else if (is_builtin && capture_output_to_buffer && storage == StorageClassOutput && outputs_by_builtin.count(builtin))
{
uint32_t locn = outputs_by_builtin[builtin].location;
set_member_decoration(ib_type.self, ib_mbr_idx, DecorationLocation, locn);
mark_location_as_used_by_shader(locn, type, storage);
}
if (get_decoration_bitset(var.self).get(DecorationComponent))
{
uint32_t component = get_decoration(var.self, DecorationComponent);
set_member_decoration(ib_type.self, ib_mbr_idx, DecorationComponent, component);
}
if (get_decoration_bitset(var.self).get(DecorationIndex))
{
uint32_t index = get_decoration(var.self, DecorationIndex);
set_member_decoration(ib_type.self, ib_mbr_idx, DecorationIndex, index);
}
// Mark the member as builtin if needed
if (is_builtin)
{
set_member_decoration(ib_type.self, ib_mbr_idx, DecorationBuiltIn, builtin);
if (builtin == BuiltInPosition && storage == StorageClassOutput)
qual_pos_var_name = qual_var_name;
}
// Copy interpolation decorations if needed
if (storage != StorageClassInput || !pull_model_inputs.count(var.self))
{
if (is_flat)
set_member_decoration(ib_type.self, ib_mbr_idx, DecorationFlat);
if (is_noperspective)
set_member_decoration(ib_type.self, ib_mbr_idx, DecorationNoPerspective);
if (is_centroid)
set_member_decoration(ib_type.self, ib_mbr_idx, DecorationCentroid);
if (is_sample)
set_member_decoration(ib_type.self, ib_mbr_idx, DecorationSample);
}
set_extended_member_decoration(ib_type.self, ib_mbr_idx, SPIRVCrossDecorationInterfaceOrigID, var.self);
}
void CompilerMSL::add_composite_variable_to_interface_block(StorageClass storage, const string &ib_var_ref,
SPIRType &ib_type, SPIRVariable &var,
InterfaceBlockMeta &meta)
{
auto &entry_func = get<SPIRFunction>(ir.default_entry_point);
auto &var_type = meta.strip_array ? get_variable_element_type(var) : get_variable_data_type(var);
uint32_t elem_cnt = 0;
if (add_component_variable_to_interface_block(storage, ib_var_ref, var, var_type, meta))
return;
if (is_matrix(var_type))
{
if (is_array(var_type))
SPIRV_CROSS_THROW("MSL cannot emit arrays-of-matrices in input and output variables.");
elem_cnt = var_type.columns;
}
else if (is_array(var_type))
{
if (var_type.array.size() != 1)
SPIRV_CROSS_THROW("MSL cannot emit arrays-of-arrays in input and output variables.");
elem_cnt = to_array_size_literal(var_type);
}
bool is_builtin = is_builtin_variable(var);
BuiltIn builtin = BuiltIn(get_decoration(var.self, DecorationBuiltIn));
bool is_flat = has_decoration(var.self, DecorationFlat);
bool is_noperspective = has_decoration(var.self, DecorationNoPerspective);
bool is_centroid = has_decoration(var.self, DecorationCentroid);
bool is_sample = has_decoration(var.self, DecorationSample);
auto *usable_type = &var_type;
if (usable_type->pointer)
usable_type = &get<SPIRType>(usable_type->parent_type);
while (is_array(*usable_type) || is_matrix(*usable_type))
usable_type = &get<SPIRType>(usable_type->parent_type);
// If a builtin, force it to have the proper name.
if (is_builtin)
set_name(var.self, builtin_to_glsl(builtin, StorageClassFunction));
bool flatten_from_ib_var = false;
string flatten_from_ib_mbr_name;
if (storage == StorageClassOutput && is_builtin && builtin == BuiltInClipDistance)
{
// Also declare [[clip_distance]] attribute here.
uint32_t clip_array_mbr_idx = uint32_t(ib_type.member_types.size());
ib_type.member_types.push_back(get_variable_data_type_id(var));
set_member_decoration(ib_type.self, clip_array_mbr_idx, DecorationBuiltIn, BuiltInClipDistance);
flatten_from_ib_mbr_name = builtin_to_glsl(BuiltInClipDistance, StorageClassOutput);
set_member_name(ib_type.self, clip_array_mbr_idx, flatten_from_ib_mbr_name);
// When we flatten, we flatten directly from the "out" struct,
// not from a function variable.
flatten_from_ib_var = true;
if (!msl_options.enable_clip_distance_user_varying)
return;
}
else if (!meta.strip_array)
{
// Only flatten/unflatten IO composites for non-tessellation cases where arrays are not stripped.
entry_func.add_local_variable(var.self);
// We need to declare the variable early and at entry-point scope.
vars_needing_early_declaration.push_back(var.self);
}
for (uint32_t i = 0; i < elem_cnt; i++)
{
// Add a reference to the variable type to the interface struct.
uint32_t ib_mbr_idx = uint32_t(ib_type.member_types.size());
uint32_t target_components = 0;
bool padded_output = false;
uint32_t type_id = usable_type->self;
// Check if we need to pad fragment output to match a certain number of components.
if (get_decoration_bitset(var.self).get(DecorationLocation) && msl_options.pad_fragment_output_components &&
get_entry_point().model == ExecutionModelFragment && storage == StorageClassOutput)
{
uint32_t locn = get_decoration(var.self, DecorationLocation) + i;
target_components = get_target_components_for_fragment_location(locn);
if (usable_type->vecsize < target_components)
{
// Make a new type here.
type_id = build_extended_vector_type(usable_type->self, target_components);
padded_output = true;
}
}
if (storage == StorageClassInput && pull_model_inputs.count(var.self))
ib_type.member_types.push_back(build_msl_interpolant_type(get_pointee_type_id(type_id), is_noperspective));
else
ib_type.member_types.push_back(get_pointee_type_id(type_id));
// Give the member a name
string mbr_name = ensure_valid_name(join(to_expression(var.self), "_", i), "m");
set_member_name(ib_type.self, ib_mbr_idx, mbr_name);
// There is no qualified alias since we need to flatten the internal array on return.
if (get_decoration_bitset(var.self).get(DecorationLocation))
{
uint32_t locn = get_decoration(var.self, DecorationLocation) + i;
uint32_t comp = get_decoration(var.self, DecorationComponent);
if (storage == StorageClassInput)
{
var.basetype = ensure_correct_input_type(var.basetype, locn, comp, 0, meta.strip_array);
uint32_t mbr_type_id = ensure_correct_input_type(usable_type->self, locn, comp, 0, meta.strip_array);
if (storage == StorageClassInput && pull_model_inputs.count(var.self))
ib_type.member_types[ib_mbr_idx] = build_msl_interpolant_type(mbr_type_id, is_noperspective);
else
ib_type.member_types[ib_mbr_idx] = mbr_type_id;
}
set_member_decoration(ib_type.self, ib_mbr_idx, DecorationLocation, locn);
if (comp)
set_member_decoration(ib_type.self, ib_mbr_idx, DecorationComponent, comp);
mark_location_as_used_by_shader(locn, *usable_type, storage);
}
else if (is_builtin && is_tessellation_shader() && storage == StorageClassInput && inputs_by_builtin.count(builtin))
{
uint32_t locn = inputs_by_builtin[builtin].location + i;
set_member_decoration(ib_type.self, ib_mbr_idx, DecorationLocation, locn);
mark_location_as_used_by_shader(locn, *usable_type, storage);
}
else if (is_builtin && capture_output_to_buffer && storage == StorageClassOutput && outputs_by_builtin.count(builtin))
{
uint32_t locn = outputs_by_builtin[builtin].location + i;
set_member_decoration(ib_type.self, ib_mbr_idx, DecorationLocation, locn);
mark_location_as_used_by_shader(locn, *usable_type, storage);
}
else if (is_builtin && (builtin == BuiltInClipDistance || builtin == BuiltInCullDistance))
{
// Declare the Clip/CullDistance as [[user(clip/cullN)]].
set_member_decoration(ib_type.self, ib_mbr_idx, DecorationBuiltIn, builtin);
set_member_decoration(ib_type.self, ib_mbr_idx, DecorationIndex, i);
}
if (get_decoration_bitset(var.self).get(DecorationIndex))
{
uint32_t index = get_decoration(var.self, DecorationIndex);
set_member_decoration(ib_type.self, ib_mbr_idx, DecorationIndex, index);
}
if (storage != StorageClassInput || !pull_model_inputs.count(var.self))
{
// Copy interpolation decorations if needed
if (is_flat)
set_member_decoration(ib_type.self, ib_mbr_idx, DecorationFlat);
if (is_noperspective)
set_member_decoration(ib_type.self, ib_mbr_idx, DecorationNoPerspective);
if (is_centroid)
set_member_decoration(ib_type.self, ib_mbr_idx, DecorationCentroid);
if (is_sample)
set_member_decoration(ib_type.self, ib_mbr_idx, DecorationSample);
}
set_extended_member_decoration(ib_type.self, ib_mbr_idx, SPIRVCrossDecorationInterfaceOrigID, var.self);
// Only flatten/unflatten IO composites for non-tessellation cases where arrays are not stripped.
if (!meta.strip_array)
{
switch (storage)
{
case StorageClassInput:
entry_func.fixup_hooks_in.push_back([=, &var]() {
if (pull_model_inputs.count(var.self))
{
string lerp_call;
if (is_centroid)
lerp_call = ".interpolate_at_centroid()";
else if (is_sample)
lerp_call = join(".interpolate_at_sample(", to_expression(builtin_sample_id_id), ")");
else
lerp_call = ".interpolate_at_center()";
statement(to_name(var.self), "[", i, "] = ", ib_var_ref, ".", mbr_name, lerp_call, ";");
}
else
{
statement(to_name(var.self), "[", i, "] = ", ib_var_ref, ".", mbr_name, ";");
}
});
break;
case StorageClassOutput:
entry_func.fixup_hooks_out.push_back([=, &var]() {
if (padded_output)
{
auto &padded_type = this->get<SPIRType>(type_id);
statement(
ib_var_ref, ".", mbr_name, " = ",
remap_swizzle(padded_type, usable_type->vecsize, join(to_name(var.self), "[", i, "]")),
";");
}
else if (flatten_from_ib_var)
statement(ib_var_ref, ".", mbr_name, " = ", ib_var_ref, ".", flatten_from_ib_mbr_name, "[", i,
"];");
else
statement(ib_var_ref, ".", mbr_name, " = ", to_name(var.self), "[", i, "];");
});
break;
default:
break;
}
}
}
}
void CompilerMSL::add_composite_member_variable_to_interface_block(StorageClass storage,
const string &ib_var_ref, SPIRType &ib_type,
SPIRVariable &var, SPIRType &var_type,
uint32_t mbr_idx, InterfaceBlockMeta &meta,
const string &mbr_name_qual,
const string &var_chain_qual,
uint32_t &location, uint32_t &var_mbr_idx)
{
auto &entry_func = get<SPIRFunction>(ir.default_entry_point);
BuiltIn builtin = BuiltInMax;
bool is_builtin = is_member_builtin(var_type, mbr_idx, &builtin);
bool is_flat =
has_member_decoration(var_type.self, mbr_idx, DecorationFlat) || has_decoration(var.self, DecorationFlat);
bool is_noperspective = has_member_decoration(var_type.self, mbr_idx, DecorationNoPerspective) ||
has_decoration(var.self, DecorationNoPerspective);
bool is_centroid = has_member_decoration(var_type.self, mbr_idx, DecorationCentroid) ||
has_decoration(var.self, DecorationCentroid);
bool is_sample =
has_member_decoration(var_type.self, mbr_idx, DecorationSample) || has_decoration(var.self, DecorationSample);
uint32_t mbr_type_id = var_type.member_types[mbr_idx];
auto &mbr_type = get<SPIRType>(mbr_type_id);
bool mbr_is_indexable = false;
uint32_t elem_cnt = 1;
if (is_matrix(mbr_type))
{
if (is_array(mbr_type))
SPIRV_CROSS_THROW("MSL cannot emit arrays-of-matrices in input and output variables.");
mbr_is_indexable = true;
elem_cnt = mbr_type.columns;
}
else if (is_array(mbr_type))
{
if (mbr_type.array.size() != 1)
SPIRV_CROSS_THROW("MSL cannot emit arrays-of-arrays in input and output variables.");
mbr_is_indexable = true;
elem_cnt = to_array_size_literal(mbr_type);
}
auto *usable_type = &mbr_type;
if (usable_type->pointer)
usable_type = &get<SPIRType>(usable_type->parent_type);
while (is_array(*usable_type) || is_matrix(*usable_type))
usable_type = &get<SPIRType>(usable_type->parent_type);
bool flatten_from_ib_var = false;
string flatten_from_ib_mbr_name;
if (storage == StorageClassOutput && is_builtin && builtin == BuiltInClipDistance)
{
// Also declare [[clip_distance]] attribute here.
uint32_t clip_array_mbr_idx = uint32_t(ib_type.member_types.size());
ib_type.member_types.push_back(mbr_type_id);
set_member_decoration(ib_type.self, clip_array_mbr_idx, DecorationBuiltIn, BuiltInClipDistance);
flatten_from_ib_mbr_name = builtin_to_glsl(BuiltInClipDistance, StorageClassOutput);
set_member_name(ib_type.self, clip_array_mbr_idx, flatten_from_ib_mbr_name);
// When we flatten, we flatten directly from the "out" struct,
// not from a function variable.
flatten_from_ib_var = true;
if (!msl_options.enable_clip_distance_user_varying)
return;
}
// Recursively handle nested structures.
if (mbr_type.basetype == SPIRType::Struct)
{
for (uint32_t i = 0; i < elem_cnt; i++)
{
string mbr_name = append_member_name(mbr_name_qual, var_type, mbr_idx) + (mbr_is_indexable ? join("_", i) : "");
string var_chain = join(var_chain_qual, ".", to_member_name(var_type, mbr_idx), (mbr_is_indexable ? join("[", i, "]") : ""));
uint32_t sub_mbr_cnt = uint32_t(mbr_type.member_types.size());
for (uint32_t sub_mbr_idx = 0; sub_mbr_idx < sub_mbr_cnt; sub_mbr_idx++)
{
add_composite_member_variable_to_interface_block(storage, ib_var_ref, ib_type,
var, mbr_type, sub_mbr_idx,
meta, mbr_name, var_chain,
location, var_mbr_idx);
// FIXME: Recursive structs and tessellation breaks here.
var_mbr_idx++;
}
}
return;
}
for (uint32_t i = 0; i < elem_cnt; i++)
{
// Add a reference to the variable type to the interface struct.
uint32_t ib_mbr_idx = uint32_t(ib_type.member_types.size());
if (storage == StorageClassInput && pull_model_inputs.count(var.self))
ib_type.member_types.push_back(build_msl_interpolant_type(usable_type->self, is_noperspective));
else
ib_type.member_types.push_back(usable_type->self);
// Give the member a name
string mbr_name = ensure_valid_name(append_member_name(mbr_name_qual, var_type, mbr_idx) + (mbr_is_indexable ? join("_", i) : ""), "m");
set_member_name(ib_type.self, ib_mbr_idx, mbr_name);
// Once we determine the location of the first member within nested structures,
// from a var of the topmost structure, the remaining flattened members of
// the nested structures will have consecutive location values. At this point,
// we've recursively tunnelled into structs, arrays, and matrices, and are
// down to a single location for each member now.
if (!is_builtin && location != UINT32_MAX)
{
set_member_decoration(ib_type.self, ib_mbr_idx, DecorationLocation, location);
mark_location_as_used_by_shader(location, *usable_type, storage);
location++;
}
else if (has_member_decoration(var_type.self, mbr_idx, DecorationLocation))
{
location = get_member_decoration(var_type.self, mbr_idx, DecorationLocation) + i;
set_member_decoration(ib_type.self, ib_mbr_idx, DecorationLocation, location);
mark_location_as_used_by_shader(location, *usable_type, storage);
location++;
}
else if (has_decoration(var.self, DecorationLocation))
{
location = get_accumulated_member_location(var, mbr_idx, meta.strip_array) + i;
set_member_decoration(ib_type.self, ib_mbr_idx, DecorationLocation, location);
mark_location_as_used_by_shader(location, *usable_type, storage);
location++;
}
else if (is_builtin && is_tessellation_shader() && storage == StorageClassInput && inputs_by_builtin.count(builtin))
{
location = inputs_by_builtin[builtin].location + i;
set_member_decoration(ib_type.self, ib_mbr_idx, DecorationLocation, location);
mark_location_as_used_by_shader(location, *usable_type, storage);
location++;
}
else if (is_builtin && capture_output_to_buffer && storage == StorageClassOutput && outputs_by_builtin.count(builtin))
{
location = outputs_by_builtin[builtin].location + i;
set_member_decoration(ib_type.self, ib_mbr_idx, DecorationLocation, location);
mark_location_as_used_by_shader(location, *usable_type, storage);
location++;
}
else if (is_builtin && (builtin == BuiltInClipDistance || builtin == BuiltInCullDistance))
{
// Declare the Clip/CullDistance as [[user(clip/cullN)]].
set_member_decoration(ib_type.self, ib_mbr_idx, DecorationBuiltIn, builtin);
set_member_decoration(ib_type.self, ib_mbr_idx, DecorationIndex, i);
}
if (has_member_decoration(var_type.self, mbr_idx, DecorationComponent))
SPIRV_CROSS_THROW("DecorationComponent on matrices and arrays is not supported.");
if (storage != StorageClassInput || !pull_model_inputs.count(var.self))
{
// Copy interpolation decorations if needed
if (is_flat)
set_member_decoration(ib_type.self, ib_mbr_idx, DecorationFlat);
if (is_noperspective)
set_member_decoration(ib_type.self, ib_mbr_idx, DecorationNoPerspective);
if (is_centroid)
set_member_decoration(ib_type.self, ib_mbr_idx, DecorationCentroid);
if (is_sample)
set_member_decoration(ib_type.self, ib_mbr_idx, DecorationSample);
}
set_extended_member_decoration(ib_type.self, ib_mbr_idx, SPIRVCrossDecorationInterfaceOrigID, var.self);
set_extended_member_decoration(ib_type.self, ib_mbr_idx, SPIRVCrossDecorationInterfaceMemberIndex, var_mbr_idx);
// Unflatten or flatten from [[stage_in]] or [[stage_out]] as appropriate.
if (!meta.strip_array && meta.allow_local_declaration)
{
string var_chain = join(var_chain_qual, ".", to_member_name(var_type, mbr_idx), (mbr_is_indexable ? join("[", i, "]") : ""));
switch (storage)
{
case StorageClassInput:
entry_func.fixup_hooks_in.push_back([=, &var]() {
string lerp_call;
if (pull_model_inputs.count(var.self))
{
if (is_centroid)
lerp_call = ".interpolate_at_centroid()";
else if (is_sample)
lerp_call = join(".interpolate_at_sample(", to_expression(builtin_sample_id_id), ")");
else
lerp_call = ".interpolate_at_center()";
}
statement(var_chain, " = ", ib_var_ref, ".", mbr_name, lerp_call, ";");
});
break;
case StorageClassOutput:
entry_func.fixup_hooks_out.push_back([=]() {
if (flatten_from_ib_var)
statement(ib_var_ref, ".", mbr_name, " = ", ib_var_ref, ".", flatten_from_ib_mbr_name, "[", i, "];");
else
statement(ib_var_ref, ".", mbr_name, " = ", var_chain, ";");
});
break;
default:
break;
}
}
}
}
void CompilerMSL::add_plain_member_variable_to_interface_block(StorageClass storage,
const string &ib_var_ref, SPIRType &ib_type,
SPIRVariable &var, SPIRType &var_type,
uint32_t mbr_idx, InterfaceBlockMeta &meta,
const string &mbr_name_qual,
const string &var_chain_qual,
uint32_t &location, uint32_t &var_mbr_idx)
{
auto &entry_func = get<SPIRFunction>(ir.default_entry_point);
BuiltIn builtin = BuiltInMax;
bool is_builtin = is_member_builtin(var_type, mbr_idx, &builtin);
bool is_flat =
has_member_decoration(var_type.self, mbr_idx, DecorationFlat) || has_decoration(var.self, DecorationFlat);
bool is_noperspective = has_member_decoration(var_type.self, mbr_idx, DecorationNoPerspective) ||
has_decoration(var.self, DecorationNoPerspective);
bool is_centroid = has_member_decoration(var_type.self, mbr_idx, DecorationCentroid) ||
has_decoration(var.self, DecorationCentroid);
bool is_sample =
has_member_decoration(var_type.self, mbr_idx, DecorationSample) || has_decoration(var.self, DecorationSample);
// Add a reference to the member to the interface struct.
uint32_t mbr_type_id = var_type.member_types[mbr_idx];
uint32_t ib_mbr_idx = uint32_t(ib_type.member_types.size());
mbr_type_id = ensure_correct_builtin_type(mbr_type_id, builtin);
var_type.member_types[mbr_idx] = mbr_type_id;
if (storage == StorageClassInput && pull_model_inputs.count(var.self))
ib_type.member_types.push_back(build_msl_interpolant_type(mbr_type_id, is_noperspective));
else
ib_type.member_types.push_back(mbr_type_id);
// Give the member a name
string mbr_name = ensure_valid_name(append_member_name(mbr_name_qual, var_type, mbr_idx), "m");
set_member_name(ib_type.self, ib_mbr_idx, mbr_name);
// Update the original variable reference to include the structure reference
string qual_var_name = ib_var_ref + "." + mbr_name;
// If using pull-model interpolation, need to add a call to the correct interpolation method.
if (storage == StorageClassInput && pull_model_inputs.count(var.self))
{
if (is_centroid)
qual_var_name += ".interpolate_at_centroid()";
else if (is_sample)
qual_var_name += join(".interpolate_at_sample(", to_expression(builtin_sample_id_id), ")");
else
qual_var_name += ".interpolate_at_center()";
}
bool flatten_stage_out = false;
string var_chain = var_chain_qual + "." + to_member_name(var_type, mbr_idx);
if (is_builtin && !meta.strip_array)
{
// For the builtin gl_PerVertex, we cannot treat it as a block anyways,
// so redirect to qualified name.
set_member_qualified_name(var_type.self, mbr_idx, qual_var_name);
}
else if (!meta.strip_array && meta.allow_local_declaration)
{
// Unflatten or flatten from [[stage_in]] or [[stage_out]] as appropriate.
switch (storage)
{
case StorageClassInput:
entry_func.fixup_hooks_in.push_back([=]() {
statement(var_chain, " = ", qual_var_name, ";");
});
break;
case StorageClassOutput:
flatten_stage_out = true;
entry_func.fixup_hooks_out.push_back([=]() {
statement(qual_var_name, " = ", var_chain, ";");
});
break;
default:
break;
}
}
// Once we determine the location of the first member within nested structures,
// from a var of the topmost structure, the remaining flattened members of
// the nested structures will have consecutive location values. At this point,
// we've recursively tunnelled into structs, arrays, and matrices, and are
// down to a single location for each member now.
if (!is_builtin && location != UINT32_MAX)
{
set_member_decoration(ib_type.self, ib_mbr_idx, DecorationLocation, location);
mark_location_as_used_by_shader(location, get<SPIRType>(mbr_type_id), storage);
location += type_to_location_count(get<SPIRType>(mbr_type_id));
}
else if (has_member_decoration(var_type.self, mbr_idx, DecorationLocation))
{
location = get_member_decoration(var_type.self, mbr_idx, DecorationLocation);
uint32_t comp = get_member_decoration(var_type.self, mbr_idx, DecorationComponent);
if (storage == StorageClassInput)
{
mbr_type_id = ensure_correct_input_type(mbr_type_id, location, comp, 0, meta.strip_array);
var_type.member_types[mbr_idx] = mbr_type_id;
if (storage == StorageClassInput && pull_model_inputs.count(var.self))
ib_type.member_types[ib_mbr_idx] = build_msl_interpolant_type(mbr_type_id, is_noperspective);
else
ib_type.member_types[ib_mbr_idx] = mbr_type_id;
}
set_member_decoration(ib_type.self, ib_mbr_idx, DecorationLocation, location);
mark_location_as_used_by_shader(location, get<SPIRType>(mbr_type_id), storage);
location += type_to_location_count(get<SPIRType>(mbr_type_id));
}
else if (has_decoration(var.self, DecorationLocation))
{
location = get_accumulated_member_location(var, mbr_idx, meta.strip_array);
if (storage == StorageClassInput)
{
mbr_type_id = ensure_correct_input_type(mbr_type_id, location, 0, 0, meta.strip_array);
var_type.member_types[mbr_idx] = mbr_type_id;
if (storage == StorageClassInput && pull_model_inputs.count(var.self))
ib_type.member_types[ib_mbr_idx] = build_msl_interpolant_type(mbr_type_id, is_noperspective);
else
ib_type.member_types[ib_mbr_idx] = mbr_type_id;
}
set_member_decoration(ib_type.self, ib_mbr_idx, DecorationLocation, location);
mark_location_as_used_by_shader(location, get<SPIRType>(mbr_type_id), storage);
location += type_to_location_count(get<SPIRType>(mbr_type_id));
}
else if (is_builtin && is_tessellation_shader() && storage == StorageClassInput && inputs_by_builtin.count(builtin))
{
location = inputs_by_builtin[builtin].location;
set_member_decoration(ib_type.self, ib_mbr_idx, DecorationLocation, location);
mark_location_as_used_by_shader(location, get<SPIRType>(mbr_type_id), storage);
location += type_to_location_count(get<SPIRType>(mbr_type_id));
}
else if (is_builtin && capture_output_to_buffer && storage == StorageClassOutput && outputs_by_builtin.count(builtin))
{
location = outputs_by_builtin[builtin].location;
set_member_decoration(ib_type.self, ib_mbr_idx, DecorationLocation, location);
mark_location_as_used_by_shader(location, get<SPIRType>(mbr_type_id), storage);
location += type_to_location_count(get<SPIRType>(mbr_type_id));
}
// Copy the component location, if present.
if (has_member_decoration(var_type.self, mbr_idx, DecorationComponent))
{
uint32_t comp = get_member_decoration(var_type.self, mbr_idx, DecorationComponent);
set_member_decoration(ib_type.self, ib_mbr_idx, DecorationComponent, comp);
}
// Mark the member as builtin if needed
if (is_builtin)
{
set_member_decoration(ib_type.self, ib_mbr_idx, DecorationBuiltIn, builtin);
if (builtin == BuiltInPosition && storage == StorageClassOutput)
qual_pos_var_name = qual_var_name;
}
const SPIRConstant *c = nullptr;
if (!flatten_stage_out && var.storage == StorageClassOutput &&
var.initializer != ID(0) && (c = maybe_get<SPIRConstant>(var.initializer)))
{
if (meta.strip_array)
{
entry_func.fixup_hooks_in.push_back([=, &var]() {
auto &type = this->get<SPIRType>(var.basetype);
uint32_t index = get_extended_member_decoration(var.self, mbr_idx, SPIRVCrossDecorationInterfaceMemberIndex);
auto invocation = to_tesc_invocation_id();
auto constant_chain = join(to_expression(var.initializer), "[", invocation, "]");
statement(to_expression(stage_out_ptr_var_id), "[",
invocation, "].",
to_member_name(ib_type, index), " = ",
constant_chain, ".", to_member_name(type, mbr_idx), ";");
});
}
else
{
entry_func.fixup_hooks_in.push_back([=]() {
statement(qual_var_name, " = ", constant_expression(
this->get<SPIRConstant>(c->subconstants[mbr_idx])), ";");
});
}
}
if (storage != StorageClassInput || !pull_model_inputs.count(var.self))
{
// Copy interpolation decorations if needed
if (is_flat)
set_member_decoration(ib_type.self, ib_mbr_idx, DecorationFlat);
if (is_noperspective)
set_member_decoration(ib_type.self, ib_mbr_idx, DecorationNoPerspective);
if (is_centroid)
set_member_decoration(ib_type.self, ib_mbr_idx, DecorationCentroid);
if (is_sample)
set_member_decoration(ib_type.self, ib_mbr_idx, DecorationSample);
}
set_extended_member_decoration(ib_type.self, ib_mbr_idx, SPIRVCrossDecorationInterfaceOrigID, var.self);
set_extended_member_decoration(ib_type.self, ib_mbr_idx, SPIRVCrossDecorationInterfaceMemberIndex, var_mbr_idx);
}
// In Metal, the tessellation levels are stored as tightly packed half-precision floating point values.
// But, stage-in attribute offsets and strides must be multiples of four, so we can't pass the levels
// individually. Therefore, we must pass them as vectors. Triangles get a single float4, with the outer
// levels in 'xyz' and the inner level in 'w'. Quads get a float4 containing the outer levels and a
// float2 containing the inner levels.
void CompilerMSL::add_tess_level_input_to_interface_block(const std::string &ib_var_ref, SPIRType &ib_type,
SPIRVariable &var)
{
auto &var_type = get_variable_element_type(var);
BuiltIn builtin = BuiltIn(get_decoration(var.self, DecorationBuiltIn));
bool triangles = is_tessellating_triangles();
string mbr_name;
// Add a reference to the variable type to the interface struct.
uint32_t ib_mbr_idx = uint32_t(ib_type.member_types.size());
const auto mark_locations = [&](const SPIRType &new_var_type) {
if (get_decoration_bitset(var.self).get(DecorationLocation))
{
uint32_t locn = get_decoration(var.self, DecorationLocation);
set_member_decoration(ib_type.self, ib_mbr_idx, DecorationLocation, locn);
mark_location_as_used_by_shader(locn, new_var_type, StorageClassInput);
}
else if (inputs_by_builtin.count(builtin))
{
uint32_t locn = inputs_by_builtin[builtin].location;
set_member_decoration(ib_type.self, ib_mbr_idx, DecorationLocation, locn);
mark_location_as_used_by_shader(locn, new_var_type, StorageClassInput);
}
};
if (triangles)
{
// Triangles are tricky, because we want only one member in the struct.
mbr_name = "gl_TessLevel";
// If we already added the other one, we can skip this step.
if (!added_builtin_tess_level)
{
uint32_t type_id = build_extended_vector_type(var_type.self, 4);
ib_type.member_types.push_back(type_id);
// Give the member a name
set_member_name(ib_type.self, ib_mbr_idx, mbr_name);
// We cannot decorate both, but the important part is that
// it's marked as builtin so we can get automatic attribute assignment if needed.
set_member_decoration(ib_type.self, ib_mbr_idx, DecorationBuiltIn, builtin);
mark_locations(var_type);
added_builtin_tess_level = true;
}
}
else
{
mbr_name = builtin_to_glsl(builtin, StorageClassFunction);
uint32_t type_id = build_extended_vector_type(var_type.self, builtin == BuiltInTessLevelOuter ? 4 : 2);
uint32_t ptr_type_id = ir.increase_bound_by(1);
auto &new_var_type = set<SPIRType>(ptr_type_id, get<SPIRType>(type_id));
new_var_type.pointer = true;
new_var_type.pointer_depth++;
new_var_type.storage = StorageClassInput;
new_var_type.parent_type = type_id;
ib_type.member_types.push_back(type_id);
// Give the member a name
set_member_name(ib_type.self, ib_mbr_idx, mbr_name);
set_member_decoration(ib_type.self, ib_mbr_idx, DecorationBuiltIn, builtin);
mark_locations(new_var_type);
}
add_tess_level_input(ib_var_ref, mbr_name, var);
}
void CompilerMSL::add_tess_level_input(const std::string &base_ref, const std::string &mbr_name, SPIRVariable &var)
{
auto &entry_func = get<SPIRFunction>(ir.default_entry_point);
BuiltIn builtin = BuiltIn(get_decoration(var.self, DecorationBuiltIn));
// Force the variable to have the proper name.
string var_name = builtin_to_glsl(builtin, StorageClassFunction);
set_name(var.self, var_name);
// We need to declare the variable early and at entry-point scope.
entry_func.add_local_variable(var.self);
vars_needing_early_declaration.push_back(var.self);
bool triangles = is_tessellating_triangles();
if (builtin == BuiltInTessLevelOuter)
{
entry_func.fixup_hooks_in.push_back(
[=]()
{
statement(var_name, "[0] = ", base_ref, ".", mbr_name, "[0];");
statement(var_name, "[1] = ", base_ref, ".", mbr_name, "[1];");
statement(var_name, "[2] = ", base_ref, ".", mbr_name, "[2];");
if (!triangles)
statement(var_name, "[3] = ", base_ref, ".", mbr_name, "[3];");
});
}
else
{
entry_func.fixup_hooks_in.push_back([=]() {
if (triangles)
{
if (msl_options.raw_buffer_tese_input)
statement(var_name, "[0] = ", base_ref, ".", mbr_name, ";");
else
statement(var_name, "[0] = ", base_ref, ".", mbr_name, "[3];");
}
else
{
statement(var_name, "[0] = ", base_ref, ".", mbr_name, "[0];");
statement(var_name, "[1] = ", base_ref, ".", mbr_name, "[1];");
}
});
}
}
bool CompilerMSL::variable_storage_requires_stage_io(spv::StorageClass storage) const
{
if (storage == StorageClassOutput)
return !capture_output_to_buffer;
else if (storage == StorageClassInput)
return !(is_tesc_shader() && msl_options.multi_patch_workgroup) &&
!(is_tese_shader() && msl_options.raw_buffer_tese_input);
else
return false;
}
string CompilerMSL::to_tesc_invocation_id()
{
if (msl_options.multi_patch_workgroup)
{
// n.b. builtin_invocation_id_id here is the dispatch global invocation ID,
// not the TC invocation ID.
return join(to_expression(builtin_invocation_id_id), ".x % ", get_entry_point().output_vertices);
}
else
return builtin_to_glsl(BuiltInInvocationId, StorageClassInput);
}
void CompilerMSL::emit_local_masked_variable(const SPIRVariable &masked_var, bool strip_array)
{
auto &entry_func = get<SPIRFunction>(ir.default_entry_point);
bool threadgroup_storage = variable_decl_is_remapped_storage(masked_var, StorageClassWorkgroup);
if (threadgroup_storage && msl_options.multi_patch_workgroup)
{
// We need one threadgroup block per patch, so fake this.
entry_func.fixup_hooks_in.push_back([this, &masked_var]() {
auto &type = get_variable_data_type(masked_var);
add_local_variable_name(masked_var.self);
const uint32_t max_control_points_per_patch = 32u;
uint32_t max_num_instances =
(max_control_points_per_patch + get_entry_point().output_vertices - 1u) /
get_entry_point().output_vertices;
statement("threadgroup ", type_to_glsl(type), " ",
"spvStorage", to_name(masked_var.self), "[", max_num_instances, "]",
type_to_array_glsl(type), ";");
// Assign a threadgroup slice to each PrimitiveID.
// We assume here that workgroup size is rounded to 32,
// since that's the maximum number of control points per patch.
// We cannot size the array based on fixed dispatch parameters,
// since Metal does not allow that. :(
// FIXME: We will likely need an option to support passing down target workgroup size,
// so we can emit appropriate size here.
statement("threadgroup auto ",
"&", to_name(masked_var.self),
" = spvStorage", to_name(masked_var.self), "[",
"(", to_expression(builtin_invocation_id_id), ".x / ",
get_entry_point().output_vertices, ") % ",
max_num_instances, "];");
});
}
else
{
entry_func.add_local_variable(masked_var.self);
}
if (!threadgroup_storage)
{
vars_needing_early_declaration.push_back(masked_var.self);
}
else if (masked_var.initializer)
{
// Cannot directly initialize threadgroup variables. Need fixup hooks.
ID initializer = masked_var.initializer;
if (strip_array)
{
entry_func.fixup_hooks_in.push_back([this, &masked_var, initializer]() {
auto invocation = to_tesc_invocation_id();
statement(to_expression(masked_var.self), "[",
invocation, "] = ",
to_expression(initializer), "[",
invocation, "];");
});
}
else
{
entry_func.fixup_hooks_in.push_back([this, &masked_var, initializer]() {
statement(to_expression(masked_var.self), " = ", to_expression(initializer), ";");
});
}
}
}
void CompilerMSL::add_variable_to_interface_block(StorageClass storage, const string &ib_var_ref, SPIRType &ib_type,
SPIRVariable &var, InterfaceBlockMeta &meta)
{
auto &entry_func = get<SPIRFunction>(ir.default_entry_point);
// Tessellation control I/O variables and tessellation evaluation per-point inputs are
// usually declared as arrays. In these cases, we want to add the element type to the
// interface block, since in Metal it's the interface block itself which is arrayed.
auto &var_type = meta.strip_array ? get_variable_element_type(var) : get_variable_data_type(var);
bool is_builtin = is_builtin_variable(var);
auto builtin = BuiltIn(get_decoration(var.self, DecorationBuiltIn));
bool is_block = has_decoration(var_type.self, DecorationBlock);
// If stage variables are masked out, emit them as plain variables instead.
// For builtins, we query them one by one later.
// IO blocks are not masked here, we need to mask them per-member instead.
if (storage == StorageClassOutput && is_stage_output_variable_masked(var))
{
// If we ignore an output, we must still emit it, since it might be used by app.
// Instead, just emit it as early declaration.
emit_local_masked_variable(var, meta.strip_array);
return;
}
if (storage == StorageClassInput && has_decoration(var.self, DecorationPerVertexKHR))
SPIRV_CROSS_THROW("PerVertexKHR decoration is not supported in MSL.");
// If variable names alias, they will end up with wrong names in the interface struct, because
// there might be aliases in the member name cache and there would be a mismatch in fixup_in code.
// Make sure to register the variables as unique resource names ahead of time.
// This would normally conflict with the name cache when emitting local variables,
// but this happens in the setup stage, before we hit compilation loops.
// The name cache is cleared before we actually emit code, so this is safe.
add_resource_name(var.self);
if (var_type.basetype == SPIRType::Struct)
{
bool block_requires_flattening =
variable_storage_requires_stage_io(storage) || (is_block && var_type.array.empty());
bool needs_local_declaration = !is_builtin && block_requires_flattening && meta.allow_local_declaration;
if (needs_local_declaration)
{
// For I/O blocks or structs, we will need to pass the block itself around
// to functions if they are used globally in leaf functions.
// Rather than passing down member by member,
// we unflatten I/O blocks while running the shader,
// and pass the actual struct type down to leaf functions.
// We then unflatten inputs, and flatten outputs in the "fixup" stages.
emit_local_masked_variable(var, meta.strip_array);
}
if (!block_requires_flattening)
{
// In Metal tessellation shaders, the interface block itself is arrayed. This makes things
// very complicated, since stage-in structures in MSL don't support nested structures.
// Luckily, for stage-out when capturing output, we can avoid this and just add
// composite members directly, because the stage-out structure is stored to a buffer,
// not returned.
add_plain_variable_to_interface_block(storage, ib_var_ref, ib_type, var, meta);
}
else
{
bool masked_block = false;
uint32_t location = UINT32_MAX;
uint32_t var_mbr_idx = 0;
uint32_t elem_cnt = 1;
if (is_matrix(var_type))
{
if (is_array(var_type))
SPIRV_CROSS_THROW("MSL cannot emit arrays-of-matrices in input and output variables.");
elem_cnt = var_type.columns;
}
else if (is_array(var_type))
{
if (var_type.array.size() != 1)
SPIRV_CROSS_THROW("MSL cannot emit arrays-of-arrays in input and output variables.");
elem_cnt = to_array_size_literal(var_type);
}
for (uint32_t elem_idx = 0; elem_idx < elem_cnt; elem_idx++)
{
// Flatten the struct members into the interface struct
for (uint32_t mbr_idx = 0; mbr_idx < uint32_t(var_type.member_types.size()); mbr_idx++)
{
builtin = BuiltInMax;
is_builtin = is_member_builtin(var_type, mbr_idx, &builtin);
auto &mbr_type = get<SPIRType>(var_type.member_types[mbr_idx]);
if (storage == StorageClassOutput && is_stage_output_block_member_masked(var, mbr_idx, meta.strip_array))
{
location = UINT32_MAX; // Skip this member and resolve location again on next var member
if (is_block)
masked_block = true;
// Non-builtin block output variables are just ignored, since they will still access
// the block variable as-is. They're just not flattened.
if (is_builtin && !meta.strip_array)
{
// Emit a fake variable instead.
uint32_t ids = ir.increase_bound_by(2);
uint32_t ptr_type_id = ids + 0;
uint32_t var_id = ids + 1;
auto ptr_type = mbr_type;
ptr_type.pointer = true;
ptr_type.pointer_depth++;
ptr_type.parent_type = var_type.member_types[mbr_idx];
ptr_type.storage = StorageClassOutput;
uint32_t initializer = 0;
if (var.initializer)
if (auto *c = maybe_get<SPIRConstant>(var.initializer))
initializer = c->subconstants[mbr_idx];
set<SPIRType>(ptr_type_id, ptr_type);
set<SPIRVariable>(var_id, ptr_type_id, StorageClassOutput, initializer);
entry_func.add_local_variable(var_id);
vars_needing_early_declaration.push_back(var_id);
set_name(var_id, builtin_to_glsl(builtin, StorageClassOutput));
set_decoration(var_id, DecorationBuiltIn, builtin);
}
}
else if (!is_builtin || has_active_builtin(builtin, storage))
{
bool is_composite_type = is_matrix(mbr_type) || is_array(mbr_type) || mbr_type.basetype == SPIRType::Struct;
bool attribute_load_store =
storage == StorageClassInput && get_execution_model() != ExecutionModelFragment;
bool storage_is_stage_io = variable_storage_requires_stage_io(storage);
// Clip/CullDistance always need to be declared as user attributes.
if (builtin == BuiltInClipDistance || builtin == BuiltInCullDistance)
is_builtin = false;
const string var_name = to_name(var.self);
string mbr_name_qual = var_name;
string var_chain_qual = var_name;
if (elem_cnt > 1)
{
mbr_name_qual += join("_", elem_idx);
var_chain_qual += join("[", elem_idx, "]");
}
if ((!is_builtin || attribute_load_store) && storage_is_stage_io && is_composite_type)
{
add_composite_member_variable_to_interface_block(storage, ib_var_ref, ib_type,
var, var_type, mbr_idx, meta,
mbr_name_qual, var_chain_qual,
location, var_mbr_idx);
}
else
{
add_plain_member_variable_to_interface_block(storage, ib_var_ref, ib_type,
var, var_type, mbr_idx, meta,
mbr_name_qual, var_chain_qual,
location, var_mbr_idx);
}
}
var_mbr_idx++;
}
}
// If we're redirecting a block, we might still need to access the original block
// variable if we're masking some members.
if (masked_block && !needs_local_declaration && (!is_builtin_variable(var) || is_tesc_shader()))
{
if (is_builtin_variable(var))
{
// Ensure correct names for the block members if we're actually going to
// declare gl_PerVertex.
for (uint32_t mbr_idx = 0; mbr_idx < uint32_t(var_type.member_types.size()); mbr_idx++)
{
set_member_name(var_type.self, mbr_idx, builtin_to_glsl(
BuiltIn(get_member_decoration(var_type.self, mbr_idx, DecorationBuiltIn)),
StorageClassOutput));
}
set_name(var_type.self, "gl_PerVertex");
set_name(var.self, "gl_out_masked");
stage_out_masked_builtin_type_id = var_type.self;
}
emit_local_masked_variable(var, meta.strip_array);
}
}
}
else if (is_tese_shader() && storage == StorageClassInput && !meta.strip_array && is_builtin &&
(builtin == BuiltInTessLevelOuter || builtin == BuiltInTessLevelInner))
{
add_tess_level_input_to_interface_block(ib_var_ref, ib_type, var);
}
else if (var_type.basetype == SPIRType::Boolean || var_type.basetype == SPIRType::Char ||
type_is_integral(var_type) || type_is_floating_point(var_type))
{
if (!is_builtin || has_active_builtin(builtin, storage))
{
bool is_composite_type = is_matrix(var_type) || is_array(var_type);
bool storage_is_stage_io = variable_storage_requires_stage_io(storage);
bool attribute_load_store = storage == StorageClassInput && get_execution_model() != ExecutionModelFragment;
// Clip/CullDistance always needs to be declared as user attributes.
if (builtin == BuiltInClipDistance || builtin == BuiltInCullDistance)
is_builtin = false;
// MSL does not allow matrices or arrays in input or output variables, so need to handle it specially.
if ((!is_builtin || attribute_load_store) && storage_is_stage_io && is_composite_type)
{
add_composite_variable_to_interface_block(storage, ib_var_ref, ib_type, var, meta);
}
else
{
add_plain_variable_to_interface_block(storage, ib_var_ref, ib_type, var, meta);
}
}
}
}
// Fix up the mapping of variables to interface member indices, which is used to compile access chains
// for per-vertex variables in a tessellation control shader.
void CompilerMSL::fix_up_interface_member_indices(StorageClass storage, uint32_t ib_type_id)
{
// Only needed for tessellation shaders and pull-model interpolants.
// Need to redirect interface indices back to variables themselves.
// For structs, each member of the struct need a separate instance.
if (!is_tesc_shader() && !(is_tese_shader() && storage == StorageClassInput) &&
!(get_execution_model() == ExecutionModelFragment && storage == StorageClassInput &&
!pull_model_inputs.empty()))
return;
auto mbr_cnt = uint32_t(ir.meta[ib_type_id].members.size());
for (uint32_t i = 0; i < mbr_cnt; i++)
{
uint32_t var_id = get_extended_member_decoration(ib_type_id, i, SPIRVCrossDecorationInterfaceOrigID);
if (!var_id)
continue;
auto &var = get<SPIRVariable>(var_id);
auto &type = get_variable_element_type(var);
bool flatten_composites = variable_storage_requires_stage_io(var.storage);
bool is_block = has_decoration(type.self, DecorationBlock);
uint32_t mbr_idx = uint32_t(-1);
if (type.basetype == SPIRType::Struct && (flatten_composites || is_block))
mbr_idx = get_extended_member_decoration(ib_type_id, i, SPIRVCrossDecorationInterfaceMemberIndex);
if (mbr_idx != uint32_t(-1))
{
// Only set the lowest InterfaceMemberIndex for each variable member.
// IB struct members will be emitted in-order w.r.t. interface member index.
if (!has_extended_member_decoration(var_id, mbr_idx, SPIRVCrossDecorationInterfaceMemberIndex))
set_extended_member_decoration(var_id, mbr_idx, SPIRVCrossDecorationInterfaceMemberIndex, i);
}
else
{
// Only set the lowest InterfaceMemberIndex for each variable.
// IB struct members will be emitted in-order w.r.t. interface member index.
if (!has_extended_decoration(var_id, SPIRVCrossDecorationInterfaceMemberIndex))
set_extended_decoration(var_id, SPIRVCrossDecorationInterfaceMemberIndex, i);
}
}
}
// Add an interface structure for the type of storage, which is either StorageClassInput or StorageClassOutput.
// Returns the ID of the newly added variable, or zero if no variable was added.
uint32_t CompilerMSL::add_interface_block(StorageClass storage, bool patch)
{
// Accumulate the variables that should appear in the interface struct.
SmallVector<SPIRVariable *> vars;
bool incl_builtins = storage == StorageClassOutput || is_tessellation_shader();
bool has_seen_barycentric = false;
InterfaceBlockMeta meta;
// Varying interfaces between stages which use "user()" attribute can be dealt with
// without explicit packing and unpacking of components. For any variables which link against the runtime
// in some way (vertex attributes, fragment output, etc), we'll need to deal with it somehow.
bool pack_components =
(storage == StorageClassInput && get_execution_model() == ExecutionModelVertex) ||
(storage == StorageClassOutput && get_execution_model() == ExecutionModelFragment) ||
(storage == StorageClassOutput && get_execution_model() == ExecutionModelVertex && capture_output_to_buffer);
ir.for_each_typed_id<SPIRVariable>([&](uint32_t var_id, SPIRVariable &var) {
if (var.storage != storage)
return;
auto &type = this->get<SPIRType>(var.basetype);
bool is_builtin = is_builtin_variable(var);
bool is_block = has_decoration(type.self, DecorationBlock);
auto bi_type = BuiltInMax;
bool builtin_is_gl_in_out = false;
if (is_builtin && !is_block)
{
bi_type = BuiltIn(get_decoration(var_id, DecorationBuiltIn));
builtin_is_gl_in_out = bi_type == BuiltInPosition || bi_type == BuiltInPointSize ||
bi_type == BuiltInClipDistance || bi_type == BuiltInCullDistance;
}
if (is_builtin && is_block)
builtin_is_gl_in_out = true;
uint32_t location = get_decoration(var_id, DecorationLocation);
bool builtin_is_stage_in_out = builtin_is_gl_in_out ||
bi_type == BuiltInLayer || bi_type == BuiltInViewportIndex ||
bi_type == BuiltInBaryCoordKHR || bi_type == BuiltInBaryCoordNoPerspKHR ||
bi_type == BuiltInFragDepth ||
bi_type == BuiltInFragStencilRefEXT || bi_type == BuiltInSampleMask;
// These builtins are part of the stage in/out structs.
bool is_interface_block_builtin =
builtin_is_stage_in_out || (is_tese_shader() && !msl_options.raw_buffer_tese_input &&
(bi_type == BuiltInTessLevelOuter || bi_type == BuiltInTessLevelInner));
bool is_active = interface_variable_exists_in_entry_point(var.self);
if (is_builtin && is_active)
{
// Only emit the builtin if it's active in this entry point. Interface variable list might lie.
if (is_block)
{
// If any builtin is active, the block is active.
uint32_t mbr_cnt = uint32_t(type.member_types.size());
for (uint32_t i = 0; !is_active && i < mbr_cnt; i++)
is_active = has_active_builtin(BuiltIn(get_member_decoration(type.self, i, DecorationBuiltIn)), storage);
}
else
{
is_active = has_active_builtin(bi_type, storage);
}
}
bool filter_patch_decoration = (has_decoration(var_id, DecorationPatch) || is_patch_block(type)) == patch;
bool hidden = is_hidden_variable(var, incl_builtins);
// ClipDistance is never hidden, we need to emulate it when used as an input.
if (bi_type == BuiltInClipDistance || bi_type == BuiltInCullDistance)
hidden = false;
// It's not enough to simply avoid marking fragment outputs if the pipeline won't
// accept them. We can't put them in the struct at all, or otherwise the compiler
// complains that the outputs weren't explicitly marked.
// Frag depth and stencil outputs are incompatible with explicit early fragment tests.
// In GLSL, depth and stencil outputs are just ignored when explicit early fragment tests are required.
// In Metal, it's a compilation error, so we need to exclude them from the output struct.
if (get_execution_model() == ExecutionModelFragment && storage == StorageClassOutput && !patch &&
((is_builtin && ((bi_type == BuiltInFragDepth && (!msl_options.enable_frag_depth_builtin || uses_explicit_early_fragment_test())) ||
(bi_type == BuiltInFragStencilRefEXT && (!msl_options.enable_frag_stencil_ref_builtin || uses_explicit_early_fragment_test())))) ||
(!is_builtin && !(msl_options.enable_frag_output_mask & (1 << location)))))
{
hidden = true;
disabled_frag_outputs.push_back(var_id);
// If a builtin, force it to have the proper name, and mark it as not part of the output struct.
if (is_builtin)
{
set_name(var_id, builtin_to_glsl(bi_type, StorageClassFunction));
mask_stage_output_by_builtin(bi_type);
}
}
// Barycentric inputs must be emitted in stage-in, because they can have interpolation arguments.
if (is_active && (bi_type == BuiltInBaryCoordKHR || bi_type == BuiltInBaryCoordNoPerspKHR))
{
if (has_seen_barycentric)
SPIRV_CROSS_THROW("Cannot declare both BaryCoordNV and BaryCoordNoPerspNV in same shader in MSL.");
has_seen_barycentric = true;
hidden = false;
}
if (is_active && !hidden && type.pointer && filter_patch_decoration &&
(!is_builtin || is_interface_block_builtin))
{
vars.push_back(&var);
if (!is_builtin)
{
// Need to deal specially with DecorationComponent.
// Multiple variables can alias the same Location, and try to make sure each location is declared only once.
// We will swizzle data in and out to make this work.
// This is only relevant for vertex inputs and fragment outputs.
// Technically tessellation as well, but it is too complicated to support.
uint32_t component = get_decoration(var_id, DecorationComponent);
if (component != 0)
{
if (is_tessellation_shader())
SPIRV_CROSS_THROW("Component decoration is not supported in tessellation shaders.");
else if (pack_components)
{
uint32_t array_size = 1;
if (!type.array.empty())
array_size = to_array_size_literal(type);
for (uint32_t location_offset = 0; location_offset < array_size; location_offset++)
{
auto &location_meta = meta.location_meta[location + location_offset];
location_meta.num_components = max<uint32_t>(location_meta.num_components, component + type.vecsize);
// For variables sharing location, decorations and base type must match.
location_meta.base_type_id = type.self;
location_meta.flat = has_decoration(var.self, DecorationFlat);
location_meta.noperspective = has_decoration(var.self, DecorationNoPerspective);
location_meta.centroid = has_decoration(var.self, DecorationCentroid);
location_meta.sample = has_decoration(var.self, DecorationSample);
}
}
}
}
}
if (is_tese_shader() && msl_options.raw_buffer_tese_input && patch && storage == StorageClassInput &&
(bi_type == BuiltInTessLevelOuter || bi_type == BuiltInTessLevelInner))
{
// In this case, we won't add the builtin to the interface struct,
// but we still need the hook to run to populate the arrays.
string base_ref = join(tess_factor_buffer_var_name, "[", to_expression(builtin_primitive_id_id), "]");
const char *mbr_name =
bi_type == BuiltInTessLevelOuter ? "edgeTessellationFactor" : "insideTessellationFactor";
add_tess_level_input(base_ref, mbr_name, var);
if (inputs_by_builtin.count(bi_type))
{
uint32_t locn = inputs_by_builtin[bi_type].location;
mark_location_as_used_by_shader(locn, type, StorageClassInput);
}
}
});
// If no variables qualify, leave.
// For patch input in a tessellation evaluation shader, the per-vertex stage inputs
// are included in a special patch control point array.
if (vars.empty() &&
!(!msl_options.raw_buffer_tese_input && storage == StorageClassInput && patch && stage_in_var_id))
return 0;
// Add a new typed variable for this interface structure.
// The initializer expression is allocated here, but populated when the function
// declaraion is emitted, because it is cleared after each compilation pass.
uint32_t next_id = ir.increase_bound_by(3);
uint32_t ib_type_id = next_id++;
auto &ib_type = set<SPIRType>(ib_type_id, OpTypeStruct);
ib_type.basetype = SPIRType::Struct;
ib_type.storage = storage;
set_decoration(ib_type_id, DecorationBlock);
uint32_t ib_var_id = next_id++;
auto &var = set<SPIRVariable>(ib_var_id, ib_type_id, storage, 0);
var.initializer = next_id++;
string ib_var_ref;
auto &entry_func = get<SPIRFunction>(ir.default_entry_point);
switch (storage)
{
case StorageClassInput:
ib_var_ref = patch ? patch_stage_in_var_name : stage_in_var_name;
switch (get_execution_model())
{
case ExecutionModelTessellationControl:
// Add a hook to populate the shared workgroup memory containing the gl_in array.
entry_func.fixup_hooks_in.push_back([=]() {
// Can't use PatchVertices, PrimitiveId, or InvocationId yet; the hooks for those may not have run yet.
if (msl_options.multi_patch_workgroup)
{
// n.b. builtin_invocation_id_id here is the dispatch global invocation ID,
// not the TC invocation ID.
statement("device ", to_name(ir.default_entry_point), "_", ib_var_ref, "* gl_in = &",
input_buffer_var_name, "[min(", to_expression(builtin_invocation_id_id), ".x / ",
get_entry_point().output_vertices,
", spvIndirectParams[1] - 1) * spvIndirectParams[0]];");
}
else
{
// It's safe to use InvocationId here because it's directly mapped to a
// Metal builtin, and therefore doesn't need a hook.
statement("if (", to_expression(builtin_invocation_id_id), " < spvIndirectParams[0])");
statement(" ", input_wg_var_name, "[", to_expression(builtin_invocation_id_id),
"] = ", ib_var_ref, ";");
statement("threadgroup_barrier(mem_flags::mem_threadgroup);");
statement("if (", to_expression(builtin_invocation_id_id),
" >= ", get_entry_point().output_vertices, ")");
statement(" return;");
}
});
break;
case ExecutionModelTessellationEvaluation:
if (!msl_options.raw_buffer_tese_input)
break;
if (patch)
{
entry_func.fixup_hooks_in.push_back(
[=]()
{
statement("const device ", to_name(ir.default_entry_point), "_", ib_var_ref, "& ", ib_var_ref,
" = ", patch_input_buffer_var_name, "[", to_expression(builtin_primitive_id_id),
"];");
});
}
else
{
entry_func.fixup_hooks_in.push_back(
[=]()
{
statement("const device ", to_name(ir.default_entry_point), "_", ib_var_ref, "* gl_in = &",
input_buffer_var_name, "[", to_expression(builtin_primitive_id_id), " * ",
get_entry_point().output_vertices, "];");
});
}
break;
default:
break;
}
break;
case StorageClassOutput:
{
ib_var_ref = patch ? patch_stage_out_var_name : stage_out_var_name;
// Add the output interface struct as a local variable to the entry function.
// If the entry point should return the output struct, set the entry function
// to return the output interface struct, otherwise to return nothing.
// Watch out for the rare case where the terminator of the last entry point block is a
// Kill, instead of a Return. Based on SPIR-V's block-domination rules, we assume that
// any block that has a Kill will also have a terminating Return, except the last block.
// Indicate the output var requires early initialization.
bool ep_should_return_output = !get_is_rasterization_disabled();
uint32_t rtn_id = ep_should_return_output ? ib_var_id : 0;
if (!capture_output_to_buffer)
{
entry_func.add_local_variable(ib_var_id);
for (auto &blk_id : entry_func.blocks)
{
auto &blk = get<SPIRBlock>(blk_id);
if (blk.terminator == SPIRBlock::Return || (blk.terminator == SPIRBlock::Kill && blk_id == entry_func.blocks.back()))
blk.return_value = rtn_id;
}
vars_needing_early_declaration.push_back(ib_var_id);
}
else
{
switch (get_execution_model())
{
case ExecutionModelVertex:
case ExecutionModelTessellationEvaluation:
// Instead of declaring a struct variable to hold the output and then
// copying that to the output buffer, we'll declare the output variable
// as a reference to the final output element in the buffer. Then we can
// avoid the extra copy.
entry_func.fixup_hooks_in.push_back([=]() {
if (stage_out_var_id)
{
// The first member of the indirect buffer is always the number of vertices
// to draw.
// We zero-base the InstanceID & VertexID variables for HLSL emulation elsewhere, so don't do it twice
if (get_execution_model() == ExecutionModelVertex && msl_options.vertex_for_tessellation)
{
statement("device ", to_name(ir.default_entry_point), "_", ib_var_ref, "& ", ib_var_ref,
" = ", output_buffer_var_name, "[", to_expression(builtin_invocation_id_id),
".y * ", to_expression(builtin_stage_input_size_id), ".x + ",
to_expression(builtin_invocation_id_id), ".x];");
}
else if (msl_options.enable_base_index_zero)
{
statement("device ", to_name(ir.default_entry_point), "_", ib_var_ref, "& ", ib_var_ref,
" = ", output_buffer_var_name, "[", to_expression(builtin_instance_idx_id),
" * spvIndirectParams[0] + ", to_expression(builtin_vertex_idx_id), "];");
}
else
{
statement("device ", to_name(ir.default_entry_point), "_", ib_var_ref, "& ", ib_var_ref,
" = ", output_buffer_var_name, "[(", to_expression(builtin_instance_idx_id),
" - ", to_expression(builtin_base_instance_id), ") * spvIndirectParams[0] + ",
to_expression(builtin_vertex_idx_id), " - ",
to_expression(builtin_base_vertex_id), "];");
}
}
});
break;
case ExecutionModelTessellationControl:
if (msl_options.multi_patch_workgroup)
{
// We cannot use PrimitiveId here, because the hook may not have run yet.
if (patch)
{
entry_func.fixup_hooks_in.push_back([=]() {
statement("device ", to_name(ir.default_entry_point), "_", ib_var_ref, "& ", ib_var_ref,
" = ", patch_output_buffer_var_name, "[", to_expression(builtin_invocation_id_id),
".x / ", get_entry_point().output_vertices, "];");
});
}
else
{
entry_func.fixup_hooks_in.push_back([=]() {
statement("device ", to_name(ir.default_entry_point), "_", ib_var_ref, "* gl_out = &",
output_buffer_var_name, "[", to_expression(builtin_invocation_id_id), ".x - ",
to_expression(builtin_invocation_id_id), ".x % ",
get_entry_point().output_vertices, "];");
});
}
}
else
{
if (patch)
{
entry_func.fixup_hooks_in.push_back([=]() {
statement("device ", to_name(ir.default_entry_point), "_", ib_var_ref, "& ", ib_var_ref,
" = ", patch_output_buffer_var_name, "[", to_expression(builtin_primitive_id_id),
"];");
});
}
else
{
entry_func.fixup_hooks_in.push_back([=]() {
statement("device ", to_name(ir.default_entry_point), "_", ib_var_ref, "* gl_out = &",
output_buffer_var_name, "[", to_expression(builtin_primitive_id_id), " * ",
get_entry_point().output_vertices, "];");
});
}
}
break;
default:
break;
}
}
break;
}
default:
break;
}
set_name(ib_type_id, to_name(ir.default_entry_point) + "_" + ib_var_ref);
set_name(ib_var_id, ib_var_ref);
for (auto *p_var : vars)
{
bool strip_array = (is_tesc_shader() || (is_tese_shader() && storage == StorageClassInput)) && !patch;
// Fixing up flattened stores in TESC is impossible since the memory is group shared either via
// device (not masked) or threadgroup (masked) storage classes and it's race condition city.
meta.strip_array = strip_array;
meta.allow_local_declaration = !strip_array && !(is_tesc_shader() && storage == StorageClassOutput);
add_variable_to_interface_block(storage, ib_var_ref, ib_type, *p_var, meta);
}
if (((is_tesc_shader() && msl_options.multi_patch_workgroup) ||
(is_tese_shader() && msl_options.raw_buffer_tese_input)) &&
storage == StorageClassInput)
{
// For tessellation inputs, add all outputs from the previous stage to ensure
// the struct containing them is the correct size and layout.
for (auto &input : inputs_by_location)
{
if (location_inputs_in_use.count(input.first.location) != 0)
continue;
if (patch != (input.second.rate == MSL_SHADER_VARIABLE_RATE_PER_PATCH))
continue;
// Tessellation levels have their own struct, so there's no need to add them here.
if (input.second.builtin == BuiltInTessLevelOuter || input.second.builtin == BuiltInTessLevelInner)
continue;
// Create a fake variable to put at the location.
uint32_t offset = ir.increase_bound_by(5);
uint32_t type_id = offset;
uint32_t vec_type_id = offset + 1;
uint32_t array_type_id = offset + 2;
uint32_t ptr_type_id = offset + 3;
uint32_t var_id = offset + 4;
SPIRType type { OpTypeInt };
switch (input.second.format)
{
case MSL_SHADER_VARIABLE_FORMAT_UINT16:
case MSL_SHADER_VARIABLE_FORMAT_ANY16:
type.basetype = SPIRType::UShort;
type.width = 16;
break;
case MSL_SHADER_VARIABLE_FORMAT_ANY32:
default:
type.basetype = SPIRType::UInt;
type.width = 32;
break;
}
set<SPIRType>(type_id, type);
if (input.second.vecsize > 1)
{
type.op = OpTypeVector;
type.vecsize = input.second.vecsize;
set<SPIRType>(vec_type_id, type);
type_id = vec_type_id;
}
type.op = OpTypeArray;
type.array.push_back(0);
type.array_size_literal.push_back(true);
type.parent_type = type_id;
set<SPIRType>(array_type_id, type);
type.self = type_id;
type.op = OpTypePointer;
type.pointer = true;
type.pointer_depth++;
type.parent_type = array_type_id;
type.storage = storage;
auto &ptr_type = set<SPIRType>(ptr_type_id, type);
ptr_type.self = array_type_id;
auto &fake_var = set<SPIRVariable>(var_id, ptr_type_id, storage);
set_decoration(var_id, DecorationLocation, input.first.location);
if (input.first.component)
set_decoration(var_id, DecorationComponent, input.first.component);
meta.strip_array = true;
meta.allow_local_declaration = false;
add_variable_to_interface_block(storage, ib_var_ref, ib_type, fake_var, meta);
}
}
if (capture_output_to_buffer && storage == StorageClassOutput)
{
// For captured output, add all inputs from the next stage to ensure
// the struct containing them is the correct size and layout. This is
// necessary for certain implicit builtins that may nonetheless be read,
// even when they aren't written.
for (auto &output : outputs_by_location)
{
if (location_outputs_in_use.count(output.first.location) != 0)
continue;
// Create a fake variable to put at the location.
uint32_t offset = ir.increase_bound_by(5);
uint32_t type_id = offset;
uint32_t vec_type_id = offset + 1;
uint32_t array_type_id = offset + 2;
uint32_t ptr_type_id = offset + 3;
uint32_t var_id = offset + 4;
SPIRType type { OpTypeInt };
switch (output.second.format)
{
case MSL_SHADER_VARIABLE_FORMAT_UINT16:
case MSL_SHADER_VARIABLE_FORMAT_ANY16:
type.basetype = SPIRType::UShort;
type.width = 16;
break;
case MSL_SHADER_VARIABLE_FORMAT_ANY32:
default:
type.basetype = SPIRType::UInt;
type.width = 32;
break;
}
set<SPIRType>(type_id, type);
if (output.second.vecsize > 1)
{
type.op = OpTypeVector;
type.vecsize = output.second.vecsize;
set<SPIRType>(vec_type_id, type);
type_id = vec_type_id;
}
if (is_tesc_shader())
{
type.op = OpTypeArray;
type.array.push_back(0);
type.array_size_literal.push_back(true);
type.parent_type = type_id;
set<SPIRType>(array_type_id, type);
}
type.op = OpTypePointer;
type.pointer = true;
type.pointer_depth++;
type.parent_type = is_tesc_shader() ? array_type_id : type_id;
type.storage = storage;
auto &ptr_type = set<SPIRType>(ptr_type_id, type);
ptr_type.self = type.parent_type;
auto &fake_var = set<SPIRVariable>(var_id, ptr_type_id, storage);
set_decoration(var_id, DecorationLocation, output.first.location);
if (output.first.component)
set_decoration(var_id, DecorationComponent, output.first.component);
meta.strip_array = true;
meta.allow_local_declaration = false;
add_variable_to_interface_block(storage, ib_var_ref, ib_type, fake_var, meta);
}
}
// When multiple variables need to access same location,
// unroll locations one by one and we will flatten output or input as necessary.
for (auto &loc : meta.location_meta)
{
uint32_t location = loc.first;
auto &location_meta = loc.second;
uint32_t ib_mbr_idx = uint32_t(ib_type.member_types.size());
uint32_t type_id = build_extended_vector_type(location_meta.base_type_id, location_meta.num_components);
ib_type.member_types.push_back(type_id);
set_member_name(ib_type.self, ib_mbr_idx, join("m_location_", location));
set_member_decoration(ib_type.self, ib_mbr_idx, DecorationLocation, location);
mark_location_as_used_by_shader(location, get<SPIRType>(type_id), storage);
if (location_meta.flat)
set_member_decoration(ib_type.self, ib_mbr_idx, DecorationFlat);
if (location_meta.noperspective)
set_member_decoration(ib_type.self, ib_mbr_idx, DecorationNoPerspective);
if (location_meta.centroid)
set_member_decoration(ib_type.self, ib_mbr_idx, DecorationCentroid);
if (location_meta.sample)
set_member_decoration(ib_type.self, ib_mbr_idx, DecorationSample);
}
// Sort the members of the structure by their locations.
MemberSorter member_sorter(ib_type, ir.meta[ib_type_id], MemberSorter::LocationThenBuiltInType);
member_sorter.sort();
// The member indices were saved to the original variables, but after the members
// were sorted, those indices are now likely incorrect. Fix those up now.
fix_up_interface_member_indices(storage, ib_type_id);
// For patch inputs, add one more member, holding the array of control point data.
if (is_tese_shader() && !msl_options.raw_buffer_tese_input && storage == StorageClassInput && patch &&
stage_in_var_id)
{
uint32_t pcp_type_id = ir.increase_bound_by(1);
auto &pcp_type = set<SPIRType>(pcp_type_id, ib_type);
pcp_type.basetype = SPIRType::ControlPointArray;
pcp_type.parent_type = pcp_type.type_alias = get_stage_in_struct_type().self;
pcp_type.storage = storage;
ir.meta[pcp_type_id] = ir.meta[ib_type.self];
uint32_t mbr_idx = uint32_t(ib_type.member_types.size());
ib_type.member_types.push_back(pcp_type_id);
set_member_name(ib_type.self, mbr_idx, "gl_in");
}
if (storage == StorageClassInput)
set_decoration(ib_var_id, DecorationNonWritable);
return ib_var_id;
}
uint32_t CompilerMSL::add_interface_block_pointer(uint32_t ib_var_id, StorageClass storage)
{
if (!ib_var_id)
return 0;
uint32_t ib_ptr_var_id;
uint32_t next_id = ir.increase_bound_by(3);
auto &ib_type = expression_type(ib_var_id);
if (is_tesc_shader() || (is_tese_shader() && msl_options.raw_buffer_tese_input))
{
// Tessellation control per-vertex I/O is presented as an array, so we must
// do the same with our struct here.
uint32_t ib_ptr_type_id = next_id++;
auto &ib_ptr_type = set<SPIRType>(ib_ptr_type_id, ib_type);
ib_ptr_type.op = OpTypePointer;
ib_ptr_type.parent_type = ib_ptr_type.type_alias = ib_type.self;
ib_ptr_type.pointer = true;
ib_ptr_type.pointer_depth++;
ib_ptr_type.storage = storage == StorageClassInput ?
((is_tesc_shader() && msl_options.multi_patch_workgroup) ||
(is_tese_shader() && msl_options.raw_buffer_tese_input) ?
StorageClassStorageBuffer :
StorageClassWorkgroup) :
StorageClassStorageBuffer;
ir.meta[ib_ptr_type_id] = ir.meta[ib_type.self];
// To ensure that get_variable_data_type() doesn't strip off the pointer,
// which we need, use another pointer.
uint32_t ib_ptr_ptr_type_id = next_id++;
auto &ib_ptr_ptr_type = set<SPIRType>(ib_ptr_ptr_type_id, ib_ptr_type);
ib_ptr_ptr_type.parent_type = ib_ptr_type_id;
ib_ptr_ptr_type.type_alias = ib_type.self;
ib_ptr_ptr_type.storage = StorageClassFunction;
ir.meta[ib_ptr_ptr_type_id] = ir.meta[ib_type.self];
ib_ptr_var_id = next_id;
set<SPIRVariable>(ib_ptr_var_id, ib_ptr_ptr_type_id, StorageClassFunction, 0);
set_name(ib_ptr_var_id, storage == StorageClassInput ? "gl_in" : "gl_out");
if (storage == StorageClassInput)
set_decoration(ib_ptr_var_id, DecorationNonWritable);
}
else
{
// Tessellation evaluation per-vertex inputs are also presented as arrays.
// But, in Metal, this array uses a very special type, 'patch_control_point<T>',
// which is a container that can be used to access the control point data.
// To represent this, a special 'ControlPointArray' type has been added to the
// SPIRV-Cross type system. It should only be generated by and seen in the MSL
// backend (i.e. this one).
uint32_t pcp_type_id = next_id++;
auto &pcp_type = set<SPIRType>(pcp_type_id, ib_type);
pcp_type.basetype = SPIRType::ControlPointArray;
pcp_type.parent_type = pcp_type.type_alias = ib_type.self;
pcp_type.storage = storage;
ir.meta[pcp_type_id] = ir.meta[ib_type.self];
ib_ptr_var_id = next_id;
set<SPIRVariable>(ib_ptr_var_id, pcp_type_id, storage, 0);
set_name(ib_ptr_var_id, "gl_in");
ir.meta[ib_ptr_var_id].decoration.qualified_alias = join(patch_stage_in_var_name, ".gl_in");
}
return ib_ptr_var_id;
}
// Ensure that the type is compatible with the builtin.
// If it is, simply return the given type ID.
// Otherwise, create a new type, and return it's ID.
uint32_t CompilerMSL::ensure_correct_builtin_type(uint32_t type_id, BuiltIn builtin)
{
auto &type = get<SPIRType>(type_id);
auto &pointee_type = get_pointee_type(type);
if ((builtin == BuiltInSampleMask && is_array(pointee_type)) ||
((builtin == BuiltInLayer || builtin == BuiltInViewportIndex || builtin == BuiltInFragStencilRefEXT) &&
pointee_type.basetype != SPIRType::UInt))
{
uint32_t next_id = ir.increase_bound_by(type_is_pointer(type) ? 2 : 1);
uint32_t base_type_id = next_id++;
auto &base_type = set<SPIRType>(base_type_id, OpTypeInt);
base_type.basetype = SPIRType::UInt;
base_type.width = 32;
if (!type_is_pointer(type))
return base_type_id;
uint32_t ptr_type_id = next_id++;
auto &ptr_type = set<SPIRType>(ptr_type_id, base_type);
ptr_type.op = spv::OpTypePointer;
ptr_type.pointer = true;
ptr_type.pointer_depth++;
ptr_type.storage = type.storage;
ptr_type.parent_type = base_type_id;
return ptr_type_id;
}
return type_id;
}
// Ensure that the type is compatible with the shader input.
// If it is, simply return the given type ID.
// Otherwise, create a new type, and return its ID.
uint32_t CompilerMSL::ensure_correct_input_type(uint32_t type_id, uint32_t location, uint32_t component, uint32_t num_components, bool strip_array)
{
auto &type = get<SPIRType>(type_id);
uint32_t max_array_dimensions = strip_array ? 1 : 0;
// Struct and array types must match exactly.
if (type.basetype == SPIRType::Struct || type.array.size() > max_array_dimensions)
return type_id;
auto p_va = inputs_by_location.find({location, component});
if (p_va == end(inputs_by_location))
{
if (num_components > type.vecsize)
return build_extended_vector_type(type_id, num_components);
else
return type_id;
}
if (num_components == 0)
num_components = p_va->second.vecsize;
switch (p_va->second.format)
{
case MSL_SHADER_VARIABLE_FORMAT_UINT8:
{
switch (type.basetype)
{
case SPIRType::UByte:
case SPIRType::UShort:
case SPIRType::UInt:
if (num_components > type.vecsize)
return build_extended_vector_type(type_id, num_components);
else
return type_id;
case SPIRType::Short:
return build_extended_vector_type(type_id, num_components > type.vecsize ? num_components : type.vecsize,
SPIRType::UShort);
case SPIRType::Int:
return build_extended_vector_type(type_id, num_components > type.vecsize ? num_components : type.vecsize,
SPIRType::UInt);
default:
SPIRV_CROSS_THROW("Vertex attribute type mismatch between host and shader");
}
}
case MSL_SHADER_VARIABLE_FORMAT_UINT16:
{
switch (type.basetype)
{
case SPIRType::UShort:
case SPIRType::UInt:
if (num_components > type.vecsize)
return build_extended_vector_type(type_id, num_components);
else
return type_id;
case SPIRType::Int:
return build_extended_vector_type(type_id, num_components > type.vecsize ? num_components : type.vecsize,
SPIRType::UInt);
default:
SPIRV_CROSS_THROW("Vertex attribute type mismatch between host and shader");
}
}
default:
if (num_components > type.vecsize)
type_id = build_extended_vector_type(type_id, num_components);
break;
}
return type_id;
}
void CompilerMSL::mark_struct_members_packed(const SPIRType &type)
{
// Handle possible recursion when a struct contains a pointer to its own type nested somewhere.
if (has_extended_decoration(type.self, SPIRVCrossDecorationPhysicalTypePacked))
return;
set_extended_decoration(type.self, SPIRVCrossDecorationPhysicalTypePacked);
// Problem case! Struct needs to be placed at an awkward alignment.
// Mark every member of the child struct as packed.
uint32_t mbr_cnt = uint32_t(type.member_types.size());
for (uint32_t i = 0; i < mbr_cnt; i++)
{
auto &mbr_type = get<SPIRType>(type.member_types[i]);
if (mbr_type.basetype == SPIRType::Struct)
{
// Recursively mark structs as packed.
auto *struct_type = &mbr_type;
while (!struct_type->array.empty())
struct_type = &get<SPIRType>(struct_type->parent_type);
mark_struct_members_packed(*struct_type);
}
else if (!is_scalar(mbr_type))
set_extended_member_decoration(type.self, i, SPIRVCrossDecorationPhysicalTypePacked);
}
}
void CompilerMSL::mark_scalar_layout_structs(const SPIRType &type)
{
uint32_t mbr_cnt = uint32_t(type.member_types.size());
for (uint32_t i = 0; i < mbr_cnt; i++)
{
// Handle possible recursion when a struct contains a pointer to its own type nested somewhere.
auto &mbr_type = get<SPIRType>(type.member_types[i]);
if (mbr_type.basetype == SPIRType::Struct && !(mbr_type.pointer && mbr_type.storage == StorageClassPhysicalStorageBuffer))
{
auto *struct_type = &mbr_type;
while (!struct_type->array.empty())
struct_type = &get<SPIRType>(struct_type->parent_type);
if (has_extended_decoration(struct_type->self, SPIRVCrossDecorationPhysicalTypePacked))
continue;
uint32_t msl_alignment = get_declared_struct_member_alignment_msl(type, i);
uint32_t msl_size = get_declared_struct_member_size_msl(type, i);
uint32_t spirv_offset = type_struct_member_offset(type, i);
uint32_t spirv_offset_next;
if (i + 1 < mbr_cnt)
spirv_offset_next = type_struct_member_offset(type, i + 1);
else
spirv_offset_next = spirv_offset + msl_size;
// Both are complicated cases. In scalar layout, a struct of float3 might just consume 12 bytes,
// and the next member will be placed at offset 12.
bool struct_is_misaligned = (spirv_offset % msl_alignment) != 0;
bool struct_is_too_large = spirv_offset + msl_size > spirv_offset_next;
uint32_t array_stride = 0;
bool struct_needs_explicit_padding = false;
// Verify that if a struct is used as an array that ArrayStride matches the effective size of the struct.
if (!mbr_type.array.empty())
{
array_stride = type_struct_member_array_stride(type, i);
uint32_t dimensions = uint32_t(mbr_type.array.size() - 1);
for (uint32_t dim = 0; dim < dimensions; dim++)
{
uint32_t array_size = to_array_size_literal(mbr_type, dim);
array_stride /= max<uint32_t>(array_size, 1u);
}
// Set expected struct size based on ArrayStride.
struct_needs_explicit_padding = true;
// If struct size is larger than array stride, we might be able to fit, if we tightly pack.
if (get_declared_struct_size_msl(*struct_type) > array_stride)
struct_is_too_large = true;
}
if (struct_is_misaligned || struct_is_too_large)
mark_struct_members_packed(*struct_type);
mark_scalar_layout_structs(*struct_type);
if (struct_needs_explicit_padding)
{
msl_size = get_declared_struct_size_msl(*struct_type, true, true);
if (array_stride < msl_size)
{
SPIRV_CROSS_THROW("Cannot express an array stride smaller than size of struct type.");
}
else
{
if (has_extended_decoration(struct_type->self, SPIRVCrossDecorationPaddingTarget))
{
if (array_stride !=
get_extended_decoration(struct_type->self, SPIRVCrossDecorationPaddingTarget))
SPIRV_CROSS_THROW(
"A struct is used with different array strides. Cannot express this in MSL.");
}
else
set_extended_decoration(struct_type->self, SPIRVCrossDecorationPaddingTarget, array_stride);
}
}
}
}
}
// Sort the members of the struct type by offset, and pack and then pad members where needed
// to align MSL members with SPIR-V offsets. The struct members are iterated twice. Packing
// occurs first, followed by padding, because packing a member reduces both its size and its
// natural alignment, possibly requiring a padding member to be added ahead of it.
void CompilerMSL::align_struct(SPIRType &ib_type, unordered_set<uint32_t> &aligned_structs)
{
// We align structs recursively, so stop any redundant work.
ID &ib_type_id = ib_type.self;
if (aligned_structs.count(ib_type_id))
return;
aligned_structs.insert(ib_type_id);
// Sort the members of the interface structure by their offset.
// They should already be sorted per SPIR-V spec anyway.
MemberSorter member_sorter(ib_type, ir.meta[ib_type_id], MemberSorter::Offset);
member_sorter.sort();
auto mbr_cnt = uint32_t(ib_type.member_types.size());
for (uint32_t mbr_idx = 0; mbr_idx < mbr_cnt; mbr_idx++)
{
// Pack any dependent struct types before we pack a parent struct.
auto &mbr_type = get<SPIRType>(ib_type.member_types[mbr_idx]);
if (mbr_type.basetype == SPIRType::Struct)
align_struct(mbr_type, aligned_structs);
}
// Test the alignment of each member, and if a member should be closer to the previous
// member than the default spacing expects, it is likely that the previous member is in
// a packed format. If so, and the previous member is packable, pack it.
// For example ... this applies to any 3-element vector that is followed by a scalar.
uint32_t msl_offset = 0;
for (uint32_t mbr_idx = 0; mbr_idx < mbr_cnt; mbr_idx++)
{
// This checks the member in isolation, if the member needs some kind of type remapping to conform to SPIR-V
// offsets, array strides and matrix strides.
ensure_member_packing_rules_msl(ib_type, mbr_idx);
// Align current offset to the current member's default alignment. If the member was packed, it will observe
// the updated alignment here.
uint32_t msl_align_mask = get_declared_struct_member_alignment_msl(ib_type, mbr_idx) - 1;
uint32_t aligned_msl_offset = (msl_offset + msl_align_mask) & ~msl_align_mask;
// Fetch the member offset as declared in the SPIRV.
uint32_t spirv_mbr_offset = get_member_decoration(ib_type_id, mbr_idx, DecorationOffset);
if (spirv_mbr_offset > aligned_msl_offset)
{
// Since MSL and SPIR-V have slightly different struct member alignment and
// size rules, we'll pad to standard C-packing rules with a char[] array. If the member is farther
// away than C-packing, expects, add an inert padding member before the the member.
uint32_t padding_bytes = spirv_mbr_offset - aligned_msl_offset;
set_extended_member_decoration(ib_type_id, mbr_idx, SPIRVCrossDecorationPaddingTarget, padding_bytes);
// Re-align as a sanity check that aligning post-padding matches up.
msl_offset += padding_bytes;
aligned_msl_offset = (msl_offset + msl_align_mask) & ~msl_align_mask;
}
else if (spirv_mbr_offset < aligned_msl_offset)
{
// This should not happen, but deal with unexpected scenarios.
// It *might* happen if a sub-struct has a larger alignment requirement in MSL than SPIR-V.
SPIRV_CROSS_THROW("Cannot represent buffer block correctly in MSL.");
}
assert(aligned_msl_offset == spirv_mbr_offset);
// Increment the current offset to be positioned immediately after the current member.
// Don't do this for the last member since it can be unsized, and it is not relevant for padding purposes here.
if (mbr_idx + 1 < mbr_cnt)
msl_offset = aligned_msl_offset + get_declared_struct_member_size_msl(ib_type, mbr_idx);
}
}
bool CompilerMSL::validate_member_packing_rules_msl(const SPIRType &type, uint32_t index) const
{
auto &mbr_type = get<SPIRType>(type.member_types[index]);
uint32_t spirv_offset = get_member_decoration(type.self, index, DecorationOffset);
if (index + 1 < type.member_types.size())
{
// First, we will check offsets. If SPIR-V offset + MSL size > SPIR-V offset of next member,
// we *must* perform some kind of remapping, no way getting around it.
// We can always pad after this member if necessary, so that case is fine.
uint32_t spirv_offset_next = get_member_decoration(type.self, index + 1, DecorationOffset);
assert(spirv_offset_next >= spirv_offset);
uint32_t maximum_size = spirv_offset_next - spirv_offset;
uint32_t msl_mbr_size = get_declared_struct_member_size_msl(type, index);
if (msl_mbr_size > maximum_size)
return false;
}
if (!mbr_type.array.empty())
{
// If we have an array type, array stride must match exactly with SPIR-V.
// An exception to this requirement is if we have one array element.
// This comes from DX scalar layout workaround.
// If app tries to be cheeky and access the member out of bounds, this will not work, but this is the best we can do.
// In OpAccessChain with logical memory models, access chains must be in-bounds in SPIR-V specification.
bool relax_array_stride = mbr_type.array.back() == 1 && mbr_type.array_size_literal.back();
if (!relax_array_stride)
{
uint32_t spirv_array_stride = type_struct_member_array_stride(type, index);
uint32_t msl_array_stride = get_declared_struct_member_array_stride_msl(type, index);
if (spirv_array_stride != msl_array_stride)
return false;
}
}
if (is_matrix(mbr_type))
{
// Need to check MatrixStride as well.
uint32_t spirv_matrix_stride = type_struct_member_matrix_stride(type, index);
uint32_t msl_matrix_stride = get_declared_struct_member_matrix_stride_msl(type, index);
if (spirv_matrix_stride != msl_matrix_stride)
return false;
}
// Now, we check alignment.
uint32_t msl_alignment = get_declared_struct_member_alignment_msl(type, index);
if ((spirv_offset % msl_alignment) != 0)
return false;
// We're in the clear.
return true;
}
// Here we need to verify that the member type we declare conforms to Offset, ArrayStride or MatrixStride restrictions.
// If there is a mismatch, we need to emit remapped types, either normal types, or "packed_X" types.
// In odd cases we need to emit packed and remapped types, for e.g. weird matrices or arrays with weird array strides.
void CompilerMSL::ensure_member_packing_rules_msl(SPIRType &ib_type, uint32_t index)
{
if (validate_member_packing_rules_msl(ib_type, index))
return;
// We failed validation.
// This case will be nightmare-ish to deal with. This could possibly happen if struct alignment does not quite
// match up with what we want. Scalar block layout comes to mind here where we might have to work around the rule
// that struct alignment == max alignment of all members and struct size depends on this alignment.
// Can't repack structs, but can repack pointers to structs.
auto &mbr_type = get<SPIRType>(ib_type.member_types[index]);
bool is_buff_ptr = mbr_type.pointer && mbr_type.storage == StorageClassPhysicalStorageBuffer;
if (mbr_type.basetype == SPIRType::Struct && !is_buff_ptr)
SPIRV_CROSS_THROW("Cannot perform any repacking for structs when it is used as a member of another struct.");
// Perform remapping here.
// There is nothing to be gained by using packed scalars, so don't attempt it.
if (!is_scalar(ib_type))
set_extended_member_decoration(ib_type.self, index, SPIRVCrossDecorationPhysicalTypePacked);
// Try validating again, now with packed.
if (validate_member_packing_rules_msl(ib_type, index))
return;
// We're in deep trouble, and we need to create a new PhysicalType which matches up with what we expect.
// A lot of work goes here ...
// We will need remapping on Load and Store to translate the types between Logical and Physical.
// First, we check if we have small vector std140 array.
// We detect this if we have an array of vectors, and array stride is greater than number of elements.
if (!mbr_type.array.empty() && !is_matrix(mbr_type))
{
uint32_t array_stride = type_struct_member_array_stride(ib_type, index);
// Hack off array-of-arrays until we find the array stride per element we must have to make it work.
uint32_t dimensions = uint32_t(mbr_type.array.size() - 1);
for (uint32_t dim = 0; dim < dimensions; dim++)
array_stride /= max<uint32_t>(to_array_size_literal(mbr_type, dim), 1u);
// Pointers are 8 bytes
uint32_t mbr_width_in_bytes = is_buff_ptr ? 8 : (mbr_type.width / 8);
uint32_t elems_per_stride = array_stride / mbr_width_in_bytes;
if (elems_per_stride == 3)
SPIRV_CROSS_THROW("Cannot use ArrayStride of 3 elements in remapping scenarios.");
else if (elems_per_stride > 4 && elems_per_stride != 8)
SPIRV_CROSS_THROW("Cannot represent vectors with more than 4 elements in MSL.");
if (elems_per_stride == 8)
{
if (mbr_type.width == 16)
add_spv_func_and_recompile(SPVFuncImplPaddedStd140);
else
SPIRV_CROSS_THROW("Unexpected type in std140 wide array resolve.");
}
auto physical_type = mbr_type;
physical_type.vecsize = elems_per_stride;
physical_type.parent_type = 0;
// If this is a physical buffer pointer, replace type with a ulongn vector.
if (is_buff_ptr)
{
physical_type.width = 64;
physical_type.basetype = to_unsigned_basetype(physical_type.width);
physical_type.pointer = false;
physical_type.pointer_depth = false;
physical_type.forward_pointer = false;
}
uint32_t type_id = ir.increase_bound_by(1);
set<SPIRType>(type_id, physical_type);
set_extended_member_decoration(ib_type.self, index, SPIRVCrossDecorationPhysicalTypeID, type_id);
set_decoration(type_id, DecorationArrayStride, array_stride);
// Remove packed_ for vectors of size 1, 2 and 4.
unset_extended_member_decoration(ib_type.self, index, SPIRVCrossDecorationPhysicalTypePacked);
}
else if (is_matrix(mbr_type))
{
// MatrixStride might be std140-esque.
uint32_t matrix_stride = type_struct_member_matrix_stride(ib_type, index);
uint32_t elems_per_stride = matrix_stride / (mbr_type.width / 8);
if (elems_per_stride == 3)
SPIRV_CROSS_THROW("Cannot use ArrayStride of 3 elements in remapping scenarios.");
else if (elems_per_stride > 4 && elems_per_stride != 8)
SPIRV_CROSS_THROW("Cannot represent vectors with more than 4 elements in MSL.");
if (elems_per_stride == 8)
{
if (mbr_type.basetype != SPIRType::Half)
SPIRV_CROSS_THROW("Unexpected type in std140 wide matrix stride resolve.");
add_spv_func_and_recompile(SPVFuncImplPaddedStd140);
}
bool row_major = has_member_decoration(ib_type.self, index, DecorationRowMajor);
auto physical_type = mbr_type;
physical_type.parent_type = 0;
if (row_major)
physical_type.columns = elems_per_stride;
else
physical_type.vecsize = elems_per_stride;
uint32_t type_id = ir.increase_bound_by(1);
set<SPIRType>(type_id, physical_type);
set_extended_member_decoration(ib_type.self, index, SPIRVCrossDecorationPhysicalTypeID, type_id);
// Remove packed_ for vectors of size 1, 2 and 4.
unset_extended_member_decoration(ib_type.self, index, SPIRVCrossDecorationPhysicalTypePacked);
}
else
SPIRV_CROSS_THROW("Found a buffer packing case which we cannot represent in MSL.");
// Try validating again, now with physical type remapping.
if (validate_member_packing_rules_msl(ib_type, index))
return;
// We might have a particular odd scalar layout case where the last element of an array
// does not take up as much space as the ArrayStride or MatrixStride. This can happen with DX cbuffers.
// The "proper" workaround for this is extremely painful and essentially impossible in the edge case of float3[],
// so we hack around it by declaring the offending array or matrix with one less array size/col/row,
// and rely on padding to get the correct value. We will technically access arrays out of bounds into the padding region,
// but it should spill over gracefully without too much trouble. We rely on behavior like this for unsized arrays anyways.
// E.g. we might observe a physical layout of:
// { float2 a[2]; float b; } in cbuffer layout where ArrayStride of a is 16, but offset of b is 24, packed right after a[1] ...
uint32_t type_id = get_extended_member_decoration(ib_type.self, index, SPIRVCrossDecorationPhysicalTypeID);
auto &type = get<SPIRType>(type_id);
// Modify the physical type in-place. This is safe since each physical type workaround is a copy.
if (is_array(type))
{
if (type.array.back() > 1)
{
if (!type.array_size_literal.back())
SPIRV_CROSS_THROW("Cannot apply scalar layout workaround with spec constant array size.");
type.array.back() -= 1;
}
else
{
// We have an array of size 1, so we cannot decrement that. Our only option now is to
// force a packed layout instead, and drop the physical type remap since ArrayStride is meaningless now.
unset_extended_member_decoration(ib_type.self, index, SPIRVCrossDecorationPhysicalTypeID);
set_extended_member_decoration(ib_type.self, index, SPIRVCrossDecorationPhysicalTypePacked);
}
}
else if (is_matrix(type))
{
bool row_major = has_member_decoration(ib_type.self, index, DecorationRowMajor);
if (!row_major)
{
// Slice off one column. If we only have 2 columns, this might turn the matrix into a vector with one array element instead.
if (type.columns > 2)
{
type.columns--;
}
else if (type.columns == 2)
{
type.columns = 1;
assert(type.array.empty());
type.op = OpTypeArray;
type.array.push_back(1);
type.array_size_literal.push_back(true);
}
}
else
{
// Slice off one row. If we only have 2 rows, this might turn the matrix into a vector with one array element instead.
if (type.vecsize > 2)
{
type.vecsize--;
}
else if (type.vecsize == 2)
{
type.vecsize = type.columns;
type.columns = 1;
assert(type.array.empty());
type.op = OpTypeArray;
type.array.push_back(1);
type.array_size_literal.push_back(true);
}
}
}
// This better validate now, or we must fail gracefully.
if (!validate_member_packing_rules_msl(ib_type, index))
SPIRV_CROSS_THROW("Found a buffer packing case which we cannot represent in MSL.");
}
void CompilerMSL::emit_store_statement(uint32_t lhs_expression, uint32_t rhs_expression)
{
auto &type = expression_type(rhs_expression);
bool lhs_remapped_type = has_extended_decoration(lhs_expression, SPIRVCrossDecorationPhysicalTypeID);
bool lhs_packed_type = has_extended_decoration(lhs_expression, SPIRVCrossDecorationPhysicalTypePacked);
auto *lhs_e = maybe_get<SPIRExpression>(lhs_expression);
auto *rhs_e = maybe_get<SPIRExpression>(rhs_expression);
bool transpose = lhs_e && lhs_e->need_transpose;
if (has_decoration(lhs_expression, DecorationBuiltIn) &&
BuiltIn(get_decoration(lhs_expression, DecorationBuiltIn)) == BuiltInSampleMask &&
is_array(type))
{
// Storing an array to SampleMask, have to remove the array-ness before storing.
statement(to_expression(lhs_expression), " = ", to_enclosed_unpacked_expression(rhs_expression), "[0];");
register_write(lhs_expression);
}
else if (!lhs_remapped_type && !lhs_packed_type)
{
// No physical type remapping, and no packed type, so can just emit a store directly.
// We might not be dealing with remapped physical types or packed types,
// but we might be doing a clean store to a row-major matrix.
// In this case, we just flip transpose states, and emit the store, a transpose must be in the RHS expression, if any.
if (is_matrix(type) && lhs_e && lhs_e->need_transpose)
{
lhs_e->need_transpose = false;
if (rhs_e && rhs_e->need_transpose)
{
// Direct copy, but might need to unpack RHS.
// Skip the transpose, as we will transpose when writing to LHS and transpose(transpose(T)) == T.
rhs_e->need_transpose = false;
statement(to_expression(lhs_expression), " = ", to_unpacked_row_major_matrix_expression(rhs_expression),
";");
rhs_e->need_transpose = true;
}
else
statement(to_expression(lhs_expression), " = transpose(", to_unpacked_expression(rhs_expression), ");");
lhs_e->need_transpose = true;
register_write(lhs_expression);
}
else if (lhs_e && lhs_e->need_transpose)
{
lhs_e->need_transpose = false;
// Storing a column to a row-major matrix. Unroll the write.
for (uint32_t c = 0; c < type.vecsize; c++)
{
auto lhs_expr = to_dereferenced_expression(lhs_expression);
auto column_index = lhs_expr.find_last_of('[');
if (column_index != string::npos)
{
statement(lhs_expr.insert(column_index, join('[', c, ']')), " = ",
to_extract_component_expression(rhs_expression, c), ";");
}
}
lhs_e->need_transpose = true;
register_write(lhs_expression);
}
else
CompilerGLSL::emit_store_statement(lhs_expression, rhs_expression);
}
else if (!lhs_remapped_type && !is_matrix(type) && !transpose)
{
// Even if the target type is packed, we can directly store to it. We cannot store to packed matrices directly,
// since they are declared as array of vectors instead, and we need the fallback path below.
CompilerGLSL::emit_store_statement(lhs_expression, rhs_expression);
}
else
{
// Special handling when storing to a remapped physical type.
// This is mostly to deal with std140 padded matrices or vectors.
TypeID physical_type_id = lhs_remapped_type ?
ID(get_extended_decoration(lhs_expression, SPIRVCrossDecorationPhysicalTypeID)) :
type.self;
auto &physical_type = get<SPIRType>(physical_type_id);
string cast_addr_space = "thread";
auto *p_var_lhs = maybe_get_backing_variable(lhs_expression);
if (p_var_lhs)
cast_addr_space = get_type_address_space(get<SPIRType>(p_var_lhs->basetype), lhs_expression);
if (is_matrix(type))
{
const char *packed_pfx = lhs_packed_type ? "packed_" : "";
// Packed matrices are stored as arrays of packed vectors, so we need
// to assign the vectors one at a time.
// For row-major matrices, we need to transpose the *right-hand* side,
// not the left-hand side.
// Lots of cases to cover here ...
bool rhs_transpose = rhs_e && rhs_e->need_transpose;
SPIRType write_type = type;
string cast_expr;
// We're dealing with transpose manually.
if (rhs_transpose)
rhs_e->need_transpose = false;
if (transpose)
{
// We're dealing with transpose manually.
lhs_e->need_transpose = false;
write_type.vecsize = type.columns;
write_type.columns = 1;
if (physical_type.columns != type.columns)
cast_expr = join("(", cast_addr_space, " ", packed_pfx, type_to_glsl(write_type), "&)");
if (rhs_transpose)
{
// If RHS is also transposed, we can just copy row by row.
for (uint32_t i = 0; i < type.vecsize; i++)
{
statement(cast_expr, to_enclosed_expression(lhs_expression), "[", i, "]", " = ",
to_unpacked_row_major_matrix_expression(rhs_expression), "[", i, "];");
}
}
else
{
auto vector_type = expression_type(rhs_expression);
vector_type.vecsize = vector_type.columns;
vector_type.columns = 1;
// Transpose on the fly. Emitting a lot of full transpose() ops and extracting lanes seems very bad,
// so pick out individual components instead.
for (uint32_t i = 0; i < type.vecsize; i++)
{
string rhs_row = type_to_glsl_constructor(vector_type) + "(";
for (uint32_t j = 0; j < vector_type.vecsize; j++)
{
rhs_row += join(to_enclosed_unpacked_expression(rhs_expression), "[", j, "][", i, "]");
if (j + 1 < vector_type.vecsize)
rhs_row += ", ";
}
rhs_row += ")";
statement(cast_expr, to_enclosed_expression(lhs_expression), "[", i, "]", " = ", rhs_row, ";");
}
}
// We're dealing with transpose manually.
lhs_e->need_transpose = true;
}
else
{
write_type.columns = 1;
if (physical_type.vecsize != type.vecsize)
cast_expr = join("(", cast_addr_space, " ", packed_pfx, type_to_glsl(write_type), "&)");
if (rhs_transpose)
{
auto vector_type = expression_type(rhs_expression);
vector_type.columns = 1;
// Transpose on the fly. Emitting a lot of full transpose() ops and extracting lanes seems very bad,
// so pick out individual components instead.
for (uint32_t i = 0; i < type.columns; i++)
{
string rhs_row = type_to_glsl_constructor(vector_type) + "(";
for (uint32_t j = 0; j < vector_type.vecsize; j++)
{
// Need to explicitly unpack expression since we've mucked with transpose state.
auto unpacked_expr = to_unpacked_row_major_matrix_expression(rhs_expression);
rhs_row += join(unpacked_expr, "[", j, "][", i, "]");
if (j + 1 < vector_type.vecsize)
rhs_row += ", ";
}
rhs_row += ")";
statement(cast_expr, to_enclosed_expression(lhs_expression), "[", i, "]", " = ", rhs_row, ";");
}
}
else
{
// Copy column-by-column.
for (uint32_t i = 0; i < type.columns; i++)
{
statement(cast_expr, to_enclosed_expression(lhs_expression), "[", i, "]", " = ",
to_enclosed_unpacked_expression(rhs_expression), "[", i, "];");
}
}
}
// We're dealing with transpose manually.
if (rhs_transpose)
rhs_e->need_transpose = true;
}
else if (transpose)
{
lhs_e->need_transpose = false;
SPIRType write_type = type;
write_type.vecsize = 1;
write_type.columns = 1;
// Storing a column to a row-major matrix. Unroll the write.
for (uint32_t c = 0; c < type.vecsize; c++)
{
auto lhs_expr = to_enclosed_expression(lhs_expression);
auto column_index = lhs_expr.find_last_of('[');
// Get rid of any ".data" half8 handling here, we're casting to scalar anyway.
auto end_column_index = lhs_expr.find_last_of(']');
auto end_dot_index = lhs_expr.find_last_of('.');
if (end_dot_index != string::npos && end_dot_index > end_column_index)
lhs_expr.resize(end_dot_index);
if (column_index != string::npos)
{
statement("((", cast_addr_space, " ", type_to_glsl(write_type), "*)&",
lhs_expr.insert(column_index, join('[', c, ']', ")")), " = ",
to_extract_component_expression(rhs_expression, c), ";");
}
}
lhs_e->need_transpose = true;
}
else if ((is_matrix(physical_type) || is_array(physical_type)) &&
physical_type.vecsize <= 4 &&
physical_type.vecsize > type.vecsize)
{
assert(type.vecsize >= 1 && type.vecsize <= 3);
// If we have packed types, we cannot use swizzled stores.
// We could technically unroll the store for each element if needed.
// When remapping to a std140 physical type, we always get float4,
// and the packed decoration should always be removed.
assert(!lhs_packed_type);
string lhs = to_dereferenced_expression(lhs_expression);
string rhs = to_pointer_expression(rhs_expression);
// Unpack the expression so we can store to it with a float or float2.
// It's still an l-value, so it's fine. Most other unpacking of expressions turn them into r-values instead.
lhs = join("(", cast_addr_space, " ", type_to_glsl(type), "&)", enclose_expression(lhs));
if (!optimize_read_modify_write(expression_type(rhs_expression), lhs, rhs))
statement(lhs, " = ", rhs, ";");
}
else if (!is_matrix(type))
{
string lhs = to_dereferenced_expression(lhs_expression);
string rhs = to_pointer_expression(rhs_expression);
if (!optimize_read_modify_write(expression_type(rhs_expression), lhs, rhs))
statement(lhs, " = ", rhs, ";");
}
register_write(lhs_expression);
}
}
static bool expression_ends_with(const string &expr_str, const std::string &ending)
{
if (expr_str.length() >= ending.length())
return (expr_str.compare(expr_str.length() - ending.length(), ending.length(), ending) == 0);
else
return false;
}
// Converts the format of the current expression from packed to unpacked,
// by wrapping the expression in a constructor of the appropriate type.
// Also, handle special physical ID remapping scenarios, similar to emit_store_statement().
string CompilerMSL::unpack_expression_type(string expr_str, const SPIRType &type, uint32_t physical_type_id,
bool packed, bool row_major)
{
// Trivial case, nothing to do.
if (physical_type_id == 0 && !packed)
return expr_str;
const SPIRType *physical_type = nullptr;
if (physical_type_id)
physical_type = &get<SPIRType>(physical_type_id);
static const char *swizzle_lut[] = {
".x",
".xy",
".xyz",
"",
};
// TODO: Move everything to the template wrapper?
bool uses_std140_wrapper = physical_type && physical_type->vecsize > 4;
if (physical_type && is_vector(*physical_type) && is_array(*physical_type) &&
!uses_std140_wrapper &&
physical_type->vecsize > type.vecsize && !expression_ends_with(expr_str, swizzle_lut[type.vecsize - 1]))
{
// std140 array cases for vectors.
assert(type.vecsize >= 1 && type.vecsize <= 3);
return enclose_expression(expr_str) + swizzle_lut[type.vecsize - 1];
}
else if (physical_type && is_matrix(*physical_type) && is_vector(type) &&
!uses_std140_wrapper &&
physical_type->vecsize > type.vecsize)
{
// Extract column from padded matrix.
assert(type.vecsize >= 1 && type.vecsize <= 4);
return enclose_expression(expr_str) + swizzle_lut[type.vecsize - 1];
}
else if (is_matrix(type))
{
// Packed matrices are stored as arrays of packed vectors. Unfortunately,
// we can't just pass the array straight to the matrix constructor. We have to
// pass each vector individually, so that they can be unpacked to normal vectors.
if (!physical_type)
physical_type = &type;
uint32_t vecsize = type.vecsize;
uint32_t columns = type.columns;
if (row_major)
swap(vecsize, columns);
uint32_t physical_vecsize = row_major ? physical_type->columns : physical_type->vecsize;
const char *base_type = type.width == 16 ? "half" : "float";
string unpack_expr = join(base_type, columns, "x", vecsize, "(");
const char *load_swiz = "";
const char *data_swiz = physical_vecsize > 4 ? ".data" : "";
if (physical_vecsize != vecsize)
load_swiz = swizzle_lut[vecsize - 1];
for (uint32_t i = 0; i < columns; i++)
{
if (i > 0)
unpack_expr += ", ";
if (packed)
unpack_expr += join(base_type, physical_vecsize, "(", expr_str, "[", i, "]", ")", load_swiz);
else
unpack_expr += join(expr_str, "[", i, "]", data_swiz, load_swiz);
}
unpack_expr += ")";
return unpack_expr;
}
else
{
return join(type_to_glsl(type), "(", expr_str, ")");
}
}
// Emits the file header info
void CompilerMSL::emit_header()
{
// This particular line can be overridden during compilation, so make it a flag and not a pragma line.
if (suppress_missing_prototypes)
statement("#pragma clang diagnostic ignored \"-Wmissing-prototypes\"");
// Disable warning about missing braces for array<T> template to make arrays a value type
if (spv_function_implementations.count(SPVFuncImplUnsafeArray) != 0)
statement("#pragma clang diagnostic ignored \"-Wmissing-braces\"");
for (auto &pragma : pragma_lines)
statement(pragma);
if (!pragma_lines.empty() || suppress_missing_prototypes)
statement("");
statement("#include <metal_stdlib>");
statement("#include <simd/simd.h>");
for (auto &header : header_lines)
statement(header);
statement("");
statement("using namespace metal;");
statement("");
for (auto &td : typedef_lines)
statement(td);
if (!typedef_lines.empty())
statement("");
}
void CompilerMSL::add_pragma_line(const string &line)
{
auto rslt = pragma_lines.insert(line);
if (rslt.second)
force_recompile();
}
void CompilerMSL::add_typedef_line(const string &line)
{
auto rslt = typedef_lines.insert(line);
if (rslt.second)
force_recompile();
}
// Template struct like spvUnsafeArray<> need to be declared *before* any resources are declared
void CompilerMSL::emit_custom_templates()
{
static const char * const address_spaces[] = {
"thread", "constant", "device", "threadgroup", "threadgroup_imageblock", "ray_data", "object_data"
};
for (const auto &spv_func : spv_function_implementations)
{
switch (spv_func)
{
case SPVFuncImplUnsafeArray:
statement("template<typename T, size_t Num>");
statement("struct spvUnsafeArray");
begin_scope();
statement("T elements[Num ? Num : 1];");
statement("");
statement("thread T& operator [] (size_t pos) thread");
begin_scope();
statement("return elements[pos];");
end_scope();
statement("constexpr const thread T& operator [] (size_t pos) const thread");
begin_scope();
statement("return elements[pos];");
end_scope();
statement("");
statement("device T& operator [] (size_t pos) device");
begin_scope();
statement("return elements[pos];");
end_scope();
statement("constexpr const device T& operator [] (size_t pos) const device");
begin_scope();
statement("return elements[pos];");
end_scope();
statement("");
statement("constexpr const constant T& operator [] (size_t pos) const constant");
begin_scope();
statement("return elements[pos];");
end_scope();
statement("");
statement("threadgroup T& operator [] (size_t pos) threadgroup");
begin_scope();
statement("return elements[pos];");
end_scope();
statement("constexpr const threadgroup T& operator [] (size_t pos) const threadgroup");
begin_scope();
statement("return elements[pos];");
end_scope();
end_scope_decl();
statement("");
break;
case SPVFuncImplStorageMatrix:
statement("template<typename T, int Cols, int Rows=Cols>");
statement("struct spvStorageMatrix");
begin_scope();
statement("vec<T, Rows> columns[Cols];");
statement("");
for (size_t method_idx = 0; method_idx < sizeof(address_spaces) / sizeof(address_spaces[0]); ++method_idx)
{
// Some address spaces require particular features.
if (method_idx == 4) // threadgroup_imageblock
statement("#ifdef __HAVE_IMAGEBLOCKS__");
else if (method_idx == 5) // ray_data
statement("#ifdef __HAVE_RAYTRACING__");
else if (method_idx == 6) // object_data
statement("#ifdef __HAVE_MESH__");
const string &method_as = address_spaces[method_idx];
statement("spvStorageMatrix() ", method_as, " = default;");
if (method_idx != 1) // constant
{
statement(method_as, " spvStorageMatrix& operator=(initializer_list<vec<T, Rows>> cols) ",
method_as);
begin_scope();
statement("size_t i;");
statement("thread vec<T, Rows>* col;");
statement("for (i = 0, col = cols.begin(); i < Cols; ++i, ++col)");
statement(" columns[i] = *col;");
statement("return *this;");
end_scope();
}
statement("");
for (size_t param_idx = 0; param_idx < sizeof(address_spaces) / sizeof(address_spaces[0]); ++param_idx)
{
if (param_idx != method_idx)
{
if (param_idx == 4) // threadgroup_imageblock
statement("#ifdef __HAVE_IMAGEBLOCKS__");
else if (param_idx == 5) // ray_data
statement("#ifdef __HAVE_RAYTRACING__");
else if (param_idx == 6) // object_data
statement("#ifdef __HAVE_MESH__");
}
const string &param_as = address_spaces[param_idx];
statement("spvStorageMatrix(const ", param_as, " matrix<T, Cols, Rows>& m) ", method_as);
begin_scope();
statement("for (size_t i = 0; i < Cols; ++i)");
statement(" columns[i] = m.columns[i];");
end_scope();
statement("spvStorageMatrix(const ", param_as, " spvStorageMatrix& m) ", method_as, " = default;");
if (method_idx != 1) // constant
{
statement(method_as, " spvStorageMatrix& operator=(const ", param_as,
" matrix<T, Cols, Rows>& m) ", method_as);
begin_scope();
statement("for (size_t i = 0; i < Cols; ++i)");
statement(" columns[i] = m.columns[i];");
statement("return *this;");
end_scope();
statement(method_as, " spvStorageMatrix& operator=(const ", param_as, " spvStorageMatrix& m) ",
method_as, " = default;");
}
if (param_idx != method_idx && param_idx >= 4)
statement("#endif");
statement("");
}
statement("operator matrix<T, Cols, Rows>() const ", method_as);
begin_scope();
statement("matrix<T, Cols, Rows> m;");
statement("for (int i = 0; i < Cols; ++i)");
statement(" m.columns[i] = columns[i];");
statement("return m;");
end_scope();
statement("");
statement("vec<T, Rows> operator[](size_t idx) const ", method_as);
begin_scope();
statement("return columns[idx];");
end_scope();
if (method_idx != 1) // constant
{
statement(method_as, " vec<T, Rows>& operator[](size_t idx) ", method_as);
begin_scope();
statement("return columns[idx];");
end_scope();
}
if (method_idx >= 4)
statement("#endif");
statement("");
}
end_scope_decl();
statement("");
statement("template<typename T, int Cols, int Rows>");
statement("matrix<T, Rows, Cols> transpose(spvStorageMatrix<T, Cols, Rows> m)");
begin_scope();
statement("return transpose(matrix<T, Cols, Rows>(m));");
end_scope();
statement("");
statement("typedef spvStorageMatrix<half, 2, 2> spvStorage_half2x2;");
statement("typedef spvStorageMatrix<half, 2, 3> spvStorage_half2x3;");
statement("typedef spvStorageMatrix<half, 2, 4> spvStorage_half2x4;");
statement("typedef spvStorageMatrix<half, 3, 2> spvStorage_half3x2;");
statement("typedef spvStorageMatrix<half, 3, 3> spvStorage_half3x3;");
statement("typedef spvStorageMatrix<half, 3, 4> spvStorage_half3x4;");
statement("typedef spvStorageMatrix<half, 4, 2> spvStorage_half4x2;");
statement("typedef spvStorageMatrix<half, 4, 3> spvStorage_half4x3;");
statement("typedef spvStorageMatrix<half, 4, 4> spvStorage_half4x4;");
statement("typedef spvStorageMatrix<float, 2, 2> spvStorage_float2x2;");
statement("typedef spvStorageMatrix<float, 2, 3> spvStorage_float2x3;");
statement("typedef spvStorageMatrix<float, 2, 4> spvStorage_float2x4;");
statement("typedef spvStorageMatrix<float, 3, 2> spvStorage_float3x2;");
statement("typedef spvStorageMatrix<float, 3, 3> spvStorage_float3x3;");
statement("typedef spvStorageMatrix<float, 3, 4> spvStorage_float3x4;");
statement("typedef spvStorageMatrix<float, 4, 2> spvStorage_float4x2;");
statement("typedef spvStorageMatrix<float, 4, 3> spvStorage_float4x3;");
statement("typedef spvStorageMatrix<float, 4, 4> spvStorage_float4x4;");
statement("");
break;
default:
break;
}
}
}
// Emits any needed custom function bodies.
// Metal helper functions must be static force-inline, i.e. static inline __attribute__((always_inline))
// otherwise they will cause problems when linked together in a single Metallib.
void CompilerMSL::emit_custom_functions()
{
for (uint32_t i = kArrayCopyMultidimMax; i >= 2; i--)
if (spv_function_implementations.count(static_cast<SPVFuncImpl>(SPVFuncImplArrayCopyMultidimBase + i)))
spv_function_implementations.insert(static_cast<SPVFuncImpl>(SPVFuncImplArrayCopyMultidimBase + i - 1));
if (spv_function_implementations.count(SPVFuncImplDynamicImageSampler))
{
// Unfortunately, this one needs a lot of the other functions to compile OK.
if (!msl_options.supports_msl_version(2))
SPIRV_CROSS_THROW(
"spvDynamicImageSampler requires default-constructible texture objects, which require MSL 2.0.");
spv_function_implementations.insert(SPVFuncImplForwardArgs);
spv_function_implementations.insert(SPVFuncImplTextureSwizzle);
if (msl_options.swizzle_texture_samples)
spv_function_implementations.insert(SPVFuncImplGatherSwizzle);
for (uint32_t i = SPVFuncImplChromaReconstructNearest2Plane;
i <= SPVFuncImplChromaReconstructLinear420XMidpointYMidpoint3Plane; i++)
spv_function_implementations.insert(static_cast<SPVFuncImpl>(i));
spv_function_implementations.insert(SPVFuncImplExpandITUFullRange);
spv_function_implementations.insert(SPVFuncImplExpandITUNarrowRange);
spv_function_implementations.insert(SPVFuncImplConvertYCbCrBT709);
spv_function_implementations.insert(SPVFuncImplConvertYCbCrBT601);
spv_function_implementations.insert(SPVFuncImplConvertYCbCrBT2020);
}
for (uint32_t i = SPVFuncImplChromaReconstructNearest2Plane;
i <= SPVFuncImplChromaReconstructLinear420XMidpointYMidpoint3Plane; i++)
if (spv_function_implementations.count(static_cast<SPVFuncImpl>(i)))
spv_function_implementations.insert(SPVFuncImplForwardArgs);
if (spv_function_implementations.count(SPVFuncImplTextureSwizzle) ||
spv_function_implementations.count(SPVFuncImplGatherSwizzle) ||
spv_function_implementations.count(SPVFuncImplGatherCompareSwizzle))
{
spv_function_implementations.insert(SPVFuncImplForwardArgs);
spv_function_implementations.insert(SPVFuncImplGetSwizzle);
}
for (const auto &spv_func : spv_function_implementations)
{
switch (spv_func)
{
case SPVFuncImplMod:
statement("// Implementation of the GLSL mod() function, which is slightly different than Metal fmod()");
statement("template<typename Tx, typename Ty>");
statement("inline Tx mod(Tx x, Ty y)");
begin_scope();
statement("return x - y * floor(x / y);");
end_scope();
statement("");
break;
case SPVFuncImplRadians:
statement("// Implementation of the GLSL radians() function");
statement("template<typename T>");
statement("inline T radians(T d)");
begin_scope();
statement("return d * T(0.01745329251);");
end_scope();
statement("");
break;
case SPVFuncImplDegrees:
statement("// Implementation of the GLSL degrees() function");
statement("template<typename T>");
statement("inline T degrees(T r)");
begin_scope();
statement("return r * T(57.2957795131);");
end_scope();
statement("");
break;
case SPVFuncImplFindILsb:
statement("// Implementation of the GLSL findLSB() function");
statement("template<typename T>");
statement("inline T spvFindLSB(T x)");
begin_scope();
statement("return select(ctz(x), T(-1), x == T(0));");
end_scope();
statement("");
break;
case SPVFuncImplFindUMsb:
statement("// Implementation of the unsigned GLSL findMSB() function");
statement("template<typename T>");
statement("inline T spvFindUMSB(T x)");
begin_scope();
statement("return select(clz(T(0)) - (clz(x) + T(1)), T(-1), x == T(0));");
end_scope();
statement("");
break;
case SPVFuncImplFindSMsb:
statement("// Implementation of the signed GLSL findMSB() function");
statement("template<typename T>");
statement("inline T spvFindSMSB(T x)");
begin_scope();
statement("T v = select(x, T(-1) - x, x < T(0));");
statement("return select(clz(T(0)) - (clz(v) + T(1)), T(-1), v == T(0));");
end_scope();
statement("");
break;
case SPVFuncImplSSign:
statement("// Implementation of the GLSL sign() function for integer types");
statement("template<typename T, typename E = typename enable_if<is_integral<T>::value>::type>");
statement("inline T sign(T x)");
begin_scope();
statement("return select(select(select(x, T(0), x == T(0)), T(1), x > T(0)), T(-1), x < T(0));");
end_scope();
statement("");
break;
case SPVFuncImplArrayCopy:
case SPVFuncImplArrayOfArrayCopy2Dim:
case SPVFuncImplArrayOfArrayCopy3Dim:
case SPVFuncImplArrayOfArrayCopy4Dim:
case SPVFuncImplArrayOfArrayCopy5Dim:
case SPVFuncImplArrayOfArrayCopy6Dim:
{
// Unfortunately we cannot template on the address space, so combinatorial explosion it is.
static const char *function_name_tags[] = {
"FromConstantToStack", "FromConstantToThreadGroup", "FromStackToStack",
"FromStackToThreadGroup", "FromThreadGroupToStack", "FromThreadGroupToThreadGroup",
"FromDeviceToDevice", "FromConstantToDevice", "FromStackToDevice",
"FromThreadGroupToDevice", "FromDeviceToStack", "FromDeviceToThreadGroup",
};
static const char *src_address_space[] = {
"constant", "constant", "thread const", "thread const",
"threadgroup const", "threadgroup const", "device const", "constant",
"thread const", "threadgroup const", "device const", "device const",
};
static const char *dst_address_space[] = {
"thread", "threadgroup", "thread", "threadgroup", "thread", "threadgroup",
"device", "device", "device", "device", "thread", "threadgroup",
};
for (uint32_t variant = 0; variant < 12; variant++)
{
uint8_t dimensions = spv_func - SPVFuncImplArrayCopyMultidimBase;
string tmp = "template<typename T";
for (uint8_t i = 0; i < dimensions; i++)
{
tmp += ", uint ";
tmp += 'A' + i;
}
tmp += ">";
statement(tmp);
string array_arg;
for (uint8_t i = 0; i < dimensions; i++)
{
array_arg += "[";
array_arg += 'A' + i;
array_arg += "]";
}
statement("inline void spvArrayCopy", function_name_tags[variant], dimensions, "(",
dst_address_space[variant], " T (&dst)", array_arg, ", ", src_address_space[variant],
" T (&src)", array_arg, ")");
begin_scope();
statement("for (uint i = 0; i < A; i++)");
begin_scope();
if (dimensions == 1)
statement("dst[i] = src[i];");
else
statement("spvArrayCopy", function_name_tags[variant], dimensions - 1, "(dst[i], src[i]);");
end_scope();
end_scope();
statement("");
}
break;
}
// Support for Metal 2.1's new texture_buffer type.
case SPVFuncImplTexelBufferCoords:
{
if (msl_options.texel_buffer_texture_width > 0)
{
string tex_width_str = convert_to_string(msl_options.texel_buffer_texture_width);
statement("// Returns 2D texture coords corresponding to 1D texel buffer coords");
statement(force_inline);
statement("uint2 spvTexelBufferCoord(uint tc)");
begin_scope();
statement(join("return uint2(tc % ", tex_width_str, ", tc / ", tex_width_str, ");"));
end_scope();
statement("");
}
else
{
statement("// Returns 2D texture coords corresponding to 1D texel buffer coords");
statement(
"#define spvTexelBufferCoord(tc, tex) uint2((tc) % (tex).get_width(), (tc) / (tex).get_width())");
statement("");
}
break;
}
// Emulate texture2D atomic operations
case SPVFuncImplImage2DAtomicCoords:
{
if (msl_options.supports_msl_version(1, 2))
{
statement("// The required alignment of a linear texture of R32Uint format.");
statement("constant uint spvLinearTextureAlignmentOverride [[function_constant(",
msl_options.r32ui_alignment_constant_id, ")]];");
statement("constant uint spvLinearTextureAlignment = ",
"is_function_constant_defined(spvLinearTextureAlignmentOverride) ? ",
"spvLinearTextureAlignmentOverride : ", msl_options.r32ui_linear_texture_alignment, ";");
}
else
{
statement("// The required alignment of a linear texture of R32Uint format.");
statement("constant uint spvLinearTextureAlignment = ", msl_options.r32ui_linear_texture_alignment,
";");
}
statement("// Returns buffer coords corresponding to 2D texture coords for emulating 2D texture atomics");
statement("#define spvImage2DAtomicCoord(tc, tex) (((((tex).get_width() + ",
" spvLinearTextureAlignment / 4 - 1) & ~(",
" spvLinearTextureAlignment / 4 - 1)) * (tc).y) + (tc).x)");
statement("");
break;
}
// Fix up gradient vectors when sampling a cube texture for Apple Silicon.
// h/t Alexey Knyazev (https://github.com/KhronosGroup/MoltenVK/issues/2068#issuecomment-1817799067) for the code.
case SPVFuncImplGradientCube:
statement("static inline gradientcube spvGradientCube(float3 P, float3 dPdx, float3 dPdy)");
begin_scope();
statement("// Major axis selection");
statement("float3 absP = abs(P);");
statement("bool xMajor = absP.x >= max(absP.y, absP.z);");
statement("bool yMajor = absP.y >= absP.z;");
statement("float3 Q = xMajor ? P.yzx : (yMajor ? P.xzy : P);");
statement("float3 dQdx = xMajor ? dPdx.yzx : (yMajor ? dPdx.xzy : dPdx);");
statement("float3 dQdy = xMajor ? dPdy.yzx : (yMajor ? dPdy.xzy : dPdy);");
statement_no_indent("");
statement("// Skip a couple of operations compared to usual projection");
statement("float4 d = float4(dQdx.xy, dQdy.xy) - (Q.xy / Q.z).xyxy * float4(dQdx.zz, dQdy.zz);");
statement_no_indent("");
statement("// Final swizzle to put the intermediate values into non-ignored components");
statement("// X major: X and Z");
statement("// Y major: X and Y");
statement("// Z major: Y and Z");
statement("return gradientcube(xMajor ? d.xxy : d.xyx, xMajor ? d.zzw : d.zwz);");
end_scope();
statement("");
break;
// "fadd" intrinsic support
case SPVFuncImplFAdd:
statement("template<typename T>");
statement("[[clang::optnone]] T spvFAdd(T l, T r)");
begin_scope();
statement("return fma(T(1), l, r);");
end_scope();
statement("");
break;
// "fsub" intrinsic support
case SPVFuncImplFSub:
statement("template<typename T>");
statement("[[clang::optnone]] T spvFSub(T l, T r)");
begin_scope();
statement("return fma(T(-1), r, l);");
end_scope();
statement("");
break;
// "fmul' intrinsic support
case SPVFuncImplFMul:
statement("template<typename T>");
statement("[[clang::optnone]] T spvFMul(T l, T r)");
begin_scope();
statement("return fma(l, r, T(0));");
end_scope();
statement("");
statement("template<typename T, int Cols, int Rows>");
statement("[[clang::optnone]] vec<T, Cols> spvFMulVectorMatrix(vec<T, Rows> v, matrix<T, Cols, Rows> m)");
begin_scope();
statement("vec<T, Cols> res = vec<T, Cols>(0);");
statement("for (uint i = Rows; i > 0; --i)");
begin_scope();
statement("vec<T, Cols> tmp(0);");
statement("for (uint j = 0; j < Cols; ++j)");
begin_scope();
statement("tmp[j] = m[j][i - 1];");
end_scope();
statement("res = fma(tmp, vec<T, Cols>(v[i - 1]), res);");
end_scope();
statement("return res;");
end_scope();
statement("");
statement("template<typename T, int Cols, int Rows>");
statement("[[clang::optnone]] vec<T, Rows> spvFMulMatrixVector(matrix<T, Cols, Rows> m, vec<T, Cols> v)");
begin_scope();
statement("vec<T, Rows> res = vec<T, Rows>(0);");
statement("for (uint i = Cols; i > 0; --i)");
begin_scope();
statement("res = fma(m[i - 1], vec<T, Rows>(v[i - 1]), res);");
end_scope();
statement("return res;");
end_scope();
statement("");
statement("template<typename T, int LCols, int LRows, int RCols, int RRows>");
statement("[[clang::optnone]] matrix<T, RCols, LRows> spvFMulMatrixMatrix(matrix<T, LCols, LRows> l, matrix<T, RCols, RRows> r)");
begin_scope();
statement("matrix<T, RCols, LRows> res;");
statement("for (uint i = 0; i < RCols; i++)");
begin_scope();
statement("vec<T, RCols> tmp(0);");
statement("for (uint j = 0; j < LCols; j++)");
begin_scope();
statement("tmp = fma(vec<T, RCols>(r[i][j]), l[j], tmp);");
end_scope();
statement("res[i] = tmp;");
end_scope();
statement("return res;");
end_scope();
statement("");
break;
case SPVFuncImplQuantizeToF16:
// Ensure fast-math is disabled to match Vulkan results.
// SpvHalfTypeSelector is used to match the half* template type to the float* template type.
// Depending on GPU, MSL does not always flush converted subnormal halfs to zero,
// as required by OpQuantizeToF16, so check for subnormals and flush them to zero.
statement("template <typename F> struct SpvHalfTypeSelector;");
statement("template <> struct SpvHalfTypeSelector<float> { public: using H = half; };");
statement("template<uint N> struct SpvHalfTypeSelector<vec<float, N>> { using H = vec<half, N>; };");
statement("template<typename F, typename H = typename SpvHalfTypeSelector<F>::H>");
statement("[[clang::optnone]] F spvQuantizeToF16(F fval)");
begin_scope();
statement("H hval = H(fval);");
statement("hval = select(copysign(H(0), hval), hval, isnormal(hval) || isinf(hval) || isnan(hval));");
statement("return F(hval);");
end_scope();
statement("");
break;
// Emulate texturecube_array with texture2d_array for iOS where this type is not available
case SPVFuncImplCubemapTo2DArrayFace:
statement(force_inline);
statement("float3 spvCubemapTo2DArrayFace(float3 P)");
begin_scope();
statement("float3 Coords = abs(P.xyz);");
statement("float CubeFace = 0;");
statement("float ProjectionAxis = 0;");
statement("float u = 0;");
statement("float v = 0;");
statement("if (Coords.x >= Coords.y && Coords.x >= Coords.z)");
begin_scope();
statement("CubeFace = P.x >= 0 ? 0 : 1;");
statement("ProjectionAxis = Coords.x;");
statement("u = P.x >= 0 ? -P.z : P.z;");
statement("v = -P.y;");
end_scope();
statement("else if (Coords.y >= Coords.x && Coords.y >= Coords.z)");
begin_scope();
statement("CubeFace = P.y >= 0 ? 2 : 3;");
statement("ProjectionAxis = Coords.y;");
statement("u = P.x;");
statement("v = P.y >= 0 ? P.z : -P.z;");
end_scope();
statement("else");
begin_scope();
statement("CubeFace = P.z >= 0 ? 4 : 5;");
statement("ProjectionAxis = Coords.z;");
statement("u = P.z >= 0 ? P.x : -P.x;");
statement("v = -P.y;");
end_scope();
statement("u = 0.5 * (u/ProjectionAxis + 1);");
statement("v = 0.5 * (v/ProjectionAxis + 1);");
statement("return float3(u, v, CubeFace);");
end_scope();
statement("");
break;
case SPVFuncImplInverse4x4:
statement("// Returns the determinant of a 2x2 matrix.");
statement(force_inline);
statement("float spvDet2x2(float a1, float a2, float b1, float b2)");
begin_scope();
statement("return a1 * b2 - b1 * a2;");
end_scope();
statement("");
statement("// Returns the determinant of a 3x3 matrix.");
statement(force_inline);
statement("float spvDet3x3(float a1, float a2, float a3, float b1, float b2, float b3, float c1, "
"float c2, float c3)");
begin_scope();
statement("return a1 * spvDet2x2(b2, b3, c2, c3) - b1 * spvDet2x2(a2, a3, c2, c3) + c1 * spvDet2x2(a2, a3, "
"b2, b3);");
end_scope();
statement("");
statement("// Returns the inverse of a matrix, by using the algorithm of calculating the classical");
statement("// adjoint and dividing by the determinant. The contents of the matrix are changed.");
statement(force_inline);
statement("float4x4 spvInverse4x4(float4x4 m)");
begin_scope();
statement("float4x4 adj; // The adjoint matrix (inverse after dividing by determinant)");
statement_no_indent("");
statement("// Create the transpose of the cofactors, as the classical adjoint of the matrix.");
statement("adj[0][0] = spvDet3x3(m[1][1], m[1][2], m[1][3], m[2][1], m[2][2], m[2][3], m[3][1], m[3][2], "
"m[3][3]);");
statement("adj[0][1] = -spvDet3x3(m[0][1], m[0][2], m[0][3], m[2][1], m[2][2], m[2][3], m[3][1], m[3][2], "
"m[3][3]);");
statement("adj[0][2] = spvDet3x3(m[0][1], m[0][2], m[0][3], m[1][1], m[1][2], m[1][3], m[3][1], m[3][2], "
"m[3][3]);");
statement("adj[0][3] = -spvDet3x3(m[0][1], m[0][2], m[0][3], m[1][1], m[1][2], m[1][3], m[2][1], m[2][2], "
"m[2][3]);");
statement_no_indent("");
statement("adj[1][0] = -spvDet3x3(m[1][0], m[1][2], m[1][3], m[2][0], m[2][2], m[2][3], m[3][0], m[3][2], "
"m[3][3]);");
statement("adj[1][1] = spvDet3x3(m[0][0], m[0][2], m[0][3], m[2][0], m[2][2], m[2][3], m[3][0], m[3][2], "
"m[3][3]);");
statement("adj[1][2] = -spvDet3x3(m[0][0], m[0][2], m[0][3], m[1][0], m[1][2], m[1][3], m[3][0], m[3][2], "
"m[3][3]);");
statement("adj[1][3] = spvDet3x3(m[0][0], m[0][2], m[0][3], m[1][0], m[1][2], m[1][3], m[2][0], m[2][2], "
"m[2][3]);");
statement_no_indent("");
statement("adj[2][0] = spvDet3x3(m[1][0], m[1][1], m[1][3], m[2][0], m[2][1], m[2][3], m[3][0], m[3][1], "
"m[3][3]);");
statement("adj[2][1] = -spvDet3x3(m[0][0], m[0][1], m[0][3], m[2][0], m[2][1], m[2][3], m[3][0], m[3][1], "
"m[3][3]);");
statement("adj[2][2] = spvDet3x3(m[0][0], m[0][1], m[0][3], m[1][0], m[1][1], m[1][3], m[3][0], m[3][1], "
"m[3][3]);");
statement("adj[2][3] = -spvDet3x3(m[0][0], m[0][1], m[0][3], m[1][0], m[1][1], m[1][3], m[2][0], m[2][1], "
"m[2][3]);");
statement_no_indent("");
statement("adj[3][0] = -spvDet3x3(m[1][0], m[1][1], m[1][2], m[2][0], m[2][1], m[2][2], m[3][0], m[3][1], "
"m[3][2]);");
statement("adj[3][1] = spvDet3x3(m[0][0], m[0][1], m[0][2], m[2][0], m[2][1], m[2][2], m[3][0], m[3][1], "
"m[3][2]);");
statement("adj[3][2] = -spvDet3x3(m[0][0], m[0][1], m[0][2], m[1][0], m[1][1], m[1][2], m[3][0], m[3][1], "
"m[3][2]);");
statement("adj[3][3] = spvDet3x3(m[0][0], m[0][1], m[0][2], m[1][0], m[1][1], m[1][2], m[2][0], m[2][1], "
"m[2][2]);");
statement_no_indent("");
statement("// Calculate the determinant as a combination of the cofactors of the first row.");
statement("float det = (adj[0][0] * m[0][0]) + (adj[0][1] * m[1][0]) + (adj[0][2] * m[2][0]) + (adj[0][3] "
"* m[3][0]);");
statement_no_indent("");
statement("// Divide the classical adjoint matrix by the determinant.");
statement("// If determinant is zero, matrix is not invertable, so leave it unchanged.");
statement("return (det != 0.0f) ? (adj * (1.0f / det)) : m;");
end_scope();
statement("");
break;
case SPVFuncImplInverse3x3:
if (spv_function_implementations.count(SPVFuncImplInverse4x4) == 0)
{
statement("// Returns the determinant of a 2x2 matrix.");
statement(force_inline);
statement("float spvDet2x2(float a1, float a2, float b1, float b2)");
begin_scope();
statement("return a1 * b2 - b1 * a2;");
end_scope();
statement("");
}
statement("// Returns the inverse of a matrix, by using the algorithm of calculating the classical");
statement("// adjoint and dividing by the determinant. The contents of the matrix are changed.");
statement(force_inline);
statement("float3x3 spvInverse3x3(float3x3 m)");
begin_scope();
statement("float3x3 adj; // The adjoint matrix (inverse after dividing by determinant)");
statement_no_indent("");
statement("// Create the transpose of the cofactors, as the classical adjoint of the matrix.");
statement("adj[0][0] = spvDet2x2(m[1][1], m[1][2], m[2][1], m[2][2]);");
statement("adj[0][1] = -spvDet2x2(m[0][1], m[0][2], m[2][1], m[2][2]);");
statement("adj[0][2] = spvDet2x2(m[0][1], m[0][2], m[1][1], m[1][2]);");
statement_no_indent("");
statement("adj[1][0] = -spvDet2x2(m[1][0], m[1][2], m[2][0], m[2][2]);");
statement("adj[1][1] = spvDet2x2(m[0][0], m[0][2], m[2][0], m[2][2]);");
statement("adj[1][2] = -spvDet2x2(m[0][0], m[0][2], m[1][0], m[1][2]);");
statement_no_indent("");
statement("adj[2][0] = spvDet2x2(m[1][0], m[1][1], m[2][0], m[2][1]);");
statement("adj[2][1] = -spvDet2x2(m[0][0], m[0][1], m[2][0], m[2][1]);");
statement("adj[2][2] = spvDet2x2(m[0][0], m[0][1], m[1][0], m[1][1]);");
statement_no_indent("");
statement("// Calculate the determinant as a combination of the cofactors of the first row.");
statement("float det = (adj[0][0] * m[0][0]) + (adj[0][1] * m[1][0]) + (adj[0][2] * m[2][0]);");
statement_no_indent("");
statement("// Divide the classical adjoint matrix by the determinant.");
statement("// If determinant is zero, matrix is not invertable, so leave it unchanged.");
statement("return (det != 0.0f) ? (adj * (1.0f / det)) : m;");
end_scope();
statement("");
break;
case SPVFuncImplInverse2x2:
statement("// Returns the inverse of a matrix, by using the algorithm of calculating the classical");
statement("// adjoint and dividing by the determinant. The contents of the matrix are changed.");
statement(force_inline);
statement("float2x2 spvInverse2x2(float2x2 m)");
begin_scope();
statement("float2x2 adj; // The adjoint matrix (inverse after dividing by determinant)");
statement_no_indent("");
statement("// Create the transpose of the cofactors, as the classical adjoint of the matrix.");
statement("adj[0][0] = m[1][1];");
statement("adj[0][1] = -m[0][1];");
statement_no_indent("");
statement("adj[1][0] = -m[1][0];");
statement("adj[1][1] = m[0][0];");
statement_no_indent("");
statement("// Calculate the determinant as a combination of the cofactors of the first row.");
statement("float det = (adj[0][0] * m[0][0]) + (adj[0][1] * m[1][0]);");
statement_no_indent("");
statement("// Divide the classical adjoint matrix by the determinant.");
statement("// If determinant is zero, matrix is not invertable, so leave it unchanged.");
statement("return (det != 0.0f) ? (adj * (1.0f / det)) : m;");
end_scope();
statement("");
break;
case SPVFuncImplForwardArgs:
statement("template<typename T> struct spvRemoveReference { typedef T type; };");
statement("template<typename T> struct spvRemoveReference<thread T&> { typedef T type; };");
statement("template<typename T> struct spvRemoveReference<thread T&&> { typedef T type; };");
statement("template<typename T> inline constexpr thread T&& spvForward(thread typename "
"spvRemoveReference<T>::type& x)");
begin_scope();
statement("return static_cast<thread T&&>(x);");
end_scope();
statement("template<typename T> inline constexpr thread T&& spvForward(thread typename "
"spvRemoveReference<T>::type&& x)");
begin_scope();
statement("return static_cast<thread T&&>(x);");
end_scope();
statement("");
break;
case SPVFuncImplGetSwizzle:
statement("enum class spvSwizzle : uint");
begin_scope();
statement("none = 0,");
statement("zero,");
statement("one,");
statement("red,");
statement("green,");
statement("blue,");
statement("alpha");
end_scope_decl();
statement("");
statement("template<typename T>");
statement("inline T spvGetSwizzle(vec<T, 4> x, T c, spvSwizzle s)");
begin_scope();
statement("switch (s)");
begin_scope();
statement("case spvSwizzle::none:");
statement(" return c;");
statement("case spvSwizzle::zero:");
statement(" return 0;");
statement("case spvSwizzle::one:");
statement(" return 1;");
statement("case spvSwizzle::red:");
statement(" return x.r;");
statement("case spvSwizzle::green:");
statement(" return x.g;");
statement("case spvSwizzle::blue:");
statement(" return x.b;");
statement("case spvSwizzle::alpha:");
statement(" return x.a;");
end_scope();
end_scope();
statement("");
break;
case SPVFuncImplTextureSwizzle:
statement("// Wrapper function that swizzles texture samples and fetches.");
statement("template<typename T>");
statement("inline vec<T, 4> spvTextureSwizzle(vec<T, 4> x, uint s)");
begin_scope();
statement("if (!s)");
statement(" return x;");
statement("return vec<T, 4>(spvGetSwizzle(x, x.r, spvSwizzle((s >> 0) & 0xFF)), "
"spvGetSwizzle(x, x.g, spvSwizzle((s >> 8) & 0xFF)), spvGetSwizzle(x, x.b, spvSwizzle((s >> 16) "
"& 0xFF)), "
"spvGetSwizzle(x, x.a, spvSwizzle((s >> 24) & 0xFF)));");
end_scope();
statement("");
statement("template<typename T>");
statement("inline T spvTextureSwizzle(T x, uint s)");
begin_scope();
statement("return spvTextureSwizzle(vec<T, 4>(x, 0, 0, 1), s).x;");
end_scope();
statement("");
break;
case SPVFuncImplGatherSwizzle:
statement("// Wrapper function that swizzles texture gathers.");
statement("template<typename T, template<typename, access = access::sample, typename = void> class Tex, "
"typename... Ts>");
statement("inline vec<T, 4> spvGatherSwizzle(const thread Tex<T>& t, sampler s, "
"uint sw, component c, Ts... params) METAL_CONST_ARG(c)");
begin_scope();
statement("if (sw)");
begin_scope();
statement("switch (spvSwizzle((sw >> (uint(c) * 8)) & 0xFF))");
begin_scope();
statement("case spvSwizzle::none:");
statement(" break;");
statement("case spvSwizzle::zero:");
statement(" return vec<T, 4>(0, 0, 0, 0);");
statement("case spvSwizzle::one:");
statement(" return vec<T, 4>(1, 1, 1, 1);");
statement("case spvSwizzle::red:");
statement(" return t.gather(s, spvForward<Ts>(params)..., component::x);");
statement("case spvSwizzle::green:");
statement(" return t.gather(s, spvForward<Ts>(params)..., component::y);");
statement("case spvSwizzle::blue:");
statement(" return t.gather(s, spvForward<Ts>(params)..., component::z);");
statement("case spvSwizzle::alpha:");
statement(" return t.gather(s, spvForward<Ts>(params)..., component::w);");
end_scope();
end_scope();
// texture::gather insists on its component parameter being a constant
// expression, so we need this silly workaround just to compile the shader.
statement("switch (c)");
begin_scope();
statement("case component::x:");
statement(" return t.gather(s, spvForward<Ts>(params)..., component::x);");
statement("case component::y:");
statement(" return t.gather(s, spvForward<Ts>(params)..., component::y);");
statement("case component::z:");
statement(" return t.gather(s, spvForward<Ts>(params)..., component::z);");
statement("case component::w:");
statement(" return t.gather(s, spvForward<Ts>(params)..., component::w);");
end_scope();
end_scope();
statement("");
break;
case SPVFuncImplGatherCompareSwizzle:
statement("// Wrapper function that swizzles depth texture gathers.");
statement("template<typename T, template<typename, access = access::sample, typename = void> class Tex, "
"typename... Ts>");
statement("inline vec<T, 4> spvGatherCompareSwizzle(const thread Tex<T>& t, sampler "
"s, uint sw, Ts... params) ");
begin_scope();
statement("if (sw)");
begin_scope();
statement("switch (spvSwizzle(sw & 0xFF))");
begin_scope();
statement("case spvSwizzle::none:");
statement("case spvSwizzle::red:");
statement(" break;");
statement("case spvSwizzle::zero:");
statement("case spvSwizzle::green:");
statement("case spvSwizzle::blue:");
statement("case spvSwizzle::alpha:");
statement(" return vec<T, 4>(0, 0, 0, 0);");
statement("case spvSwizzle::one:");
statement(" return vec<T, 4>(1, 1, 1, 1);");
end_scope();
end_scope();
statement("return t.gather_compare(s, spvForward<Ts>(params)...);");
end_scope();
statement("");
break;
case SPVFuncImplSubgroupBroadcast:
// Metal doesn't allow broadcasting boolean values directly, but we can work around that by broadcasting
// them as integers.
statement("template<typename T>");
statement("inline T spvSubgroupBroadcast(T value, ushort lane)");
begin_scope();
if (msl_options.use_quadgroup_operation())
statement("return quad_broadcast(value, lane);");
else
statement("return simd_broadcast(value, lane);");
end_scope();
statement("");
statement("template<>");
statement("inline bool spvSubgroupBroadcast(bool value, ushort lane)");
begin_scope();
if (msl_options.use_quadgroup_operation())
statement("return !!quad_broadcast((ushort)value, lane);");
else
statement("return !!simd_broadcast((ushort)value, lane);");
end_scope();
statement("");
statement("template<uint N>");
statement("inline vec<bool, N> spvSubgroupBroadcast(vec<bool, N> value, ushort lane)");
begin_scope();
if (msl_options.use_quadgroup_operation())
statement("return (vec<bool, N>)quad_broadcast((vec<ushort, N>)value, lane);");
else
statement("return (vec<bool, N>)simd_broadcast((vec<ushort, N>)value, lane);");
end_scope();
statement("");
break;
case SPVFuncImplSubgroupBroadcastFirst:
statement("template<typename T>");
statement("inline T spvSubgroupBroadcastFirst(T value)");
begin_scope();
if (msl_options.use_quadgroup_operation())
statement("return quad_broadcast_first(value);");
else
statement("return simd_broadcast_first(value);");
end_scope();
statement("");
statement("template<>");
statement("inline bool spvSubgroupBroadcastFirst(bool value)");
begin_scope();
if (msl_options.use_quadgroup_operation())
statement("return !!quad_broadcast_first((ushort)value);");
else
statement("return !!simd_broadcast_first((ushort)value);");
end_scope();
statement("");
statement("template<uint N>");
statement("inline vec<bool, N> spvSubgroupBroadcastFirst(vec<bool, N> value)");
begin_scope();
if (msl_options.use_quadgroup_operation())
statement("return (vec<bool, N>)quad_broadcast_first((vec<ushort, N>)value);");
else
statement("return (vec<bool, N>)simd_broadcast_first((vec<ushort, N>)value);");
end_scope();
statement("");
break;
case SPVFuncImplSubgroupBallot:
statement("inline uint4 spvSubgroupBallot(bool value)");
begin_scope();
if (msl_options.use_quadgroup_operation())
{
statement("return uint4((quad_vote::vote_t)quad_ballot(value), 0, 0, 0);");
}
else if (msl_options.is_ios())
{
// The current simd_vote on iOS uses a 32-bit integer-like object.
statement("return uint4((simd_vote::vote_t)simd_ballot(value), 0, 0, 0);");
}
else
{
statement("simd_vote vote = simd_ballot(value);");
statement("// simd_ballot() returns a 64-bit integer-like object, but");
statement("// SPIR-V callers expect a uint4. We must convert.");
statement("// FIXME: This won't include higher bits if Apple ever supports");
statement("// 128 lanes in an SIMD-group.");
statement("return uint4(as_type<uint2>((simd_vote::vote_t)vote), 0, 0);");
}
end_scope();
statement("");
break;
case SPVFuncImplSubgroupBallotBitExtract:
statement("inline bool spvSubgroupBallotBitExtract(uint4 ballot, uint bit)");
begin_scope();
statement("return !!extract_bits(ballot[bit / 32], bit % 32, 1);");
end_scope();
statement("");
break;
case SPVFuncImplSubgroupBallotFindLSB:
statement("inline uint spvSubgroupBallotFindLSB(uint4 ballot, uint gl_SubgroupSize)");
begin_scope();
if (msl_options.is_ios())
{
statement("uint4 mask = uint4(extract_bits(0xFFFFFFFF, 0, gl_SubgroupSize), uint3(0));");
}
else
{
statement("uint4 mask = uint4(extract_bits(0xFFFFFFFF, 0, min(gl_SubgroupSize, 32u)), "
"extract_bits(0xFFFFFFFF, 0, (uint)max((int)gl_SubgroupSize - 32, 0)), uint2(0));");
}
statement("ballot &= mask;");
statement("return select(ctz(ballot.x), select(32 + ctz(ballot.y), select(64 + ctz(ballot.z), select(96 + "
"ctz(ballot.w), uint(-1), ballot.w == 0), ballot.z == 0), ballot.y == 0), ballot.x == 0);");
end_scope();
statement("");
break;
case SPVFuncImplSubgroupBallotFindMSB:
statement("inline uint spvSubgroupBallotFindMSB(uint4 ballot, uint gl_SubgroupSize)");
begin_scope();
if (msl_options.is_ios())
{
statement("uint4 mask = uint4(extract_bits(0xFFFFFFFF, 0, gl_SubgroupSize), uint3(0));");
}
else
{
statement("uint4 mask = uint4(extract_bits(0xFFFFFFFF, 0, min(gl_SubgroupSize, 32u)), "
"extract_bits(0xFFFFFFFF, 0, (uint)max((int)gl_SubgroupSize - 32, 0)), uint2(0));");
}
statement("ballot &= mask;");
statement("return select(128 - (clz(ballot.w) + 1), select(96 - (clz(ballot.z) + 1), select(64 - "
"(clz(ballot.y) + 1), select(32 - (clz(ballot.x) + 1), uint(-1), ballot.x == 0), ballot.y == 0), "
"ballot.z == 0), ballot.w == 0);");
end_scope();
statement("");
break;
case SPVFuncImplSubgroupBallotBitCount:
statement("inline uint spvPopCount4(uint4 ballot)");
begin_scope();
statement("return popcount(ballot.x) + popcount(ballot.y) + popcount(ballot.z) + popcount(ballot.w);");
end_scope();
statement("");
statement("inline uint spvSubgroupBallotBitCount(uint4 ballot, uint gl_SubgroupSize)");
begin_scope();
if (msl_options.is_ios())
{
statement("uint4 mask = uint4(extract_bits(0xFFFFFFFF, 0, gl_SubgroupSize), uint3(0));");
}
else
{
statement("uint4 mask = uint4(extract_bits(0xFFFFFFFF, 0, min(gl_SubgroupSize, 32u)), "
"extract_bits(0xFFFFFFFF, 0, (uint)max((int)gl_SubgroupSize - 32, 0)), uint2(0));");
}
statement("return spvPopCount4(ballot & mask);");
end_scope();
statement("");
statement("inline uint spvSubgroupBallotInclusiveBitCount(uint4 ballot, uint gl_SubgroupInvocationID)");
begin_scope();
if (msl_options.is_ios())
{
statement("uint4 mask = uint4(extract_bits(0xFFFFFFFF, 0, gl_SubgroupInvocationID + 1), uint3(0));");
}
else
{
statement("uint4 mask = uint4(extract_bits(0xFFFFFFFF, 0, min(gl_SubgroupInvocationID + 1, 32u)), "
"extract_bits(0xFFFFFFFF, 0, (uint)max((int)gl_SubgroupInvocationID + 1 - 32, 0)), "
"uint2(0));");
}
statement("return spvPopCount4(ballot & mask);");
end_scope();
statement("");
statement("inline uint spvSubgroupBallotExclusiveBitCount(uint4 ballot, uint gl_SubgroupInvocationID)");
begin_scope();
if (msl_options.is_ios())
{
statement("uint4 mask = uint4(extract_bits(0xFFFFFFFF, 0, gl_SubgroupInvocationID), uint2(0));");
}
else
{
statement("uint4 mask = uint4(extract_bits(0xFFFFFFFF, 0, min(gl_SubgroupInvocationID, 32u)), "
"extract_bits(0xFFFFFFFF, 0, (uint)max((int)gl_SubgroupInvocationID - 32, 0)), uint2(0));");
}
statement("return spvPopCount4(ballot & mask);");
end_scope();
statement("");
break;
case SPVFuncImplSubgroupAllEqual:
// Metal doesn't provide a function to evaluate this directly. But, we can
// implement this by comparing every thread's value to one thread's value
// (in this case, the value of the first active thread). Then, by the transitive
// property of equality, if all comparisons return true, then they are all equal.
statement("template<typename T>");
statement("inline bool spvSubgroupAllEqual(T value)");
begin_scope();
if (msl_options.use_quadgroup_operation())
statement("return quad_all(all(value == quad_broadcast_first(value)));");
else
statement("return simd_all(all(value == simd_broadcast_first(value)));");
end_scope();
statement("");
statement("template<>");
statement("inline bool spvSubgroupAllEqual(bool value)");
begin_scope();
if (msl_options.use_quadgroup_operation())
statement("return quad_all(value) || !quad_any(value);");
else
statement("return simd_all(value) || !simd_any(value);");
end_scope();
statement("");
statement("template<uint N>");
statement("inline bool spvSubgroupAllEqual(vec<bool, N> value)");
begin_scope();
if (msl_options.use_quadgroup_operation())
statement("return quad_all(all(value == (vec<bool, N>)quad_broadcast_first((vec<ushort, N>)value)));");
else
statement("return simd_all(all(value == (vec<bool, N>)simd_broadcast_first((vec<ushort, N>)value)));");
end_scope();
statement("");
break;
case SPVFuncImplSubgroupShuffle:
statement("template<typename T>");
statement("inline T spvSubgroupShuffle(T value, ushort lane)");
begin_scope();
if (msl_options.use_quadgroup_operation())
statement("return quad_shuffle(value, lane);");
else
statement("return simd_shuffle(value, lane);");
end_scope();
statement("");
statement("template<>");
statement("inline bool spvSubgroupShuffle(bool value, ushort lane)");
begin_scope();
if (msl_options.use_quadgroup_operation())
statement("return !!quad_shuffle((ushort)value, lane);");
else
statement("return !!simd_shuffle((ushort)value, lane);");
end_scope();
statement("");
statement("template<uint N>");
statement("inline vec<bool, N> spvSubgroupShuffle(vec<bool, N> value, ushort lane)");
begin_scope();
if (msl_options.use_quadgroup_operation())
statement("return (vec<bool, N>)quad_shuffle((vec<ushort, N>)value, lane);");
else
statement("return (vec<bool, N>)simd_shuffle((vec<ushort, N>)value, lane);");
end_scope();
statement("");
break;
case SPVFuncImplSubgroupShuffleXor:
statement("template<typename T>");
statement("inline T spvSubgroupShuffleXor(T value, ushort mask)");
begin_scope();
if (msl_options.use_quadgroup_operation())
statement("return quad_shuffle_xor(value, mask);");
else
statement("return simd_shuffle_xor(value, mask);");
end_scope();
statement("");
statement("template<>");
statement("inline bool spvSubgroupShuffleXor(bool value, ushort mask)");
begin_scope();
if (msl_options.use_quadgroup_operation())
statement("return !!quad_shuffle_xor((ushort)value, mask);");
else
statement("return !!simd_shuffle_xor((ushort)value, mask);");
end_scope();
statement("");
statement("template<uint N>");
statement("inline vec<bool, N> spvSubgroupShuffleXor(vec<bool, N> value, ushort mask)");
begin_scope();
if (msl_options.use_quadgroup_operation())
statement("return (vec<bool, N>)quad_shuffle_xor((vec<ushort, N>)value, mask);");
else
statement("return (vec<bool, N>)simd_shuffle_xor((vec<ushort, N>)value, mask);");
end_scope();
statement("");
break;
case SPVFuncImplSubgroupShuffleUp:
statement("template<typename T>");
statement("inline T spvSubgroupShuffleUp(T value, ushort delta)");
begin_scope();
if (msl_options.use_quadgroup_operation())
statement("return quad_shuffle_up(value, delta);");
else
statement("return simd_shuffle_up(value, delta);");
end_scope();
statement("");
statement("template<>");
statement("inline bool spvSubgroupShuffleUp(bool value, ushort delta)");
begin_scope();
if (msl_options.use_quadgroup_operation())
statement("return !!quad_shuffle_up((ushort)value, delta);");
else
statement("return !!simd_shuffle_up((ushort)value, delta);");
end_scope();
statement("");
statement("template<uint N>");
statement("inline vec<bool, N> spvSubgroupShuffleUp(vec<bool, N> value, ushort delta)");
begin_scope();
if (msl_options.use_quadgroup_operation())
statement("return (vec<bool, N>)quad_shuffle_up((vec<ushort, N>)value, delta);");
else
statement("return (vec<bool, N>)simd_shuffle_up((vec<ushort, N>)value, delta);");
end_scope();
statement("");
break;
case SPVFuncImplSubgroupShuffleDown:
statement("template<typename T>");
statement("inline T spvSubgroupShuffleDown(T value, ushort delta)");
begin_scope();
if (msl_options.use_quadgroup_operation())
statement("return quad_shuffle_down(value, delta);");
else
statement("return simd_shuffle_down(value, delta);");
end_scope();
statement("");
statement("template<>");
statement("inline bool spvSubgroupShuffleDown(bool value, ushort delta)");
begin_scope();
if (msl_options.use_quadgroup_operation())
statement("return !!quad_shuffle_down((ushort)value, delta);");
else
statement("return !!simd_shuffle_down((ushort)value, delta);");
end_scope();
statement("");
statement("template<uint N>");
statement("inline vec<bool, N> spvSubgroupShuffleDown(vec<bool, N> value, ushort delta)");
begin_scope();
if (msl_options.use_quadgroup_operation())
statement("return (vec<bool, N>)quad_shuffle_down((vec<ushort, N>)value, delta);");
else
statement("return (vec<bool, N>)simd_shuffle_down((vec<ushort, N>)value, delta);");
end_scope();
statement("");
break;
case SPVFuncImplQuadBroadcast:
statement("template<typename T>");
statement("inline T spvQuadBroadcast(T value, uint lane)");
begin_scope();
statement("return quad_broadcast(value, lane);");
end_scope();
statement("");
statement("template<>");
statement("inline bool spvQuadBroadcast(bool value, uint lane)");
begin_scope();
statement("return !!quad_broadcast((ushort)value, lane);");
end_scope();
statement("");
statement("template<uint N>");
statement("inline vec<bool, N> spvQuadBroadcast(vec<bool, N> value, uint lane)");
begin_scope();
statement("return (vec<bool, N>)quad_broadcast((vec<ushort, N>)value, lane);");
end_scope();
statement("");
break;
case SPVFuncImplQuadSwap:
// We can implement this easily based on the following table giving
// the target lane ID from the direction and current lane ID:
// Direction
// | 0 | 1 | 2 |
// ---+---+---+---+
// L 0 | 1 2 3
// a 1 | 0 3 2
// n 2 | 3 0 1
// e 3 | 2 1 0
// Notice that target = source ^ (direction + 1).
statement("template<typename T>");
statement("inline T spvQuadSwap(T value, uint dir)");
begin_scope();
statement("return quad_shuffle_xor(value, dir + 1);");
end_scope();
statement("");
statement("template<>");
statement("inline bool spvQuadSwap(bool value, uint dir)");
begin_scope();
statement("return !!quad_shuffle_xor((ushort)value, dir + 1);");
end_scope();
statement("");
statement("template<uint N>");
statement("inline vec<bool, N> spvQuadSwap(vec<bool, N> value, uint dir)");
begin_scope();
statement("return (vec<bool, N>)quad_shuffle_xor((vec<ushort, N>)value, dir + 1);");
end_scope();
statement("");
break;
case SPVFuncImplReflectScalar:
// Metal does not support scalar versions of these functions.
// Ensure fast-math is disabled to match Vulkan results.
statement("template<typename T>");
statement("[[clang::optnone]] T spvReflect(T i, T n)");
begin_scope();
statement("return i - T(2) * i * n * n;");
end_scope();
statement("");
break;
case SPVFuncImplRefractScalar:
// Metal does not support scalar versions of these functions.
statement("template<typename T>");
statement("inline T spvRefract(T i, T n, T eta)");
begin_scope();
statement("T NoI = n * i;");
statement("T NoI2 = NoI * NoI;");
statement("T k = T(1) - eta * eta * (T(1) - NoI2);");
statement("if (k < T(0))");
begin_scope();
statement("return T(0);");
end_scope();
statement("else");
begin_scope();
statement("return eta * i - (eta * NoI + sqrt(k)) * n;");
end_scope();
end_scope();
statement("");
break;
case SPVFuncImplFaceForwardScalar:
// Metal does not support scalar versions of these functions.
statement("template<typename T>");
statement("inline T spvFaceForward(T n, T i, T nref)");
begin_scope();
statement("return i * nref < T(0) ? n : -n;");
end_scope();
statement("");
break;
case SPVFuncImplChromaReconstructNearest2Plane:
statement("template<typename T, typename... LodOptions>");
statement("inline vec<T, 4> spvChromaReconstructNearest(texture2d<T> plane0, texture2d<T> plane1, sampler "
"samp, float2 coord, LodOptions... options)");
begin_scope();
statement("vec<T, 4> ycbcr = vec<T, 4>(0, 0, 0, 1);");
statement("ycbcr.g = plane0.sample(samp, coord, spvForward<LodOptions>(options)...).r;");
statement("ycbcr.br = plane1.sample(samp, coord, spvForward<LodOptions>(options)...).rg;");
statement("return ycbcr;");
end_scope();
statement("");
break;
case SPVFuncImplChromaReconstructNearest3Plane:
statement("template<typename T, typename... LodOptions>");
statement("inline vec<T, 4> spvChromaReconstructNearest(texture2d<T> plane0, texture2d<T> plane1, "
"texture2d<T> plane2, sampler samp, float2 coord, LodOptions... options)");
begin_scope();
statement("vec<T, 4> ycbcr = vec<T, 4>(0, 0, 0, 1);");
statement("ycbcr.g = plane0.sample(samp, coord, spvForward<LodOptions>(options)...).r;");
statement("ycbcr.b = plane1.sample(samp, coord, spvForward<LodOptions>(options)...).r;");
statement("ycbcr.r = plane2.sample(samp, coord, spvForward<LodOptions>(options)...).r;");
statement("return ycbcr;");
end_scope();
statement("");
break;
case SPVFuncImplChromaReconstructLinear422CositedEven2Plane:
statement("template<typename T, typename... LodOptions>");
statement("inline vec<T, 4> spvChromaReconstructLinear422CositedEven(texture2d<T> plane0, texture2d<T> "
"plane1, sampler samp, float2 coord, LodOptions... options)");
begin_scope();
statement("vec<T, 4> ycbcr = vec<T, 4>(0, 0, 0, 1);");
statement("ycbcr.g = plane0.sample(samp, coord, spvForward<LodOptions>(options)...).r;");
statement("if (fract(coord.x * plane1.get_width()) != 0.0)");
begin_scope();
statement("ycbcr.br = vec<T, 2>(mix(plane1.sample(samp, coord, spvForward<LodOptions>(options)...), "
"plane1.sample(samp, coord, spvForward<LodOptions>(options)..., int2(1, 0)), 0.5).rg);");
end_scope();
statement("else");
begin_scope();
statement("ycbcr.br = plane1.sample(samp, coord, spvForward<LodOptions>(options)...).rg;");
end_scope();
statement("return ycbcr;");
end_scope();
statement("");
break;
case SPVFuncImplChromaReconstructLinear422CositedEven3Plane:
statement("template<typename T, typename... LodOptions>");
statement("inline vec<T, 4> spvChromaReconstructLinear422CositedEven(texture2d<T> plane0, texture2d<T> "
"plane1, texture2d<T> plane2, sampler samp, float2 coord, LodOptions... options)");
begin_scope();
statement("vec<T, 4> ycbcr = vec<T, 4>(0, 0, 0, 1);");
statement("ycbcr.g = plane0.sample(samp, coord, spvForward<LodOptions>(options)...).r;");
statement("if (fract(coord.x * plane1.get_width()) != 0.0)");
begin_scope();
statement("ycbcr.b = T(mix(plane1.sample(samp, coord, spvForward<LodOptions>(options)...), "
"plane1.sample(samp, coord, spvForward<LodOptions>(options)..., int2(1, 0)), 0.5).r);");
statement("ycbcr.r = T(mix(plane2.sample(samp, coord, spvForward<LodOptions>(options)...), "
"plane2.sample(samp, coord, spvForward<LodOptions>(options)..., int2(1, 0)), 0.5).r);");
end_scope();
statement("else");
begin_scope();
statement("ycbcr.b = plane1.sample(samp, coord, spvForward<LodOptions>(options)...).r;");
statement("ycbcr.r = plane2.sample(samp, coord, spvForward<LodOptions>(options)...).r;");
end_scope();
statement("return ycbcr;");
end_scope();
statement("");
break;
case SPVFuncImplChromaReconstructLinear422Midpoint2Plane:
statement("template<typename T, typename... LodOptions>");
statement("inline vec<T, 4> spvChromaReconstructLinear422Midpoint(texture2d<T> plane0, texture2d<T> "
"plane1, sampler samp, float2 coord, LodOptions... options)");
begin_scope();
statement("vec<T, 4> ycbcr = vec<T, 4>(0, 0, 0, 1);");
statement("ycbcr.g = plane0.sample(samp, coord, spvForward<LodOptions>(options)...).r;");
statement("int2 offs = int2(fract(coord.x * plane1.get_width()) != 0.0 ? 1 : -1, 0);");
statement("ycbcr.br = vec<T, 2>(mix(plane1.sample(samp, coord, spvForward<LodOptions>(options)...), "
"plane1.sample(samp, coord, spvForward<LodOptions>(options)..., offs), 0.25).rg);");
statement("return ycbcr;");
end_scope();
statement("");
break;
case SPVFuncImplChromaReconstructLinear422Midpoint3Plane:
statement("template<typename T, typename... LodOptions>");
statement("inline vec<T, 4> spvChromaReconstructLinear422Midpoint(texture2d<T> plane0, texture2d<T> "
"plane1, texture2d<T> plane2, sampler samp, float2 coord, LodOptions... options)");
begin_scope();
statement("vec<T, 4> ycbcr = vec<T, 4>(0, 0, 0, 1);");
statement("ycbcr.g = plane0.sample(samp, coord, spvForward<LodOptions>(options)...).r;");
statement("int2 offs = int2(fract(coord.x * plane1.get_width()) != 0.0 ? 1 : -1, 0);");
statement("ycbcr.b = T(mix(plane1.sample(samp, coord, spvForward<LodOptions>(options)...), "
"plane1.sample(samp, coord, spvForward<LodOptions>(options)..., offs), 0.25).r);");
statement("ycbcr.r = T(mix(plane2.sample(samp, coord, spvForward<LodOptions>(options)...), "
"plane2.sample(samp, coord, spvForward<LodOptions>(options)..., offs), 0.25).r);");
statement("return ycbcr;");
end_scope();
statement("");
break;
case SPVFuncImplChromaReconstructLinear420XCositedEvenYCositedEven2Plane:
statement("template<typename T, typename... LodOptions>");
statement("inline vec<T, 4> spvChromaReconstructLinear420XCositedEvenYCositedEven(texture2d<T> plane0, "
"texture2d<T> plane1, sampler samp, float2 coord, LodOptions... options)");
begin_scope();
statement("vec<T, 4> ycbcr = vec<T, 4>(0, 0, 0, 1);");
statement("ycbcr.g = plane0.sample(samp, coord, spvForward<LodOptions>(options)...).r;");
statement("float2 ab = fract(round(coord * float2(plane0.get_width(), plane0.get_height())) * 0.5);");
statement("ycbcr.br = vec<T, 2>(mix(mix(plane1.sample(samp, coord, spvForward<LodOptions>(options)...), "
"plane1.sample(samp, coord, spvForward<LodOptions>(options)..., int2(1, 0)), ab.x), "
"mix(plane1.sample(samp, coord, spvForward<LodOptions>(options)..., int2(0, 1)), "
"plane1.sample(samp, coord, spvForward<LodOptions>(options)..., int2(1, 1)), ab.x), ab.y).rg);");
statement("return ycbcr;");
end_scope();
statement("");
break;
case SPVFuncImplChromaReconstructLinear420XCositedEvenYCositedEven3Plane:
statement("template<typename T, typename... LodOptions>");
statement("inline vec<T, 4> spvChromaReconstructLinear420XCositedEvenYCositedEven(texture2d<T> plane0, "
"texture2d<T> plane1, texture2d<T> plane2, sampler samp, float2 coord, LodOptions... options)");
begin_scope();
statement("vec<T, 4> ycbcr = vec<T, 4>(0, 0, 0, 1);");
statement("ycbcr.g = plane0.sample(samp, coord, spvForward<LodOptions>(options)...).r;");
statement("float2 ab = fract(round(coord * float2(plane0.get_width(), plane0.get_height())) * 0.5);");
statement("ycbcr.b = T(mix(mix(plane1.sample(samp, coord, spvForward<LodOptions>(options)...), "
"plane1.sample(samp, coord, spvForward<LodOptions>(options)..., int2(1, 0)), ab.x), "
"mix(plane1.sample(samp, coord, spvForward<LodOptions>(options)..., int2(0, 1)), "
"plane1.sample(samp, coord, spvForward<LodOptions>(options)..., int2(1, 1)), ab.x), ab.y).r);");
statement("ycbcr.r = T(mix(mix(plane2.sample(samp, coord, spvForward<LodOptions>(options)...), "
"plane2.sample(samp, coord, spvForward<LodOptions>(options)..., int2(1, 0)), ab.x), "
"mix(plane2.sample(samp, coord, spvForward<LodOptions>(options)..., int2(0, 1)), "
"plane2.sample(samp, coord, spvForward<LodOptions>(options)..., int2(1, 1)), ab.x), ab.y).r);");
statement("return ycbcr;");
end_scope();
statement("");
break;
case SPVFuncImplChromaReconstructLinear420XMidpointYCositedEven2Plane:
statement("template<typename T, typename... LodOptions>");
statement("inline vec<T, 4> spvChromaReconstructLinear420XMidpointYCositedEven(texture2d<T> plane0, "
"texture2d<T> plane1, sampler samp, float2 coord, LodOptions... options)");
begin_scope();
statement("vec<T, 4> ycbcr = vec<T, 4>(0, 0, 0, 1);");
statement("ycbcr.g = plane0.sample(samp, coord, spvForward<LodOptions>(options)...).r;");
statement("float2 ab = fract((round(coord * float2(plane0.get_width(), plane0.get_height())) - float2(0.5, "
"0)) * 0.5);");
statement("ycbcr.br = vec<T, 2>(mix(mix(plane1.sample(samp, coord, spvForward<LodOptions>(options)...), "
"plane1.sample(samp, coord, spvForward<LodOptions>(options)..., int2(1, 0)), ab.x), "
"mix(plane1.sample(samp, coord, spvForward<LodOptions>(options)..., int2(0, 1)), "
"plane1.sample(samp, coord, spvForward<LodOptions>(options)..., int2(1, 1)), ab.x), ab.y).rg);");
statement("return ycbcr;");
end_scope();
statement("");
break;
case SPVFuncImplChromaReconstructLinear420XMidpointYCositedEven3Plane:
statement("template<typename T, typename... LodOptions>");
statement("inline vec<T, 4> spvChromaReconstructLinear420XMidpointYCositedEven(texture2d<T> plane0, "
"texture2d<T> plane1, texture2d<T> plane2, sampler samp, float2 coord, LodOptions... options)");
begin_scope();
statement("vec<T, 4> ycbcr = vec<T, 4>(0, 0, 0, 1);");
statement("ycbcr.g = plane0.sample(samp, coord, spvForward<LodOptions>(options)...).r;");
statement("float2 ab = fract((round(coord * float2(plane0.get_width(), plane0.get_height())) - float2(0.5, "
"0)) * 0.5);");
statement("ycbcr.b = T(mix(mix(plane1.sample(samp, coord, spvForward<LodOptions>(options)...), "
"plane1.sample(samp, coord, spvForward<LodOptions>(options)..., int2(1, 0)), ab.x), "
"mix(plane1.sample(samp, coord, spvForward<LodOptions>(options)..., int2(0, 1)), "
"plane1.sample(samp, coord, spvForward<LodOptions>(options)..., int2(1, 1)), ab.x), ab.y).r);");
statement("ycbcr.r = T(mix(mix(plane2.sample(samp, coord, spvForward<LodOptions>(options)...), "
"plane2.sample(samp, coord, spvForward<LodOptions>(options)..., int2(1, 0)), ab.x), "
"mix(plane2.sample(samp, coord, spvForward<LodOptions>(options)..., int2(0, 1)), "
"plane2.sample(samp, coord, spvForward<LodOptions>(options)..., int2(1, 1)), ab.x), ab.y).r);");
statement("return ycbcr;");
end_scope();
statement("");
break;
case SPVFuncImplChromaReconstructLinear420XCositedEvenYMidpoint2Plane:
statement("template<typename T, typename... LodOptions>");
statement("inline vec<T, 4> spvChromaReconstructLinear420XCositedEvenYMidpoint(texture2d<T> plane0, "
"texture2d<T> plane1, sampler samp, float2 coord, LodOptions... options)");
begin_scope();
statement("vec<T, 4> ycbcr = vec<T, 4>(0, 0, 0, 1);");
statement("ycbcr.g = plane0.sample(samp, coord, spvForward<LodOptions>(options)...).r;");
statement("float2 ab = fract((round(coord * float2(plane0.get_width(), plane0.get_height())) - float2(0, "
"0.5)) * 0.5);");
statement("ycbcr.br = vec<T, 2>(mix(mix(plane1.sample(samp, coord, spvForward<LodOptions>(options)...), "
"plane1.sample(samp, coord, spvForward<LodOptions>(options)..., int2(1, 0)), ab.x), "
"mix(plane1.sample(samp, coord, spvForward<LodOptions>(options)..., int2(0, 1)), "
"plane1.sample(samp, coord, spvForward<LodOptions>(options)..., int2(1, 1)), ab.x), ab.y).rg);");
statement("return ycbcr;");
end_scope();
statement("");
break;
case SPVFuncImplChromaReconstructLinear420XCositedEvenYMidpoint3Plane:
statement("template<typename T, typename... LodOptions>");
statement("inline vec<T, 4> spvChromaReconstructLinear420XCositedEvenYMidpoint(texture2d<T> plane0, "
"texture2d<T> plane1, texture2d<T> plane2, sampler samp, float2 coord, LodOptions... options)");
begin_scope();
statement("vec<T, 4> ycbcr = vec<T, 4>(0, 0, 0, 1);");
statement("ycbcr.g = plane0.sample(samp, coord, spvForward<LodOptions>(options)...).r;");
statement("float2 ab = fract((round(coord * float2(plane0.get_width(), plane0.get_height())) - float2(0, "
"0.5)) * 0.5);");
statement("ycbcr.b = T(mix(mix(plane1.sample(samp, coord, spvForward<LodOptions>(options)...), "
"plane1.sample(samp, coord, spvForward<LodOptions>(options)..., int2(1, 0)), ab.x), "
"mix(plane1.sample(samp, coord, spvForward<LodOptions>(options)..., int2(0, 1)), "
"plane1.sample(samp, coord, spvForward<LodOptions>(options)..., int2(1, 1)), ab.x), ab.y).r);");
statement("ycbcr.r = T(mix(mix(plane2.sample(samp, coord, spvForward<LodOptions>(options)...), "
"plane2.sample(samp, coord, spvForward<LodOptions>(options)..., int2(1, 0)), ab.x), "
"mix(plane2.sample(samp, coord, spvForward<LodOptions>(options)..., int2(0, 1)), "
"plane2.sample(samp, coord, spvForward<LodOptions>(options)..., int2(1, 1)), ab.x), ab.y).r);");
statement("return ycbcr;");
end_scope();
statement("");
break;
case SPVFuncImplChromaReconstructLinear420XMidpointYMidpoint2Plane:
statement("template<typename T, typename... LodOptions>");
statement("inline vec<T, 4> spvChromaReconstructLinear420XMidpointYMidpoint(texture2d<T> plane0, "
"texture2d<T> plane1, sampler samp, float2 coord, LodOptions... options)");
begin_scope();
statement("vec<T, 4> ycbcr = vec<T, 4>(0, 0, 0, 1);");
statement("ycbcr.g = plane0.sample(samp, coord, spvForward<LodOptions>(options)...).r;");
statement("float2 ab = fract((round(coord * float2(plane0.get_width(), plane0.get_height())) - float2(0.5, "
"0.5)) * 0.5);");
statement("ycbcr.br = vec<T, 2>(mix(mix(plane1.sample(samp, coord, spvForward<LodOptions>(options)...), "
"plane1.sample(samp, coord, spvForward<LodOptions>(options)..., int2(1, 0)), ab.x), "
"mix(plane1.sample(samp, coord, spvForward<LodOptions>(options)..., int2(0, 1)), "
"plane1.sample(samp, coord, spvForward<LodOptions>(options)..., int2(1, 1)), ab.x), ab.y).rg);");
statement("return ycbcr;");
end_scope();
statement("");
break;
case SPVFuncImplChromaReconstructLinear420XMidpointYMidpoint3Plane:
statement("template<typename T, typename... LodOptions>");
statement("inline vec<T, 4> spvChromaReconstructLinear420XMidpointYMidpoint(texture2d<T> plane0, "
"texture2d<T> plane1, texture2d<T> plane2, sampler samp, float2 coord, LodOptions... options)");
begin_scope();
statement("vec<T, 4> ycbcr = vec<T, 4>(0, 0, 0, 1);");
statement("ycbcr.g = plane0.sample(samp, coord, spvForward<LodOptions>(options)...).r;");
statement("float2 ab = fract((round(coord * float2(plane0.get_width(), plane0.get_height())) - float2(0.5, "
"0.5)) * 0.5);");
statement("ycbcr.b = T(mix(mix(plane1.sample(samp, coord, spvForward<LodOptions>(options)...), "
"plane1.sample(samp, coord, spvForward<LodOptions>(options)..., int2(1, 0)), ab.x), "
"mix(plane1.sample(samp, coord, spvForward<LodOptions>(options)..., int2(0, 1)), "
"plane1.sample(samp, coord, spvForward<LodOptions>(options)..., int2(1, 1)), ab.x), ab.y).r);");
statement("ycbcr.r = T(mix(mix(plane2.sample(samp, coord, spvForward<LodOptions>(options)...), "
"plane2.sample(samp, coord, spvForward<LodOptions>(options)..., int2(1, 0)), ab.x), "
"mix(plane2.sample(samp, coord, spvForward<LodOptions>(options)..., int2(0, 1)), "
"plane2.sample(samp, coord, spvForward<LodOptions>(options)..., int2(1, 1)), ab.x), ab.y).r);");
statement("return ycbcr;");
end_scope();
statement("");
break;
case SPVFuncImplExpandITUFullRange:
statement("template<typename T>");
statement("inline vec<T, 4> spvExpandITUFullRange(vec<T, 4> ycbcr, int n)");
begin_scope();
statement("ycbcr.br -= exp2(T(n-1))/(exp2(T(n))-1);");
statement("return ycbcr;");
end_scope();
statement("");
break;
case SPVFuncImplExpandITUNarrowRange:
statement("template<typename T>");
statement("inline vec<T, 4> spvExpandITUNarrowRange(vec<T, 4> ycbcr, int n)");
begin_scope();
statement("ycbcr.g = (ycbcr.g * (exp2(T(n)) - 1) - ldexp(T(16), n - 8))/ldexp(T(219), n - 8);");
statement("ycbcr.br = (ycbcr.br * (exp2(T(n)) - 1) - ldexp(T(128), n - 8))/ldexp(T(224), n - 8);");
statement("return ycbcr;");
end_scope();
statement("");
break;
case SPVFuncImplConvertYCbCrBT709:
statement("// cf. Khronos Data Format Specification, section 15.1.1");
statement("constant float3x3 spvBT709Factors = {{1, 1, 1}, {0, -0.13397432/0.7152, 1.8556}, {1.5748, "
"-0.33480248/0.7152, 0}};");
statement("");
statement("template<typename T>");
statement("inline vec<T, 4> spvConvertYCbCrBT709(vec<T, 4> ycbcr)");
begin_scope();
statement("vec<T, 4> rgba;");
statement("rgba.rgb = vec<T, 3>(spvBT709Factors * ycbcr.gbr);");
statement("rgba.a = ycbcr.a;");
statement("return rgba;");
end_scope();
statement("");
break;
case SPVFuncImplConvertYCbCrBT601:
statement("// cf. Khronos Data Format Specification, section 15.1.2");
statement("constant float3x3 spvBT601Factors = {{1, 1, 1}, {0, -0.202008/0.587, 1.772}, {1.402, "
"-0.419198/0.587, 0}};");
statement("");
statement("template<typename T>");
statement("inline vec<T, 4> spvConvertYCbCrBT601(vec<T, 4> ycbcr)");
begin_scope();
statement("vec<T, 4> rgba;");
statement("rgba.rgb = vec<T, 3>(spvBT601Factors * ycbcr.gbr);");
statement("rgba.a = ycbcr.a;");
statement("return rgba;");
end_scope();
statement("");
break;
case SPVFuncImplConvertYCbCrBT2020:
statement("// cf. Khronos Data Format Specification, section 15.1.3");
statement("constant float3x3 spvBT2020Factors = {{1, 1, 1}, {0, -0.11156702/0.6780, 1.8814}, {1.4746, "
"-0.38737742/0.6780, 0}};");
statement("");
statement("template<typename T>");
statement("inline vec<T, 4> spvConvertYCbCrBT2020(vec<T, 4> ycbcr)");
begin_scope();
statement("vec<T, 4> rgba;");
statement("rgba.rgb = vec<T, 3>(spvBT2020Factors * ycbcr.gbr);");
statement("rgba.a = ycbcr.a;");
statement("return rgba;");
end_scope();
statement("");
break;
case SPVFuncImplDynamicImageSampler:
statement("enum class spvFormatResolution");
begin_scope();
statement("_444 = 0,");
statement("_422,");
statement("_420");
end_scope_decl();
statement("");
statement("enum class spvChromaFilter");
begin_scope();
statement("nearest = 0,");
statement("linear");
end_scope_decl();
statement("");
statement("enum class spvXChromaLocation");
begin_scope();
statement("cosited_even = 0,");
statement("midpoint");
end_scope_decl();
statement("");
statement("enum class spvYChromaLocation");
begin_scope();
statement("cosited_even = 0,");
statement("midpoint");
end_scope_decl();
statement("");
statement("enum class spvYCbCrModelConversion");
begin_scope();
statement("rgb_identity = 0,");
statement("ycbcr_identity,");
statement("ycbcr_bt_709,");
statement("ycbcr_bt_601,");
statement("ycbcr_bt_2020");
end_scope_decl();
statement("");
statement("enum class spvYCbCrRange");
begin_scope();
statement("itu_full = 0,");
statement("itu_narrow");
end_scope_decl();
statement("");
statement("struct spvComponentBits");
begin_scope();
statement("constexpr explicit spvComponentBits(int v) thread : value(v) {}");
statement("uchar value : 6;");
end_scope_decl();
statement("// A class corresponding to metal::sampler which holds sampler");
statement("// Y'CbCr conversion info.");
statement("struct spvYCbCrSampler");
begin_scope();
statement("constexpr spvYCbCrSampler() thread : val(build()) {}");
statement("template<typename... Ts>");
statement("constexpr spvYCbCrSampler(Ts... t) thread : val(build(t...)) {}");
statement("constexpr spvYCbCrSampler(const thread spvYCbCrSampler& s) thread = default;");
statement("");
statement("spvFormatResolution get_resolution() const thread");
begin_scope();
statement("return spvFormatResolution((val & resolution_mask) >> resolution_base);");
end_scope();
statement("spvChromaFilter get_chroma_filter() const thread");
begin_scope();
statement("return spvChromaFilter((val & chroma_filter_mask) >> chroma_filter_base);");
end_scope();
statement("spvXChromaLocation get_x_chroma_offset() const thread");
begin_scope();
statement("return spvXChromaLocation((val & x_chroma_off_mask) >> x_chroma_off_base);");
end_scope();
statement("spvYChromaLocation get_y_chroma_offset() const thread");
begin_scope();
statement("return spvYChromaLocation((val & y_chroma_off_mask) >> y_chroma_off_base);");
end_scope();
statement("spvYCbCrModelConversion get_ycbcr_model() const thread");
begin_scope();
statement("return spvYCbCrModelConversion((val & ycbcr_model_mask) >> ycbcr_model_base);");
end_scope();
statement("spvYCbCrRange get_ycbcr_range() const thread");
begin_scope();
statement("return spvYCbCrRange((val & ycbcr_range_mask) >> ycbcr_range_base);");
end_scope();
statement("int get_bpc() const thread { return (val & bpc_mask) >> bpc_base; }");
statement("");
statement("private:");
statement("ushort val;");
statement("");
statement("constexpr static constant ushort resolution_bits = 2;");
statement("constexpr static constant ushort chroma_filter_bits = 2;");
statement("constexpr static constant ushort x_chroma_off_bit = 1;");
statement("constexpr static constant ushort y_chroma_off_bit = 1;");
statement("constexpr static constant ushort ycbcr_model_bits = 3;");
statement("constexpr static constant ushort ycbcr_range_bit = 1;");
statement("constexpr static constant ushort bpc_bits = 6;");
statement("");
statement("constexpr static constant ushort resolution_base = 0;");
statement("constexpr static constant ushort chroma_filter_base = 2;");
statement("constexpr static constant ushort x_chroma_off_base = 4;");
statement("constexpr static constant ushort y_chroma_off_base = 5;");
statement("constexpr static constant ushort ycbcr_model_base = 6;");
statement("constexpr static constant ushort ycbcr_range_base = 9;");
statement("constexpr static constant ushort bpc_base = 10;");
statement("");
statement(
"constexpr static constant ushort resolution_mask = ((1 << resolution_bits) - 1) << resolution_base;");
statement("constexpr static constant ushort chroma_filter_mask = ((1 << chroma_filter_bits) - 1) << "
"chroma_filter_base;");
statement("constexpr static constant ushort x_chroma_off_mask = ((1 << x_chroma_off_bit) - 1) << "
"x_chroma_off_base;");
statement("constexpr static constant ushort y_chroma_off_mask = ((1 << y_chroma_off_bit) - 1) << "
"y_chroma_off_base;");
statement("constexpr static constant ushort ycbcr_model_mask = ((1 << ycbcr_model_bits) - 1) << "
"ycbcr_model_base;");
statement("constexpr static constant ushort ycbcr_range_mask = ((1 << ycbcr_range_bit) - 1) << "
"ycbcr_range_base;");
statement("constexpr static constant ushort bpc_mask = ((1 << bpc_bits) - 1) << bpc_base;");
statement("");
statement("static constexpr ushort build()");
begin_scope();
statement("return 0;");
end_scope();
statement("");
statement("template<typename... Ts>");
statement("static constexpr ushort build(spvFormatResolution res, Ts... t)");
begin_scope();
statement("return (ushort(res) << resolution_base) | (build(t...) & ~resolution_mask);");
end_scope();
statement("");
statement("template<typename... Ts>");
statement("static constexpr ushort build(spvChromaFilter filt, Ts... t)");
begin_scope();
statement("return (ushort(filt) << chroma_filter_base) | (build(t...) & ~chroma_filter_mask);");
end_scope();
statement("");
statement("template<typename... Ts>");
statement("static constexpr ushort build(spvXChromaLocation loc, Ts... t)");
begin_scope();
statement("return (ushort(loc) << x_chroma_off_base) | (build(t...) & ~x_chroma_off_mask);");
end_scope();
statement("");
statement("template<typename... Ts>");
statement("static constexpr ushort build(spvYChromaLocation loc, Ts... t)");
begin_scope();
statement("return (ushort(loc) << y_chroma_off_base) | (build(t...) & ~y_chroma_off_mask);");
end_scope();
statement("");
statement("template<typename... Ts>");
statement("static constexpr ushort build(spvYCbCrModelConversion model, Ts... t)");
begin_scope();
statement("return (ushort(model) << ycbcr_model_base) | (build(t...) & ~ycbcr_model_mask);");
end_scope();
statement("");
statement("template<typename... Ts>");
statement("static constexpr ushort build(spvYCbCrRange range, Ts... t)");
begin_scope();
statement("return (ushort(range) << ycbcr_range_base) | (build(t...) & ~ycbcr_range_mask);");
end_scope();
statement("");
statement("template<typename... Ts>");
statement("static constexpr ushort build(spvComponentBits bpc, Ts... t)");
begin_scope();
statement("return (ushort(bpc.value) << bpc_base) | (build(t...) & ~bpc_mask);");
end_scope();
end_scope_decl();
statement("");
statement("// A class which can hold up to three textures and a sampler, including");
statement("// Y'CbCr conversion info, used to pass combined image-samplers");
statement("// dynamically to functions.");
statement("template<typename T>");
statement("struct spvDynamicImageSampler");
begin_scope();
statement("texture2d<T> plane0;");
statement("texture2d<T> plane1;");
statement("texture2d<T> plane2;");
statement("sampler samp;");
statement("spvYCbCrSampler ycbcr_samp;");
statement("uint swizzle = 0;");
statement("");
if (msl_options.swizzle_texture_samples)
{
statement("constexpr spvDynamicImageSampler(texture2d<T> tex, sampler samp, uint sw) thread :");
statement(" plane0(tex), samp(samp), swizzle(sw) {}");
}
else
{
statement("constexpr spvDynamicImageSampler(texture2d<T> tex, sampler samp) thread :");
statement(" plane0(tex), samp(samp) {}");
}
statement("constexpr spvDynamicImageSampler(texture2d<T> tex, sampler samp, spvYCbCrSampler ycbcr_samp, "
"uint sw) thread :");
statement(" plane0(tex), samp(samp), ycbcr_samp(ycbcr_samp), swizzle(sw) {}");
statement("constexpr spvDynamicImageSampler(texture2d<T> plane0, texture2d<T> plane1,");
statement(" sampler samp, spvYCbCrSampler ycbcr_samp, uint sw) thread :");
statement(" plane0(plane0), plane1(plane1), samp(samp), ycbcr_samp(ycbcr_samp), swizzle(sw) {}");
statement(
"constexpr spvDynamicImageSampler(texture2d<T> plane0, texture2d<T> plane1, texture2d<T> plane2,");
statement(" sampler samp, spvYCbCrSampler ycbcr_samp, uint sw) thread :");
statement(" plane0(plane0), plane1(plane1), plane2(plane2), samp(samp), ycbcr_samp(ycbcr_samp), "
"swizzle(sw) {}");
statement("");
// XXX This is really hard to follow... I've left comments to make it a bit easier.
statement("template<typename... LodOptions>");
statement("vec<T, 4> do_sample(float2 coord, LodOptions... options) const thread");
begin_scope();
statement("if (!is_null_texture(plane1))");
begin_scope();
statement("if (ycbcr_samp.get_resolution() == spvFormatResolution::_444 ||");
statement(" ycbcr_samp.get_chroma_filter() == spvChromaFilter::nearest)");
begin_scope();
statement("if (!is_null_texture(plane2))");
statement(" return spvChromaReconstructNearest(plane0, plane1, plane2, samp, coord,");
statement(" spvForward<LodOptions>(options)...);");
statement(
"return spvChromaReconstructNearest(plane0, plane1, samp, coord, spvForward<LodOptions>(options)...);");
end_scope(); // if (resolution == 422 || chroma_filter == nearest)
statement("switch (ycbcr_samp.get_resolution())");
begin_scope();
statement("case spvFormatResolution::_444: break;");
statement("case spvFormatResolution::_422:");
begin_scope();
statement("switch (ycbcr_samp.get_x_chroma_offset())");
begin_scope();
statement("case spvXChromaLocation::cosited_even:");
statement(" if (!is_null_texture(plane2))");
statement(" return spvChromaReconstructLinear422CositedEven(");
statement(" plane0, plane1, plane2, samp,");
statement(" coord, spvForward<LodOptions>(options)...);");
statement(" return spvChromaReconstructLinear422CositedEven(");
statement(" plane0, plane1, samp, coord,");
statement(" spvForward<LodOptions>(options)...);");
statement("case spvXChromaLocation::midpoint:");
statement(" if (!is_null_texture(plane2))");
statement(" return spvChromaReconstructLinear422Midpoint(");
statement(" plane0, plane1, plane2, samp,");
statement(" coord, spvForward<LodOptions>(options)...);");
statement(" return spvChromaReconstructLinear422Midpoint(");
statement(" plane0, plane1, samp, coord,");
statement(" spvForward<LodOptions>(options)...);");
end_scope(); // switch (x_chroma_offset)
end_scope(); // case 422:
statement("case spvFormatResolution::_420:");
begin_scope();
statement("switch (ycbcr_samp.get_x_chroma_offset())");
begin_scope();
statement("case spvXChromaLocation::cosited_even:");
begin_scope();
statement("switch (ycbcr_samp.get_y_chroma_offset())");
begin_scope();
statement("case spvYChromaLocation::cosited_even:");
statement(" if (!is_null_texture(plane2))");
statement(" return spvChromaReconstructLinear420XCositedEvenYCositedEven(");
statement(" plane0, plane1, plane2, samp,");
statement(" coord, spvForward<LodOptions>(options)...);");
statement(" return spvChromaReconstructLinear420XCositedEvenYCositedEven(");
statement(" plane0, plane1, samp, coord,");
statement(" spvForward<LodOptions>(options)...);");
statement("case spvYChromaLocation::midpoint:");
statement(" if (!is_null_texture(plane2))");
statement(" return spvChromaReconstructLinear420XCositedEvenYMidpoint(");
statement(" plane0, plane1, plane2, samp,");
statement(" coord, spvForward<LodOptions>(options)...);");
statement(" return spvChromaReconstructLinear420XCositedEvenYMidpoint(");
statement(" plane0, plane1, samp, coord,");
statement(" spvForward<LodOptions>(options)...);");
end_scope(); // switch (y_chroma_offset)
end_scope(); // case x::cosited_even:
statement("case spvXChromaLocation::midpoint:");
begin_scope();
statement("switch (ycbcr_samp.get_y_chroma_offset())");
begin_scope();
statement("case spvYChromaLocation::cosited_even:");
statement(" if (!is_null_texture(plane2))");
statement(" return spvChromaReconstructLinear420XMidpointYCositedEven(");
statement(" plane0, plane1, plane2, samp,");
statement(" coord, spvForward<LodOptions>(options)...);");
statement(" return spvChromaReconstructLinear420XMidpointYCositedEven(");
statement(" plane0, plane1, samp, coord,");
statement(" spvForward<LodOptions>(options)...);");
statement("case spvYChromaLocation::midpoint:");
statement(" if (!is_null_texture(plane2))");
statement(" return spvChromaReconstructLinear420XMidpointYMidpoint(");
statement(" plane0, plane1, plane2, samp,");
statement(" coord, spvForward<LodOptions>(options)...);");
statement(" return spvChromaReconstructLinear420XMidpointYMidpoint(");
statement(" plane0, plane1, samp, coord,");
statement(" spvForward<LodOptions>(options)...);");
end_scope(); // switch (y_chroma_offset)
end_scope(); // case x::midpoint
end_scope(); // switch (x_chroma_offset)
end_scope(); // case 420:
end_scope(); // switch (resolution)
end_scope(); // if (multiplanar)
statement("return plane0.sample(samp, coord, spvForward<LodOptions>(options)...);");
end_scope(); // do_sample()
statement("template <typename... LodOptions>");
statement("vec<T, 4> sample(float2 coord, LodOptions... options) const thread");
begin_scope();
statement(
"vec<T, 4> s = spvTextureSwizzle(do_sample(coord, spvForward<LodOptions>(options)...), swizzle);");
statement("if (ycbcr_samp.get_ycbcr_model() == spvYCbCrModelConversion::rgb_identity)");
statement(" return s;");
statement("");
statement("switch (ycbcr_samp.get_ycbcr_range())");
begin_scope();
statement("case spvYCbCrRange::itu_full:");
statement(" s = spvExpandITUFullRange(s, ycbcr_samp.get_bpc());");
statement(" break;");
statement("case spvYCbCrRange::itu_narrow:");
statement(" s = spvExpandITUNarrowRange(s, ycbcr_samp.get_bpc());");
statement(" break;");
end_scope();
statement("");
statement("switch (ycbcr_samp.get_ycbcr_model())");
begin_scope();
statement("case spvYCbCrModelConversion::rgb_identity:"); // Silence Clang warning
statement("case spvYCbCrModelConversion::ycbcr_identity:");
statement(" return s;");
statement("case spvYCbCrModelConversion::ycbcr_bt_709:");
statement(" return spvConvertYCbCrBT709(s);");
statement("case spvYCbCrModelConversion::ycbcr_bt_601:");
statement(" return spvConvertYCbCrBT601(s);");
statement("case spvYCbCrModelConversion::ycbcr_bt_2020:");
statement(" return spvConvertYCbCrBT2020(s);");
end_scope();
end_scope();
statement("");
// Sampler Y'CbCr conversion forbids offsets.
statement("vec<T, 4> sample(float2 coord, int2 offset) const thread");
begin_scope();
if (msl_options.swizzle_texture_samples)
statement("return spvTextureSwizzle(plane0.sample(samp, coord, offset), swizzle);");
else
statement("return plane0.sample(samp, coord, offset);");
end_scope();
statement("template<typename lod_options>");
statement("vec<T, 4> sample(float2 coord, lod_options options, int2 offset) const thread");
begin_scope();
if (msl_options.swizzle_texture_samples)
statement("return spvTextureSwizzle(plane0.sample(samp, coord, options, offset), swizzle);");
else
statement("return plane0.sample(samp, coord, options, offset);");
end_scope();
statement("#if __HAVE_MIN_LOD_CLAMP__");
statement("vec<T, 4> sample(float2 coord, bias b, min_lod_clamp min_lod, int2 offset) const thread");
begin_scope();
statement("return plane0.sample(samp, coord, b, min_lod, offset);");
end_scope();
statement(
"vec<T, 4> sample(float2 coord, gradient2d grad, min_lod_clamp min_lod, int2 offset) const thread");
begin_scope();
statement("return plane0.sample(samp, coord, grad, min_lod, offset);");
end_scope();
statement("#endif");
statement("");
// Y'CbCr conversion forbids all operations but sampling.
statement("vec<T, 4> read(uint2 coord, uint lod = 0) const thread");
begin_scope();
statement("return plane0.read(coord, lod);");
end_scope();
statement("");
statement("vec<T, 4> gather(float2 coord, int2 offset = int2(0), component c = component::x) const thread");
begin_scope();
if (msl_options.swizzle_texture_samples)
statement("return spvGatherSwizzle(plane0, samp, swizzle, c, coord, offset);");
else
statement("return plane0.gather(samp, coord, offset, c);");
end_scope();
end_scope_decl();
statement("");
break;
case SPVFuncImplRayQueryIntersectionParams:
statement("intersection_params spvMakeIntersectionParams(uint flags)");
begin_scope();
statement("intersection_params ip;");
statement("if ((flags & ", RayFlagsOpaqueKHRMask, ") != 0)");
statement(" ip.force_opacity(forced_opacity::opaque);");
statement("if ((flags & ", RayFlagsNoOpaqueKHRMask, ") != 0)");
statement(" ip.force_opacity(forced_opacity::non_opaque);");
statement("if ((flags & ", RayFlagsTerminateOnFirstHitKHRMask, ") != 0)");
statement(" ip.accept_any_intersection(true);");
// RayFlagsSkipClosestHitShaderKHRMask is not available in MSL
statement("if ((flags & ", RayFlagsCullBackFacingTrianglesKHRMask, ") != 0)");
statement(" ip.set_triangle_cull_mode(triangle_cull_mode::back);");
statement("if ((flags & ", RayFlagsCullFrontFacingTrianglesKHRMask, ") != 0)");
statement(" ip.set_triangle_cull_mode(triangle_cull_mode::front);");
statement("if ((flags & ", RayFlagsCullOpaqueKHRMask, ") != 0)");
statement(" ip.set_opacity_cull_mode(opacity_cull_mode::opaque);");
statement("if ((flags & ", RayFlagsCullNoOpaqueKHRMask, ") != 0)");
statement(" ip.set_opacity_cull_mode(opacity_cull_mode::non_opaque);");
statement("if ((flags & ", RayFlagsSkipTrianglesKHRMask, ") != 0)");
statement(" ip.set_geometry_cull_mode(geometry_cull_mode::triangle);");
statement("if ((flags & ", RayFlagsSkipAABBsKHRMask, ") != 0)");
statement(" ip.set_geometry_cull_mode(geometry_cull_mode::bounding_box);");
statement("return ip;");
end_scope();
statement("");
break;
case SPVFuncImplVariableDescriptor:
statement("template<typename T>");
statement("struct spvDescriptor");
begin_scope();
statement("T value;");
end_scope_decl();
statement("");
break;
case SPVFuncImplVariableSizedDescriptor:
statement("template<typename T>");
statement("struct spvBufferDescriptor");
begin_scope();
statement("T value;");
statement("int length;");
statement("const device T& operator -> () const device");
begin_scope();
statement("return value;");
end_scope();
statement("const device T& operator * () const device");
begin_scope();
statement("return value;");
end_scope();
end_scope_decl();
statement("");
break;
case SPVFuncImplVariableDescriptorArray:
if (spv_function_implementations.count(SPVFuncImplVariableDescriptor) != 0)
{
statement("template<typename T>");
statement("struct spvDescriptorArray");
begin_scope();
statement("spvDescriptorArray(const device spvDescriptor<T>* ptr) : ptr(ptr)");
begin_scope();
end_scope();
statement("const device T& operator [] (size_t i) const");
begin_scope();
statement("return ptr[i].value;");
end_scope();
statement("const device spvDescriptor<T>* ptr;");
end_scope_decl();
statement("");
}
else
{
statement("template<typename T>");
statement("struct spvDescriptorArray;");
statement("");
}
if (msl_options.runtime_array_rich_descriptor &&
spv_function_implementations.count(SPVFuncImplVariableSizedDescriptor) != 0)
{
statement("template<typename T>");
statement("struct spvDescriptorArray<device T*>");
begin_scope();
statement("spvDescriptorArray(const device spvBufferDescriptor<device T*>* ptr) : ptr(ptr)");
begin_scope();
end_scope();
statement("const device T* operator [] (size_t i) const");
begin_scope();
statement("return ptr[i].value;");
end_scope();
statement("const int length(int i) const");
begin_scope();
statement("return ptr[i].length;");
end_scope();
statement("const device spvBufferDescriptor<device T*>* ptr;");
end_scope_decl();
statement("");
}
break;
case SPVFuncImplPaddedStd140:
// .data is used in access chain.
statement("template <typename T>");
statement("struct spvPaddedStd140 { alignas(16) T data; };");
statement("template <typename T, int n>");
statement("using spvPaddedStd140Matrix = spvPaddedStd140<T>[n];");
statement("");
break;
case SPVFuncImplReduceAdd:
// Metal doesn't support __builtin_reduce_add or simd_reduce_add, so we need this.
// Metal also doesn't support the other vector builtins, which would have been useful to make this a single template.
statement("template <typename T>");
statement("T reduce_add(vec<T, 2> v) { return v.x + v.y; }");
statement("template <typename T>");
statement("T reduce_add(vec<T, 3> v) { return v.x + v.y + v.z; }");
statement("template <typename T>");
statement("T reduce_add(vec<T, 4> v) { return v.x + v.y + v.z + v.w; }");
statement("");
break;
default:
break;
}
}
}
static string inject_top_level_storage_qualifier(const string &expr, const string &qualifier)
{
// Easier to do this through text munging since the qualifier does not exist in the type system at all,
// and plumbing in all that information is not very helpful.
size_t last_reference = expr.find_last_of('&');
size_t last_pointer = expr.find_last_of('*');
size_t last_significant = string::npos;
if (last_reference == string::npos)
last_significant = last_pointer;
else if (last_pointer == string::npos)
last_significant = last_reference;
else
last_significant = max<size_t>(last_reference, last_pointer);
if (last_significant == string::npos)
return join(qualifier, " ", expr);
else
{
return join(expr.substr(0, last_significant + 1), " ",
qualifier, expr.substr(last_significant + 1, string::npos));
}
}
void CompilerMSL::declare_constant_arrays()
{
bool fully_inlined = ir.ids_for_type[TypeFunction].size() == 1;
// MSL cannot declare arrays inline (except when declaring a variable), so we must move them out to
// global constants directly, so we are able to use constants as variable expressions.
bool emitted = false;
ir.for_each_typed_id<SPIRConstant>([&](uint32_t, SPIRConstant &c) {
if (c.specialization)
return;
auto &type = this->get<SPIRType>(c.constant_type);
// Constant arrays of non-primitive types (i.e. matrices) won't link properly into Metal libraries.
// FIXME: However, hoisting constants to main() means we need to pass down constant arrays to leaf functions if they are used there.
// If there are multiple functions in the module, drop this case to avoid breaking use cases which do not need to
// link into Metal libraries. This is hacky.
if (is_array(type) && (!fully_inlined || is_scalar(type) || is_vector(type)))
{
add_resource_name(c.self);
auto name = to_name(c.self);
statement(inject_top_level_storage_qualifier(variable_decl(type, name), "constant"),
" = ", constant_expression(c), ";");
emitted = true;
}
});
if (emitted)
statement("");
}
// Constant arrays of non-primitive types (i.e. matrices) won't link properly into Metal libraries
void CompilerMSL::declare_complex_constant_arrays()
{
// If we do not have a fully inlined module, we did not opt in to
// declaring constant arrays of complex types. See CompilerMSL::declare_constant_arrays().
bool fully_inlined = ir.ids_for_type[TypeFunction].size() == 1;
if (!fully_inlined)
return;
// MSL cannot declare arrays inline (except when declaring a variable), so we must move them out to
// global constants directly, so we are able to use constants as variable expressions.
bool emitted = false;
ir.for_each_typed_id<SPIRConstant>([&](uint32_t, SPIRConstant &c) {
if (c.specialization)
return;
auto &type = this->get<SPIRType>(c.constant_type);
if (is_array(type) && !(is_scalar(type) || is_vector(type)))
{
add_resource_name(c.self);
auto name = to_name(c.self);
statement("", variable_decl(type, name), " = ", constant_expression(c), ";");
emitted = true;
}
});
if (emitted)
statement("");
}
void CompilerMSL::emit_resources()
{
declare_constant_arrays();
// Emit the special [[stage_in]] and [[stage_out]] interface blocks which we created.
emit_interface_block(stage_out_var_id);
emit_interface_block(patch_stage_out_var_id);
emit_interface_block(stage_in_var_id);
emit_interface_block(patch_stage_in_var_id);
}
// Emit declarations for the specialization Metal function constants
void CompilerMSL::emit_specialization_constants_and_structs()
{
SpecializationConstant wg_x, wg_y, wg_z;
ID workgroup_size_id = get_work_group_size_specialization_constants(wg_x, wg_y, wg_z);
bool emitted = false;
unordered_set<uint32_t> declared_structs;
unordered_set<uint32_t> aligned_structs;
// First, we need to deal with scalar block layout.
// It is possible that a struct may have to be placed at an alignment which does not match the innate alignment of the struct itself.
// In that case, if such a case exists for a struct, we must force that all elements of the struct become packed_ types.
// This makes the struct alignment as small as physically possible.
// When we actually align the struct later, we can insert padding as necessary to make the packed members behave like normally aligned types.
ir.for_each_typed_id<SPIRType>([&](uint32_t type_id, const SPIRType &type) {
if (type.basetype == SPIRType::Struct &&
has_extended_decoration(type_id, SPIRVCrossDecorationBufferBlockRepacked))
mark_scalar_layout_structs(type);
});
bool builtin_block_type_is_required = false;
// Very special case. If gl_PerVertex is initialized as an array (tessellation)
// we have to potentially emit the gl_PerVertex struct type so that we can emit a constant LUT.
ir.for_each_typed_id<SPIRConstant>([&](uint32_t, SPIRConstant &c) {
auto &type = this->get<SPIRType>(c.constant_type);
if (is_array(type) && has_decoration(type.self, DecorationBlock) && is_builtin_type(type))
builtin_block_type_is_required = true;
});
// Very particular use of the soft loop lock.
// align_struct may need to create custom types on the fly, but we don't care about
// these types for purpose of iterating over them in ir.ids_for_type and friends.
auto loop_lock = ir.create_loop_soft_lock();
// Physical storage buffer pointers can have cyclical references,
// so emit forward declarations of them before other structs.
// Ignore type_id because we want the underlying struct type from the pointer.
ir.for_each_typed_id<SPIRType>([&](uint32_t /* type_id */, const SPIRType &type) {
if (type.basetype == SPIRType::Struct &&
type.pointer && type.storage == StorageClassPhysicalStorageBuffer &&
declared_structs.count(type.self) == 0)
{
statement("struct ", to_name(type.self), ";");
declared_structs.insert(type.self);
emitted = true;
}
});
if (emitted)
statement("");
emitted = false;
declared_structs.clear();
// It is possible to have multiple spec constants that use the same spec constant ID.
// The most common cause of this is defining spec constants in GLSL while also declaring
// the workgroup size to use those spec constants. But, Metal forbids declaring more than
// one variable with the same function constant ID.
// In this case, we must only declare one variable with the [[function_constant(id)]]
// attribute, and use its initializer to initialize all the spec constants with
// that ID.
std::unordered_map<uint32_t, ConstantID> unique_func_constants;
for (auto &id_ : ir.ids_for_constant_undef_or_type)
{
auto &id = ir.ids[id_];
if (id.get_type() == TypeConstant)
{
auto &c = id.get<SPIRConstant>();
if (c.self == workgroup_size_id)
{
// TODO: This can be expressed as a [[threads_per_threadgroup]] input semantic, but we need to know
// the work group size at compile time in SPIR-V, and [[threads_per_threadgroup]] would need to be passed around as a global.
// The work group size may be a specialization constant.
statement("constant uint3 ", builtin_to_glsl(BuiltInWorkgroupSize, StorageClassWorkgroup),
" [[maybe_unused]] = ", constant_expression(get<SPIRConstant>(workgroup_size_id)), ";");
emitted = true;
}
else if (c.specialization)
{
auto &type = get<SPIRType>(c.constant_type);
string sc_type_name = type_to_glsl(type);
add_resource_name(c.self);
string sc_name = to_name(c.self);
// Function constants are only supported in MSL 1.2 and later.
// If we don't support it just declare the "default" directly.
// This "default" value can be overridden to the true specialization constant by the API user.
// Specialization constants which are used as array length expressions cannot be function constants in MSL,
// so just fall back to macros.
if (msl_options.supports_msl_version(1, 2) && has_decoration(c.self, DecorationSpecId) &&
!c.is_used_as_array_length)
{
// Only scalar, non-composite values can be function constants.
uint32_t constant_id = get_decoration(c.self, DecorationSpecId);
if (!unique_func_constants.count(constant_id))
unique_func_constants.insert(make_pair(constant_id, c.self));
SPIRType::BaseType sc_tmp_type = expression_type(unique_func_constants[constant_id]).basetype;
string sc_tmp_name = to_name(unique_func_constants[constant_id]) + "_tmp";
if (unique_func_constants[constant_id] == c.self)
statement("constant ", sc_type_name, " ", sc_tmp_name, " [[function_constant(", constant_id,
")]];");
statement("constant ", sc_type_name, " ", sc_name, " = is_function_constant_defined(", sc_tmp_name,
") ? ", bitcast_expression(type, sc_tmp_type, sc_tmp_name), " : ", constant_expression(c),
";");
}
else if (has_decoration(c.self, DecorationSpecId))
{
// Fallback to macro overrides.
c.specialization_constant_macro_name =
constant_value_macro_name(get_decoration(c.self, DecorationSpecId));
statement("#ifndef ", c.specialization_constant_macro_name);
statement("#define ", c.specialization_constant_macro_name, " ", constant_expression(c));
statement("#endif");
statement("constant ", sc_type_name, " ", sc_name, " = ", c.specialization_constant_macro_name,
";");
}
else
{
// Composite specialization constants must be built from other specialization constants.
statement("constant ", sc_type_name, " ", sc_name, " = ", constant_expression(c), ";");
}
emitted = true;
}
}
else if (id.get_type() == TypeConstantOp)
{
auto &c = id.get<SPIRConstantOp>();
auto &type = get<SPIRType>(c.basetype);
add_resource_name(c.self);
auto name = to_name(c.self);
statement("constant ", variable_decl(type, name), " = ", constant_op_expression(c), ";");
emitted = true;
}
else if (id.get_type() == TypeType)
{
// Output non-builtin interface structs. These include local function structs
// and structs nested within uniform and read-write buffers.
auto &type = id.get<SPIRType>();
TypeID type_id = type.self;
bool is_struct = (type.basetype == SPIRType::Struct) && type.array.empty() && !type.pointer;
bool is_block =
has_decoration(type.self, DecorationBlock) || has_decoration(type.self, DecorationBufferBlock);
bool is_builtin_block = is_block && is_builtin_type(type);
bool is_declarable_struct = is_struct && (!is_builtin_block || builtin_block_type_is_required);
// We'll declare this later.
if (stage_out_var_id && get_stage_out_struct_type().self == type_id)
is_declarable_struct = false;
if (patch_stage_out_var_id && get_patch_stage_out_struct_type().self == type_id)
is_declarable_struct = false;
if (stage_in_var_id && get_stage_in_struct_type().self == type_id)
is_declarable_struct = false;
if (patch_stage_in_var_id && get_patch_stage_in_struct_type().self == type_id)
is_declarable_struct = false;
// Special case. Declare builtin struct anyways if we need to emit a threadgroup version of it.
if (stage_out_masked_builtin_type_id == type_id)
is_declarable_struct = true;
// Align and emit declarable structs...but avoid declaring each more than once.
if (is_declarable_struct && declared_structs.count(type_id) == 0)
{
if (emitted)
statement("");
emitted = false;
declared_structs.insert(type_id);
if (has_extended_decoration(type_id, SPIRVCrossDecorationBufferBlockRepacked))
align_struct(type, aligned_structs);
// Make sure we declare the underlying struct type, and not the "decorated" type with pointers, etc.
emit_struct(get<SPIRType>(type_id));
}
}
else if (id.get_type() == TypeUndef)
{
auto &undef = id.get<SPIRUndef>();
auto &type = get<SPIRType>(undef.basetype);
// OpUndef can be void for some reason ...
if (type.basetype == SPIRType::Void)
return;
// Undefined global memory is not allowed in MSL.
// Declare constant and init to zeros. Use {}, as global constructors can break Metal.
statement(
inject_top_level_storage_qualifier(variable_decl(type, to_name(undef.self), undef.self), "constant"),
" = {};");
emitted = true;
}
}
if (emitted)
statement("");
}
void CompilerMSL::emit_binary_ptr_op(uint32_t result_type, uint32_t result_id, uint32_t op0, uint32_t op1, const char *op)
{
bool forward = should_forward(op0) && should_forward(op1);
emit_op(result_type, result_id, join(to_ptr_expression(op0), " ", op, " ", to_ptr_expression(op1)), forward);
inherit_expression_dependencies(result_id, op0);
inherit_expression_dependencies(result_id, op1);
}
string CompilerMSL::to_ptr_expression(uint32_t id, bool register_expression_read)
{
auto *e = maybe_get<SPIRExpression>(id);
auto expr = enclose_expression(e && e->need_transpose ? e->expression : to_expression(id, register_expression_read));
if (!should_dereference(id))
expr = address_of_expression(expr);
return expr;
}
void CompilerMSL::emit_binary_unord_op(uint32_t result_type, uint32_t result_id, uint32_t op0, uint32_t op1,
const char *op)
{
bool forward = should_forward(op0) && should_forward(op1);
emit_op(result_type, result_id,
join("(isunordered(", to_enclosed_unpacked_expression(op0), ", ", to_enclosed_unpacked_expression(op1),
") || ", to_enclosed_unpacked_expression(op0), " ", op, " ", to_enclosed_unpacked_expression(op1),
")"),
forward);
inherit_expression_dependencies(result_id, op0);
inherit_expression_dependencies(result_id, op1);
}
bool CompilerMSL::emit_tessellation_io_load(uint32_t result_type_id, uint32_t id, uint32_t ptr)
{
auto &ptr_type = expression_type(ptr);
auto &result_type = get<SPIRType>(result_type_id);
if (ptr_type.storage != StorageClassInput && ptr_type.storage != StorageClassOutput)
return false;
if (ptr_type.storage == StorageClassOutput && is_tese_shader())
return false;
if (has_decoration(ptr, DecorationPatch))
return false;
bool ptr_is_io_variable = ir.ids[ptr].get_type() == TypeVariable;
bool flattened_io = variable_storage_requires_stage_io(ptr_type.storage);
bool flat_data_type = flattened_io &&
(is_matrix(result_type) || is_array(result_type) || result_type.basetype == SPIRType::Struct);
// Edge case, even with multi-patch workgroups, we still need to unroll load
// if we're loading control points directly.
if (ptr_is_io_variable && is_array(result_type))
flat_data_type = true;
if (!flat_data_type)
return false;
// Now, we must unflatten a composite type and take care of interleaving array access with gl_in/gl_out.
// Lots of painful code duplication since we *really* should not unroll these kinds of loads in entry point fixup
// unless we're forced to do this when the code is emitting inoptimal OpLoads.
string expr;
uint32_t interface_index = get_extended_decoration(ptr, SPIRVCrossDecorationInterfaceMemberIndex);
auto *var = maybe_get_backing_variable(ptr);
auto &expr_type = get_pointee_type(ptr_type.self);
const auto &iface_type = expression_type(stage_in_ptr_var_id);
if (!flattened_io)
{
// Simplest case for multi-patch workgroups, just unroll array as-is.
if (interface_index == uint32_t(-1))
return false;
expr += type_to_glsl(result_type) + "({ ";
uint32_t num_control_points = to_array_size_literal(result_type, uint32_t(result_type.array.size()) - 1);
for (uint32_t i = 0; i < num_control_points; i++)
{
const uint32_t indices[2] = { i, interface_index };
AccessChainMeta meta;
expr += access_chain_internal(stage_in_ptr_var_id, indices, 2,
ACCESS_CHAIN_INDEX_IS_LITERAL_BIT | ACCESS_CHAIN_PTR_CHAIN_BIT, &meta);
if (i + 1 < num_control_points)
expr += ", ";
}
expr += " })";
}
else if (result_type.array.size() > 2)
{
SPIRV_CROSS_THROW("Cannot load tessellation IO variables with more than 2 dimensions.");
}
else if (result_type.array.size() == 2)
{
if (!ptr_is_io_variable)
SPIRV_CROSS_THROW("Loading an array-of-array must be loaded directly from an IO variable.");
if (interface_index == uint32_t(-1))
SPIRV_CROSS_THROW("Interface index is unknown. Cannot continue.");
if (result_type.basetype == SPIRType::Struct || is_matrix(result_type))
SPIRV_CROSS_THROW("Cannot load array-of-array of composite type in tessellation IO.");
expr += type_to_glsl(result_type) + "({ ";
uint32_t num_control_points = to_array_size_literal(result_type, 1);
uint32_t base_interface_index = interface_index;
auto &sub_type = get<SPIRType>(result_type.parent_type);
for (uint32_t i = 0; i < num_control_points; i++)
{
expr += type_to_glsl(sub_type) + "({ ";
interface_index = base_interface_index;
uint32_t array_size = to_array_size_literal(result_type, 0);
for (uint32_t j = 0; j < array_size; j++, interface_index++)
{
const uint32_t indices[2] = { i, interface_index };
AccessChainMeta meta;
expr += access_chain_internal(stage_in_ptr_var_id, indices, 2,
ACCESS_CHAIN_INDEX_IS_LITERAL_BIT | ACCESS_CHAIN_PTR_CHAIN_BIT, &meta);
if (!is_matrix(sub_type) && sub_type.basetype != SPIRType::Struct &&
expr_type.vecsize > sub_type.vecsize)
expr += vector_swizzle(sub_type.vecsize, 0);
if (j + 1 < array_size)
expr += ", ";
}
expr += " })";
if (i + 1 < num_control_points)
expr += ", ";
}
expr += " })";
}
else if (result_type.basetype == SPIRType::Struct)
{
bool is_array_of_struct = is_array(result_type);
if (is_array_of_struct && !ptr_is_io_variable)
SPIRV_CROSS_THROW("Loading array of struct from IO variable must come directly from IO variable.");
uint32_t num_control_points = 1;
if (is_array_of_struct)
{
num_control_points = to_array_size_literal(result_type, 0);
expr += type_to_glsl(result_type) + "({ ";
}
auto &struct_type = is_array_of_struct ? get<SPIRType>(result_type.parent_type) : result_type;
assert(struct_type.array.empty());
for (uint32_t i = 0; i < num_control_points; i++)
{
expr += type_to_glsl(struct_type) + "{ ";
for (uint32_t j = 0; j < uint32_t(struct_type.member_types.size()); j++)
{
// The base interface index is stored per variable for structs.
if (var)
{
interface_index =
get_extended_member_decoration(var->self, j, SPIRVCrossDecorationInterfaceMemberIndex);
}
if (interface_index == uint32_t(-1))
SPIRV_CROSS_THROW("Interface index is unknown. Cannot continue.");
const auto &mbr_type = get<SPIRType>(struct_type.member_types[j]);
const auto &expr_mbr_type = get<SPIRType>(expr_type.member_types[j]);
if (is_matrix(mbr_type) && ptr_type.storage == StorageClassInput)
{
expr += type_to_glsl(mbr_type) + "(";
for (uint32_t k = 0; k < mbr_type.columns; k++, interface_index++)
{
if (is_array_of_struct)
{
const uint32_t indices[2] = { i, interface_index };
AccessChainMeta meta;
expr += access_chain_internal(
stage_in_ptr_var_id, indices, 2,
ACCESS_CHAIN_INDEX_IS_LITERAL_BIT | ACCESS_CHAIN_PTR_CHAIN_BIT, &meta);
}
else
expr += to_expression(ptr) + "." + to_member_name(iface_type, interface_index);
if (expr_mbr_type.vecsize > mbr_type.vecsize)
expr += vector_swizzle(mbr_type.vecsize, 0);
if (k + 1 < mbr_type.columns)
expr += ", ";
}
expr += ")";
}
else if (is_array(mbr_type))
{
expr += type_to_glsl(mbr_type) + "({ ";
uint32_t array_size = to_array_size_literal(mbr_type, 0);
for (uint32_t k = 0; k < array_size; k++, interface_index++)
{
if (is_array_of_struct)
{
const uint32_t indices[2] = { i, interface_index };
AccessChainMeta meta;
expr += access_chain_internal(
stage_in_ptr_var_id, indices, 2,
ACCESS_CHAIN_INDEX_IS_LITERAL_BIT | ACCESS_CHAIN_PTR_CHAIN_BIT, &meta);
}
else
expr += to_expression(ptr) + "." + to_member_name(iface_type, interface_index);
if (expr_mbr_type.vecsize > mbr_type.vecsize)
expr += vector_swizzle(mbr_type.vecsize, 0);
if (k + 1 < array_size)
expr += ", ";
}
expr += " })";
}
else
{
if (is_array_of_struct)
{
const uint32_t indices[2] = { i, interface_index };
AccessChainMeta meta;
expr += access_chain_internal(stage_in_ptr_var_id, indices, 2,
ACCESS_CHAIN_INDEX_IS_LITERAL_BIT | ACCESS_CHAIN_PTR_CHAIN_BIT,
&meta);
}
else
expr += to_expression(ptr) + "." + to_member_name(iface_type, interface_index);
if (expr_mbr_type.vecsize > mbr_type.vecsize)
expr += vector_swizzle(mbr_type.vecsize, 0);
}
if (j + 1 < struct_type.member_types.size())
expr += ", ";
}
expr += " }";
if (i + 1 < num_control_points)
expr += ", ";
}
if (is_array_of_struct)
expr += " })";
}
else if (is_matrix(result_type))
{
bool is_array_of_matrix = is_array(result_type);
if (is_array_of_matrix && !ptr_is_io_variable)
SPIRV_CROSS_THROW("Loading array of matrix from IO variable must come directly from IO variable.");
if (interface_index == uint32_t(-1))
SPIRV_CROSS_THROW("Interface index is unknown. Cannot continue.");
if (is_array_of_matrix)
{
// Loading a matrix from each control point.
uint32_t base_interface_index = interface_index;
uint32_t num_control_points = to_array_size_literal(result_type, 0);
expr += type_to_glsl(result_type) + "({ ";
auto &matrix_type = get_variable_element_type(get<SPIRVariable>(ptr));
for (uint32_t i = 0; i < num_control_points; i++)
{
interface_index = base_interface_index;
expr += type_to_glsl(matrix_type) + "(";
for (uint32_t j = 0; j < result_type.columns; j++, interface_index++)
{
const uint32_t indices[2] = { i, interface_index };
AccessChainMeta meta;
expr += access_chain_internal(stage_in_ptr_var_id, indices, 2,
ACCESS_CHAIN_INDEX_IS_LITERAL_BIT | ACCESS_CHAIN_PTR_CHAIN_BIT, &meta);
if (expr_type.vecsize > result_type.vecsize)
expr += vector_swizzle(result_type.vecsize, 0);
if (j + 1 < result_type.columns)
expr += ", ";
}
expr += ")";
if (i + 1 < num_control_points)
expr += ", ";
}
expr += " })";
}
else
{
expr += type_to_glsl(result_type) + "(";
for (uint32_t i = 0; i < result_type.columns; i++, interface_index++)
{
expr += to_expression(ptr) + "." + to_member_name(iface_type, interface_index);
if (expr_type.vecsize > result_type.vecsize)
expr += vector_swizzle(result_type.vecsize, 0);
if (i + 1 < result_type.columns)
expr += ", ";
}
expr += ")";
}
}
else if (ptr_is_io_variable)
{
assert(is_array(result_type));
assert(result_type.array.size() == 1);
if (interface_index == uint32_t(-1))
SPIRV_CROSS_THROW("Interface index is unknown. Cannot continue.");
// We're loading an array directly from a global variable.
// This means we're loading one member from each control point.
expr += type_to_glsl(result_type) + "({ ";
uint32_t num_control_points = to_array_size_literal(result_type, 0);
for (uint32_t i = 0; i < num_control_points; i++)
{
const uint32_t indices[2] = { i, interface_index };
AccessChainMeta meta;
expr += access_chain_internal(stage_in_ptr_var_id, indices, 2,
ACCESS_CHAIN_INDEX_IS_LITERAL_BIT | ACCESS_CHAIN_PTR_CHAIN_BIT, &meta);
if (expr_type.vecsize > result_type.vecsize)
expr += vector_swizzle(result_type.vecsize, 0);
if (i + 1 < num_control_points)
expr += ", ";
}
expr += " })";
}
else
{
// We're loading an array from a concrete control point.
assert(is_array(result_type));
assert(result_type.array.size() == 1);
if (interface_index == uint32_t(-1))
SPIRV_CROSS_THROW("Interface index is unknown. Cannot continue.");
expr += type_to_glsl(result_type) + "({ ";
uint32_t array_size = to_array_size_literal(result_type, 0);
for (uint32_t i = 0; i < array_size; i++, interface_index++)
{
expr += to_expression(ptr) + "." + to_member_name(iface_type, interface_index);
if (expr_type.vecsize > result_type.vecsize)
expr += vector_swizzle(result_type.vecsize, 0);
if (i + 1 < array_size)
expr += ", ";
}
expr += " })";
}
emit_op(result_type_id, id, expr, false);
register_read(id, ptr, false);
return true;
}
bool CompilerMSL::emit_tessellation_access_chain(const uint32_t *ops, uint32_t length)
{
// If this is a per-vertex output, remap it to the I/O array buffer.
// Any object which did not go through IO flattening shenanigans will go there instead.
// We will unflatten on-demand instead as needed, but not all possible cases can be supported, especially with arrays.
auto *var = maybe_get_backing_variable(ops[2]);
bool patch = false;
bool flat_data = false;
bool ptr_is_chain = false;
bool flatten_composites = false;
bool is_block = false;
bool is_arrayed = false;
if (var)
{
auto &type = get_variable_data_type(*var);
is_block = has_decoration(type.self, DecorationBlock);
is_arrayed = !type.array.empty();
flatten_composites = variable_storage_requires_stage_io(var->storage);
patch = has_decoration(ops[2], DecorationPatch) || is_patch_block(type);
// Should match strip_array in add_interface_block.
flat_data = var->storage == StorageClassInput || (var->storage == StorageClassOutput && is_tesc_shader());
// Patch inputs are treated as normal block IO variables, so they don't deal with this path at all.
if (patch && (!is_block || is_arrayed || var->storage == StorageClassInput))
flat_data = false;
// We might have a chained access chain, where
// we first take the access chain to the control point, and then we chain into a member or something similar.
// In this case, we need to skip gl_in/gl_out remapping.
// Also, skip ptr chain for patches.
ptr_is_chain = var->self != ID(ops[2]);
}
bool builtin_variable = false;
bool variable_is_flat = false;
if (var && flat_data)
{
builtin_variable = is_builtin_variable(*var);
BuiltIn bi_type = BuiltInMax;
if (builtin_variable && !is_block)
bi_type = BuiltIn(get_decoration(var->self, DecorationBuiltIn));
variable_is_flat = !builtin_variable || is_block ||
bi_type == BuiltInPosition || bi_type == BuiltInPointSize ||
bi_type == BuiltInClipDistance || bi_type == BuiltInCullDistance;
}
if (variable_is_flat)
{
// If output is masked, it is emitted as a "normal" variable, just go through normal code paths.
// Only check this for the first level of access chain.
// Dealing with this for partial access chains should be possible, but awkward.
if (var->storage == StorageClassOutput && !ptr_is_chain)
{
bool masked = false;
if (is_block)
{
uint32_t relevant_member_index = patch ? 3 : 4;
// FIXME: This won't work properly if the application first access chains into gl_out element,
// then access chains into the member. Super weird, but theoretically possible ...
if (length > relevant_member_index)
{
uint32_t mbr_idx = get<SPIRConstant>(ops[relevant_member_index]).scalar();
masked = is_stage_output_block_member_masked(*var, mbr_idx, true);
}
}
else if (var)
masked = is_stage_output_variable_masked(*var);
if (masked)
return false;
}
AccessChainMeta meta;
SmallVector<uint32_t> indices;
uint32_t next_id = ir.increase_bound_by(1);
indices.reserve(length - 3 + 1);
uint32_t first_non_array_index = (ptr_is_chain ? 3 : 4) - (patch ? 1 : 0);
VariableID stage_var_id;
if (patch)
stage_var_id = var->storage == StorageClassInput ? patch_stage_in_var_id : patch_stage_out_var_id;
else
stage_var_id = var->storage == StorageClassInput ? stage_in_ptr_var_id : stage_out_ptr_var_id;
VariableID ptr = ptr_is_chain ? VariableID(ops[2]) : stage_var_id;
if (!ptr_is_chain && !patch)
{
// Index into gl_in/gl_out with first array index.
indices.push_back(ops[first_non_array_index - 1]);
}
auto &result_ptr_type = get<SPIRType>(ops[0]);
uint32_t const_mbr_id = next_id++;
uint32_t index = get_extended_decoration(ops[2], SPIRVCrossDecorationInterfaceMemberIndex);
// If we have a pointer chain expression, and we are no longer pointing to a composite
// object, we are in the clear. There is no longer a need to flatten anything.
bool further_access_chain_is_trivial = false;
if (ptr_is_chain && flatten_composites)
{
auto &ptr_type = expression_type(ptr);
if (!is_array(ptr_type) && !is_matrix(ptr_type) && ptr_type.basetype != SPIRType::Struct)
further_access_chain_is_trivial = true;
}
if (!further_access_chain_is_trivial && (flatten_composites || is_block))
{
uint32_t i = first_non_array_index;
auto *type = &get_variable_element_type(*var);
if (index == uint32_t(-1) && length >= (first_non_array_index + 1))
{
// Maybe this is a struct type in the input class, in which case
// we put it as a decoration on the corresponding member.
uint32_t mbr_idx = get_constant(ops[first_non_array_index]).scalar();
index = get_extended_member_decoration(var->self, mbr_idx,
SPIRVCrossDecorationInterfaceMemberIndex);
assert(index != uint32_t(-1));
i++;
type = &get<SPIRType>(type->member_types[mbr_idx]);
}
// In this case, we're poking into flattened structures and arrays, so now we have to
// combine the following indices. If we encounter a non-constant index,
// we're hosed.
for (; flatten_composites && i < length; ++i)
{
if (!is_array(*type) && !is_matrix(*type) && type->basetype != SPIRType::Struct)
break;
auto *c = maybe_get<SPIRConstant>(ops[i]);
if (!c || c->specialization)
SPIRV_CROSS_THROW("Trying to dynamically index into an array interface variable in tessellation. "
"This is currently unsupported.");
// We're in flattened space, so just increment the member index into IO block.
// We can only do this once in the current implementation, so either:
// Struct, Matrix or 1-dimensional array for a control point.
if (type->basetype == SPIRType::Struct && var->storage == StorageClassOutput)
{
// Need to consider holes, since individual block members might be masked away.
uint32_t mbr_idx = c->scalar();
for (uint32_t j = 0; j < mbr_idx; j++)
if (!is_stage_output_block_member_masked(*var, j, true))
index++;
}
else
index += c->scalar();
if (type->parent_type)
type = &get<SPIRType>(type->parent_type);
else if (type->basetype == SPIRType::Struct)
type = &get<SPIRType>(type->member_types[c->scalar()]);
}
// We're not going to emit the actual member name, we let any further OpLoad take care of that.
// Tag the access chain with the member index we're referencing.
auto &result_pointee_type = get_pointee_type(result_ptr_type);
bool defer_access_chain = flatten_composites && (is_matrix(result_pointee_type) || is_array(result_pointee_type) ||
result_pointee_type.basetype == SPIRType::Struct);
if (!defer_access_chain)
{
// Access the appropriate member of gl_in/gl_out.
set<SPIRConstant>(const_mbr_id, get_uint_type_id(), index, false);
indices.push_back(const_mbr_id);
// Member index is now irrelevant.
index = uint32_t(-1);
// Append any straggling access chain indices.
if (i < length)
indices.insert(indices.end(), ops + i, ops + length);
}
else
{
// We must have consumed the entire access chain if we're deferring it.
assert(i == length);
}
if (index != uint32_t(-1))
set_extended_decoration(ops[1], SPIRVCrossDecorationInterfaceMemberIndex, index);
else
unset_extended_decoration(ops[1], SPIRVCrossDecorationInterfaceMemberIndex);
}
else
{
if (index != uint32_t(-1))
{
set<SPIRConstant>(const_mbr_id, get_uint_type_id(), index, false);
indices.push_back(const_mbr_id);
}
// Member index is now irrelevant.
index = uint32_t(-1);
unset_extended_decoration(ops[1], SPIRVCrossDecorationInterfaceMemberIndex);
indices.insert(indices.end(), ops + first_non_array_index, ops + length);
}
// We use the pointer to the base of the input/output array here,
// so this is always a pointer chain.
string e;
if (!ptr_is_chain)
{
// This is the start of an access chain, use ptr_chain to index into control point array.
e = access_chain(ptr, indices.data(), uint32_t(indices.size()), result_ptr_type, &meta, !patch);
}
else
{
// If we're accessing a struct, we need to use member indices which are based on the IO block,
// not actual struct type, so we have to use a split access chain here where
// first path resolves the control point index, i.e. gl_in[index], and second half deals with
// looking up flattened member name.
// However, it is possible that we partially accessed a struct,
// by taking pointer to member inside the control-point array.
// For this case, we fall back to a natural access chain since we have already dealt with remapping struct members.
// One way to check this here is if we have 2 implied read expressions.
// First one is the gl_in/gl_out struct itself, then an index into that array.
// If we have traversed further, we use a normal access chain formulation.
auto *ptr_expr = maybe_get<SPIRExpression>(ptr);
bool split_access_chain_formulation = flatten_composites && ptr_expr &&
ptr_expr->implied_read_expressions.size() == 2 &&
!further_access_chain_is_trivial;
if (split_access_chain_formulation)
{
e = join(to_expression(ptr),
access_chain_internal(stage_var_id, indices.data(), uint32_t(indices.size()),
ACCESS_CHAIN_CHAIN_ONLY_BIT, &meta));
}
else
{
e = access_chain_internal(ptr, indices.data(), uint32_t(indices.size()), 0, &meta);
}
}
// Get the actual type of the object that was accessed. If it's a vector type and we changed it,
// then we'll need to add a swizzle.
// For this, we can't necessarily rely on the type of the base expression, because it might be
// another access chain, and it will therefore already have the "correct" type.
auto *expr_type = &get_variable_data_type(*var);
if (has_extended_decoration(ops[2], SPIRVCrossDecorationTessIOOriginalInputTypeID))
expr_type = &get<SPIRType>(get_extended_decoration(ops[2], SPIRVCrossDecorationTessIOOriginalInputTypeID));
for (uint32_t i = 3; i < length; i++)
{
if (!is_array(*expr_type) && expr_type->basetype == SPIRType::Struct)
expr_type = &get<SPIRType>(expr_type->member_types[get<SPIRConstant>(ops[i]).scalar()]);
else
expr_type = &get<SPIRType>(expr_type->parent_type);
}
if (!is_array(*expr_type) && !is_matrix(*expr_type) && expr_type->basetype != SPIRType::Struct &&
expr_type->vecsize > result_ptr_type.vecsize)
e += vector_swizzle(result_ptr_type.vecsize, 0);
auto &expr = set<SPIRExpression>(ops[1], std::move(e), ops[0], should_forward(ops[2]));
expr.loaded_from = var->self;
expr.need_transpose = meta.need_transpose;
expr.access_chain = true;
// Mark the result as being packed if necessary.
if (meta.storage_is_packed)
set_extended_decoration(ops[1], SPIRVCrossDecorationPhysicalTypePacked);
if (meta.storage_physical_type != 0)
set_extended_decoration(ops[1], SPIRVCrossDecorationPhysicalTypeID, meta.storage_physical_type);
if (meta.storage_is_invariant)
set_decoration(ops[1], DecorationInvariant);
// Save the type we found in case the result is used in another access chain.
set_extended_decoration(ops[1], SPIRVCrossDecorationTessIOOriginalInputTypeID, expr_type->self);
// If we have some expression dependencies in our access chain, this access chain is technically a forwarded
// temporary which could be subject to invalidation.
// Need to assume we're forwarded while calling inherit_expression_depdendencies.
forwarded_temporaries.insert(ops[1]);
// The access chain itself is never forced to a temporary, but its dependencies might.
suppressed_usage_tracking.insert(ops[1]);
for (uint32_t i = 2; i < length; i++)
{
inherit_expression_dependencies(ops[1], ops[i]);
add_implied_read_expression(expr, ops[i]);
}
// If we have no dependencies after all, i.e., all indices in the access chain are immutable temporaries,
// we're not forwarded after all.
if (expr.expression_dependencies.empty())
forwarded_temporaries.erase(ops[1]);
return true;
}
// If this is the inner tessellation level, and we're tessellating triangles,
// drop the last index. It isn't an array in this case, so we can't have an
// array reference here. We need to make this ID a variable instead of an
// expression so we don't try to dereference it as a variable pointer.
// Don't do this if the index is a constant 1, though. We need to drop stores
// to that one.
auto *m = ir.find_meta(var ? var->self : ID(0));
if (is_tesc_shader() && var && m && m->decoration.builtin_type == BuiltInTessLevelInner &&
is_tessellating_triangles())
{
auto *c = maybe_get<SPIRConstant>(ops[3]);
if (c && c->scalar() == 1)
return false;
auto &dest_var = set<SPIRVariable>(ops[1], *var);
dest_var.basetype = ops[0];
ir.meta[ops[1]] = ir.meta[ops[2]];
inherit_expression_dependencies(ops[1], ops[2]);
return true;
}
return false;
}
bool CompilerMSL::is_out_of_bounds_tessellation_level(uint32_t id_lhs)
{
if (!is_tessellating_triangles())
return false;
// In SPIR-V, TessLevelInner always has two elements and TessLevelOuter always has
// four. This is true even if we are tessellating triangles. This allows clients
// to use a single tessellation control shader with multiple tessellation evaluation
// shaders.
// In Metal, however, only the first element of TessLevelInner and the first three
// of TessLevelOuter are accessible. This stems from how in Metal, the tessellation
// levels must be stored to a dedicated buffer in a particular format that depends
// on the patch type. Therefore, in Triangles mode, any store to the second
// inner level or the fourth outer level must be dropped.
const auto *e = maybe_get<SPIRExpression>(id_lhs);
if (!e || !e->access_chain)
return false;
BuiltIn builtin = BuiltIn(get_decoration(e->loaded_from, DecorationBuiltIn));
if (builtin != BuiltInTessLevelInner && builtin != BuiltInTessLevelOuter)
return false;
auto *c = maybe_get<SPIRConstant>(e->implied_read_expressions[1]);
if (!c)
return false;
return (builtin == BuiltInTessLevelInner && c->scalar() == 1) ||
(builtin == BuiltInTessLevelOuter && c->scalar() == 3);
}
bool CompilerMSL::prepare_access_chain_for_scalar_access(std::string &expr, const SPIRType &type,
spv::StorageClass storage, bool &is_packed)
{
// If there is any risk of writes happening with the access chain in question,
// and there is a risk of concurrent write access to other components,
// we must cast the access chain to a plain pointer to ensure we only access the exact scalars we expect.
// The MSL compiler refuses to allow component-level access for any non-packed vector types.
if (!is_packed && (storage == StorageClassStorageBuffer || storage == StorageClassWorkgroup))
{
const char *addr_space = storage == StorageClassWorkgroup ? "threadgroup" : "device";
expr = join("((", addr_space, " ", type_to_glsl(type), "*)&", enclose_expression(expr), ")");
// Further indexing should happen with packed rules (array index, not swizzle).
is_packed = true;
return true;
}
else
return false;
}
bool CompilerMSL::access_chain_needs_stage_io_builtin_translation(uint32_t base)
{
auto *var = maybe_get_backing_variable(base);
if (!var || !is_tessellation_shader())
return true;
// We only need to rewrite builtin access chains when accessing flattened builtins like gl_ClipDistance_N.
// Avoid overriding it back to just gl_ClipDistance.
// This can only happen in scenarios where we cannot flatten/unflatten access chains, so, the only case
// where this triggers is evaluation shader inputs.
bool redirect_builtin = is_tese_shader() ? var->storage == StorageClassOutput : false;
return redirect_builtin;
}
// Sets the interface member index for an access chain to a pull-model interpolant.
void CompilerMSL::fix_up_interpolant_access_chain(const uint32_t *ops, uint32_t length)
{
auto *var = maybe_get_backing_variable(ops[2]);
if (!var || !pull_model_inputs.count(var->self))
return;
// Get the base index.
uint32_t interface_index;
auto &var_type = get_variable_data_type(*var);
auto &result_type = get<SPIRType>(ops[0]);
auto *type = &var_type;
if (has_extended_decoration(ops[2], SPIRVCrossDecorationInterfaceMemberIndex))
{
interface_index = get_extended_decoration(ops[2], SPIRVCrossDecorationInterfaceMemberIndex);
}
else
{
// Assume an access chain into a struct variable.
assert(var_type.basetype == SPIRType::Struct);
auto &c = get<SPIRConstant>(ops[3 + var_type.array.size()]);
interface_index =
get_extended_member_decoration(var->self, c.scalar(), SPIRVCrossDecorationInterfaceMemberIndex);
}
// Accumulate indices. We'll have to skip over the one for the struct, if present, because we already accounted
// for that getting the base index.
for (uint32_t i = 3; i < length; ++i)
{
if (is_vector(*type) && !is_array(*type) && is_scalar(result_type))
{
// We don't want to combine the next index. Actually, we need to save it
// so we know to apply a swizzle to the result of the interpolation.
set_extended_decoration(ops[1], SPIRVCrossDecorationInterpolantComponentExpr, ops[i]);
break;
}
auto *c = maybe_get<SPIRConstant>(ops[i]);
if (!c || c->specialization)
SPIRV_CROSS_THROW("Trying to dynamically index into an array interface variable using pull-model "
"interpolation. This is currently unsupported.");
if (type->parent_type)
type = &get<SPIRType>(type->parent_type);
else if (type->basetype == SPIRType::Struct)
type = &get<SPIRType>(type->member_types[c->scalar()]);
if (!has_extended_decoration(ops[2], SPIRVCrossDecorationInterfaceMemberIndex) &&
i - 3 == var_type.array.size())
continue;
interface_index += c->scalar();
}
// Save this to the access chain itself so we can recover it later when calling an interpolation function.
set_extended_decoration(ops[1], SPIRVCrossDecorationInterfaceMemberIndex, interface_index);
}
// If the physical type of a physical buffer pointer has been changed
// to a ulong or ulongn vector, add a cast back to the pointer type.
void CompilerMSL::check_physical_type_cast(std::string &expr, const SPIRType *type, uint32_t physical_type)
{
auto *p_physical_type = maybe_get<SPIRType>(physical_type);
if (p_physical_type &&
p_physical_type->storage == StorageClassPhysicalStorageBuffer &&
p_physical_type->basetype == to_unsigned_basetype(64))
{
if (p_physical_type->vecsize > 1)
expr += ".x";
expr = join("((", type_to_glsl(*type), ")", expr, ")");
}
}
// Override for MSL-specific syntax instructions
void CompilerMSL::emit_instruction(const Instruction &instruction)
{
#define MSL_BOP(op) emit_binary_op(ops[0], ops[1], ops[2], ops[3], #op)
#define MSL_PTR_BOP(op) emit_binary_ptr_op(ops[0], ops[1], ops[2], ops[3], #op)
// MSL does care about implicit integer promotion, but those cases are all handled in common code.
#define MSL_BOP_CAST(op, type) \
emit_binary_op_cast(ops[0], ops[1], ops[2], ops[3], #op, type, opcode_is_sign_invariant(opcode), false)
#define MSL_UOP(op) emit_unary_op(ops[0], ops[1], ops[2], #op)
#define MSL_QFOP(op) emit_quaternary_func_op(ops[0], ops[1], ops[2], ops[3], ops[4], ops[5], #op)
#define MSL_TFOP(op) emit_trinary_func_op(ops[0], ops[1], ops[2], ops[3], ops[4], #op)
#define MSL_BFOP(op) emit_binary_func_op(ops[0], ops[1], ops[2], ops[3], #op)
#define MSL_BFOP_CAST(op, type) \
emit_binary_func_op_cast(ops[0], ops[1], ops[2], ops[3], #op, type, opcode_is_sign_invariant(opcode))
#define MSL_UFOP(op) emit_unary_func_op(ops[0], ops[1], ops[2], #op)
#define MSL_UNORD_BOP(op) emit_binary_unord_op(ops[0], ops[1], ops[2], ops[3], #op)
auto ops = stream(instruction);
auto opcode = static_cast<Op>(instruction.op);
opcode = get_remapped_spirv_op(opcode);
// If we need to do implicit bitcasts, make sure we do it with the correct type.
uint32_t integer_width = get_integer_width_for_instruction(instruction);
auto int_type = to_signed_basetype(integer_width);
auto uint_type = to_unsigned_basetype(integer_width);
switch (opcode)
{
case OpLoad:
{
uint32_t id = ops[1];
uint32_t ptr = ops[2];
if (is_tessellation_shader())
{
if (!emit_tessellation_io_load(ops[0], id, ptr))
CompilerGLSL::emit_instruction(instruction);
}
else
{
// Sample mask input for Metal is not an array
if (BuiltIn(get_decoration(ptr, DecorationBuiltIn)) == BuiltInSampleMask)
set_decoration(id, DecorationBuiltIn, BuiltInSampleMask);
CompilerGLSL::emit_instruction(instruction);
}
break;
}
// Comparisons
case OpIEqual:
MSL_BOP_CAST(==, int_type);
break;
case OpLogicalEqual:
case OpFOrdEqual:
MSL_BOP(==);
break;
case OpINotEqual:
MSL_BOP_CAST(!=, int_type);
break;
case OpLogicalNotEqual:
case OpFOrdNotEqual:
// TODO: Should probably negate the == result here.
// Typically OrdNotEqual comes from GLSL which itself does not really specify what
// happens with NaN.
// Consider fixing this if we run into real issues.
MSL_BOP(!=);
break;
case OpUGreaterThan:
MSL_BOP_CAST(>, uint_type);
break;
case OpSGreaterThan:
MSL_BOP_CAST(>, int_type);
break;
case OpFOrdGreaterThan:
MSL_BOP(>);
break;
case OpUGreaterThanEqual:
MSL_BOP_CAST(>=, uint_type);
break;
case OpSGreaterThanEqual:
MSL_BOP_CAST(>=, int_type);
break;
case OpFOrdGreaterThanEqual:
MSL_BOP(>=);
break;
case OpULessThan:
MSL_BOP_CAST(<, uint_type);
break;
case OpSLessThan:
MSL_BOP_CAST(<, int_type);
break;
case OpFOrdLessThan:
MSL_BOP(<);
break;
case OpULessThanEqual:
MSL_BOP_CAST(<=, uint_type);
break;
case OpSLessThanEqual:
MSL_BOP_CAST(<=, int_type);
break;
case OpFOrdLessThanEqual:
MSL_BOP(<=);
break;
case OpFUnordEqual:
MSL_UNORD_BOP(==);
break;
case OpFUnordNotEqual:
// not equal in MSL generates une opcodes to begin with.
// Since unordered not equal is how it works in C, just inherit that behavior.
MSL_BOP(!=);
break;
case OpFUnordGreaterThan:
MSL_UNORD_BOP(>);
break;
case OpFUnordGreaterThanEqual:
MSL_UNORD_BOP(>=);
break;
case OpFUnordLessThan:
MSL_UNORD_BOP(<);
break;
case OpFUnordLessThanEqual:
MSL_UNORD_BOP(<=);
break;
// Pointer math
case OpPtrEqual:
MSL_PTR_BOP(==);
break;
case OpPtrNotEqual:
MSL_PTR_BOP(!=);
break;
case OpPtrDiff:
MSL_PTR_BOP(-);
break;
// Derivatives
case OpDPdx:
case OpDPdxFine:
case OpDPdxCoarse:
MSL_UFOP(dfdx);
register_control_dependent_expression(ops[1]);
break;
case OpDPdy:
case OpDPdyFine:
case OpDPdyCoarse:
MSL_UFOP(dfdy);
register_control_dependent_expression(ops[1]);
break;
case OpFwidth:
case OpFwidthCoarse:
case OpFwidthFine:
MSL_UFOP(fwidth);
register_control_dependent_expression(ops[1]);
break;
// Bitfield
case OpBitFieldInsert:
{
emit_bitfield_insert_op(ops[0], ops[1], ops[2], ops[3], ops[4], ops[5], "insert_bits", SPIRType::UInt);
break;
}
case OpBitFieldSExtract:
{
emit_trinary_func_op_bitextract(ops[0], ops[1], ops[2], ops[3], ops[4], "extract_bits", int_type, int_type,
SPIRType::UInt, SPIRType::UInt);
break;
}
case OpBitFieldUExtract:
{
emit_trinary_func_op_bitextract(ops[0], ops[1], ops[2], ops[3], ops[4], "extract_bits", uint_type, uint_type,
SPIRType::UInt, SPIRType::UInt);
break;
}
case OpBitReverse:
// BitReverse does not have issues with sign since result type must match input type.
MSL_UFOP(reverse_bits);
break;
case OpBitCount:
{
auto basetype = expression_type(ops[2]).basetype;
emit_unary_func_op_cast(ops[0], ops[1], ops[2], "popcount", basetype, basetype);
break;
}
case OpFRem:
MSL_BFOP(fmod);
break;
case OpFMul:
if (msl_options.invariant_float_math || has_decoration(ops[1], DecorationNoContraction))
MSL_BFOP(spvFMul);
else
MSL_BOP(*);
break;
case OpFAdd:
if (msl_options.invariant_float_math || has_decoration(ops[1], DecorationNoContraction))
MSL_BFOP(spvFAdd);
else
MSL_BOP(+);
break;
case OpFSub:
if (msl_options.invariant_float_math || has_decoration(ops[1], DecorationNoContraction))
MSL_BFOP(spvFSub);
else
MSL_BOP(-);
break;
// Atomics
case OpAtomicExchange:
{
uint32_t result_type = ops[0];
uint32_t id = ops[1];
uint32_t ptr = ops[2];
uint32_t mem_sem = ops[4];
uint32_t val = ops[5];
emit_atomic_func_op(result_type, id, "atomic_exchange", opcode, mem_sem, mem_sem, false, ptr, val);
break;
}
case OpAtomicCompareExchange:
{
uint32_t result_type = ops[0];
uint32_t id = ops[1];
uint32_t ptr = ops[2];
uint32_t mem_sem_pass = ops[4];
uint32_t mem_sem_fail = ops[5];
uint32_t val = ops[6];
uint32_t comp = ops[7];
emit_atomic_func_op(result_type, id, "atomic_compare_exchange_weak", opcode,
mem_sem_pass, mem_sem_fail, true,
ptr, comp, true, false, val);
break;
}
case OpAtomicCompareExchangeWeak:
SPIRV_CROSS_THROW("OpAtomicCompareExchangeWeak is only supported in kernel profile.");
case OpAtomicLoad:
{
uint32_t result_type = ops[0];
uint32_t id = ops[1];
uint32_t ptr = ops[2];
uint32_t mem_sem = ops[4];
check_atomic_image(ptr);
emit_atomic_func_op(result_type, id, "atomic_load", opcode, mem_sem, mem_sem, false, ptr, 0);
break;
}
case OpAtomicStore:
{
uint32_t result_type = expression_type(ops[0]).self;
uint32_t id = ops[0];
uint32_t ptr = ops[0];
uint32_t mem_sem = ops[2];
uint32_t val = ops[3];
check_atomic_image(ptr);
emit_atomic_func_op(result_type, id, "atomic_store", opcode, mem_sem, mem_sem, false, ptr, val);
break;
}
#define MSL_AFMO_IMPL(op, valsrc, valconst) \
do \
{ \
uint32_t result_type = ops[0]; \
uint32_t id = ops[1]; \
uint32_t ptr = ops[2]; \
uint32_t mem_sem = ops[4]; \
uint32_t val = valsrc; \
emit_atomic_func_op(result_type, id, "atomic_fetch_" #op, opcode, \
mem_sem, mem_sem, false, ptr, val, \
false, valconst); \
} while (false)
#define MSL_AFMO(op) MSL_AFMO_IMPL(op, ops[5], false)
#define MSL_AFMIO(op) MSL_AFMO_IMPL(op, 1, true)
case OpAtomicIIncrement:
MSL_AFMIO(add);
break;
case OpAtomicIDecrement:
MSL_AFMIO(sub);
break;
case OpAtomicIAdd:
case OpAtomicFAddEXT:
MSL_AFMO(add);
break;
case OpAtomicISub:
MSL_AFMO(sub);
break;
case OpAtomicSMin:
case OpAtomicUMin:
MSL_AFMO(min);
break;
case OpAtomicSMax:
case OpAtomicUMax:
MSL_AFMO(max);
break;
case OpAtomicAnd:
MSL_AFMO(and);
break;
case OpAtomicOr:
MSL_AFMO(or);
break;
case OpAtomicXor:
MSL_AFMO(xor);
break;
// Images
// Reads == Fetches in Metal
case OpImageRead:
{
// Mark that this shader reads from this image
uint32_t img_id = ops[2];
auto &type = expression_type(img_id);
auto *p_var = maybe_get_backing_variable(img_id);
if (type.image.dim != DimSubpassData)
{
if (p_var && has_decoration(p_var->self, DecorationNonReadable))
{
unset_decoration(p_var->self, DecorationNonReadable);
force_recompile();
}
}
// Metal requires explicit fences to break up RAW hazards, even within the same shader invocation
if (msl_options.readwrite_texture_fences && p_var && !has_decoration(p_var->self, DecorationNonWritable))
statement(to_expression(img_id), ".fence();");
emit_texture_op(instruction, false);
break;
}
// Emulate texture2D atomic operations
case OpImageTexelPointer:
{
// When using the pointer, we need to know which variable it is actually loaded from.
auto *var = maybe_get_backing_variable(ops[2]);
if (var && atomic_image_vars_emulated.count(var->self))
{
uint32_t result_type = ops[0];
uint32_t id = ops[1];
std::string coord = to_expression(ops[3]);
auto &type = expression_type(ops[2]);
if (type.image.dim == Dim2D)
{
coord = join("spvImage2DAtomicCoord(", coord, ", ", to_expression(ops[2]), ")");
}
auto &e = set<SPIRExpression>(id, join(to_expression(ops[2]), "_atomic[", coord, "]"), result_type, true);
e.loaded_from = var ? var->self : ID(0);
inherit_expression_dependencies(id, ops[3]);
}
else
{
uint32_t result_type = ops[0];
uint32_t id = ops[1];
// Virtual expression. Split this up in the actual image atomic.
// In GLSL and HLSL we are able to resolve the dereference inline, but MSL has
// image.op(coord, ...) syntax.
auto &e =
set<SPIRExpression>(id, join(to_expression(ops[2]), "@",
bitcast_expression(SPIRType::UInt, ops[3])),
result_type, true);
// When using the pointer, we need to know which variable it is actually loaded from.
e.loaded_from = var ? var->self : ID(0);
inherit_expression_dependencies(id, ops[3]);
}
break;
}
case OpImageWrite:
{
uint32_t img_id = ops[0];
uint32_t coord_id = ops[1];
uint32_t texel_id = ops[2];
const uint32_t *opt = &ops[3];
uint32_t length = instruction.length - 3;
// Bypass pointers because we need the real image struct
auto &type = expression_type(img_id);
auto &img_type = get<SPIRType>(type.self);
// Ensure this image has been marked as being written to and force a
// recommpile so that the image type output will include write access
auto *p_var = maybe_get_backing_variable(img_id);
if (p_var && has_decoration(p_var->self, DecorationNonWritable))
{
unset_decoration(p_var->self, DecorationNonWritable);
force_recompile();
}
bool forward = false;
uint32_t bias = 0;
uint32_t lod = 0;
uint32_t flags = 0;
if (length)
{
flags = *opt++;
length--;
}
auto test = [&](uint32_t &v, uint32_t flag) {
if (length && (flags & flag))
{
v = *opt++;
length--;
}
};
test(bias, ImageOperandsBiasMask);
test(lod, ImageOperandsLodMask);
auto &texel_type = expression_type(texel_id);
auto store_type = texel_type;
store_type.vecsize = 4;
TextureFunctionArguments args = {};
args.base.img = img_id;
args.base.imgtype = &img_type;
args.base.is_fetch = true;
args.coord = coord_id;
args.lod = lod;
string expr;
if (needs_frag_discard_checks())
expr = join("(", builtin_to_glsl(BuiltInHelperInvocation, StorageClassInput), " ? ((void)0) : ");
expr += join(to_expression(img_id), ".write(",
remap_swizzle(store_type, texel_type.vecsize, to_expression(texel_id)), ", ",
CompilerMSL::to_function_args(args, &forward), ")");
if (needs_frag_discard_checks())
expr += ")";
statement(expr, ";");
if (p_var && variable_storage_is_aliased(*p_var))
flush_all_aliased_variables();
break;
}
case OpImageQuerySize:
case OpImageQuerySizeLod:
{
uint32_t rslt_type_id = ops[0];
auto &rslt_type = get<SPIRType>(rslt_type_id);
uint32_t id = ops[1];
uint32_t img_id = ops[2];
string img_exp = to_expression(img_id);
auto &img_type = expression_type(img_id);
Dim img_dim = img_type.image.dim;
bool img_is_array = img_type.image.arrayed;
if (img_type.basetype != SPIRType::Image)
SPIRV_CROSS_THROW("Invalid type for OpImageQuerySize.");
string lod;
if (opcode == OpImageQuerySizeLod)
{
// LOD index defaults to zero, so don't bother outputing level zero index
string decl_lod = to_expression(ops[3]);
if (decl_lod != "0")
lod = decl_lod;
}
string expr = type_to_glsl(rslt_type) + "(";
expr += img_exp + ".get_width(" + lod + ")";
if (img_dim == Dim2D || img_dim == DimCube || img_dim == Dim3D)
expr += ", " + img_exp + ".get_height(" + lod + ")";
if (img_dim == Dim3D)
expr += ", " + img_exp + ".get_depth(" + lod + ")";
if (img_is_array)
{
expr += ", " + img_exp + ".get_array_size()";
if (img_dim == DimCube && msl_options.emulate_cube_array)
expr += " / 6";
}
expr += ")";
emit_op(rslt_type_id, id, expr, should_forward(img_id));
break;
}
case OpImageQueryLod:
{
if (!msl_options.supports_msl_version(2, 2))
SPIRV_CROSS_THROW("ImageQueryLod is only supported on MSL 2.2 and up.");
uint32_t result_type = ops[0];
uint32_t id = ops[1];
uint32_t image_id = ops[2];
uint32_t coord_id = ops[3];
emit_uninitialized_temporary_expression(result_type, id);
auto sampler_expr = to_sampler_expression(image_id);
auto *combined = maybe_get<SPIRCombinedImageSampler>(image_id);
auto image_expr = combined ? to_expression(combined->image) : to_expression(image_id);
// TODO: It is unclear if calculcate_clamped_lod also conditionally rounds
// the reported LOD based on the sampler. NEAREST miplevel should
// round the LOD, but LINEAR miplevel should not round.
// Let's hope this does not become an issue ...
statement(to_expression(id), ".x = ", image_expr, ".calculate_clamped_lod(", sampler_expr, ", ",
to_expression(coord_id), ");");
statement(to_expression(id), ".y = ", image_expr, ".calculate_unclamped_lod(", sampler_expr, ", ",
to_expression(coord_id), ");");
register_control_dependent_expression(id);
break;
}
#define MSL_ImgQry(qrytype) \
do \
{ \
uint32_t rslt_type_id = ops[0]; \
auto &rslt_type = get<SPIRType>(rslt_type_id); \
uint32_t id = ops[1]; \
uint32_t img_id = ops[2]; \
string img_exp = to_expression(img_id); \
string expr = type_to_glsl(rslt_type) + "(" + img_exp + ".get_num_" #qrytype "())"; \
emit_op(rslt_type_id, id, expr, should_forward(img_id)); \
} while (false)
case OpImageQueryLevels:
MSL_ImgQry(mip_levels);
break;
case OpImageQuerySamples:
MSL_ImgQry(samples);
break;
case OpImage:
{
uint32_t result_type = ops[0];
uint32_t id = ops[1];
auto *combined = maybe_get<SPIRCombinedImageSampler>(ops[2]);
if (combined)
{
auto &e = emit_op(result_type, id, to_expression(combined->image), true, true);
auto *var = maybe_get_backing_variable(combined->image);
if (var)
e.loaded_from = var->self;
}
else
{
auto *var = maybe_get_backing_variable(ops[2]);
SPIRExpression *e;
if (var && has_extended_decoration(var->self, SPIRVCrossDecorationDynamicImageSampler))
e = &emit_op(result_type, id, join(to_expression(ops[2]), ".plane0"), true, true);
else
e = &emit_op(result_type, id, to_expression(ops[2]), true, true);
if (var)
e->loaded_from = var->self;
}
break;
}
// Casting
case OpQuantizeToF16:
{
uint32_t result_type = ops[0];
uint32_t id = ops[1];
uint32_t arg = ops[2];
string exp = join("spvQuantizeToF16(", to_expression(arg), ")");
emit_op(result_type, id, exp, should_forward(arg));
break;
}
case OpInBoundsAccessChain:
case OpAccessChain:
case OpPtrAccessChain:
if (is_tessellation_shader())
{
if (!emit_tessellation_access_chain(ops, instruction.length))
CompilerGLSL::emit_instruction(instruction);
}
else
CompilerGLSL::emit_instruction(instruction);
fix_up_interpolant_access_chain(ops, instruction.length);
break;
case OpStore:
{
const auto &type = expression_type(ops[0]);
if (is_out_of_bounds_tessellation_level(ops[0]))
break;
if (needs_frag_discard_checks() &&
(type.storage == StorageClassStorageBuffer || type.storage == StorageClassUniform))
{
// If we're in a continue block, this kludge will make the block too complex
// to emit normally.
assert(current_emitting_block);
auto cont_type = continue_block_type(*current_emitting_block);
if (cont_type != SPIRBlock::ContinueNone && cont_type != SPIRBlock::ComplexLoop)
{
current_emitting_block->complex_continue = true;
force_recompile();
}
statement("if (!", builtin_to_glsl(BuiltInHelperInvocation, StorageClassInput), ")");
begin_scope();
}
if (!maybe_emit_array_assignment(ops[0], ops[1]))
CompilerGLSL::emit_instruction(instruction);
if (needs_frag_discard_checks() &&
(type.storage == StorageClassStorageBuffer || type.storage == StorageClassUniform))
end_scope();
break;
}
// Compute barriers
case OpMemoryBarrier:
emit_barrier(0, ops[0], ops[1]);
break;
case OpControlBarrier:
// In GLSL a memory barrier is often followed by a control barrier.
// But in MSL, memory barriers are also control barriers, so don't
// emit a simple control barrier if a memory barrier has just been emitted.
if (previous_instruction_opcode != OpMemoryBarrier)
emit_barrier(ops[0], ops[1], ops[2]);
break;
case OpOuterProduct:
{
uint32_t result_type = ops[0];
uint32_t id = ops[1];
uint32_t a = ops[2];
uint32_t b = ops[3];
auto &type = get<SPIRType>(result_type);
string expr = type_to_glsl_constructor(type);
expr += "(";
for (uint32_t col = 0; col < type.columns; col++)
{
expr += to_enclosed_unpacked_expression(a);
expr += " * ";
expr += to_extract_component_expression(b, col);
if (col + 1 < type.columns)
expr += ", ";
}
expr += ")";
emit_op(result_type, id, expr, should_forward(a) && should_forward(b));
inherit_expression_dependencies(id, a);
inherit_expression_dependencies(id, b);
break;
}
case OpVectorTimesMatrix:
case OpMatrixTimesVector:
{
if (!msl_options.invariant_float_math && !has_decoration(ops[1], DecorationNoContraction))
{
CompilerGLSL::emit_instruction(instruction);
break;
}
// If the matrix needs transpose, just flip the multiply order.
auto *e = maybe_get<SPIRExpression>(ops[opcode == OpMatrixTimesVector ? 2 : 3]);
if (e && e->need_transpose)
{
e->need_transpose = false;
string expr;
if (opcode == OpMatrixTimesVector)
{
expr = join("spvFMulVectorMatrix(", to_enclosed_unpacked_expression(ops[3]), ", ",
to_unpacked_row_major_matrix_expression(ops[2]), ")");
}
else
{
expr = join("spvFMulMatrixVector(", to_unpacked_row_major_matrix_expression(ops[3]), ", ",
to_enclosed_unpacked_expression(ops[2]), ")");
}
bool forward = should_forward(ops[2]) && should_forward(ops[3]);
emit_op(ops[0], ops[1], expr, forward);
e->need_transpose = true;
inherit_expression_dependencies(ops[1], ops[2]);
inherit_expression_dependencies(ops[1], ops[3]);
}
else
{
if (opcode == OpMatrixTimesVector)
MSL_BFOP(spvFMulMatrixVector);
else
MSL_BFOP(spvFMulVectorMatrix);
}
break;
}
case OpMatrixTimesMatrix:
{
if (!msl_options.invariant_float_math && !has_decoration(ops[1], DecorationNoContraction))
{
CompilerGLSL::emit_instruction(instruction);
break;
}
auto *a = maybe_get<SPIRExpression>(ops[2]);
auto *b = maybe_get<SPIRExpression>(ops[3]);
// If both matrices need transpose, we can multiply in flipped order and tag the expression as transposed.
// a^T * b^T = (b * a)^T.
if (a && b && a->need_transpose && b->need_transpose)
{
a->need_transpose = false;
b->need_transpose = false;
auto expr =
join("spvFMulMatrixMatrix(", enclose_expression(to_unpacked_row_major_matrix_expression(ops[3])), ", ",
enclose_expression(to_unpacked_row_major_matrix_expression(ops[2])), ")");
bool forward = should_forward(ops[2]) && should_forward(ops[3]);
auto &e = emit_op(ops[0], ops[1], expr, forward);
e.need_transpose = true;
a->need_transpose = true;
b->need_transpose = true;
inherit_expression_dependencies(ops[1], ops[2]);
inherit_expression_dependencies(ops[1], ops[3]);
}
else
MSL_BFOP(spvFMulMatrixMatrix);
break;
}
case OpIAddCarry:
case OpISubBorrow:
{
uint32_t result_type = ops[0];
uint32_t result_id = ops[1];
uint32_t op0 = ops[2];
uint32_t op1 = ops[3];
auto &type = get<SPIRType>(result_type);
emit_uninitialized_temporary_expression(result_type, result_id);
auto &res_type = get<SPIRType>(type.member_types[1]);
if (opcode == OpIAddCarry)
{
statement(to_expression(result_id), ".", to_member_name(type, 0), " = ",
to_enclosed_unpacked_expression(op0), " + ", to_enclosed_unpacked_expression(op1), ";");
statement(to_expression(result_id), ".", to_member_name(type, 1), " = select(", type_to_glsl(res_type),
"(1), ", type_to_glsl(res_type), "(0), ", to_unpacked_expression(result_id), ".", to_member_name(type, 0),
" >= max(", to_unpacked_expression(op0), ", ", to_unpacked_expression(op1), "));");
}
else
{
statement(to_expression(result_id), ".", to_member_name(type, 0), " = ", to_enclosed_unpacked_expression(op0), " - ",
to_enclosed_unpacked_expression(op1), ";");
statement(to_expression(result_id), ".", to_member_name(type, 1), " = select(", type_to_glsl(res_type),
"(1), ", type_to_glsl(res_type), "(0), ", to_enclosed_unpacked_expression(op0),
" >= ", to_enclosed_unpacked_expression(op1), ");");
}
break;
}
case OpUMulExtended:
case OpSMulExtended:
{
uint32_t result_type = ops[0];
uint32_t result_id = ops[1];
uint32_t op0 = ops[2];
uint32_t op1 = ops[3];
auto &type = get<SPIRType>(result_type);
auto input_type = opcode == OpSMulExtended ? int_type : uint_type;
auto &output_type = get_type(result_type);
string cast_op0, cast_op1;
auto expected_type = binary_op_bitcast_helper(cast_op0, cast_op1, input_type, op0, op1, false);
emit_uninitialized_temporary_expression(result_type, result_id);
string mullo_expr, mulhi_expr;
mullo_expr = join(cast_op0, " * ", cast_op1);
mulhi_expr = join("mulhi(", cast_op0, ", ", cast_op1, ")");
auto &low_type = get_type(output_type.member_types[0]);
auto &high_type = get_type(output_type.member_types[1]);
if (low_type.basetype != input_type)
{
expected_type.basetype = input_type;
mullo_expr = join(bitcast_glsl_op(low_type, expected_type), "(", mullo_expr, ")");
}
if (high_type.basetype != input_type)
{
expected_type.basetype = input_type;
mulhi_expr = join(bitcast_glsl_op(high_type, expected_type), "(", mulhi_expr, ")");
}
statement(to_expression(result_id), ".", to_member_name(type, 0), " = ", mullo_expr, ";");
statement(to_expression(result_id), ".", to_member_name(type, 1), " = ", mulhi_expr, ";");
break;
}
case OpArrayLength:
{
auto &type = expression_type(ops[2]);
uint32_t offset = type_struct_member_offset(type, ops[3]);
uint32_t stride = type_struct_member_array_stride(type, ops[3]);
auto expr = join("(", to_buffer_size_expression(ops[2]), " - ", offset, ") / ", stride);
emit_op(ops[0], ops[1], expr, true);
break;
}
// Legacy sub-group stuff ...
case OpSubgroupBallotKHR:
case OpSubgroupFirstInvocationKHR:
case OpSubgroupReadInvocationKHR:
case OpSubgroupAllKHR:
case OpSubgroupAnyKHR:
case OpSubgroupAllEqualKHR:
emit_subgroup_op(instruction);
break;
// SPV_INTEL_shader_integer_functions2
case OpUCountLeadingZerosINTEL:
MSL_UFOP(clz);
break;
case OpUCountTrailingZerosINTEL:
MSL_UFOP(ctz);
break;
case OpAbsISubINTEL:
case OpAbsUSubINTEL:
MSL_BFOP(absdiff);
break;
case OpIAddSatINTEL:
case OpUAddSatINTEL:
MSL_BFOP(addsat);
break;
case OpIAverageINTEL:
case OpUAverageINTEL:
MSL_BFOP(hadd);
break;
case OpIAverageRoundedINTEL:
case OpUAverageRoundedINTEL:
MSL_BFOP(rhadd);
break;
case OpISubSatINTEL:
case OpUSubSatINTEL:
MSL_BFOP(subsat);
break;
case OpIMul32x16INTEL:
{
uint32_t result_type = ops[0];
uint32_t id = ops[1];
uint32_t a = ops[2], b = ops[3];
bool forward = should_forward(a) && should_forward(b);
emit_op(result_type, id, join("int(short(", to_unpacked_expression(a), ")) * int(short(", to_unpacked_expression(b), "))"), forward);
inherit_expression_dependencies(id, a);
inherit_expression_dependencies(id, b);
break;
}
case OpUMul32x16INTEL:
{
uint32_t result_type = ops[0];
uint32_t id = ops[1];
uint32_t a = ops[2], b = ops[3];
bool forward = should_forward(a) && should_forward(b);
emit_op(result_type, id, join("uint(ushort(", to_unpacked_expression(a), ")) * uint(ushort(", to_unpacked_expression(b), "))"), forward);
inherit_expression_dependencies(id, a);
inherit_expression_dependencies(id, b);
break;
}
// SPV_EXT_demote_to_helper_invocation
case OpDemoteToHelperInvocationEXT:
if (!msl_options.supports_msl_version(2, 3))
SPIRV_CROSS_THROW("discard_fragment() does not formally have demote semantics until MSL 2.3.");
CompilerGLSL::emit_instruction(instruction);
break;
case OpIsHelperInvocationEXT:
if (msl_options.is_ios() && !msl_options.supports_msl_version(2, 3))
SPIRV_CROSS_THROW("simd_is_helper_thread() requires MSL 2.3 on iOS.");
else if (msl_options.is_macos() && !msl_options.supports_msl_version(2, 1))
SPIRV_CROSS_THROW("simd_is_helper_thread() requires MSL 2.1 on macOS.");
emit_op(ops[0], ops[1],
needs_manual_helper_invocation_updates() ? builtin_to_glsl(BuiltInHelperInvocation, StorageClassInput) :
"simd_is_helper_thread()",
false);
break;
case OpBeginInvocationInterlockEXT:
case OpEndInvocationInterlockEXT:
if (!msl_options.supports_msl_version(2, 0))
SPIRV_CROSS_THROW("Raster order groups require MSL 2.0.");
break; // Nothing to do in the body
case OpConvertUToAccelerationStructureKHR:
SPIRV_CROSS_THROW("ConvertUToAccelerationStructure is not supported in MSL.");
case OpRayQueryGetIntersectionInstanceShaderBindingTableRecordOffsetKHR:
SPIRV_CROSS_THROW("BindingTableRecordOffset is not supported in MSL.");
case OpRayQueryInitializeKHR:
{
flush_variable_declaration(ops[0]);
register_write(ops[0]);
add_spv_func_and_recompile(SPVFuncImplRayQueryIntersectionParams);
statement(to_expression(ops[0]), ".reset(", "ray(", to_expression(ops[4]), ", ", to_expression(ops[6]), ", ",
to_expression(ops[5]), ", ", to_expression(ops[7]), "), ", to_expression(ops[1]), ", ", to_expression(ops[3]),
", spvMakeIntersectionParams(", to_expression(ops[2]), "));");
break;
}
case OpRayQueryProceedKHR:
{
flush_variable_declaration(ops[0]);
register_write(ops[2]);
emit_op(ops[0], ops[1], join(to_expression(ops[2]), ".next()"), false);
break;
}
#define MSL_RAY_QUERY_IS_CANDIDATE get<SPIRConstant>(ops[3]).scalar_i32() == 0
#define MSL_RAY_QUERY_GET_OP(op, msl_op) \
case OpRayQueryGet##op##KHR: \
flush_variable_declaration(ops[2]); \
emit_op(ops[0], ops[1], join(to_expression(ops[2]), ".get_" #msl_op "()"), false); \
break
#define MSL_RAY_QUERY_OP_INNER2(op, msl_prefix, msl_op) \
case OpRayQueryGet##op##KHR: \
flush_variable_declaration(ops[2]); \
if (MSL_RAY_QUERY_IS_CANDIDATE) \
emit_op(ops[0], ops[1], join(to_expression(ops[2]), #msl_prefix "_candidate_" #msl_op "()"), false); \
else \
emit_op(ops[0], ops[1], join(to_expression(ops[2]), #msl_prefix "_committed_" #msl_op "()"), false); \
break
#define MSL_RAY_QUERY_GET_OP2(op, msl_op) MSL_RAY_QUERY_OP_INNER2(op, .get, msl_op)
#define MSL_RAY_QUERY_IS_OP2(op, msl_op) MSL_RAY_QUERY_OP_INNER2(op, .is, msl_op)
MSL_RAY_QUERY_GET_OP(RayTMin, ray_min_distance);
MSL_RAY_QUERY_GET_OP(WorldRayOrigin, world_space_ray_origin);
MSL_RAY_QUERY_GET_OP(WorldRayDirection, world_space_ray_direction);
MSL_RAY_QUERY_GET_OP2(IntersectionInstanceId, instance_id);
MSL_RAY_QUERY_GET_OP2(IntersectionInstanceCustomIndex, user_instance_id);
MSL_RAY_QUERY_GET_OP2(IntersectionBarycentrics, triangle_barycentric_coord);
MSL_RAY_QUERY_GET_OP2(IntersectionPrimitiveIndex, primitive_id);
MSL_RAY_QUERY_GET_OP2(IntersectionGeometryIndex, geometry_id);
MSL_RAY_QUERY_GET_OP2(IntersectionObjectRayOrigin, ray_origin);
MSL_RAY_QUERY_GET_OP2(IntersectionObjectRayDirection, ray_direction);
MSL_RAY_QUERY_GET_OP2(IntersectionObjectToWorld, object_to_world_transform);
MSL_RAY_QUERY_GET_OP2(IntersectionWorldToObject, world_to_object_transform);
MSL_RAY_QUERY_IS_OP2(IntersectionFrontFace, triangle_front_facing);
case OpRayQueryGetIntersectionTypeKHR:
flush_variable_declaration(ops[2]);
if (MSL_RAY_QUERY_IS_CANDIDATE)
emit_op(ops[0], ops[1], join("uint(", to_expression(ops[2]), ".get_candidate_intersection_type()) - 1"),
false);
else
emit_op(ops[0], ops[1], join("uint(", to_expression(ops[2]), ".get_committed_intersection_type())"), false);
break;
case OpRayQueryGetIntersectionTKHR:
flush_variable_declaration(ops[2]);
if (MSL_RAY_QUERY_IS_CANDIDATE)
emit_op(ops[0], ops[1], join(to_expression(ops[2]), ".get_candidate_triangle_distance()"), false);
else
emit_op(ops[0], ops[1], join(to_expression(ops[2]), ".get_committed_distance()"), false);
break;
case OpRayQueryGetIntersectionCandidateAABBOpaqueKHR:
{
flush_variable_declaration(ops[0]);
emit_op(ops[0], ops[1], join(to_expression(ops[2]), ".is_candidate_non_opaque_bounding_box()"), false);
break;
}
case OpRayQueryConfirmIntersectionKHR:
flush_variable_declaration(ops[0]);
register_write(ops[0]);
statement(to_expression(ops[0]), ".commit_triangle_intersection();");
break;
case OpRayQueryGenerateIntersectionKHR:
flush_variable_declaration(ops[0]);
register_write(ops[0]);
statement(to_expression(ops[0]), ".commit_bounding_box_intersection(", to_expression(ops[1]), ");");
break;
case OpRayQueryTerminateKHR:
flush_variable_declaration(ops[0]);
register_write(ops[0]);
statement(to_expression(ops[0]), ".abort();");
break;
#undef MSL_RAY_QUERY_GET_OP
#undef MSL_RAY_QUERY_IS_CANDIDATE
#undef MSL_RAY_QUERY_IS_OP2
#undef MSL_RAY_QUERY_GET_OP2
#undef MSL_RAY_QUERY_OP_INNER2
case OpConvertPtrToU:
case OpConvertUToPtr:
case OpBitcast:
{
auto &type = get<SPIRType>(ops[0]);
auto &input_type = expression_type(ops[2]);
if (opcode != OpBitcast || type.pointer || input_type.pointer)
{
string op;
if (type.vecsize == 1 && input_type.vecsize == 1)
op = join("reinterpret_cast<", type_to_glsl(type), ">(", to_unpacked_expression(ops[2]), ")");
else if (input_type.vecsize == 2)
op = join("reinterpret_cast<", type_to_glsl(type), ">(as_type<ulong>(", to_unpacked_expression(ops[2]), "))");
else
op = join("as_type<", type_to_glsl(type), ">(reinterpret_cast<ulong>(", to_unpacked_expression(ops[2]), "))");
emit_op(ops[0], ops[1], op, should_forward(ops[2]));
inherit_expression_dependencies(ops[1], ops[2]);
}
else
CompilerGLSL::emit_instruction(instruction);
break;
}
case OpSDot:
case OpUDot:
case OpSUDot:
{
uint32_t result_type = ops[0];
uint32_t id = ops[1];
uint32_t vec1 = ops[2];
uint32_t vec2 = ops[3];
auto &input_type1 = expression_type(vec1);
auto &input_type2 = expression_type(vec2);
string vec1input, vec2input;
auto input_size = input_type1.vecsize;
if (instruction.length == 5)
{
if (ops[4] == PackedVectorFormatPackedVectorFormat4x8Bit)
{
string type = opcode == OpSDot || opcode == OpSUDot ? "char4" : "uchar4";
vec1input = join("as_type<", type, ">(", to_expression(vec1), ")");
type = opcode == OpSDot ? "char4" : "uchar4";
vec2input = join("as_type<", type, ">(", to_expression(vec2), ")");
input_size = 4;
}
else
SPIRV_CROSS_THROW("Packed vector formats other than 4x8Bit for integer dot product is not supported.");
}
else
{
// Inputs are sign or zero-extended to their target width.
SPIRType::BaseType vec1_expected_type =
opcode != OpUDot ?
to_signed_basetype(input_type1.width) :
to_unsigned_basetype(input_type1.width);
SPIRType::BaseType vec2_expected_type =
opcode != OpSDot ?
to_unsigned_basetype(input_type2.width) :
to_signed_basetype(input_type2.width);
vec1input = bitcast_expression(vec1_expected_type, vec1);
vec2input = bitcast_expression(vec2_expected_type, vec2);
}
auto &type = get<SPIRType>(result_type);
// We'll get the appropriate sign-extend or zero-extend, no matter which type we cast to here.
// The addition in reduce_add is sign-invariant.
auto result_type_cast = join(type_to_glsl(type), input_size);
string exp = join("reduce_add(",
result_type_cast, "(", vec1input, ") * ",
result_type_cast, "(", vec2input, "))");
emit_op(result_type, id, exp, should_forward(vec1) && should_forward(vec2));
inherit_expression_dependencies(id, vec1);
inherit_expression_dependencies(id, vec2);
break;
}
case OpSDotAccSat:
case OpUDotAccSat:
case OpSUDotAccSat:
{
uint32_t result_type = ops[0];
uint32_t id = ops[1];
uint32_t vec1 = ops[2];
uint32_t vec2 = ops[3];
uint32_t acc = ops[4];
auto input_type1 = expression_type(vec1);
auto input_type2 = expression_type(vec2);
string vec1input, vec2input;
if (instruction.length == 6)
{
if (ops[5] == PackedVectorFormatPackedVectorFormat4x8Bit)
{
string type = opcode == OpSDotAccSat || opcode == OpSUDotAccSat ? "char4" : "uchar4";
vec1input = join("as_type<", type, ">(", to_expression(vec1), ")");
type = opcode == OpSDotAccSat ? "char4" : "uchar4";
vec2input = join("as_type<", type, ">(", to_expression(vec2), ")");
input_type1.vecsize = 4;
input_type2.vecsize = 4;
}
else
SPIRV_CROSS_THROW("Packed vector formats other than 4x8Bit for integer dot product is not supported.");
}
else
{
// Inputs are sign or zero-extended to their target width.
SPIRType::BaseType vec1_expected_type =
opcode != OpUDotAccSat ?
to_signed_basetype(input_type1.width) :
to_unsigned_basetype(input_type1.width);
SPIRType::BaseType vec2_expected_type =
opcode != OpSDotAccSat ?
to_unsigned_basetype(input_type2.width) :
to_signed_basetype(input_type2.width);
vec1input = bitcast_expression(vec1_expected_type, vec1);
vec2input = bitcast_expression(vec2_expected_type, vec2);
}
auto &type = get<SPIRType>(result_type);
SPIRType::BaseType pre_saturate_type =
opcode != OpUDotAccSat ?
to_signed_basetype(type.width) :
to_unsigned_basetype(type.width);
input_type1.basetype = pre_saturate_type;
input_type2.basetype = pre_saturate_type;
string exp = join(type_to_glsl(type), "(addsat(reduce_add(",
type_to_glsl(input_type1), "(", vec1input, ") * ",
type_to_glsl(input_type2), "(", vec2input, ")), ",
bitcast_expression(pre_saturate_type, acc), "))");
emit_op(result_type, id, exp, should_forward(vec1) && should_forward(vec2));
inherit_expression_dependencies(id, vec1);
inherit_expression_dependencies(id, vec2);
break;
}
default:
CompilerGLSL::emit_instruction(instruction);
break;
}
previous_instruction_opcode = opcode;
}
void CompilerMSL::emit_texture_op(const Instruction &i, bool sparse)
{
if (sparse)
SPIRV_CROSS_THROW("Sparse feedback not yet supported in MSL.");
if (msl_options.use_framebuffer_fetch_subpasses)
{
auto *ops = stream(i);
uint32_t result_type_id = ops[0];
uint32_t id = ops[1];
uint32_t img = ops[2];
auto &type = expression_type(img);
auto &imgtype = get<SPIRType>(type.self);
// Use Metal's native frame-buffer fetch API for subpass inputs.
if (imgtype.image.dim == DimSubpassData)
{
// Subpass inputs cannot be invalidated,
// so just forward the expression directly.
string expr = to_expression(img);
emit_op(result_type_id, id, expr, true);
return;
}
}
// Fallback to default implementation
CompilerGLSL::emit_texture_op(i, sparse);
}
void CompilerMSL::emit_barrier(uint32_t id_exe_scope, uint32_t id_mem_scope, uint32_t id_mem_sem)
{
if (get_execution_model() != ExecutionModelGLCompute && !is_tesc_shader())
return;
uint32_t exe_scope = id_exe_scope ? evaluate_constant_u32(id_exe_scope) : uint32_t(ScopeInvocation);
uint32_t mem_scope = id_mem_scope ? evaluate_constant_u32(id_mem_scope) : uint32_t(ScopeInvocation);
// Use the wider of the two scopes (smaller value)
exe_scope = min(exe_scope, mem_scope);
if (msl_options.emulate_subgroups && exe_scope >= ScopeSubgroup && !id_mem_sem)
// In this case, we assume a "subgroup" size of 1. The barrier, then, is a noop.
return;
string bar_stmt;
if ((msl_options.is_ios() && msl_options.supports_msl_version(1, 2)) || msl_options.supports_msl_version(2))
bar_stmt = exe_scope < ScopeSubgroup ? "threadgroup_barrier" : "simdgroup_barrier";
else
bar_stmt = "threadgroup_barrier";
bar_stmt += "(";
uint32_t mem_sem = id_mem_sem ? evaluate_constant_u32(id_mem_sem) : uint32_t(MemorySemanticsMaskNone);
// Use the | operator to combine flags if we can.
if (msl_options.supports_msl_version(1, 2))
{
string mem_flags = "";
// For tesc shaders, this also affects objects in the Output storage class.
// Since in Metal, these are placed in a device buffer, we have to sync device memory here.
if (is_tesc_shader() ||
(mem_sem & (MemorySemanticsUniformMemoryMask | MemorySemanticsCrossWorkgroupMemoryMask)))
mem_flags += "mem_flags::mem_device";
// Fix tessellation patch function processing
if (is_tesc_shader() || (mem_sem & (MemorySemanticsSubgroupMemoryMask | MemorySemanticsWorkgroupMemoryMask)))
{
if (!mem_flags.empty())
mem_flags += " | ";
mem_flags += "mem_flags::mem_threadgroup";
}
if (mem_sem & MemorySemanticsImageMemoryMask)
{
if (!mem_flags.empty())
mem_flags += " | ";
mem_flags += "mem_flags::mem_texture";
}
if (mem_flags.empty())
mem_flags = "mem_flags::mem_none";
bar_stmt += mem_flags;
}
else
{
if ((mem_sem & (MemorySemanticsUniformMemoryMask | MemorySemanticsCrossWorkgroupMemoryMask)) &&
(mem_sem & (MemorySemanticsSubgroupMemoryMask | MemorySemanticsWorkgroupMemoryMask)))
bar_stmt += "mem_flags::mem_device_and_threadgroup";
else if (mem_sem & (MemorySemanticsUniformMemoryMask | MemorySemanticsCrossWorkgroupMemoryMask))
bar_stmt += "mem_flags::mem_device";
else if (mem_sem & (MemorySemanticsSubgroupMemoryMask | MemorySemanticsWorkgroupMemoryMask))
bar_stmt += "mem_flags::mem_threadgroup";
else if (mem_sem & MemorySemanticsImageMemoryMask)
bar_stmt += "mem_flags::mem_texture";
else
bar_stmt += "mem_flags::mem_none";
}
bar_stmt += ");";
statement(bar_stmt);
assert(current_emitting_block);
flush_control_dependent_expressions(current_emitting_block->self);
flush_all_active_variables();
}
static bool storage_class_array_is_thread(StorageClass storage)
{
switch (storage)
{
case StorageClassInput:
case StorageClassOutput:
case StorageClassGeneric:
case StorageClassFunction:
case StorageClassPrivate:
return true;
default:
return false;
}
}
bool CompilerMSL::emit_array_copy(const char *expr, uint32_t lhs_id, uint32_t rhs_id,
StorageClass lhs_storage, StorageClass rhs_storage)
{
// Allow Metal to use the array<T> template to make arrays a value type.
// This, however, cannot be used for threadgroup address specifiers, so consider the custom array copy as fallback.
bool lhs_is_thread_storage = storage_class_array_is_thread(lhs_storage);
bool rhs_is_thread_storage = storage_class_array_is_thread(rhs_storage);
bool lhs_is_array_template = lhs_is_thread_storage || lhs_storage == StorageClassWorkgroup;
bool rhs_is_array_template = rhs_is_thread_storage || rhs_storage == StorageClassWorkgroup;
// Special considerations for stage IO variables.
// If the variable is actually backed by non-user visible device storage, we use array templates for those.
//
// Another special consideration is given to thread local variables which happen to have Offset decorations
// applied to them. Block-like types do not use array templates, so we need to force POD path if we detect
// these scenarios. This check isn't perfect since it would be technically possible to mix and match these things,
// and for a fully correct solution we might have to track array template state through access chains as well,
// but for all reasonable use cases, this should suffice.
// This special case should also only apply to Function/Private storage classes.
// We should not check backing variable for temporaries.
auto *lhs_var = maybe_get_backing_variable(lhs_id);
if (lhs_var && lhs_storage == StorageClassStorageBuffer && storage_class_array_is_thread(lhs_var->storage))
lhs_is_array_template = true;
else if (lhs_var && lhs_storage != StorageClassGeneric && type_is_block_like(get<SPIRType>(lhs_var->basetype)))
lhs_is_array_template = false;
auto *rhs_var = maybe_get_backing_variable(rhs_id);
if (rhs_var && rhs_storage == StorageClassStorageBuffer && storage_class_array_is_thread(rhs_var->storage))
rhs_is_array_template = true;
else if (rhs_var && rhs_storage != StorageClassGeneric && type_is_block_like(get<SPIRType>(rhs_var->basetype)))
rhs_is_array_template = false;
// If threadgroup storage qualifiers are *not* used:
// Avoid spvCopy* wrapper functions; Otherwise, spvUnsafeArray<> template cannot be used with that storage qualifier.
if (lhs_is_array_template && rhs_is_array_template && !using_builtin_array())
{
// Fall back to normal copy path.
return false;
}
else
{
// Ensure the LHS variable has been declared
if (lhs_var)
flush_variable_declaration(lhs_var->self);
string lhs;
if (expr)
lhs = expr;
else
lhs = to_expression(lhs_id);
// Assignment from an array initializer is fine.
auto &type = expression_type(rhs_id);
auto *var = maybe_get_backing_variable(rhs_id);
// Unfortunately, we cannot template on address space in MSL,
// so explicit address space redirection it is ...
bool is_constant = false;
if (ir.ids[rhs_id].get_type() == TypeConstant)
{
is_constant = true;
}
else if (var && var->remapped_variable && var->statically_assigned &&
ir.ids[var->static_expression].get_type() == TypeConstant)
{
is_constant = true;
}
else if (rhs_storage == StorageClassUniform || rhs_storage == StorageClassUniformConstant)
{
is_constant = true;
}
// For the case where we have OpLoad triggering an array copy,
// we cannot easily detect this case ahead of time since it's
// context dependent. We might have to force a recompile here
// if this is the only use of array copies in our shader.
if (type.array.size() > 1)
{
if (type.array.size() > kArrayCopyMultidimMax)
SPIRV_CROSS_THROW("Cannot support this many dimensions for arrays of arrays.");
auto func = static_cast<SPVFuncImpl>(SPVFuncImplArrayCopyMultidimBase + type.array.size());
add_spv_func_and_recompile(func);
}
else
add_spv_func_and_recompile(SPVFuncImplArrayCopy);
const char *tag = nullptr;
if (lhs_is_thread_storage && is_constant)
tag = "FromConstantToStack";
else if (lhs_storage == StorageClassWorkgroup && is_constant)
tag = "FromConstantToThreadGroup";
else if (lhs_is_thread_storage && rhs_is_thread_storage)
tag = "FromStackToStack";
else if (lhs_storage == StorageClassWorkgroup && rhs_is_thread_storage)
tag = "FromStackToThreadGroup";
else if (lhs_is_thread_storage && rhs_storage == StorageClassWorkgroup)
tag = "FromThreadGroupToStack";
else if (lhs_storage == StorageClassWorkgroup && rhs_storage == StorageClassWorkgroup)
tag = "FromThreadGroupToThreadGroup";
else if (lhs_storage == StorageClassStorageBuffer && rhs_storage == StorageClassStorageBuffer)
tag = "FromDeviceToDevice";
else if (lhs_storage == StorageClassStorageBuffer && is_constant)
tag = "FromConstantToDevice";
else if (lhs_storage == StorageClassStorageBuffer && rhs_storage == StorageClassWorkgroup)
tag = "FromThreadGroupToDevice";
else if (lhs_storage == StorageClassStorageBuffer && rhs_is_thread_storage)
tag = "FromStackToDevice";
else if (lhs_storage == StorageClassWorkgroup && rhs_storage == StorageClassStorageBuffer)
tag = "FromDeviceToThreadGroup";
else if (lhs_is_thread_storage && rhs_storage == StorageClassStorageBuffer)
tag = "FromDeviceToStack";
else
SPIRV_CROSS_THROW("Unknown storage class used for copying arrays.");
// Pass internal array of spvUnsafeArray<> into wrapper functions
if (lhs_is_array_template && rhs_is_array_template && !msl_options.force_native_arrays)
statement("spvArrayCopy", tag, type.array.size(), "(", lhs, ".elements, ", to_expression(rhs_id), ".elements);");
if (lhs_is_array_template && !msl_options.force_native_arrays)
statement("spvArrayCopy", tag, type.array.size(), "(", lhs, ".elements, ", to_expression(rhs_id), ");");
else if (rhs_is_array_template && !msl_options.force_native_arrays)
statement("spvArrayCopy", tag, type.array.size(), "(", lhs, ", ", to_expression(rhs_id), ".elements);");
else
statement("spvArrayCopy", tag, type.array.size(), "(", lhs, ", ", to_expression(rhs_id), ");");
}
return true;
}
uint32_t CompilerMSL::get_physical_tess_level_array_size(spv::BuiltIn builtin) const
{
if (is_tessellating_triangles())
return builtin == BuiltInTessLevelInner ? 1 : 3;
else
return builtin == BuiltInTessLevelInner ? 2 : 4;
}
// Since MSL does not allow arrays to be copied via simple variable assignment,
// if the LHS and RHS represent an assignment of an entire array, it must be
// implemented by calling an array copy function.
// Returns whether the struct assignment was emitted.
bool CompilerMSL::maybe_emit_array_assignment(uint32_t id_lhs, uint32_t id_rhs)
{
// We only care about assignments of an entire array
auto &type = expression_type(id_lhs);
if (!is_array(get_pointee_type(type)))
return false;
auto *var = maybe_get<SPIRVariable>(id_lhs);
// Is this a remapped, static constant? Don't do anything.
if (var && var->remapped_variable && var->statically_assigned)
return true;
if (ir.ids[id_rhs].get_type() == TypeConstant && var && var->deferred_declaration)
{
// Special case, if we end up declaring a variable when assigning the constant array,
// we can avoid the copy by directly assigning the constant expression.
// This is likely necessary to be able to use a variable as a true look-up table, as it is unlikely
// the compiler will be able to optimize the spvArrayCopy() into a constant LUT.
// After a variable has been declared, we can no longer assign constant arrays in MSL unfortunately.
statement(to_expression(id_lhs), " = ", constant_expression(get<SPIRConstant>(id_rhs)), ";");
return true;
}
if (is_tesc_shader() && has_decoration(id_lhs, DecorationBuiltIn))
{
auto builtin = BuiltIn(get_decoration(id_lhs, DecorationBuiltIn));
// Need to manually unroll the array store.
if (builtin == BuiltInTessLevelInner || builtin == BuiltInTessLevelOuter)
{
uint32_t array_size = get_physical_tess_level_array_size(builtin);
if (array_size == 1)
statement(to_expression(id_lhs), " = half(", to_expression(id_rhs), "[0]);");
else
{
for (uint32_t i = 0; i < array_size; i++)
statement(to_expression(id_lhs), "[", i, "] = half(", to_expression(id_rhs), "[", i, "]);");
}
return true;
}
}
auto lhs_storage = get_expression_effective_storage_class(id_lhs);
auto rhs_storage = get_expression_effective_storage_class(id_rhs);
if (!emit_array_copy(nullptr, id_lhs, id_rhs, lhs_storage, rhs_storage))
return false;
register_write(id_lhs);
return true;
}
// Emits one of the atomic functions. In MSL, the atomic functions operate on pointers
void CompilerMSL::emit_atomic_func_op(uint32_t result_type, uint32_t result_id, const char *op, Op opcode,
uint32_t mem_order_1, uint32_t mem_order_2, bool has_mem_order_2, uint32_t obj, uint32_t op1,
bool op1_is_pointer, bool op1_is_literal, uint32_t op2)
{
string exp;
auto &type = get_pointee_type(expression_type(obj));
auto expected_type = type.basetype;
if (opcode == OpAtomicUMax || opcode == OpAtomicUMin)
expected_type = to_unsigned_basetype(type.width);
else if (opcode == OpAtomicSMax || opcode == OpAtomicSMin)
expected_type = to_signed_basetype(type.width);
bool use_native_image_atomic;
if (msl_options.supports_msl_version(3, 1))
use_native_image_atomic = check_atomic_image(obj);
else
use_native_image_atomic = false;
if (type.width == 64)
SPIRV_CROSS_THROW("MSL currently does not support 64-bit atomics.");
auto remapped_type = type;
remapped_type.basetype = expected_type;
auto *var = maybe_get_backing_variable(obj);
if (!var)
SPIRV_CROSS_THROW("No backing variable for atomic operation.");
const auto &res_type = get<SPIRType>(var->basetype);
bool is_atomic_compare_exchange_strong = op1_is_pointer && op1;
bool check_discard = opcode != OpAtomicLoad && needs_frag_discard_checks() &&
((res_type.storage == StorageClassUniformConstant && res_type.basetype == SPIRType::Image) ||
var->storage == StorageClassStorageBuffer || var->storage == StorageClassUniform);
// Even compare exchange atomics are vec4 on metal for ... reasons :v
uint32_t vec4_temporary_id = 0;
if (use_native_image_atomic && is_atomic_compare_exchange_strong)
{
uint32_t &tmp_id = extra_sub_expressions[result_id];
if (!tmp_id)
{
tmp_id = ir.increase_bound_by(2);
auto vec4_type = get<SPIRType>(result_type);
vec4_type.vecsize = 4;
set<SPIRType>(tmp_id + 1, vec4_type);
}
vec4_temporary_id = tmp_id;
}
if (check_discard)
{
if (is_atomic_compare_exchange_strong)
{
// We're already emitting a CAS loop here; a conditional won't hurt.
emit_uninitialized_temporary_expression(result_type, result_id);
if (vec4_temporary_id)
emit_uninitialized_temporary_expression(vec4_temporary_id + 1, vec4_temporary_id);
statement("if (!", builtin_to_glsl(BuiltInHelperInvocation, StorageClassInput), ")");
begin_scope();
}
else
exp = join("(!", builtin_to_glsl(BuiltInHelperInvocation, StorageClassInput), " ? ");
}
if (use_native_image_atomic)
{
auto obj_expression = to_expression(obj);
auto split_index = obj_expression.find_first_of('@');
// Will only be false if we're in "force recompile later" mode.
if (split_index != string::npos)
exp += join(obj_expression.substr(0, split_index), ".", op, "(", obj_expression.substr(split_index + 1));
else
exp += obj_expression;
}
else
{
exp += string(op) + "_explicit(";
exp += "(";
// Emulate texture2D atomic operations
if (res_type.storage == StorageClassUniformConstant && res_type.basetype == SPIRType::Image)
{
auto &flags = ir.get_decoration_bitset(var->self);
if (decoration_flags_signal_volatile(flags))
exp += "volatile ";
exp += "device";
}
else
{
exp += get_argument_address_space(*var);
}
exp += " atomic_";
// For signed and unsigned min/max, we can signal this through the pointer type.
// There is no other way, since C++ does not have explicit signage for atomics.
exp += type_to_glsl(remapped_type);
exp += "*)";
exp += "&";
exp += to_enclosed_expression(obj);
}
if (is_atomic_compare_exchange_strong)
{
assert(strcmp(op, "atomic_compare_exchange_weak") == 0);
assert(op2);
assert(has_mem_order_2);
exp += ", &";
exp += to_name(vec4_temporary_id ? vec4_temporary_id : result_id);
exp += ", ";
exp += to_expression(op2);
if (!use_native_image_atomic)
{
exp += ", ";
exp += get_memory_order(mem_order_1);
exp += ", ";
exp += get_memory_order(mem_order_2);
}
exp += ")";
// MSL only supports the weak atomic compare exchange, so emit a CAS loop here.
// The MSL function returns false if the atomic write fails OR the comparison test fails,
// so we must validate that it wasn't the comparison test that failed before continuing
// the CAS loop, otherwise it will loop infinitely, with the comparison test always failing.
// The function updates the comparator value from the memory value, so the additional
// comparison test evaluates the memory value against the expected value.
if (!check_discard)
{
emit_uninitialized_temporary_expression(result_type, result_id);
if (vec4_temporary_id)
emit_uninitialized_temporary_expression(vec4_temporary_id + 1, vec4_temporary_id);
}
statement("do");
begin_scope();
string scalar_expression;
if (vec4_temporary_id)
scalar_expression = join(to_expression(vec4_temporary_id), ".x");
else
scalar_expression = to_expression(result_id);
statement(scalar_expression, " = ", to_expression(op1), ";");
end_scope_decl(join("while (!", exp, " && ", scalar_expression, " == ", to_enclosed_expression(op1), ")"));
if (vec4_temporary_id)
statement(to_expression(result_id), " = ", scalar_expression, ";");
// Vulkan: (section 9.29: ... and values returned by atomic instructions in helper invocations are undefined)
if (check_discard)
{
end_scope();
statement("else");
begin_scope();
statement(to_expression(result_id), " = {};");
end_scope();
}
}
else
{
assert(strcmp(op, "atomic_compare_exchange_weak") != 0);
if (op1)
{
exp += ", ";
if (op1_is_literal)
exp += to_string(op1);
else
exp += bitcast_expression(expected_type, op1);
}
if (op2)
exp += ", " + to_expression(op2);
if (!use_native_image_atomic)
{
exp += string(", ") + get_memory_order(mem_order_1);
if (has_mem_order_2)
exp += string(", ") + get_memory_order(mem_order_2);
}
exp += ")";
// For some particular reason, atomics return vec4 in Metal ...
if (use_native_image_atomic)
exp += ".x";
// Vulkan: (section 9.29: ... and values returned by atomic instructions in helper invocations are undefined)
if (check_discard)
{
exp += " : ";
if (strcmp(op, "atomic_store") != 0)
exp += join(type_to_glsl(get<SPIRType>(result_type)), "{}");
else
exp += "((void)0)";
exp += ")";
}
if (expected_type != type.basetype)
exp = bitcast_expression(type, expected_type, exp);
if (strcmp(op, "atomic_store") != 0)
emit_op(result_type, result_id, exp, false);
else
statement(exp, ";");
}
flush_all_atomic_capable_variables();
}
// Metal only supports relaxed memory order for now
const char *CompilerMSL::get_memory_order(uint32_t)
{
return "memory_order_relaxed";
}
// Override for MSL-specific extension syntax instructions.
// In some cases, deliberately select either the fast or precise versions of the MSL functions to match Vulkan math precision results.
void CompilerMSL::emit_glsl_op(uint32_t result_type, uint32_t id, uint32_t eop, const uint32_t *args, uint32_t count)
{
auto op = static_cast<GLSLstd450>(eop);
// If we need to do implicit bitcasts, make sure we do it with the correct type.
uint32_t integer_width = get_integer_width_for_glsl_instruction(op, args, count);
auto int_type = to_signed_basetype(integer_width);
auto uint_type = to_unsigned_basetype(integer_width);
op = get_remapped_glsl_op(op);
switch (op)
{
case GLSLstd450Sinh:
emit_unary_func_op(result_type, id, args[0], "fast::sinh");
break;
case GLSLstd450Cosh:
emit_unary_func_op(result_type, id, args[0], "fast::cosh");
break;
case GLSLstd450Tanh:
emit_unary_func_op(result_type, id, args[0], "precise::tanh");
break;
case GLSLstd450Atan2:
emit_binary_func_op(result_type, id, args[0], args[1], "precise::atan2");
break;
case GLSLstd450InverseSqrt:
emit_unary_func_op(result_type, id, args[0], "rsqrt");
break;
case GLSLstd450RoundEven:
emit_unary_func_op(result_type, id, args[0], "rint");
break;
case GLSLstd450FindILsb:
{
// In this template version of findLSB, we return T.
auto basetype = expression_type(args[0]).basetype;
emit_unary_func_op_cast(result_type, id, args[0], "spvFindLSB", basetype, basetype);
break;
}
case GLSLstd450FindSMsb:
emit_unary_func_op_cast(result_type, id, args[0], "spvFindSMSB", int_type, int_type);
break;
case GLSLstd450FindUMsb:
emit_unary_func_op_cast(result_type, id, args[0], "spvFindUMSB", uint_type, uint_type);
break;
case GLSLstd450PackSnorm4x8:
emit_unary_func_op(result_type, id, args[0], "pack_float_to_snorm4x8");
break;
case GLSLstd450PackUnorm4x8:
emit_unary_func_op(result_type, id, args[0], "pack_float_to_unorm4x8");
break;
case GLSLstd450PackSnorm2x16:
emit_unary_func_op(result_type, id, args[0], "pack_float_to_snorm2x16");
break;
case GLSLstd450PackUnorm2x16:
emit_unary_func_op(result_type, id, args[0], "pack_float_to_unorm2x16");
break;
case GLSLstd450PackHalf2x16:
{
auto expr = join("as_type<uint>(half2(", to_expression(args[0]), "))");
emit_op(result_type, id, expr, should_forward(args[0]));
inherit_expression_dependencies(id, args[0]);
break;
}
case GLSLstd450UnpackSnorm4x8:
emit_unary_func_op(result_type, id, args[0], "unpack_snorm4x8_to_float");
break;
case GLSLstd450UnpackUnorm4x8:
emit_unary_func_op(result_type, id, args[0], "unpack_unorm4x8_to_float");
break;
case GLSLstd450UnpackSnorm2x16:
emit_unary_func_op(result_type, id, args[0], "unpack_snorm2x16_to_float");
break;
case GLSLstd450UnpackUnorm2x16:
emit_unary_func_op(result_type, id, args[0], "unpack_unorm2x16_to_float");
break;
case GLSLstd450UnpackHalf2x16:
{
auto expr = join("float2(as_type<half2>(", to_expression(args[0]), "))");
emit_op(result_type, id, expr, should_forward(args[0]));
inherit_expression_dependencies(id, args[0]);
break;
}
case GLSLstd450PackDouble2x32:
emit_unary_func_op(result_type, id, args[0], "unsupported_GLSLstd450PackDouble2x32"); // Currently unsupported
break;
case GLSLstd450UnpackDouble2x32:
emit_unary_func_op(result_type, id, args[0], "unsupported_GLSLstd450UnpackDouble2x32"); // Currently unsupported
break;
case GLSLstd450MatrixInverse:
{
auto &mat_type = get<SPIRType>(result_type);
switch (mat_type.columns)
{
case 2:
emit_unary_func_op(result_type, id, args[0], "spvInverse2x2");
break;
case 3:
emit_unary_func_op(result_type, id, args[0], "spvInverse3x3");
break;
case 4:
emit_unary_func_op(result_type, id, args[0], "spvInverse4x4");
break;
default:
break;
}
break;
}
case GLSLstd450FMin:
// If the result type isn't float, don't bother calling the specific
// precise::/fast:: version. Metal doesn't have those for half and
// double types.
if (get<SPIRType>(result_type).basetype != SPIRType::Float)
emit_binary_func_op(result_type, id, args[0], args[1], "min");
else
emit_binary_func_op(result_type, id, args[0], args[1], "fast::min");
break;
case GLSLstd450FMax:
if (get<SPIRType>(result_type).basetype != SPIRType::Float)
emit_binary_func_op(result_type, id, args[0], args[1], "max");
else
emit_binary_func_op(result_type, id, args[0], args[1], "fast::max");
break;
case GLSLstd450FClamp:
// TODO: If args[1] is 0 and args[2] is 1, emit a saturate() call.
if (get<SPIRType>(result_type).basetype != SPIRType::Float)
emit_trinary_func_op(result_type, id, args[0], args[1], args[2], "clamp");
else
emit_trinary_func_op(result_type, id, args[0], args[1], args[2], "fast::clamp");
break;
case GLSLstd450NMin:
if (get<SPIRType>(result_type).basetype != SPIRType::Float)
emit_binary_func_op(result_type, id, args[0], args[1], "min");
else
emit_binary_func_op(result_type, id, args[0], args[1], "precise::min");
break;
case GLSLstd450NMax:
if (get<SPIRType>(result_type).basetype != SPIRType::Float)
emit_binary_func_op(result_type, id, args[0], args[1], "max");
else
emit_binary_func_op(result_type, id, args[0], args[1], "precise::max");
break;
case GLSLstd450NClamp:
// TODO: If args[1] is 0 and args[2] is 1, emit a saturate() call.
if (get<SPIRType>(result_type).basetype != SPIRType::Float)
emit_trinary_func_op(result_type, id, args[0], args[1], args[2], "clamp");
else
emit_trinary_func_op(result_type, id, args[0], args[1], args[2], "precise::clamp");
break;
case GLSLstd450InterpolateAtCentroid:
{
// We can't just emit the expression normally, because the qualified name contains a call to the default
// interpolate method, or refers to a local variable. We saved the interface index we need; use it to construct
// the base for the method call.
uint32_t interface_index = get_extended_decoration(args[0], SPIRVCrossDecorationInterfaceMemberIndex);
string component;
if (has_extended_decoration(args[0], SPIRVCrossDecorationInterpolantComponentExpr))
{
uint32_t index_expr = get_extended_decoration(args[0], SPIRVCrossDecorationInterpolantComponentExpr);
auto *c = maybe_get<SPIRConstant>(index_expr);
if (!c || c->specialization)
component = join("[", to_expression(index_expr), "]");
else
component = join(".", index_to_swizzle(c->scalar()));
}
emit_op(result_type, id,
join(to_name(stage_in_var_id), ".", to_member_name(get_stage_in_struct_type(), interface_index),
".interpolate_at_centroid()", component),
should_forward(args[0]));
break;
}
case GLSLstd450InterpolateAtSample:
{
uint32_t interface_index = get_extended_decoration(args[0], SPIRVCrossDecorationInterfaceMemberIndex);
string component;
if (has_extended_decoration(args[0], SPIRVCrossDecorationInterpolantComponentExpr))
{
uint32_t index_expr = get_extended_decoration(args[0], SPIRVCrossDecorationInterpolantComponentExpr);
auto *c = maybe_get<SPIRConstant>(index_expr);
if (!c || c->specialization)
component = join("[", to_expression(index_expr), "]");
else
component = join(".", index_to_swizzle(c->scalar()));
}
emit_op(result_type, id,
join(to_name(stage_in_var_id), ".", to_member_name(get_stage_in_struct_type(), interface_index),
".interpolate_at_sample(", to_expression(args[1]), ")", component),
should_forward(args[0]) && should_forward(args[1]));
break;
}
case GLSLstd450InterpolateAtOffset:
{
uint32_t interface_index = get_extended_decoration(args[0], SPIRVCrossDecorationInterfaceMemberIndex);
string component;
if (has_extended_decoration(args[0], SPIRVCrossDecorationInterpolantComponentExpr))
{
uint32_t index_expr = get_extended_decoration(args[0], SPIRVCrossDecorationInterpolantComponentExpr);
auto *c = maybe_get<SPIRConstant>(index_expr);
if (!c || c->specialization)
component = join("[", to_expression(index_expr), "]");
else
component = join(".", index_to_swizzle(c->scalar()));
}
// Like Direct3D, Metal puts the (0, 0) at the upper-left corner, not the center as SPIR-V and GLSL do.
// Offset the offset by (1/2 - 1/16), or 0.4375, to compensate for this.
// It has to be (1/2 - 1/16) and not 1/2, or several CTS tests subtly break on Intel.
emit_op(result_type, id,
join(to_name(stage_in_var_id), ".", to_member_name(get_stage_in_struct_type(), interface_index),
".interpolate_at_offset(", to_expression(args[1]), " + 0.4375)", component),
should_forward(args[0]) && should_forward(args[1]));
break;
}
case GLSLstd450Distance:
// MSL does not support scalar versions here.
if (expression_type(args[0]).vecsize == 1)
{
// Equivalent to length(a - b) -> abs(a - b).
emit_op(result_type, id,
join("abs(", to_enclosed_unpacked_expression(args[0]), " - ",
to_enclosed_unpacked_expression(args[1]), ")"),
should_forward(args[0]) && should_forward(args[1]));
inherit_expression_dependencies(id, args[0]);
inherit_expression_dependencies(id, args[1]);
}
else
CompilerGLSL::emit_glsl_op(result_type, id, eop, args, count);
break;
case GLSLstd450Length:
// MSL does not support scalar versions, so use abs().
if (expression_type(args[0]).vecsize == 1)
emit_unary_func_op(result_type, id, args[0], "abs");
else
CompilerGLSL::emit_glsl_op(result_type, id, eop, args, count);
break;
case GLSLstd450Normalize:
{
auto &exp_type = expression_type(args[0]);
// MSL does not support scalar versions here.
// MSL has no implementation for normalize in the fast:: namespace for half2 and half3
// Returns -1 or 1 for valid input, sign() does the job.
if (exp_type.vecsize == 1)
emit_unary_func_op(result_type, id, args[0], "sign");
else if (exp_type.vecsize <= 3 && exp_type.basetype == SPIRType::Half)
emit_unary_func_op(result_type, id, args[0], "normalize");
else
emit_unary_func_op(result_type, id, args[0], "fast::normalize");
break;
}
case GLSLstd450Reflect:
if (get<SPIRType>(result_type).vecsize == 1)
emit_binary_func_op(result_type, id, args[0], args[1], "spvReflect");
else
CompilerGLSL::emit_glsl_op(result_type, id, eop, args, count);
break;
case GLSLstd450Refract:
if (get<SPIRType>(result_type).vecsize == 1)
emit_trinary_func_op(result_type, id, args[0], args[1], args[2], "spvRefract");
else
CompilerGLSL::emit_glsl_op(result_type, id, eop, args, count);
break;
case GLSLstd450FaceForward:
if (get<SPIRType>(result_type).vecsize == 1)
emit_trinary_func_op(result_type, id, args[0], args[1], args[2], "spvFaceForward");
else
CompilerGLSL::emit_glsl_op(result_type, id, eop, args, count);
break;
case GLSLstd450Modf:
case GLSLstd450Frexp:
{
// Special case. If the variable is a scalar access chain, we cannot use it directly. We have to emit a temporary.
// Another special case is if the variable is in a storage class which is not thread.
auto *ptr = maybe_get<SPIRExpression>(args[1]);
auto &type = expression_type(args[1]);
bool is_thread_storage = storage_class_array_is_thread(type.storage);
if (type.storage == StorageClassOutput && capture_output_to_buffer)
is_thread_storage = false;
if (!is_thread_storage ||
(ptr && ptr->access_chain && is_scalar(expression_type(args[1]))))
{
register_call_out_argument(args[1]);
forced_temporaries.insert(id);
// Need to create temporaries and copy over to access chain after.
// We cannot directly take the reference of a vector swizzle in MSL, even if it's scalar ...
uint32_t &tmp_id = extra_sub_expressions[id];
if (!tmp_id)
tmp_id = ir.increase_bound_by(1);
uint32_t tmp_type_id = get_pointee_type_id(expression_type_id(args[1]));
emit_uninitialized_temporary_expression(tmp_type_id, tmp_id);
emit_binary_func_op(result_type, id, args[0], tmp_id, eop == GLSLstd450Modf ? "modf" : "frexp");
statement(to_expression(args[1]), " = ", to_expression(tmp_id), ";");
}
else
CompilerGLSL::emit_glsl_op(result_type, id, eop, args, count);
break;
}
case GLSLstd450Pow:
// powr makes x < 0.0 undefined, just like SPIR-V.
emit_binary_func_op(result_type, id, args[0], args[1], "powr");
break;
default:
CompilerGLSL::emit_glsl_op(result_type, id, eop, args, count);
break;
}
}
void CompilerMSL::emit_spv_amd_shader_trinary_minmax_op(uint32_t result_type, uint32_t id, uint32_t eop,
const uint32_t *args, uint32_t count)
{
enum AMDShaderTrinaryMinMax
{
FMin3AMD = 1,
UMin3AMD = 2,
SMin3AMD = 3,
FMax3AMD = 4,
UMax3AMD = 5,
SMax3AMD = 6,
FMid3AMD = 7,
UMid3AMD = 8,
SMid3AMD = 9
};
if (!msl_options.supports_msl_version(2, 1))
SPIRV_CROSS_THROW("Trinary min/max functions require MSL 2.1.");
auto op = static_cast<AMDShaderTrinaryMinMax>(eop);
switch (op)
{
case FMid3AMD:
case UMid3AMD:
case SMid3AMD:
emit_trinary_func_op(result_type, id, args[0], args[1], args[2], "median3");
break;
default:
CompilerGLSL::emit_spv_amd_shader_trinary_minmax_op(result_type, id, eop, args, count);
break;
}
}
// Emit a structure declaration for the specified interface variable.
void CompilerMSL::emit_interface_block(uint32_t ib_var_id)
{
if (ib_var_id)
{
auto &ib_var = get<SPIRVariable>(ib_var_id);
auto &ib_type = get_variable_data_type(ib_var);
//assert(ib_type.basetype == SPIRType::Struct && !ib_type.member_types.empty());
assert(ib_type.basetype == SPIRType::Struct);
emit_struct(ib_type);
}
}
// Emits the declaration signature of the specified function.
// If this is the entry point function, Metal-specific return value and function arguments are added.
void CompilerMSL::emit_function_prototype(SPIRFunction &func, const Bitset &)
{
if (func.self != ir.default_entry_point)
add_function_overload(func);
local_variable_names = resource_names;
string decl;
processing_entry_point = func.self == ir.default_entry_point;
// Metal helper functions must be static force-inline otherwise they will cause problems when linked together in a single Metallib.
if (!processing_entry_point)
statement(force_inline);
auto &type = get<SPIRType>(func.return_type);
if (!type.array.empty() && msl_options.force_native_arrays)
{
// We cannot return native arrays in MSL, so "return" through an out variable.
decl += "void";
}
else
{
decl += func_type_decl(type);
}
decl += " ";
decl += to_name(func.self);
decl += "(";
if (!type.array.empty() && msl_options.force_native_arrays)
{
// Fake arrays returns by writing to an out array instead.
decl += "thread ";
decl += type_to_glsl(type);
decl += " (&spvReturnValue)";
decl += type_to_array_glsl(type);
if (!func.arguments.empty())
decl += ", ";
}
if (processing_entry_point)
{
if (msl_options.argument_buffers)
decl += entry_point_args_argument_buffer(!func.arguments.empty());
else
decl += entry_point_args_classic(!func.arguments.empty());
// append entry point args to avoid conflicts in local variable names.
local_variable_names.insert(resource_names.begin(), resource_names.end());
// If entry point function has variables that require early declaration,
// ensure they each have an empty initializer, creating one if needed.
// This is done at this late stage because the initialization expression
// is cleared after each compilation pass.
for (auto var_id : vars_needing_early_declaration)
{
auto &ed_var = get<SPIRVariable>(var_id);
ID &initializer = ed_var.initializer;
if (!initializer)
initializer = ir.increase_bound_by(1);
// Do not override proper initializers.
if (ir.ids[initializer].get_type() == TypeNone || ir.ids[initializer].get_type() == TypeExpression)
set<SPIRExpression>(ed_var.initializer, "{}", ed_var.basetype, true);
}
}
for (auto &arg : func.arguments)
{
uint32_t name_id = arg.id;
auto *var = maybe_get<SPIRVariable>(arg.id);
if (var)
{
// If we need to modify the name of the variable, make sure we modify the original variable.
// Our alias is just a shadow variable.
if (arg.alias_global_variable && var->basevariable)
name_id = var->basevariable;
var->parameter = &arg; // Hold a pointer to the parameter so we can invalidate the readonly field if needed.
}
add_local_variable_name(name_id);
decl += argument_decl(arg);
bool is_dynamic_img_sampler = has_extended_decoration(arg.id, SPIRVCrossDecorationDynamicImageSampler);
auto &arg_type = get<SPIRType>(arg.type);
if (arg_type.basetype == SPIRType::SampledImage && !is_dynamic_img_sampler)
{
// Manufacture automatic plane args for multiplanar texture
uint32_t planes = 1;
if (auto *constexpr_sampler = find_constexpr_sampler(name_id))
if (constexpr_sampler->ycbcr_conversion_enable)
planes = constexpr_sampler->planes;
for (uint32_t i = 1; i < planes; i++)
decl += join(", ", argument_decl(arg), plane_name_suffix, i);
// Manufacture automatic sampler arg for SampledImage texture
if (arg_type.image.dim != DimBuffer)
{
if (arg_type.array.empty() || (var ? is_var_runtime_size_array(*var) : is_runtime_size_array(arg_type)))
{
decl += join(", ", sampler_type(arg_type, arg.id, false), " ", to_sampler_expression(name_id));
}
else
{
const char *sampler_address_space =
descriptor_address_space(name_id,
StorageClassUniformConstant,
"thread const");
decl += join(", ", sampler_address_space, " ", sampler_type(arg_type, name_id, false), "& ",
to_sampler_expression(name_id));
}
}
}
// Manufacture automatic swizzle arg.
if (msl_options.swizzle_texture_samples && has_sampled_images && is_sampled_image_type(arg_type) &&
!is_dynamic_img_sampler)
{
bool arg_is_array = !arg_type.array.empty();
decl += join(", constant uint", arg_is_array ? "* " : "& ", to_swizzle_expression(name_id));
}
if (buffer_requires_array_length(name_id))
{
bool arg_is_array = !arg_type.array.empty();
decl += join(", constant uint", arg_is_array ? "* " : "& ", to_buffer_size_expression(name_id));
}
if (&arg != &func.arguments.back())
decl += ", ";
}
decl += ")";
statement(decl);
}
static bool needs_chroma_reconstruction(const MSLConstexprSampler *constexpr_sampler)
{
// For now, only multiplanar images need explicit reconstruction. GBGR and BGRG images
// use implicit reconstruction.
return constexpr_sampler && constexpr_sampler->ycbcr_conversion_enable && constexpr_sampler->planes > 1;
}
// Returns the texture sampling function string for the specified image and sampling characteristics.
string CompilerMSL::to_function_name(const TextureFunctionNameArguments &args)
{
VariableID img = args.base.img;
const MSLConstexprSampler *constexpr_sampler = nullptr;
bool is_dynamic_img_sampler = false;
if (auto *var = maybe_get_backing_variable(img))
{
constexpr_sampler = find_constexpr_sampler(var->basevariable ? var->basevariable : VariableID(var->self));
is_dynamic_img_sampler = has_extended_decoration(var->self, SPIRVCrossDecorationDynamicImageSampler);
}
// Special-case gather. We have to alter the component being looked up
// in the swizzle case.
if (msl_options.swizzle_texture_samples && args.base.is_gather && !is_dynamic_img_sampler &&
(!constexpr_sampler || !constexpr_sampler->ycbcr_conversion_enable))
{
bool is_compare = comparison_ids.count(img);
add_spv_func_and_recompile(is_compare ? SPVFuncImplGatherCompareSwizzle : SPVFuncImplGatherSwizzle);
return is_compare ? "spvGatherCompareSwizzle" : "spvGatherSwizzle";
}
auto *combined = maybe_get<SPIRCombinedImageSampler>(img);
// Texture reference
string fname;
if (needs_chroma_reconstruction(constexpr_sampler) && !is_dynamic_img_sampler)
{
if (constexpr_sampler->planes != 2 && constexpr_sampler->planes != 3)
SPIRV_CROSS_THROW("Unhandled number of color image planes!");
// 444 images aren't downsampled, so we don't need to do linear filtering.
if (constexpr_sampler->resolution == MSL_FORMAT_RESOLUTION_444 ||
constexpr_sampler->chroma_filter == MSL_SAMPLER_FILTER_NEAREST)
{
if (constexpr_sampler->planes == 2)
add_spv_func_and_recompile(SPVFuncImplChromaReconstructNearest2Plane);
else
add_spv_func_and_recompile(SPVFuncImplChromaReconstructNearest3Plane);
fname = "spvChromaReconstructNearest";
}
else // Linear with a downsampled format
{
fname = "spvChromaReconstructLinear";
switch (constexpr_sampler->resolution)
{
case MSL_FORMAT_RESOLUTION_444:
assert(false);
break; // not reached
case MSL_FORMAT_RESOLUTION_422:
switch (constexpr_sampler->x_chroma_offset)
{
case MSL_CHROMA_LOCATION_COSITED_EVEN:
if (constexpr_sampler->planes == 2)
add_spv_func_and_recompile(SPVFuncImplChromaReconstructLinear422CositedEven2Plane);
else
add_spv_func_and_recompile(SPVFuncImplChromaReconstructLinear422CositedEven3Plane);
fname += "422CositedEven";
break;
case MSL_CHROMA_LOCATION_MIDPOINT:
if (constexpr_sampler->planes == 2)
add_spv_func_and_recompile(SPVFuncImplChromaReconstructLinear422Midpoint2Plane);
else
add_spv_func_and_recompile(SPVFuncImplChromaReconstructLinear422Midpoint3Plane);
fname += "422Midpoint";
break;
default:
SPIRV_CROSS_THROW("Invalid chroma location.");
}
break;
case MSL_FORMAT_RESOLUTION_420:
fname += "420";
switch (constexpr_sampler->x_chroma_offset)
{
case MSL_CHROMA_LOCATION_COSITED_EVEN:
switch (constexpr_sampler->y_chroma_offset)
{
case MSL_CHROMA_LOCATION_COSITED_EVEN:
if (constexpr_sampler->planes == 2)
add_spv_func_and_recompile(
SPVFuncImplChromaReconstructLinear420XCositedEvenYCositedEven2Plane);
else
add_spv_func_and_recompile(
SPVFuncImplChromaReconstructLinear420XCositedEvenYCositedEven3Plane);
fname += "XCositedEvenYCositedEven";
break;
case MSL_CHROMA_LOCATION_MIDPOINT:
if (constexpr_sampler->planes == 2)
add_spv_func_and_recompile(
SPVFuncImplChromaReconstructLinear420XCositedEvenYMidpoint2Plane);
else
add_spv_func_and_recompile(
SPVFuncImplChromaReconstructLinear420XCositedEvenYMidpoint3Plane);
fname += "XCositedEvenYMidpoint";
break;
default:
SPIRV_CROSS_THROW("Invalid Y chroma location.");
}
break;
case MSL_CHROMA_LOCATION_MIDPOINT:
switch (constexpr_sampler->y_chroma_offset)
{
case MSL_CHROMA_LOCATION_COSITED_EVEN:
if (constexpr_sampler->planes == 2)
add_spv_func_and_recompile(
SPVFuncImplChromaReconstructLinear420XMidpointYCositedEven2Plane);
else
add_spv_func_and_recompile(
SPVFuncImplChromaReconstructLinear420XMidpointYCositedEven3Plane);
fname += "XMidpointYCositedEven";
break;
case MSL_CHROMA_LOCATION_MIDPOINT:
if (constexpr_sampler->planes == 2)
add_spv_func_and_recompile(SPVFuncImplChromaReconstructLinear420XMidpointYMidpoint2Plane);
else
add_spv_func_and_recompile(SPVFuncImplChromaReconstructLinear420XMidpointYMidpoint3Plane);
fname += "XMidpointYMidpoint";
break;
default:
SPIRV_CROSS_THROW("Invalid Y chroma location.");
}
break;
default:
SPIRV_CROSS_THROW("Invalid X chroma location.");
}
break;
default:
SPIRV_CROSS_THROW("Invalid format resolution.");
}
}
}
else
{
fname = to_expression(combined ? combined->image : img) + ".";
// Texture function and sampler
if (args.base.is_fetch)
fname += "read";
else if (args.base.is_gather)
fname += "gather";
else
fname += "sample";
if (args.has_dref)
fname += "_compare";
}
return fname;
}
string CompilerMSL::convert_to_f32(const string &expr, uint32_t components)
{
SPIRType t { components > 1 ? OpTypeVector : OpTypeFloat };
t.basetype = SPIRType::Float;
t.vecsize = components;
t.columns = 1;
return join(type_to_glsl_constructor(t), "(", expr, ")");
}
static inline bool sampling_type_needs_f32_conversion(const SPIRType &type)
{
// Double is not supported to begin with, but doesn't hurt to check for completion.
return type.basetype == SPIRType::Half || type.basetype == SPIRType::Double;
}
// Returns the function args for a texture sampling function for the specified image and sampling characteristics.
string CompilerMSL::to_function_args(const TextureFunctionArguments &args, bool *p_forward)
{
VariableID img = args.base.img;
auto &imgtype = *args.base.imgtype;
uint32_t lod = args.lod;
uint32_t grad_x = args.grad_x;
uint32_t grad_y = args.grad_y;
uint32_t bias = args.bias;
const MSLConstexprSampler *constexpr_sampler = nullptr;
bool is_dynamic_img_sampler = false;
if (auto *var = maybe_get_backing_variable(img))
{
constexpr_sampler = find_constexpr_sampler(var->basevariable ? var->basevariable : VariableID(var->self));
is_dynamic_img_sampler = has_extended_decoration(var->self, SPIRVCrossDecorationDynamicImageSampler);
}
string farg_str;
bool forward = true;
if (!is_dynamic_img_sampler)
{
// Texture reference (for some cases)
if (needs_chroma_reconstruction(constexpr_sampler))
{
// Multiplanar images need two or three textures.
farg_str += to_expression(img);
for (uint32_t i = 1; i < constexpr_sampler->planes; i++)
farg_str += join(", ", to_expression(img), plane_name_suffix, i);
}
else if ((!constexpr_sampler || !constexpr_sampler->ycbcr_conversion_enable) &&
msl_options.swizzle_texture_samples && args.base.is_gather)
{
auto *combined = maybe_get<SPIRCombinedImageSampler>(img);
farg_str += to_expression(combined ? combined->image : img);
}
// Sampler reference
if (!args.base.is_fetch)
{
if (!farg_str.empty())
farg_str += ", ";
farg_str += to_sampler_expression(img);
}
if ((!constexpr_sampler || !constexpr_sampler->ycbcr_conversion_enable) &&
msl_options.swizzle_texture_samples && args.base.is_gather)
{
// Add the swizzle constant from the swizzle buffer.
farg_str += ", " + to_swizzle_expression(img);
used_swizzle_buffer = true;
}
// Swizzled gather puts the component before the other args, to allow template
// deduction to work.
if (args.component && msl_options.swizzle_texture_samples)
{
forward = should_forward(args.component);
farg_str += ", " + to_component_argument(args.component);
}
}
// Texture coordinates
forward = forward && should_forward(args.coord);
auto coord_expr = to_enclosed_expression(args.coord);
auto &coord_type = expression_type(args.coord);
bool coord_is_fp = type_is_floating_point(coord_type);
bool is_cube_fetch = false;
string tex_coords = coord_expr;
uint32_t alt_coord_component = 0;
switch (imgtype.image.dim)
{
case Dim1D:
if (coord_type.vecsize > 1)
tex_coords = enclose_expression(tex_coords) + ".x";
if (args.base.is_fetch)
tex_coords = "uint(" + round_fp_tex_coords(tex_coords, coord_is_fp) + ")";
else if (sampling_type_needs_f32_conversion(coord_type))
tex_coords = convert_to_f32(tex_coords, 1);
if (msl_options.texture_1D_as_2D)
{
if (args.base.is_fetch)
tex_coords = "uint2(" + tex_coords + ", 0)";
else
tex_coords = "float2(" + tex_coords + ", 0.5)";
}
alt_coord_component = 1;
break;
case DimBuffer:
if (coord_type.vecsize > 1)
tex_coords = enclose_expression(tex_coords) + ".x";
if (msl_options.texture_buffer_native)
{
tex_coords = "uint(" + round_fp_tex_coords(tex_coords, coord_is_fp) + ")";
}
else
{
// Metal texel buffer textures are 2D, so convert 1D coord to 2D.
// Support for Metal 2.1's new texture_buffer type.
if (args.base.is_fetch)
{
if (msl_options.texel_buffer_texture_width > 0)
{
tex_coords = "spvTexelBufferCoord(" + round_fp_tex_coords(tex_coords, coord_is_fp) + ")";
}
else
{
tex_coords = "spvTexelBufferCoord(" + round_fp_tex_coords(tex_coords, coord_is_fp) + ", " +
to_expression(img) + ")";
}
}
}
alt_coord_component = 1;
break;
case DimSubpassData:
// If we're using Metal's native frame-buffer fetch API for subpass inputs,
// this path will not be hit.
tex_coords = "uint2(gl_FragCoord.xy)";
alt_coord_component = 2;
break;
case Dim2D:
if (coord_type.vecsize > 2)
tex_coords = enclose_expression(tex_coords) + ".xy";
if (args.base.is_fetch)
tex_coords = "uint2(" + round_fp_tex_coords(tex_coords, coord_is_fp) + ")";
else if (sampling_type_needs_f32_conversion(coord_type))
tex_coords = convert_to_f32(tex_coords, 2);
alt_coord_component = 2;
break;
case Dim3D:
if (coord_type.vecsize > 3)
tex_coords = enclose_expression(tex_coords) + ".xyz";
if (args.base.is_fetch)
tex_coords = "uint3(" + round_fp_tex_coords(tex_coords, coord_is_fp) + ")";
else if (sampling_type_needs_f32_conversion(coord_type))
tex_coords = convert_to_f32(tex_coords, 3);
alt_coord_component = 3;
break;
case DimCube:
if (args.base.is_fetch)
{
is_cube_fetch = true;
tex_coords += ".xy";
tex_coords = "uint2(" + round_fp_tex_coords(tex_coords, coord_is_fp) + ")";
}
else
{
if (coord_type.vecsize > 3)
tex_coords = enclose_expression(tex_coords) + ".xyz";
}
if (sampling_type_needs_f32_conversion(coord_type))
tex_coords = convert_to_f32(tex_coords, 3);
alt_coord_component = 3;
break;
default:
break;
}
if (args.base.is_fetch && args.offset)
{
// Fetch offsets must be applied directly to the coordinate.
forward = forward && should_forward(args.offset);
auto &type = expression_type(args.offset);
if (imgtype.image.dim == Dim1D && msl_options.texture_1D_as_2D)
{
if (type.basetype != SPIRType::UInt)
tex_coords += join(" + uint2(", bitcast_expression(SPIRType::UInt, args.offset), ", 0)");
else
tex_coords += join(" + uint2(", to_enclosed_expression(args.offset), ", 0)");
}
else
{
if (type.basetype != SPIRType::UInt)
tex_coords += " + " + bitcast_expression(SPIRType::UInt, args.offset);
else
tex_coords += " + " + to_enclosed_expression(args.offset);
}
}
// If projection, use alt coord as divisor
if (args.base.is_proj)
{
if (sampling_type_needs_f32_conversion(coord_type))
tex_coords += " / " + convert_to_f32(to_extract_component_expression(args.coord, alt_coord_component), 1);
else
tex_coords += " / " + to_extract_component_expression(args.coord, alt_coord_component);
}
if (!farg_str.empty())
farg_str += ", ";
if (imgtype.image.dim == DimCube && imgtype.image.arrayed && msl_options.emulate_cube_array)
{
farg_str += "spvCubemapTo2DArrayFace(" + tex_coords + ").xy";
if (is_cube_fetch)
farg_str += ", uint(" + to_extract_component_expression(args.coord, 2) + ")";
else
farg_str +=
", uint(spvCubemapTo2DArrayFace(" + tex_coords + ").z) + (uint(" +
round_fp_tex_coords(to_extract_component_expression(args.coord, alt_coord_component), coord_is_fp) +
") * 6u)";
add_spv_func_and_recompile(SPVFuncImplCubemapTo2DArrayFace);
}
else
{
farg_str += tex_coords;
// If fetch from cube, add face explicitly
if (is_cube_fetch)
{
// Special case for cube arrays, face and layer are packed in one dimension.
if (imgtype.image.arrayed)
farg_str += ", uint(" + to_extract_component_expression(args.coord, 2) + ") % 6u";
else
farg_str +=
", uint(" + round_fp_tex_coords(to_extract_component_expression(args.coord, 2), coord_is_fp) + ")";
}
// If array, use alt coord
if (imgtype.image.arrayed)
{
// Special case for cube arrays, face and layer are packed in one dimension.
if (imgtype.image.dim == DimCube && args.base.is_fetch)
{
farg_str += ", uint(" + to_extract_component_expression(args.coord, 2) + ") / 6u";
}
else
{
farg_str +=
", uint(" +
round_fp_tex_coords(to_extract_component_expression(args.coord, alt_coord_component), coord_is_fp) +
")";
if (imgtype.image.dim == DimSubpassData)
{
if (msl_options.multiview)
farg_str += " + gl_ViewIndex";
else if (msl_options.arrayed_subpass_input)
farg_str += " + gl_Layer";
}
}
}
else if (imgtype.image.dim == DimSubpassData)
{
if (msl_options.multiview)
farg_str += ", gl_ViewIndex";
else if (msl_options.arrayed_subpass_input)
farg_str += ", gl_Layer";
}
}
// Depth compare reference value
if (args.dref)
{
forward = forward && should_forward(args.dref);
farg_str += ", ";
auto &dref_type = expression_type(args.dref);
string dref_expr;
if (args.base.is_proj)
dref_expr = join(to_enclosed_expression(args.dref), " / ",
to_extract_component_expression(args.coord, alt_coord_component));
else
dref_expr = to_expression(args.dref);
if (sampling_type_needs_f32_conversion(dref_type))
dref_expr = convert_to_f32(dref_expr, 1);
farg_str += dref_expr;
if (msl_options.is_macos() && (grad_x || grad_y))
{
// For sample compare, MSL does not support gradient2d for all targets (only iOS apparently according to docs).
// However, the most common case here is to have a constant gradient of 0, as that is the only way to express
// LOD == 0 in GLSL with sampler2DArrayShadow (cascaded shadow mapping).
// We will detect a compile-time constant 0 value for gradient and promote that to level(0) on MSL.
bool constant_zero_x = !grad_x || expression_is_constant_null(grad_x);
bool constant_zero_y = !grad_y || expression_is_constant_null(grad_y);
if (constant_zero_x && constant_zero_y &&
(!imgtype.image.arrayed || !msl_options.sample_dref_lod_array_as_grad))
{
lod = 0;
grad_x = 0;
grad_y = 0;
farg_str += ", level(0)";
}
else if (!msl_options.supports_msl_version(2, 3))
{
SPIRV_CROSS_THROW("Using non-constant 0.0 gradient() qualifier for sample_compare. This is not "
"supported on macOS prior to MSL 2.3.");
}
}
if (msl_options.is_macos() && bias)
{
// Bias is not supported either on macOS with sample_compare.
// Verify it is compile-time zero, and drop the argument.
if (expression_is_constant_null(bias))
{
bias = 0;
}
else if (!msl_options.supports_msl_version(2, 3))
{
SPIRV_CROSS_THROW("Using non-constant 0.0 bias() qualifier for sample_compare. This is not supported "
"on macOS prior to MSL 2.3.");
}
}
}
// LOD Options
// Metal does not support LOD for 1D textures.
if (bias && (imgtype.image.dim != Dim1D || msl_options.texture_1D_as_2D))
{
forward = forward && should_forward(bias);
farg_str += ", bias(" + to_expression(bias) + ")";
}
// Metal does not support LOD for 1D textures.
if (lod && (imgtype.image.dim != Dim1D || msl_options.texture_1D_as_2D))
{
forward = forward && should_forward(lod);
if (args.base.is_fetch)
{
farg_str += ", " + to_expression(lod);
}
else if (msl_options.sample_dref_lod_array_as_grad && args.dref && imgtype.image.arrayed)
{
if (msl_options.is_macos() && !msl_options.supports_msl_version(2, 3))
SPIRV_CROSS_THROW("Using non-constant 0.0 gradient() qualifier for sample_compare. This is not "
"supported on macOS prior to MSL 2.3.");
// Some Metal devices have a bug where the LoD is erroneously biased upward
// when using a level() argument. Since this doesn't happen as much with gradient2d(),
// if we perform the LoD calculation in reverse, we can pass a gradient
// instead.
// lod = log2(rhoMax/eta) -> exp2(lod) = rhoMax/eta
// If we make all of the scale factors the same, eta will be 1 and
// exp2(lod) = rho.
// rhoX = dP/dx * extent; rhoY = dP/dy * extent
// Therefore, dP/dx = dP/dy = exp2(lod)/extent.
// (Subtracting 0.5 before exponentiation gives better results.)
string grad_opt, extent, grad_coord;
VariableID base_img = img;
if (auto *combined = maybe_get<SPIRCombinedImageSampler>(img))
base_img = combined->image;
switch (imgtype.image.dim)
{
case Dim1D:
grad_opt = "gradient2d";
extent = join("float2(", to_expression(base_img), ".get_width(), 1.0)");
break;
case Dim2D:
grad_opt = "gradient2d";
extent = join("float2(", to_expression(base_img), ".get_width(), ", to_expression(base_img), ".get_height())");
break;
case DimCube:
if (imgtype.image.arrayed && msl_options.emulate_cube_array)
{
grad_opt = "gradient2d";
extent = join("float2(", to_expression(base_img), ".get_width())");
}
else
{
if (msl_options.agx_manual_cube_grad_fixup)
{
add_spv_func_and_recompile(SPVFuncImplGradientCube);
grad_opt = "spvGradientCube";
grad_coord = tex_coords + ", ";
}
else
{
grad_opt = "gradientcube";
}
extent = join("float3(", to_expression(base_img), ".get_width())");
}
break;
default:
grad_opt = "unsupported_gradient_dimension";
extent = "float3(1.0)";
break;
}
farg_str += join(", ", grad_opt, "(", grad_coord, "exp2(", to_expression(lod), " - 0.5) / ", extent,
", exp2(", to_expression(lod), " - 0.5) / ", extent, ")");
}
else
{
farg_str += ", level(" + to_expression(lod) + ")";
}
}
else if (args.base.is_fetch && !lod && (imgtype.image.dim != Dim1D || msl_options.texture_1D_as_2D) &&
imgtype.image.dim != DimBuffer && !imgtype.image.ms && imgtype.image.sampled != 2)
{
// Lod argument is optional in OpImageFetch, but we require a LOD value, pick 0 as the default.
// Check for sampled type as well, because is_fetch is also used for OpImageRead in MSL.
farg_str += ", 0";
}
// Metal does not support LOD for 1D textures.
if ((grad_x || grad_y) && (imgtype.image.dim != Dim1D || msl_options.texture_1D_as_2D))
{
forward = forward && should_forward(grad_x);
forward = forward && should_forward(grad_y);
string grad_opt, grad_coord;
switch (imgtype.image.dim)
{
case Dim1D:
case Dim2D:
grad_opt = "gradient2d";
break;
case Dim3D:
grad_opt = "gradient3d";
break;
case DimCube:
if (imgtype.image.arrayed && msl_options.emulate_cube_array)
{
grad_opt = "gradient2d";
}
else if (msl_options.agx_manual_cube_grad_fixup)
{
add_spv_func_and_recompile(SPVFuncImplGradientCube);
grad_opt = "spvGradientCube";
grad_coord = tex_coords + ", ";
}
else
{
grad_opt = "gradientcube";
}
break;
default:
grad_opt = "unsupported_gradient_dimension";
break;
}
farg_str += join(", ", grad_opt, "(", grad_coord, to_expression(grad_x), ", ", to_expression(grad_y), ")");
}
if (args.min_lod)
{
if (!msl_options.supports_msl_version(2, 2))
SPIRV_CROSS_THROW("min_lod_clamp() is only supported in MSL 2.2+ and up.");
forward = forward && should_forward(args.min_lod);
farg_str += ", min_lod_clamp(" + to_expression(args.min_lod) + ")";
}
// Add offsets
string offset_expr;
const SPIRType *offset_type = nullptr;
if (args.offset && !args.base.is_fetch)
{
forward = forward && should_forward(args.offset);
offset_expr = to_expression(args.offset);
offset_type = &expression_type(args.offset);
}
if (!offset_expr.empty())
{
switch (imgtype.image.dim)
{
case Dim1D:
if (!msl_options.texture_1D_as_2D)
break;
if (offset_type->vecsize > 1)
offset_expr = enclose_expression(offset_expr) + ".x";
farg_str += join(", int2(", offset_expr, ", 0)");
break;
case Dim2D:
if (offset_type->vecsize > 2)
offset_expr = enclose_expression(offset_expr) + ".xy";
farg_str += ", " + offset_expr;
break;
case Dim3D:
if (offset_type->vecsize > 3)
offset_expr = enclose_expression(offset_expr) + ".xyz";
farg_str += ", " + offset_expr;
break;
default:
break;
}
}
if (args.component)
{
// If 2D has gather component, ensure it also has an offset arg
if (imgtype.image.dim == Dim2D && offset_expr.empty())
farg_str += ", int2(0)";
if (!msl_options.swizzle_texture_samples || is_dynamic_img_sampler)
{
forward = forward && should_forward(args.component);
uint32_t image_var = 0;
if (const auto *combined = maybe_get<SPIRCombinedImageSampler>(img))
{
if (const auto *img_var = maybe_get_backing_variable(combined->image))
image_var = img_var->self;
}
else if (const auto *var = maybe_get_backing_variable(img))
{
image_var = var->self;
}
if (image_var == 0 || !is_depth_image(expression_type(image_var), image_var))
farg_str += ", " + to_component_argument(args.component);
}
}
if (args.sample)
{
forward = forward && should_forward(args.sample);
farg_str += ", ";
farg_str += to_expression(args.sample);
}
*p_forward = forward;
return farg_str;
}
// If the texture coordinates are floating point, invokes MSL round() function to round them.
string CompilerMSL::round_fp_tex_coords(string tex_coords, bool coord_is_fp)
{
return coord_is_fp ? ("rint(" + tex_coords + ")") : tex_coords;
}
// Returns a string to use in an image sampling function argument.
// The ID must be a scalar constant.
string CompilerMSL::to_component_argument(uint32_t id)
{
uint32_t component_index = evaluate_constant_u32(id);
switch (component_index)
{
case 0:
return "component::x";
case 1:
return "component::y";
case 2:
return "component::z";
case 3:
return "component::w";
default:
SPIRV_CROSS_THROW("The value (" + to_string(component_index) + ") of OpConstant ID " + to_string(id) +
" is not a valid Component index, which must be one of 0, 1, 2, or 3.");
}
}
// Establish sampled image as expression object and assign the sampler to it.
void CompilerMSL::emit_sampled_image_op(uint32_t result_type, uint32_t result_id, uint32_t image_id, uint32_t samp_id)
{
set<SPIRCombinedImageSampler>(result_id, result_type, image_id, samp_id);
}
string CompilerMSL::to_texture_op(const Instruction &i, bool sparse, bool *forward,
SmallVector<uint32_t> &inherited_expressions)
{
auto *ops = stream(i);
uint32_t result_type_id = ops[0];
uint32_t img = ops[2];
auto &result_type = get<SPIRType>(result_type_id);
auto op = static_cast<Op>(i.op);
bool is_gather = (op == OpImageGather || op == OpImageDrefGather);
// Bypass pointers because we need the real image struct
auto &type = expression_type(img);
auto &imgtype = get<SPIRType>(type.self);
const MSLConstexprSampler *constexpr_sampler = nullptr;
bool is_dynamic_img_sampler = false;
if (auto *var = maybe_get_backing_variable(img))
{
constexpr_sampler = find_constexpr_sampler(var->basevariable ? var->basevariable : VariableID(var->self));
is_dynamic_img_sampler = has_extended_decoration(var->self, SPIRVCrossDecorationDynamicImageSampler);
}
string expr;
if (constexpr_sampler && constexpr_sampler->ycbcr_conversion_enable && !is_dynamic_img_sampler)
{
// If this needs sampler Y'CbCr conversion, we need to do some additional
// processing.
switch (constexpr_sampler->ycbcr_model)
{
case MSL_SAMPLER_YCBCR_MODEL_CONVERSION_RGB_IDENTITY:
case MSL_SAMPLER_YCBCR_MODEL_CONVERSION_YCBCR_IDENTITY:
// Default
break;
case MSL_SAMPLER_YCBCR_MODEL_CONVERSION_YCBCR_BT_709:
add_spv_func_and_recompile(SPVFuncImplConvertYCbCrBT709);
expr += "spvConvertYCbCrBT709(";
break;
case MSL_SAMPLER_YCBCR_MODEL_CONVERSION_YCBCR_BT_601:
add_spv_func_and_recompile(SPVFuncImplConvertYCbCrBT601);
expr += "spvConvertYCbCrBT601(";
break;
case MSL_SAMPLER_YCBCR_MODEL_CONVERSION_YCBCR_BT_2020:
add_spv_func_and_recompile(SPVFuncImplConvertYCbCrBT2020);
expr += "spvConvertYCbCrBT2020(";
break;
default:
SPIRV_CROSS_THROW("Invalid Y'CbCr model conversion.");
}
if (constexpr_sampler->ycbcr_model != MSL_SAMPLER_YCBCR_MODEL_CONVERSION_RGB_IDENTITY)
{
switch (constexpr_sampler->ycbcr_range)
{
case MSL_SAMPLER_YCBCR_RANGE_ITU_FULL:
add_spv_func_and_recompile(SPVFuncImplExpandITUFullRange);
expr += "spvExpandITUFullRange(";
break;
case MSL_SAMPLER_YCBCR_RANGE_ITU_NARROW:
add_spv_func_and_recompile(SPVFuncImplExpandITUNarrowRange);
expr += "spvExpandITUNarrowRange(";
break;
default:
SPIRV_CROSS_THROW("Invalid Y'CbCr range.");
}
}
}
else if (msl_options.swizzle_texture_samples && !is_gather && is_sampled_image_type(imgtype) &&
!is_dynamic_img_sampler)
{
add_spv_func_and_recompile(SPVFuncImplTextureSwizzle);
expr += "spvTextureSwizzle(";
}
string inner_expr = CompilerGLSL::to_texture_op(i, sparse, forward, inherited_expressions);
if (constexpr_sampler && constexpr_sampler->ycbcr_conversion_enable && !is_dynamic_img_sampler)
{
if (!constexpr_sampler->swizzle_is_identity())
{
static const char swizzle_names[] = "rgba";
if (!constexpr_sampler->swizzle_has_one_or_zero())
{
// If we can, do it inline.
expr += inner_expr + ".";
for (uint32_t c = 0; c < 4; c++)
{
switch (constexpr_sampler->swizzle[c])
{
case MSL_COMPONENT_SWIZZLE_IDENTITY:
expr += swizzle_names[c];
break;
case MSL_COMPONENT_SWIZZLE_R:
case MSL_COMPONENT_SWIZZLE_G:
case MSL_COMPONENT_SWIZZLE_B:
case MSL_COMPONENT_SWIZZLE_A:
expr += swizzle_names[constexpr_sampler->swizzle[c] - MSL_COMPONENT_SWIZZLE_R];
break;
default:
SPIRV_CROSS_THROW("Invalid component swizzle.");
}
}
}
else
{
// Otherwise, we need to emit a temporary and swizzle that.
uint32_t temp_id = ir.increase_bound_by(1);
emit_op(result_type_id, temp_id, inner_expr, false);
for (auto &inherit : inherited_expressions)
inherit_expression_dependencies(temp_id, inherit);
inherited_expressions.clear();
inherited_expressions.push_back(temp_id);
switch (op)
{
case OpImageSampleDrefImplicitLod:
case OpImageSampleImplicitLod:
case OpImageSampleProjImplicitLod:
case OpImageSampleProjDrefImplicitLod:
register_control_dependent_expression(temp_id);
break;
default:
break;
}
expr += type_to_glsl(result_type) + "(";
for (uint32_t c = 0; c < 4; c++)
{
switch (constexpr_sampler->swizzle[c])
{
case MSL_COMPONENT_SWIZZLE_IDENTITY:
expr += to_expression(temp_id) + "." + swizzle_names[c];
break;
case MSL_COMPONENT_SWIZZLE_ZERO:
expr += "0";
break;
case MSL_COMPONENT_SWIZZLE_ONE:
expr += "1";
break;
case MSL_COMPONENT_SWIZZLE_R:
case MSL_COMPONENT_SWIZZLE_G:
case MSL_COMPONENT_SWIZZLE_B:
case MSL_COMPONENT_SWIZZLE_A:
expr += to_expression(temp_id) + "." +
swizzle_names[constexpr_sampler->swizzle[c] - MSL_COMPONENT_SWIZZLE_R];
break;
default:
SPIRV_CROSS_THROW("Invalid component swizzle.");
}
if (c < 3)
expr += ", ";
}
expr += ")";
}
}
else
expr += inner_expr;
if (constexpr_sampler->ycbcr_model != MSL_SAMPLER_YCBCR_MODEL_CONVERSION_RGB_IDENTITY)
{
expr += join(", ", constexpr_sampler->bpc, ")");
if (constexpr_sampler->ycbcr_model != MSL_SAMPLER_YCBCR_MODEL_CONVERSION_YCBCR_IDENTITY)
expr += ")";
}
}
else
{
expr += inner_expr;
if (msl_options.swizzle_texture_samples && !is_gather && is_sampled_image_type(imgtype) &&
!is_dynamic_img_sampler)
{
// Add the swizzle constant from the swizzle buffer.
expr += ", " + to_swizzle_expression(img) + ")";
used_swizzle_buffer = true;
}
}
return expr;
}
static string create_swizzle(MSLComponentSwizzle swizzle)
{
switch (swizzle)
{
case MSL_COMPONENT_SWIZZLE_IDENTITY:
return "spvSwizzle::none";
case MSL_COMPONENT_SWIZZLE_ZERO:
return "spvSwizzle::zero";
case MSL_COMPONENT_SWIZZLE_ONE:
return "spvSwizzle::one";
case MSL_COMPONENT_SWIZZLE_R:
return "spvSwizzle::red";
case MSL_COMPONENT_SWIZZLE_G:
return "spvSwizzle::green";
case MSL_COMPONENT_SWIZZLE_B:
return "spvSwizzle::blue";
case MSL_COMPONENT_SWIZZLE_A:
return "spvSwizzle::alpha";
default:
SPIRV_CROSS_THROW("Invalid component swizzle.");
}
}
// Returns a string representation of the ID, usable as a function arg.
// Manufacture automatic sampler arg for SampledImage texture.
string CompilerMSL::to_func_call_arg(const SPIRFunction::Parameter &arg, uint32_t id)
{
string arg_str;
auto &type = expression_type(id);
bool is_dynamic_img_sampler = has_extended_decoration(arg.id, SPIRVCrossDecorationDynamicImageSampler);
// If the argument *itself* is a "dynamic" combined-image sampler, then we can just pass that around.
bool arg_is_dynamic_img_sampler = has_extended_decoration(id, SPIRVCrossDecorationDynamicImageSampler);
if (is_dynamic_img_sampler && !arg_is_dynamic_img_sampler)
arg_str = join("spvDynamicImageSampler<", type_to_glsl(get<SPIRType>(type.image.type)), ">(");
auto *c = maybe_get<SPIRConstant>(id);
if (msl_options.force_native_arrays && c && !get<SPIRType>(c->constant_type).array.empty())
{
// If we are passing a constant array directly to a function for some reason,
// the callee will expect an argument in thread const address space
// (since we can only bind to arrays with references in MSL).
// To resolve this, we must emit a copy in this address space.
// This kind of code gen should be rare enough that performance is not a real concern.
// Inline the SPIR-V to avoid this kind of suboptimal codegen.
//
// We risk calling this inside a continue block (invalid code),
// so just create a thread local copy in the current function.
arg_str = join("_", id, "_array_copy");
auto &constants = current_function->constant_arrays_needed_on_stack;
auto itr = find(begin(constants), end(constants), ID(id));
if (itr == end(constants))
{
force_recompile();
constants.push_back(id);
}
}
// Dereference pointer variables where needed.
// FIXME: This dereference is actually backwards. We should really just support passing pointer variables between functions.
else if (should_dereference(id))
arg_str += dereference_expression(type, CompilerGLSL::to_func_call_arg(arg, id));
else
arg_str += CompilerGLSL::to_func_call_arg(arg, id);
// Need to check the base variable in case we need to apply a qualified alias.
uint32_t var_id = 0;
auto *var = maybe_get<SPIRVariable>(id);
if (var)
var_id = var->basevariable;
if (!arg_is_dynamic_img_sampler)
{
auto *constexpr_sampler = find_constexpr_sampler(var_id ? var_id : id);
if (type.basetype == SPIRType::SampledImage)
{
// Manufacture automatic plane args for multiplanar texture
uint32_t planes = 1;
if (constexpr_sampler && constexpr_sampler->ycbcr_conversion_enable)
{
planes = constexpr_sampler->planes;
// If this parameter isn't aliasing a global, then we need to use
// the special "dynamic image-sampler" class to pass it--and we need
// to use it for *every* non-alias parameter, in case a combined
// image-sampler with a Y'CbCr conversion is passed. Hopefully, this
// pathological case is so rare that it should never be hit in practice.
if (!arg.alias_global_variable)
add_spv_func_and_recompile(SPVFuncImplDynamicImageSampler);
}
for (uint32_t i = 1; i < planes; i++)
arg_str += join(", ", CompilerGLSL::to_func_call_arg(arg, id), plane_name_suffix, i);
// Manufacture automatic sampler arg if the arg is a SampledImage texture.
if (type.image.dim != DimBuffer)
arg_str += ", " + to_sampler_expression(var_id ? var_id : id);
// Add sampler Y'CbCr conversion info if we have it
if (is_dynamic_img_sampler && constexpr_sampler && constexpr_sampler->ycbcr_conversion_enable)
{
SmallVector<string> samp_args;
switch (constexpr_sampler->resolution)
{
case MSL_FORMAT_RESOLUTION_444:
// Default
break;
case MSL_FORMAT_RESOLUTION_422:
samp_args.push_back("spvFormatResolution::_422");
break;
case MSL_FORMAT_RESOLUTION_420:
samp_args.push_back("spvFormatResolution::_420");
break;
default:
SPIRV_CROSS_THROW("Invalid format resolution.");
}
if (constexpr_sampler->chroma_filter != MSL_SAMPLER_FILTER_NEAREST)
samp_args.push_back("spvChromaFilter::linear");
if (constexpr_sampler->x_chroma_offset != MSL_CHROMA_LOCATION_COSITED_EVEN)
samp_args.push_back("spvXChromaLocation::midpoint");
if (constexpr_sampler->y_chroma_offset != MSL_CHROMA_LOCATION_COSITED_EVEN)
samp_args.push_back("spvYChromaLocation::midpoint");
switch (constexpr_sampler->ycbcr_model)
{
case MSL_SAMPLER_YCBCR_MODEL_CONVERSION_RGB_IDENTITY:
// Default
break;
case MSL_SAMPLER_YCBCR_MODEL_CONVERSION_YCBCR_IDENTITY:
samp_args.push_back("spvYCbCrModelConversion::ycbcr_identity");
break;
case MSL_SAMPLER_YCBCR_MODEL_CONVERSION_YCBCR_BT_709:
samp_args.push_back("spvYCbCrModelConversion::ycbcr_bt_709");
break;
case MSL_SAMPLER_YCBCR_MODEL_CONVERSION_YCBCR_BT_601:
samp_args.push_back("spvYCbCrModelConversion::ycbcr_bt_601");
break;
case MSL_SAMPLER_YCBCR_MODEL_CONVERSION_YCBCR_BT_2020:
samp_args.push_back("spvYCbCrModelConversion::ycbcr_bt_2020");
break;
default:
SPIRV_CROSS_THROW("Invalid Y'CbCr model conversion.");
}
if (constexpr_sampler->ycbcr_range != MSL_SAMPLER_YCBCR_RANGE_ITU_FULL)
samp_args.push_back("spvYCbCrRange::itu_narrow");
samp_args.push_back(join("spvComponentBits(", constexpr_sampler->bpc, ")"));
arg_str += join(", spvYCbCrSampler(", merge(samp_args), ")");
}
}
if (is_dynamic_img_sampler && constexpr_sampler && constexpr_sampler->ycbcr_conversion_enable)
arg_str += join(", (uint(", create_swizzle(constexpr_sampler->swizzle[3]), ") << 24) | (uint(",
create_swizzle(constexpr_sampler->swizzle[2]), ") << 16) | (uint(",
create_swizzle(constexpr_sampler->swizzle[1]), ") << 8) | uint(",
create_swizzle(constexpr_sampler->swizzle[0]), ")");
else if (msl_options.swizzle_texture_samples && has_sampled_images && is_sampled_image_type(type))
arg_str += ", " + to_swizzle_expression(var_id ? var_id : id);
if (buffer_requires_array_length(var_id))
arg_str += ", " + to_buffer_size_expression(var_id ? var_id : id);
if (is_dynamic_img_sampler)
arg_str += ")";
}
// Emulate texture2D atomic operations
auto *backing_var = maybe_get_backing_variable(var_id);
if (backing_var && atomic_image_vars_emulated.count(backing_var->self))
{
arg_str += ", " + to_expression(var_id) + "_atomic";
}
return arg_str;
}
// If the ID represents a sampled image that has been assigned a sampler already,
// generate an expression for the sampler, otherwise generate a fake sampler name
// by appending a suffix to the expression constructed from the ID.
string CompilerMSL::to_sampler_expression(uint32_t id)
{
auto *combined = maybe_get<SPIRCombinedImageSampler>(id);
auto expr = to_expression(combined ? combined->image : VariableID(id));
auto index = expr.find_first_of('[');
uint32_t samp_id = 0;
if (combined)
samp_id = combined->sampler;
if (index == string::npos)
return samp_id ? to_expression(samp_id) : expr + sampler_name_suffix;
else
{
auto image_expr = expr.substr(0, index);
auto array_expr = expr.substr(index);
return samp_id ? to_expression(samp_id) : (image_expr + sampler_name_suffix + array_expr);
}
}
string CompilerMSL::to_swizzle_expression(uint32_t id)
{
auto *combined = maybe_get<SPIRCombinedImageSampler>(id);
auto expr = to_expression(combined ? combined->image : VariableID(id));
auto index = expr.find_first_of('[');
// If an image is part of an argument buffer translate this to a legal identifier.
string::size_type period = 0;
while ((period = expr.find_first_of('.', period)) != string::npos && period < index)
expr[period] = '_';
if (index == string::npos)
return expr + swizzle_name_suffix;
else
{
auto image_expr = expr.substr(0, index);
auto array_expr = expr.substr(index);
return image_expr + swizzle_name_suffix + array_expr;
}
}
string CompilerMSL::to_buffer_size_expression(uint32_t id)
{
auto expr = to_expression(id);
auto index = expr.find_first_of('[');
// This is quite crude, but we need to translate the reference name (*spvDescriptorSetN.name) to
// the pointer expression spvDescriptorSetN.name to make a reasonable expression here.
// This only happens if we have argument buffers and we are using OpArrayLength on a lone SSBO in that set.
if (expr.size() >= 3 && expr[0] == '(' && expr[1] == '*')
expr = address_of_expression(expr);
// If a buffer is part of an argument buffer translate this to a legal identifier.
for (auto &c : expr)
if (c == '.')
c = '_';
if (index == string::npos)
return expr + buffer_size_name_suffix;
else
{
auto buffer_expr = expr.substr(0, index);
auto array_expr = expr.substr(index);
if (auto var = maybe_get_backing_variable(id))
{
if (is_var_runtime_size_array(*var))
{
if (!msl_options.runtime_array_rich_descriptor)
SPIRV_CROSS_THROW("OpArrayLength requires rich descriptor format");
auto last_pos = array_expr.find_last_of(']');
if (last_pos != std::string::npos)
return buffer_expr + ".length(" + array_expr.substr(1, last_pos - 1) + ")";
}
}
return buffer_expr + buffer_size_name_suffix + array_expr;
}
}
// Checks whether the type is a Block all of whose members have DecorationPatch.
bool CompilerMSL::is_patch_block(const SPIRType &type)
{
if (!has_decoration(type.self, DecorationBlock))
return false;
for (uint32_t i = 0; i < type.member_types.size(); i++)
{
if (!has_member_decoration(type.self, i, DecorationPatch))
return false;
}
return true;
}
// Checks whether the ID is a row_major matrix that requires conversion before use
bool CompilerMSL::is_non_native_row_major_matrix(uint32_t id)
{
auto *e = maybe_get<SPIRExpression>(id);
if (e)
return e->need_transpose;
else
return has_decoration(id, DecorationRowMajor);
}
// Checks whether the member is a row_major matrix that requires conversion before use
bool CompilerMSL::member_is_non_native_row_major_matrix(const SPIRType &type, uint32_t index)
{
return has_member_decoration(type.self, index, DecorationRowMajor);
}
string CompilerMSL::convert_row_major_matrix(string exp_str, const SPIRType &exp_type, uint32_t physical_type_id,
bool is_packed, bool relaxed)
{
if (!is_matrix(exp_type))
{
return CompilerGLSL::convert_row_major_matrix(std::move(exp_str), exp_type, physical_type_id, is_packed, relaxed);
}
else
{
strip_enclosed_expression(exp_str);
if (physical_type_id != 0 || is_packed)
exp_str = unpack_expression_type(exp_str, exp_type, physical_type_id, is_packed, true);
return join("transpose(", exp_str, ")");
}
}
// Called automatically at the end of the entry point function
void CompilerMSL::emit_fixup()
{
if (is_vertex_like_shader() && stage_out_var_id && !qual_pos_var_name.empty() && !capture_output_to_buffer)
{
if (options.vertex.fixup_clipspace)
statement(qual_pos_var_name, ".z = (", qual_pos_var_name, ".z + ", qual_pos_var_name,
".w) * 0.5; // Adjust clip-space for Metal");
if (options.vertex.flip_vert_y)
statement(qual_pos_var_name, ".y = -(", qual_pos_var_name, ".y);", " // Invert Y-axis for Metal");
}
}
// Return a string defining a structure member, with padding and packing.
string CompilerMSL::to_struct_member(const SPIRType &type, uint32_t member_type_id, uint32_t index,
const string &qualifier)
{
uint32_t orig_member_type_id = member_type_id;
if (member_is_remapped_physical_type(type, index))
member_type_id = get_extended_member_decoration(type.self, index, SPIRVCrossDecorationPhysicalTypeID);
auto &physical_type = get<SPIRType>(member_type_id);
// If this member is packed, mark it as so.
string pack_pfx;
// Allow Metal to use the array<T> template to make arrays a value type
uint32_t orig_id = 0;
if (has_extended_member_decoration(type.self, index, SPIRVCrossDecorationInterfaceOrigID))
orig_id = get_extended_member_decoration(type.self, index, SPIRVCrossDecorationInterfaceOrigID);
bool row_major = false;
if (is_matrix(physical_type))
row_major = has_member_decoration(type.self, index, DecorationRowMajor);
SPIRType row_major_physical_type { OpTypeMatrix };
const SPIRType *declared_type = &physical_type;
// If a struct is being declared with physical layout,
// do not use array<T> wrappers.
// This avoids a lot of complicated cases with packed vectors and matrices,
// and generally we cannot copy full arrays in and out of buffers into Function
// address space.
// Array of resources should also be declared as builtin arrays.
if (has_member_decoration(type.self, index, DecorationOffset))
is_using_builtin_array = true;
else if (has_extended_member_decoration(type.self, index, SPIRVCrossDecorationResourceIndexPrimary))
is_using_builtin_array = true;
if (member_is_packed_physical_type(type, index))
{
// If we're packing a matrix, output an appropriate typedef
if (physical_type.basetype == SPIRType::Struct)
{
SPIRV_CROSS_THROW("Cannot emit a packed struct currently.");
}
else if (is_matrix(physical_type))
{
uint32_t rows = physical_type.vecsize;
uint32_t cols = physical_type.columns;
pack_pfx = "packed_";
if (row_major)
{
// These are stored transposed.
rows = physical_type.columns;
cols = physical_type.vecsize;
pack_pfx = "packed_rm_";
}
string base_type = physical_type.width == 16 ? "half" : "float";
string td_line = "typedef ";
td_line += "packed_" + base_type + to_string(rows);
td_line += " " + pack_pfx;
// Use the actual matrix size here.
td_line += base_type + to_string(physical_type.columns) + "x" + to_string(physical_type.vecsize);
td_line += "[" + to_string(cols) + "]";
td_line += ";";
add_typedef_line(td_line);
}
else if (!is_scalar(physical_type)) // scalar type is already packed.
pack_pfx = "packed_";
}
else if (is_matrix(physical_type))
{
if (!msl_options.supports_msl_version(3, 0) &&
has_extended_decoration(type.self, SPIRVCrossDecorationWorkgroupStruct))
{
pack_pfx = "spvStorage_";
add_spv_func_and_recompile(SPVFuncImplStorageMatrix);
// The pack prefix causes problems with array<T> wrappers.
is_using_builtin_array = true;
}
if (row_major)
{
// Need to declare type with flipped vecsize/columns.
row_major_physical_type = physical_type;
swap(row_major_physical_type.vecsize, row_major_physical_type.columns);
declared_type = &row_major_physical_type;
}
}
// iOS Tier 1 argument buffers do not support writable images.
if (physical_type.basetype == SPIRType::Image &&
physical_type.image.sampled == 2 &&
msl_options.is_ios() &&
msl_options.argument_buffers_tier <= Options::ArgumentBuffersTier::Tier1 &&
!has_decoration(orig_id, DecorationNonWritable))
{
SPIRV_CROSS_THROW("Writable images are not allowed on Tier1 argument buffers on iOS.");
}
// Array information is baked into these types.
string array_type;
if (physical_type.basetype != SPIRType::Image && physical_type.basetype != SPIRType::Sampler &&
physical_type.basetype != SPIRType::SampledImage)
{
BuiltIn builtin = BuiltInMax;
// Special handling. In [[stage_out]] or [[stage_in]] blocks,
// we need flat arrays, but if we're somehow declaring gl_PerVertex for constant array reasons, we want
// template array types to be declared.
bool is_ib_in_out =
((stage_out_var_id && get_stage_out_struct_type().self == type.self &&
variable_storage_requires_stage_io(StorageClassOutput)) ||
(stage_in_var_id && get_stage_in_struct_type().self == type.self &&
variable_storage_requires_stage_io(StorageClassInput)));
if (is_ib_in_out && is_member_builtin(type, index, &builtin))
is_using_builtin_array = true;
array_type = type_to_array_glsl(physical_type);
}
if (orig_id)
{
auto *data_type = declared_type;
if (is_pointer(*data_type))
data_type = &get_pointee_type(*data_type);
if (is_array(*data_type) && get_resource_array_size(*data_type, orig_id) == 0)
{
// Hack for declaring unsized array of resources. Need to declare dummy sized array by value inline.
// This can then be wrapped in spvDescriptorArray as usual.
array_type = "[1] /* unsized array hack */";
}
}
string decl_type;
if (declared_type->vecsize > 4)
{
auto orig_type = get<SPIRType>(orig_member_type_id);
if (is_matrix(orig_type) && row_major)
swap(orig_type.vecsize, orig_type.columns);
orig_type.columns = 1;
decl_type = type_to_glsl(orig_type, orig_id, true);
if (declared_type->columns > 1)
decl_type = join("spvPaddedStd140Matrix<", decl_type, ", ", declared_type->columns, ">");
else
decl_type = join("spvPaddedStd140<", decl_type, ">");
}
else
decl_type = type_to_glsl(*declared_type, orig_id, true);
auto result = join(pack_pfx, decl_type, " ", qualifier,
to_member_name(type, index), member_attribute_qualifier(type, index), array_type, ";");
is_using_builtin_array = false;
return result;
}
// Emit a structure member, padding and packing to maintain the correct memeber alignments.
void CompilerMSL::emit_struct_member(const SPIRType &type, uint32_t member_type_id, uint32_t index,
const string &qualifier, uint32_t)
{
// If this member requires padding to maintain its declared offset, emit a dummy padding member before it.
if (has_extended_member_decoration(type.self, index, SPIRVCrossDecorationPaddingTarget))
{
uint32_t pad_len = get_extended_member_decoration(type.self, index, SPIRVCrossDecorationPaddingTarget);
statement("char _m", index, "_pad", "[", pad_len, "];");
}
// Handle HLSL-style 0-based vertex/instance index.
builtin_declaration = true;
statement(to_struct_member(type, member_type_id, index, qualifier));
builtin_declaration = false;
}
void CompilerMSL::emit_struct_padding_target(const SPIRType &type)
{
uint32_t struct_size = get_declared_struct_size_msl(type, true, true);
uint32_t target_size = get_extended_decoration(type.self, SPIRVCrossDecorationPaddingTarget);
if (target_size < struct_size)
SPIRV_CROSS_THROW("Cannot pad with negative bytes.");
else if (target_size > struct_size)
statement("char _m0_final_padding[", target_size - struct_size, "];");
}
// Return a MSL qualifier for the specified function attribute member
string CompilerMSL::member_attribute_qualifier(const SPIRType &type, uint32_t index)
{
auto &execution = get_entry_point();
uint32_t mbr_type_id = type.member_types[index];
auto &mbr_type = get<SPIRType>(mbr_type_id);
BuiltIn builtin = BuiltInMax;
bool is_builtin = is_member_builtin(type, index, &builtin);
if (has_extended_member_decoration(type.self, index, SPIRVCrossDecorationResourceIndexPrimary))
{
string quals = join(
" [[id(", get_extended_member_decoration(type.self, index, SPIRVCrossDecorationResourceIndexPrimary), ")");
if (interlocked_resources.count(
get_extended_member_decoration(type.self, index, SPIRVCrossDecorationInterfaceOrigID)))
quals += ", raster_order_group(0)";
quals += "]]";
return quals;
}
// Vertex function inputs
if (execution.model == ExecutionModelVertex && type.storage == StorageClassInput)
{
if (is_builtin)
{
switch (builtin)
{
case BuiltInVertexId:
case BuiltInVertexIndex:
case BuiltInBaseVertex:
case BuiltInInstanceId:
case BuiltInInstanceIndex:
case BuiltInBaseInstance:
if (msl_options.vertex_for_tessellation)
return "";
return string(" [[") + builtin_qualifier(builtin) + "]]";
case BuiltInDrawIndex:
SPIRV_CROSS_THROW("DrawIndex is not supported in MSL.");
default:
return "";
}
}
uint32_t locn;
if (is_builtin)
locn = get_or_allocate_builtin_input_member_location(builtin, type.self, index);
else
locn = get_member_location(type.self, index);
if (locn != k_unknown_location)
return string(" [[attribute(") + convert_to_string(locn) + ")]]";
}
// Vertex and tessellation evaluation function outputs
if (((execution.model == ExecutionModelVertex && !msl_options.vertex_for_tessellation) || is_tese_shader()) &&
type.storage == StorageClassOutput)
{
if (is_builtin)
{
switch (builtin)
{
case BuiltInPointSize:
// Only mark the PointSize builtin if really rendering points.
// Some shaders may include a PointSize builtin even when used to render
// non-point topologies, and Metal will reject this builtin when compiling
// the shader into a render pipeline that uses a non-point topology.
return msl_options.enable_point_size_builtin ? (string(" [[") + builtin_qualifier(builtin) + "]]") : "";
case BuiltInViewportIndex:
if (!msl_options.supports_msl_version(2, 0))
SPIRV_CROSS_THROW("ViewportIndex requires Metal 2.0.");
/* fallthrough */
case BuiltInPosition:
case BuiltInLayer:
return string(" [[") + builtin_qualifier(builtin) + "]]" + (mbr_type.array.empty() ? "" : " ");
case BuiltInClipDistance:
if (has_member_decoration(type.self, index, DecorationIndex))
return join(" [[user(clip", get_member_decoration(type.self, index, DecorationIndex), ")]]");
else
return string(" [[") + builtin_qualifier(builtin) + "]]" + (mbr_type.array.empty() ? "" : " ");
case BuiltInCullDistance:
if (has_member_decoration(type.self, index, DecorationIndex))
return join(" [[user(cull", get_member_decoration(type.self, index, DecorationIndex), ")]]");
else
return string(" [[") + builtin_qualifier(builtin) + "]]" + (mbr_type.array.empty() ? "" : " ");
default:
return "";
}
}
string loc_qual = member_location_attribute_qualifier(type, index);
if (!loc_qual.empty())
return join(" [[", loc_qual, "]]");
}
if (execution.model == ExecutionModelVertex && msl_options.vertex_for_tessellation && type.storage == StorageClassOutput)
{
// For this type of shader, we always arrange for it to capture its
// output to a buffer. For this reason, qualifiers are irrelevant here.
if (is_builtin)
// We still have to assign a location so the output struct will sort correctly.
get_or_allocate_builtin_output_member_location(builtin, type.self, index);
return "";
}
// Tessellation control function inputs
if (is_tesc_shader() && type.storage == StorageClassInput)
{
if (is_builtin)
{
switch (builtin)
{
case BuiltInInvocationId:
case BuiltInPrimitiveId:
if (msl_options.multi_patch_workgroup)
return "";
return string(" [[") + builtin_qualifier(builtin) + "]]" + (mbr_type.array.empty() ? "" : " ");
case BuiltInSubgroupLocalInvocationId: // FIXME: Should work in any stage
case BuiltInSubgroupSize: // FIXME: Should work in any stage
if (msl_options.emulate_subgroups)
return "";
return string(" [[") + builtin_qualifier(builtin) + "]]" + (mbr_type.array.empty() ? "" : " ");
case BuiltInPatchVertices:
return "";
// Others come from stage input.
default:
break;
}
}
if (msl_options.multi_patch_workgroup)
return "";
uint32_t locn;
if (is_builtin)
locn = get_or_allocate_builtin_input_member_location(builtin, type.self, index);
else
locn = get_member_location(type.self, index);
if (locn != k_unknown_location)
return string(" [[attribute(") + convert_to_string(locn) + ")]]";
}
// Tessellation control function outputs
if (is_tesc_shader() && type.storage == StorageClassOutput)
{
// For this type of shader, we always arrange for it to capture its
// output to a buffer. For this reason, qualifiers are irrelevant here.
if (is_builtin)
// We still have to assign a location so the output struct will sort correctly.
get_or_allocate_builtin_output_member_location(builtin, type.self, index);
return "";
}
// Tessellation evaluation function inputs
if (is_tese_shader() && type.storage == StorageClassInput)
{
if (is_builtin)
{
switch (builtin)
{
case BuiltInPrimitiveId:
case BuiltInTessCoord:
return string(" [[") + builtin_qualifier(builtin) + "]]";
case BuiltInPatchVertices:
return "";
// Others come from stage input.
default:
break;
}
}
if (msl_options.raw_buffer_tese_input)
return "";
// The special control point array must not be marked with an attribute.
if (get_type(type.member_types[index]).basetype == SPIRType::ControlPointArray)
return "";
uint32_t locn;
if (is_builtin)
locn = get_or_allocate_builtin_input_member_location(builtin, type.self, index);
else
locn = get_member_location(type.self, index);
if (locn != k_unknown_location)
return string(" [[attribute(") + convert_to_string(locn) + ")]]";
}
// Tessellation evaluation function outputs were handled above.
// Fragment function inputs
if (execution.model == ExecutionModelFragment && type.storage == StorageClassInput)
{
string quals;
if (is_builtin)
{
switch (builtin)
{
case BuiltInViewIndex:
if (!msl_options.multiview || !msl_options.multiview_layered_rendering)
break;
/* fallthrough */
case BuiltInFrontFacing:
case BuiltInPointCoord:
case BuiltInFragCoord:
case BuiltInSampleId:
case BuiltInSampleMask:
case BuiltInLayer:
case BuiltInBaryCoordKHR:
case BuiltInBaryCoordNoPerspKHR:
quals = builtin_qualifier(builtin);
break;
case BuiltInClipDistance:
return join(" [[user(clip", get_member_decoration(type.self, index, DecorationIndex), ")]]");
case BuiltInCullDistance:
return join(" [[user(cull", get_member_decoration(type.self, index, DecorationIndex), ")]]");
default:
break;
}
}
else
quals = member_location_attribute_qualifier(type, index);
if (builtin == BuiltInBaryCoordKHR || builtin == BuiltInBaryCoordNoPerspKHR)
{
if (has_member_decoration(type.self, index, DecorationFlat) ||
has_member_decoration(type.self, index, DecorationCentroid) ||
has_member_decoration(type.self, index, DecorationSample) ||
has_member_decoration(type.self, index, DecorationNoPerspective))
{
// NoPerspective is baked into the builtin type.
SPIRV_CROSS_THROW(
"Flat, Centroid, Sample, NoPerspective decorations are not supported for BaryCoord inputs.");
}
}
// Don't bother decorating integers with the 'flat' attribute; it's
// the default (in fact, the only option). Also don't bother with the
// FragCoord builtin; it's always noperspective on Metal.
if (!type_is_integral(mbr_type) && (!is_builtin || builtin != BuiltInFragCoord))
{
if (has_member_decoration(type.self, index, DecorationFlat))
{
if (!quals.empty())
quals += ", ";
quals += "flat";
}
else if (has_member_decoration(type.self, index, DecorationCentroid))
{
if (!quals.empty())
quals += ", ";
if (has_member_decoration(type.self, index, DecorationNoPerspective))
quals += "centroid_no_perspective";
else
quals += "centroid_perspective";
}
else if (has_member_decoration(type.self, index, DecorationSample))
{
if (!quals.empty())
quals += ", ";
if (has_member_decoration(type.self, index, DecorationNoPerspective))
quals += "sample_no_perspective";
else
quals += "sample_perspective";
}
else if (has_member_decoration(type.self, index, DecorationNoPerspective))
{
if (!quals.empty())
quals += ", ";
quals += "center_no_perspective";
}
}
if (!quals.empty())
return " [[" + quals + "]]";
}
// Fragment function outputs
if (execution.model == ExecutionModelFragment && type.storage == StorageClassOutput)
{
if (is_builtin)
{
switch (builtin)
{
case BuiltInFragStencilRefEXT:
// Similar to PointSize, only mark FragStencilRef if there's a stencil buffer.
// Some shaders may include a FragStencilRef builtin even when used to render
// without a stencil attachment, and Metal will reject this builtin
// when compiling the shader into a render pipeline that does not set
// stencilAttachmentPixelFormat.
if (!msl_options.enable_frag_stencil_ref_builtin)
return "";
if (!msl_options.supports_msl_version(2, 1))
SPIRV_CROSS_THROW("Stencil export only supported in MSL 2.1 and up.");
return string(" [[") + builtin_qualifier(builtin) + "]]";
case BuiltInFragDepth:
// Ditto FragDepth.
if (!msl_options.enable_frag_depth_builtin)
return "";
/* fallthrough */
case BuiltInSampleMask:
return string(" [[") + builtin_qualifier(builtin) + "]]";
default:
return "";
}
}
uint32_t locn = get_member_location(type.self, index);
// Metal will likely complain about missing color attachments, too.
if (locn != k_unknown_location && !(msl_options.enable_frag_output_mask & (1 << locn)))
return "";
if (locn != k_unknown_location && has_member_decoration(type.self, index, DecorationIndex))
return join(" [[color(", locn, "), index(", get_member_decoration(type.self, index, DecorationIndex),
")]]");
else if (locn != k_unknown_location)
return join(" [[color(", locn, ")]]");
else if (has_member_decoration(type.self, index, DecorationIndex))
return join(" [[index(", get_member_decoration(type.self, index, DecorationIndex), ")]]");
else
return "";
}
// Compute function inputs
if (execution.model == ExecutionModelGLCompute && type.storage == StorageClassInput)
{
if (is_builtin)
{
switch (builtin)
{
case BuiltInNumSubgroups:
case BuiltInSubgroupId:
case BuiltInSubgroupLocalInvocationId: // FIXME: Should work in any stage
case BuiltInSubgroupSize: // FIXME: Should work in any stage
if (msl_options.emulate_subgroups)
break;
/* fallthrough */
case BuiltInGlobalInvocationId:
case BuiltInWorkgroupId:
case BuiltInNumWorkgroups:
case BuiltInLocalInvocationId:
case BuiltInLocalInvocationIndex:
return string(" [[") + builtin_qualifier(builtin) + "]]";
default:
return "";
}
}
}
return "";
}
// A user-defined output variable is considered to match an input variable in the subsequent
// stage if the two variables are declared with the same Location and Component decoration and
// match in type and decoration, except that interpolation decorations are not required to match.
// For the purposes of interface matching, variables declared without a Component decoration are
// considered to have a Component decoration of zero.
string CompilerMSL::member_location_attribute_qualifier(const SPIRType &type, uint32_t index)
{
string quals;
uint32_t comp;
uint32_t locn = get_member_location(type.self, index, &comp);
if (locn != k_unknown_location)
{
quals += "user(locn";
quals += convert_to_string(locn);
if (comp != k_unknown_component && comp != 0)
{
quals += "_";
quals += convert_to_string(comp);
}
quals += ")";
}
return quals;
}
// Returns the location decoration of the member with the specified index in the specified type.
// If the location of the member has been explicitly set, that location is used. If not, this
// function assumes the members are ordered in their location order, and simply returns the
// index as the location.
uint32_t CompilerMSL::get_member_location(uint32_t type_id, uint32_t index, uint32_t *comp) const
{
if (comp)
{
if (has_member_decoration(type_id, index, DecorationComponent))
*comp = get_member_decoration(type_id, index, DecorationComponent);
else
*comp = k_unknown_component;
}
if (has_member_decoration(type_id, index, DecorationLocation))
return get_member_decoration(type_id, index, DecorationLocation);
else
return k_unknown_location;
}
uint32_t CompilerMSL::get_or_allocate_builtin_input_member_location(spv::BuiltIn builtin,
uint32_t type_id, uint32_t index,
uint32_t *comp)
{
uint32_t loc = get_member_location(type_id, index, comp);
if (loc != k_unknown_location)
return loc;
if (comp)
*comp = k_unknown_component;
// Late allocation. Find a location which is unused by the application.
// This can happen for built-in inputs in tessellation which are mixed and matched with user inputs.
auto &mbr_type = get<SPIRType>(get<SPIRType>(type_id).member_types[index]);
uint32_t count = type_to_location_count(mbr_type);
loc = 0;
const auto location_range_in_use = [this](uint32_t location, uint32_t location_count) -> bool {
for (uint32_t i = 0; i < location_count; i++)
if (location_inputs_in_use.count(location + i) != 0)
return true;
return false;
};
while (location_range_in_use(loc, count))
loc++;
set_member_decoration(type_id, index, DecorationLocation, loc);
// Triangle tess level inputs are shared in one packed float4,
// mark both builtins as sharing one location.
if (!msl_options.raw_buffer_tese_input && is_tessellating_triangles() &&
(builtin == BuiltInTessLevelInner || builtin == BuiltInTessLevelOuter))
{
builtin_to_automatic_input_location[BuiltInTessLevelInner] = loc;
builtin_to_automatic_input_location[BuiltInTessLevelOuter] = loc;
}
else
builtin_to_automatic_input_location[builtin] = loc;
mark_location_as_used_by_shader(loc, mbr_type, StorageClassInput, true);
return loc;
}
uint32_t CompilerMSL::get_or_allocate_builtin_output_member_location(spv::BuiltIn builtin,
uint32_t type_id, uint32_t index,
uint32_t *comp)
{
uint32_t loc = get_member_location(type_id, index, comp);
if (loc != k_unknown_location)
return loc;
loc = 0;
if (comp)
*comp = k_unknown_component;
// Late allocation. Find a location which is unused by the application.
// This can happen for built-in outputs in tessellation which are mixed and matched with user inputs.
auto &mbr_type = get<SPIRType>(get<SPIRType>(type_id).member_types[index]);
uint32_t count = type_to_location_count(mbr_type);
const auto location_range_in_use = [this](uint32_t location, uint32_t location_count) -> bool {
for (uint32_t i = 0; i < location_count; i++)
if (location_outputs_in_use.count(location + i) != 0)
return true;
return false;
};
while (location_range_in_use(loc, count))
loc++;
set_member_decoration(type_id, index, DecorationLocation, loc);
// Triangle tess level inputs are shared in one packed float4;
// mark both builtins as sharing one location.
if (is_tessellating_triangles() && (builtin == BuiltInTessLevelInner || builtin == BuiltInTessLevelOuter))
{
builtin_to_automatic_output_location[BuiltInTessLevelInner] = loc;
builtin_to_automatic_output_location[BuiltInTessLevelOuter] = loc;
}
else
builtin_to_automatic_output_location[builtin] = loc;
mark_location_as_used_by_shader(loc, mbr_type, StorageClassOutput, true);
return loc;
}
// Returns the type declaration for a function, including the
// entry type if the current function is the entry point function
string CompilerMSL::func_type_decl(SPIRType &type)
{
// The regular function return type. If not processing the entry point function, that's all we need
string return_type = type_to_glsl(type) + type_to_array_glsl(type);
if (!processing_entry_point)
return return_type;
// If an outgoing interface block has been defined, and it should be returned, override the entry point return type
bool ep_should_return_output = !get_is_rasterization_disabled();
if (stage_out_var_id && ep_should_return_output)
return_type = type_to_glsl(get_stage_out_struct_type()) + type_to_array_glsl(type);
// Prepend a entry type, based on the execution model
string entry_type;
auto &execution = get_entry_point();
switch (execution.model)
{
case ExecutionModelVertex:
if (msl_options.vertex_for_tessellation && !msl_options.supports_msl_version(1, 2))
SPIRV_CROSS_THROW("Tessellation requires Metal 1.2.");
entry_type = msl_options.vertex_for_tessellation ? "kernel" : "vertex";
break;
case ExecutionModelTessellationEvaluation:
if (!msl_options.supports_msl_version(1, 2))
SPIRV_CROSS_THROW("Tessellation requires Metal 1.2.");
if (execution.flags.get(ExecutionModeIsolines))
SPIRV_CROSS_THROW("Metal does not support isoline tessellation.");
if (msl_options.is_ios())
entry_type = join("[[ patch(", is_tessellating_triangles() ? "triangle" : "quad", ") ]] vertex");
else
entry_type = join("[[ patch(", is_tessellating_triangles() ? "triangle" : "quad", ", ",
execution.output_vertices, ") ]] vertex");
break;
case ExecutionModelFragment:
entry_type = uses_explicit_early_fragment_test() ? "[[ early_fragment_tests ]] fragment" : "fragment";
break;
case ExecutionModelTessellationControl:
if (!msl_options.supports_msl_version(1, 2))
SPIRV_CROSS_THROW("Tessellation requires Metal 1.2.");
if (execution.flags.get(ExecutionModeIsolines))
SPIRV_CROSS_THROW("Metal does not support isoline tessellation.");
/* fallthrough */
case ExecutionModelGLCompute:
case ExecutionModelKernel:
entry_type = "kernel";
break;
default:
entry_type = "unknown";
break;
}
return entry_type + " " + return_type;
}
bool CompilerMSL::is_tesc_shader() const
{
return get_execution_model() == ExecutionModelTessellationControl;
}
bool CompilerMSL::is_tese_shader() const
{
return get_execution_model() == ExecutionModelTessellationEvaluation;
}
bool CompilerMSL::uses_explicit_early_fragment_test()
{
auto &ep_flags = get_entry_point().flags;
return ep_flags.get(ExecutionModeEarlyFragmentTests) || ep_flags.get(ExecutionModePostDepthCoverage);
}
// In MSL, address space qualifiers are required for all pointer or reference variables
string CompilerMSL::get_argument_address_space(const SPIRVariable &argument)
{
const auto &type = get<SPIRType>(argument.basetype);
return get_type_address_space(type, argument.self, true);
}
bool CompilerMSL::decoration_flags_signal_volatile(const Bitset &flags)
{
return flags.get(DecorationVolatile) || flags.get(DecorationCoherent);
}
string CompilerMSL::get_type_address_space(const SPIRType &type, uint32_t id, bool argument)
{
// This can be called for variable pointer contexts as well, so be very careful about which method we choose.
Bitset flags;
auto *var = maybe_get<SPIRVariable>(id);
if (var && type.basetype == SPIRType::Struct &&
(has_decoration(type.self, DecorationBlock) || has_decoration(type.self, DecorationBufferBlock)))
flags = get_buffer_block_flags(id);
else
flags = get_decoration_bitset(id);
const char *addr_space = nullptr;
switch (type.storage)
{
case StorageClassWorkgroup:
addr_space = "threadgroup";
break;
case StorageClassStorageBuffer:
case StorageClassPhysicalStorageBuffer:
{
// For arguments from variable pointers, we use the write count deduction, so
// we should not assume any constness here. Only for global SSBOs.
bool readonly = false;
if (!var || has_decoration(type.self, DecorationBlock))
readonly = flags.get(DecorationNonWritable);
addr_space = readonly ? "const device" : "device";
break;
}
case StorageClassUniform:
case StorageClassUniformConstant:
case StorageClassPushConstant:
if (type.basetype == SPIRType::Struct)
{
bool ssbo = has_decoration(type.self, DecorationBufferBlock);
if (ssbo)
addr_space = flags.get(DecorationNonWritable) ? "const device" : "device";
else
addr_space = "constant";
}
else if (!argument)
{
addr_space = "constant";
}
else if (type_is_msl_framebuffer_fetch(type))
{
// Subpass inputs are passed around by value.
addr_space = "";
}
break;
case StorageClassFunction:
case StorageClassGeneric:
break;
case StorageClassInput:
if (is_tesc_shader() && var && var->basevariable == stage_in_ptr_var_id)
addr_space = msl_options.multi_patch_workgroup ? "const device" : "threadgroup";
// Don't pass tessellation levels in the device AS; we load and convert them
// to float manually.
if (is_tese_shader() && msl_options.raw_buffer_tese_input && var)
{
bool is_stage_in = var->basevariable == stage_in_ptr_var_id;
bool is_patch_stage_in = has_decoration(var->self, DecorationPatch);
bool is_builtin = has_decoration(var->self, DecorationBuiltIn);
BuiltIn builtin = (BuiltIn)get_decoration(var->self, DecorationBuiltIn);
bool is_tess_level = is_builtin && (builtin == BuiltInTessLevelOuter || builtin == BuiltInTessLevelInner);
if (is_stage_in || (is_patch_stage_in && !is_tess_level))
addr_space = "const device";
}
if (get_execution_model() == ExecutionModelFragment && var && var->basevariable == stage_in_var_id)
addr_space = "thread";
break;
case StorageClassOutput:
if (capture_output_to_buffer)
{
if (var && type.storage == StorageClassOutput)
{
bool is_masked = is_stage_output_variable_masked(*var);
if (is_masked)
{
if (is_tessellation_shader())
addr_space = "threadgroup";
else
addr_space = "thread";
}
else if (variable_decl_is_remapped_storage(*var, StorageClassWorkgroup))
addr_space = "threadgroup";
}
if (!addr_space)
addr_space = "device";
}
break;
default:
break;
}
if (!addr_space)
{
// No address space for plain values.
addr_space = type.pointer || (argument && type.basetype == SPIRType::ControlPointArray) ? "thread" : "";
}
return join(decoration_flags_signal_volatile(flags) ? "volatile " : "", addr_space);
}
const char *CompilerMSL::to_restrict(uint32_t id, bool space)
{
// This can be called for variable pointer contexts as well, so be very careful about which method we choose.
Bitset flags;
if (ir.ids[id].get_type() == TypeVariable)
{
uint32_t type_id = expression_type_id(id);
auto &type = expression_type(id);
if (type.basetype == SPIRType::Struct &&
(has_decoration(type_id, DecorationBlock) || has_decoration(type_id, DecorationBufferBlock)))
flags = get_buffer_block_flags(id);
else
flags = get_decoration_bitset(id);
}
else
flags = get_decoration_bitset(id);
return flags.get(DecorationRestrict) || flags.get(DecorationRestrictPointerEXT) ?
(space ? "__restrict " : "__restrict") : "";
}
string CompilerMSL::entry_point_arg_stage_in()
{
string decl;
if ((is_tesc_shader() && msl_options.multi_patch_workgroup) ||
(is_tese_shader() && msl_options.raw_buffer_tese_input))
return decl;
// Stage-in structure
uint32_t stage_in_id;
if (is_tese_shader())
stage_in_id = patch_stage_in_var_id;
else
stage_in_id = stage_in_var_id;
if (stage_in_id)
{
auto &var = get<SPIRVariable>(stage_in_id);
auto &type = get_variable_data_type(var);
add_resource_name(var.self);
decl = join(type_to_glsl(type), " ", to_name(var.self), " [[stage_in]]");
}
return decl;
}
// Returns true if this input builtin should be a direct parameter on a shader function parameter list,
// and false for builtins that should be passed or calculated some other way.
bool CompilerMSL::is_direct_input_builtin(BuiltIn bi_type)
{
switch (bi_type)
{
// Vertex function in
case BuiltInVertexId:
case BuiltInVertexIndex:
case BuiltInBaseVertex:
case BuiltInInstanceId:
case BuiltInInstanceIndex:
case BuiltInBaseInstance:
return get_execution_model() != ExecutionModelVertex || !msl_options.vertex_for_tessellation;
// Tess. control function in
case BuiltInPosition:
case BuiltInPointSize:
case BuiltInClipDistance:
case BuiltInCullDistance:
case BuiltInPatchVertices:
return false;
case BuiltInInvocationId:
case BuiltInPrimitiveId:
return !is_tesc_shader() || !msl_options.multi_patch_workgroup;
// Tess. evaluation function in
case BuiltInTessLevelInner:
case BuiltInTessLevelOuter:
return false;
// Fragment function in
case BuiltInSamplePosition:
case BuiltInHelperInvocation:
case BuiltInBaryCoordKHR:
case BuiltInBaryCoordNoPerspKHR:
return false;
case BuiltInViewIndex:
return get_execution_model() == ExecutionModelFragment && msl_options.multiview &&
msl_options.multiview_layered_rendering;
// Compute function in
case BuiltInSubgroupId:
case BuiltInNumSubgroups:
return !msl_options.emulate_subgroups;
// Any stage function in
case BuiltInDeviceIndex:
case BuiltInSubgroupEqMask:
case BuiltInSubgroupGeMask:
case BuiltInSubgroupGtMask:
case BuiltInSubgroupLeMask:
case BuiltInSubgroupLtMask:
return false;
case BuiltInSubgroupSize:
if (msl_options.fixed_subgroup_size != 0)
return false;
/* fallthrough */
case BuiltInSubgroupLocalInvocationId:
return !msl_options.emulate_subgroups;
default:
return true;
}
}
// Returns true if this is a fragment shader that runs per sample, and false otherwise.
bool CompilerMSL::is_sample_rate() const
{
auto &caps = get_declared_capabilities();
return get_execution_model() == ExecutionModelFragment &&
(msl_options.force_sample_rate_shading ||
std::find(caps.begin(), caps.end(), CapabilitySampleRateShading) != caps.end() ||
(msl_options.use_framebuffer_fetch_subpasses && need_subpass_input_ms));
}
bool CompilerMSL::is_intersection_query() const
{
auto &caps = get_declared_capabilities();
return std::find(caps.begin(), caps.end(), CapabilityRayQueryKHR) != caps.end();
}
void CompilerMSL::entry_point_args_builtin(string &ep_args)
{
// Builtin variables
SmallVector<pair<SPIRVariable *, BuiltIn>, 8> active_builtins;
ir.for_each_typed_id<SPIRVariable>([&](uint32_t var_id, SPIRVariable &var) {
if (var.storage != StorageClassInput)
return;
auto bi_type = BuiltIn(get_decoration(var_id, DecorationBuiltIn));
// Don't emit SamplePosition as a separate parameter. In the entry
// point, we get that by calling get_sample_position() on the sample ID.
if (is_builtin_variable(var) &&
get_variable_data_type(var).basetype != SPIRType::Struct &&
get_variable_data_type(var).basetype != SPIRType::ControlPointArray)
{
// If the builtin is not part of the active input builtin set, don't emit it.
// Relevant for multiple entry-point modules which might declare unused builtins.
if (!active_input_builtins.get(bi_type) || !interface_variable_exists_in_entry_point(var_id))
return;
// Remember this variable. We may need to correct its type.
active_builtins.push_back(make_pair(&var, bi_type));
if (is_direct_input_builtin(bi_type))
{
if (!ep_args.empty())
ep_args += ", ";
// Handle HLSL-style 0-based vertex/instance index.
builtin_declaration = true;
// Handle different MSL gl_TessCoord types. (float2, float3)
if (bi_type == BuiltInTessCoord && get_entry_point().flags.get(ExecutionModeQuads))
ep_args += "float2 " + to_expression(var_id) + "In";
else
ep_args += builtin_type_decl(bi_type, var_id) + " " + to_expression(var_id);
ep_args += string(" [[") + builtin_qualifier(bi_type);
if (bi_type == BuiltInSampleMask && get_entry_point().flags.get(ExecutionModePostDepthCoverage))
{
if (!msl_options.supports_msl_version(2))
SPIRV_CROSS_THROW("Post-depth coverage requires MSL 2.0.");
if (msl_options.is_macos() && !msl_options.supports_msl_version(2, 3))
SPIRV_CROSS_THROW("Post-depth coverage on Mac requires MSL 2.3.");
ep_args += ", post_depth_coverage";
}
ep_args += "]]";
builtin_declaration = false;
}
}
if (has_extended_decoration(var_id, SPIRVCrossDecorationBuiltInDispatchBase))
{
// This is a special implicit builtin, not corresponding to any SPIR-V builtin,
// which holds the base that was passed to vkCmdDispatchBase() or vkCmdDrawIndexed(). If it's present,
// assume we emitted it for a good reason.
assert(msl_options.supports_msl_version(1, 2));
if (!ep_args.empty())
ep_args += ", ";
ep_args += type_to_glsl(get_variable_data_type(var)) + " " + to_expression(var_id) + " [[grid_origin]]";
}
if (has_extended_decoration(var_id, SPIRVCrossDecorationBuiltInStageInputSize))
{
// This is another special implicit builtin, not corresponding to any SPIR-V builtin,
// which holds the number of vertices and instances to draw. If it's present,
// assume we emitted it for a good reason.
assert(msl_options.supports_msl_version(1, 2));
if (!ep_args.empty())
ep_args += ", ";
ep_args += type_to_glsl(get_variable_data_type(var)) + " " + to_expression(var_id) + " [[grid_size]]";
}
});
// Correct the types of all encountered active builtins. We couldn't do this before
// because ensure_correct_builtin_type() may increase the bound, which isn't allowed
// while iterating over IDs.
for (auto &var : active_builtins)
var.first->basetype = ensure_correct_builtin_type(var.first->basetype, var.second);
// Handle HLSL-style 0-based vertex/instance index.
if (needs_base_vertex_arg == TriState::Yes)
ep_args += built_in_func_arg(BuiltInBaseVertex, !ep_args.empty());
if (needs_base_instance_arg == TriState::Yes)
ep_args += built_in_func_arg(BuiltInBaseInstance, !ep_args.empty());
if (capture_output_to_buffer)
{
// Add parameters to hold the indirect draw parameters and the shader output. This has to be handled
// specially because it needs to be a pointer, not a reference.
if (stage_out_var_id)
{
if (!ep_args.empty())
ep_args += ", ";
ep_args += join("device ", type_to_glsl(get_stage_out_struct_type()), "* ", output_buffer_var_name,
" [[buffer(", msl_options.shader_output_buffer_index, ")]]");
}
if (is_tesc_shader())
{
if (!ep_args.empty())
ep_args += ", ";
ep_args +=
join("constant uint* spvIndirectParams [[buffer(", msl_options.indirect_params_buffer_index, ")]]");
}
else if (stage_out_var_id &&
!(get_execution_model() == ExecutionModelVertex && msl_options.vertex_for_tessellation))
{
if (!ep_args.empty())
ep_args += ", ";
ep_args +=
join("device uint* spvIndirectParams [[buffer(", msl_options.indirect_params_buffer_index, ")]]");
}
if (get_execution_model() == ExecutionModelVertex && msl_options.vertex_for_tessellation &&
(active_input_builtins.get(BuiltInVertexIndex) || active_input_builtins.get(BuiltInVertexId)) &&
msl_options.vertex_index_type != Options::IndexType::None)
{
// Add the index buffer so we can set gl_VertexIndex correctly.
if (!ep_args.empty())
ep_args += ", ";
switch (msl_options.vertex_index_type)
{
case Options::IndexType::None:
break;
case Options::IndexType::UInt16:
ep_args += join("const device ushort* ", index_buffer_var_name, " [[buffer(",
msl_options.shader_index_buffer_index, ")]]");
break;
case Options::IndexType::UInt32:
ep_args += join("const device uint* ", index_buffer_var_name, " [[buffer(",
msl_options.shader_index_buffer_index, ")]]");
break;
}
}
// Tessellation control shaders get three additional parameters:
// a buffer to hold the per-patch data, a buffer to hold the per-patch
// tessellation levels, and a block of workgroup memory to hold the
// input control point data.
if (is_tesc_shader())
{
if (patch_stage_out_var_id)
{
if (!ep_args.empty())
ep_args += ", ";
ep_args +=
join("device ", type_to_glsl(get_patch_stage_out_struct_type()), "* ", patch_output_buffer_var_name,
" [[buffer(", convert_to_string(msl_options.shader_patch_output_buffer_index), ")]]");
}
if (!ep_args.empty())
ep_args += ", ";
ep_args += join("device ", get_tess_factor_struct_name(), "* ", tess_factor_buffer_var_name, " [[buffer(",
convert_to_string(msl_options.shader_tess_factor_buffer_index), ")]]");
// Initializer for tess factors must be handled specially since it's never declared as a normal variable.
uint32_t outer_factor_initializer_id = 0;
uint32_t inner_factor_initializer_id = 0;
ir.for_each_typed_id<SPIRVariable>([&](uint32_t, SPIRVariable &var) {
if (!has_decoration(var.self, DecorationBuiltIn) || var.storage != StorageClassOutput || !var.initializer)
return;
BuiltIn builtin = BuiltIn(get_decoration(var.self, DecorationBuiltIn));
if (builtin == BuiltInTessLevelInner)
inner_factor_initializer_id = var.initializer;
else if (builtin == BuiltInTessLevelOuter)
outer_factor_initializer_id = var.initializer;
});
const SPIRConstant *c = nullptr;
if (outer_factor_initializer_id && (c = maybe_get<SPIRConstant>(outer_factor_initializer_id)))
{
auto &entry_func = get<SPIRFunction>(ir.default_entry_point);
entry_func.fixup_hooks_in.push_back(
[=]()
{
uint32_t components = is_tessellating_triangles() ? 3 : 4;
for (uint32_t i = 0; i < components; i++)
{
statement(builtin_to_glsl(BuiltInTessLevelOuter, StorageClassOutput), "[", i,
"] = ", "half(", to_expression(c->subconstants[i]), ");");
}
});
}
if (inner_factor_initializer_id && (c = maybe_get<SPIRConstant>(inner_factor_initializer_id)))
{
auto &entry_func = get<SPIRFunction>(ir.default_entry_point);
if (is_tessellating_triangles())
{
entry_func.fixup_hooks_in.push_back([=]() {
statement(builtin_to_glsl(BuiltInTessLevelInner, StorageClassOutput), " = ", "half(",
to_expression(c->subconstants[0]), ");");
});
}
else
{
entry_func.fixup_hooks_in.push_back([=]() {
for (uint32_t i = 0; i < 2; i++)
{
statement(builtin_to_glsl(BuiltInTessLevelInner, StorageClassOutput), "[", i, "] = ",
"half(", to_expression(c->subconstants[i]), ");");
}
});
}
}
if (stage_in_var_id)
{
if (!ep_args.empty())
ep_args += ", ";
if (msl_options.multi_patch_workgroup)
{
ep_args += join("device ", type_to_glsl(get_stage_in_struct_type()), "* ", input_buffer_var_name,
" [[buffer(", convert_to_string(msl_options.shader_input_buffer_index), ")]]");
}
else
{
ep_args += join("threadgroup ", type_to_glsl(get_stage_in_struct_type()), "* ", input_wg_var_name,
" [[threadgroup(", convert_to_string(msl_options.shader_input_wg_index), ")]]");
}
}
}
}
// Tessellation evaluation shaders get three additional parameters:
// a buffer for the per-patch data, a buffer for the per-patch
// tessellation levels, and a buffer for the control point data.
if (is_tese_shader() && msl_options.raw_buffer_tese_input)
{
if (patch_stage_in_var_id)
{
if (!ep_args.empty())
ep_args += ", ";
ep_args +=
join("const device ", type_to_glsl(get_patch_stage_in_struct_type()), "* ", patch_input_buffer_var_name,
" [[buffer(", convert_to_string(msl_options.shader_patch_input_buffer_index), ")]]");
}
if (tess_level_inner_var_id || tess_level_outer_var_id)
{
if (!ep_args.empty())
ep_args += ", ";
ep_args += join("const device ", get_tess_factor_struct_name(), "* ", tess_factor_buffer_var_name,
" [[buffer(", convert_to_string(msl_options.shader_tess_factor_buffer_index), ")]]");
}
if (stage_in_var_id)
{
if (!ep_args.empty())
ep_args += ", ";
ep_args += join("const device ", type_to_glsl(get_stage_in_struct_type()), "* ", input_buffer_var_name,
" [[buffer(", convert_to_string(msl_options.shader_input_buffer_index), ")]]");
}
}
}
string CompilerMSL::entry_point_args_argument_buffer(bool append_comma)
{
string ep_args = entry_point_arg_stage_in();
Bitset claimed_bindings;
for (uint32_t i = 0; i < kMaxArgumentBuffers; i++)
{
uint32_t id = argument_buffer_ids[i];
if (id == 0)
continue;
add_resource_name(id);
auto &var = get<SPIRVariable>(id);
auto &type = get_variable_data_type(var);
if (!ep_args.empty())
ep_args += ", ";
// Check if the argument buffer binding itself has been remapped.
uint32_t buffer_binding;
auto itr = resource_bindings.find({ get_entry_point().model, i, kArgumentBufferBinding });
if (itr != end(resource_bindings))
{
buffer_binding = itr->second.first.msl_buffer;
itr->second.second = true;
}
else
{
// As a fallback, directly map desc set <-> binding.
// If that was taken, take the next buffer binding.
if (claimed_bindings.get(i))
buffer_binding = next_metal_resource_index_buffer;
else
buffer_binding = i;
}
claimed_bindings.set(buffer_binding);
ep_args += get_argument_address_space(var) + " " + type_to_glsl(type) + "& " + to_restrict(id, true) + to_name(id);
ep_args += " [[buffer(" + convert_to_string(buffer_binding) + ")]]";
next_metal_resource_index_buffer = max(next_metal_resource_index_buffer, buffer_binding + 1);
}
entry_point_args_discrete_descriptors(ep_args);
entry_point_args_builtin(ep_args);
if (!ep_args.empty() && append_comma)
ep_args += ", ";
return ep_args;
}
const MSLConstexprSampler *CompilerMSL::find_constexpr_sampler(uint32_t id) const
{
// Try by ID.
{
auto itr = constexpr_samplers_by_id.find(id);
if (itr != end(constexpr_samplers_by_id))
return &itr->second;
}
// Try by binding.
{
uint32_t desc_set = get_decoration(id, DecorationDescriptorSet);
uint32_t binding = get_decoration(id, DecorationBinding);
auto itr = constexpr_samplers_by_binding.find({ desc_set, binding });
if (itr != end(constexpr_samplers_by_binding))
return &itr->second;
}
return nullptr;
}
void CompilerMSL::entry_point_args_discrete_descriptors(string &ep_args)
{
// Output resources, sorted by resource index & type
// We need to sort to work around a bug on macOS 10.13 with NVidia drivers where switching between shaders
// with different order of buffers can result in issues with buffer assignments inside the driver.
struct Resource
{
SPIRVariable *var;
SPIRVariable *descriptor_alias;
string name;
SPIRType::BaseType basetype;
uint32_t index;
uint32_t plane;
uint32_t secondary_index;
};
SmallVector<Resource> resources;
entry_point_bindings.clear();
ir.for_each_typed_id<SPIRVariable>([&](uint32_t var_id, SPIRVariable &var) {
if ((var.storage == StorageClassUniform || var.storage == StorageClassUniformConstant ||
var.storage == StorageClassPushConstant || var.storage == StorageClassStorageBuffer) &&
!is_hidden_variable(var))
{
auto &type = get_variable_data_type(var);
uint32_t desc_set = get_decoration(var_id, DecorationDescriptorSet);
if (is_supported_argument_buffer_type(type) && var.storage != StorageClassPushConstant)
{
if (descriptor_set_is_argument_buffer(desc_set))
{
if (is_var_runtime_size_array(var))
{
// Runtime arrays need to be wrapped in spvDescriptorArray from argument buffer payload.
entry_point_bindings.push_back(&var);
// We'll wrap this, so to_name() will always use non-qualified name.
// We'll need the qualified name to create temporary variable instead.
ir.meta[var_id].decoration.qualified_alias_explicit_override = true;
}
return;
}
}
// Handle descriptor aliasing. We can handle aliasing of buffers by casting pointers,
// but not for typed resources.
SPIRVariable *descriptor_alias = nullptr;
if (var.storage == StorageClassUniform || var.storage == StorageClassStorageBuffer)
{
for (auto &resource : resources)
{
if (get_decoration(resource.var->self, DecorationDescriptorSet) ==
get_decoration(var_id, DecorationDescriptorSet) &&
get_decoration(resource.var->self, DecorationBinding) ==
get_decoration(var_id, DecorationBinding) &&
resource.basetype == SPIRType::Struct && type.basetype == SPIRType::Struct &&
(resource.var->storage == StorageClassUniform ||
resource.var->storage == StorageClassStorageBuffer))
{
descriptor_alias = resource.var;
// Self-reference marks that we should declare the resource,
// and it's being used as an alias (so we can emit void* instead).
resource.descriptor_alias = resource.var;
// Need to promote interlocked usage so that the primary declaration is correct.
if (interlocked_resources.count(var_id))
interlocked_resources.insert(resource.var->self);
break;
}
}
}
const MSLConstexprSampler *constexpr_sampler = nullptr;
if (type.basetype == SPIRType::SampledImage || type.basetype == SPIRType::Sampler)
{
constexpr_sampler = find_constexpr_sampler(var_id);
if (constexpr_sampler)
{
// Mark this ID as a constexpr sampler for later in case it came from set/bindings.
constexpr_samplers_by_id[var_id] = *constexpr_sampler;
}
}
// Emulate texture2D atomic operations
uint32_t secondary_index = 0;
if (atomic_image_vars_emulated.count(var.self))
{
secondary_index = get_metal_resource_index(var, SPIRType::AtomicCounter, 0);
}
if (type.basetype == SPIRType::SampledImage)
{
add_resource_name(var_id);
uint32_t plane_count = 1;
if (constexpr_sampler && constexpr_sampler->ycbcr_conversion_enable)
plane_count = constexpr_sampler->planes;
entry_point_bindings.push_back(&var);
for (uint32_t i = 0; i < plane_count; i++)
resources.push_back({ &var, descriptor_alias, to_name(var_id), SPIRType::Image,
get_metal_resource_index(var, SPIRType::Image, i), i, secondary_index });
if (type.image.dim != DimBuffer && !constexpr_sampler)
{
resources.push_back({ &var, descriptor_alias, to_sampler_expression(var_id), SPIRType::Sampler,
get_metal_resource_index(var, SPIRType::Sampler), 0, 0 });
}
}
else if (!constexpr_sampler)
{
// constexpr samplers are not declared as resources.
add_resource_name(var_id);
// Don't allocate resource indices for aliases.
uint32_t resource_index = ~0u;
if (!descriptor_alias)
resource_index = get_metal_resource_index(var, type.basetype);
entry_point_bindings.push_back(&var);
resources.push_back({ &var, descriptor_alias, to_name(var_id), type.basetype,
resource_index, 0, secondary_index });
}
}
});
stable_sort(resources.begin(), resources.end(),
[](const Resource &lhs, const Resource &rhs)
{ return tie(lhs.basetype, lhs.index) < tie(rhs.basetype, rhs.index); });
for (auto &r : resources)
{
auto &var = *r.var;
auto &type = get_variable_data_type(var);
uint32_t var_id = var.self;
switch (r.basetype)
{
case SPIRType::Struct:
{
auto &m = ir.meta[type.self];
if (m.members.size() == 0)
break;
if (r.descriptor_alias)
{
if (r.var == r.descriptor_alias)
{
auto primary_name = join("spvBufferAliasSet",
get_decoration(var_id, DecorationDescriptorSet),
"Binding",
get_decoration(var_id, DecorationBinding));
// Declare the primary alias as void*
if (!ep_args.empty())
ep_args += ", ";
ep_args += get_argument_address_space(var) + " void* " + primary_name;
ep_args += " [[buffer(" + convert_to_string(r.index) + ")";
if (interlocked_resources.count(var_id))
ep_args += ", raster_order_group(0)";
ep_args += "]]";
}
buffer_aliases_discrete.push_back(r.var->self);
}
else if (!type.array.empty())
{
if (type.array.size() > 1)
SPIRV_CROSS_THROW("Arrays of arrays of buffers are not supported.");
is_using_builtin_array = true;
if (is_var_runtime_size_array(var))
{
add_spv_func_and_recompile(SPVFuncImplVariableDescriptorArray);
if (!ep_args.empty())
ep_args += ", ";
const bool ssbo = has_decoration(type.self, DecorationBufferBlock);
if ((var.storage == spv::StorageClassStorageBuffer || ssbo) &&
msl_options.runtime_array_rich_descriptor)
{
add_spv_func_and_recompile(SPVFuncImplVariableSizedDescriptor);
ep_args += "const device spvBufferDescriptor<" + get_argument_address_space(var) + " " +
type_to_glsl(type) + "*>* ";
}
else
{
ep_args += "const device spvDescriptor<" + get_argument_address_space(var) + " " +
type_to_glsl(type) + "*>* ";
}
ep_args += to_restrict(var_id, true) + r.name + "_";
ep_args += " [[buffer(" + convert_to_string(r.index) + ")";
if (interlocked_resources.count(var_id))
ep_args += ", raster_order_group(0)";
ep_args += "]]";
}
else
{
uint32_t array_size = get_resource_array_size(type, var_id);
for (uint32_t i = 0; i < array_size; ++i)
{
if (!ep_args.empty())
ep_args += ", ";
ep_args += get_argument_address_space(var) + " " + type_to_glsl(type) + "* " +
to_restrict(var_id, true) + r.name + "_" + convert_to_string(i);
ep_args += " [[buffer(" + convert_to_string(r.index + i) + ")";
if (interlocked_resources.count(var_id))
ep_args += ", raster_order_group(0)";
ep_args += "]]";
}
}
is_using_builtin_array = false;
}
else
{
if (!ep_args.empty())
ep_args += ", ";
ep_args += get_argument_address_space(var) + " ";
if (recursive_inputs.count(type.self))
ep_args += string("void* ") + to_restrict(var_id, true) + r.name + "_vp";
else
ep_args += type_to_glsl(type) + "& " + to_restrict(var_id, true) + r.name;
ep_args += " [[buffer(" + convert_to_string(r.index) + ")";
if (interlocked_resources.count(var_id))
ep_args += ", raster_order_group(0)";
ep_args += "]]";
}
break;
}
case SPIRType::Sampler:
if (!ep_args.empty())
ep_args += ", ";
ep_args += sampler_type(type, var_id, false) + " " + r.name;
if (is_var_runtime_size_array(var))
ep_args += "_ [[buffer(" + convert_to_string(r.index) + ")]]";
else
ep_args += " [[sampler(" + convert_to_string(r.index) + ")]]";
break;
case SPIRType::Image:
{
if (!ep_args.empty())
ep_args += ", ";
// Use Metal's native frame-buffer fetch API for subpass inputs.
const auto &basetype = get<SPIRType>(var.basetype);
if (!type_is_msl_framebuffer_fetch(basetype))
{
ep_args += image_type_glsl(type, var_id, false) + " " + r.name;
if (r.plane > 0)
ep_args += join(plane_name_suffix, r.plane);
if (is_var_runtime_size_array(var))
ep_args += "_ [[buffer(" + convert_to_string(r.index) + ")";
else
ep_args += " [[texture(" + convert_to_string(r.index) + ")";
if (interlocked_resources.count(var_id))
ep_args += ", raster_order_group(0)";
ep_args += "]]";
}
else
{
if (msl_options.is_macos() && !msl_options.supports_msl_version(2, 3))
SPIRV_CROSS_THROW("Framebuffer fetch on Mac is not supported before MSL 2.3.");
ep_args += image_type_glsl(type, var_id, false) + " " + r.name;
ep_args += " [[color(" + convert_to_string(r.index) + ")]]";
}
// Emulate texture2D atomic operations
if (atomic_image_vars_emulated.count(var.self))
{
auto &flags = ir.get_decoration_bitset(var.self);
const char *cv_flags = decoration_flags_signal_volatile(flags) ? "volatile " : "";
ep_args += join(", ", cv_flags, "device atomic_", type_to_glsl(get<SPIRType>(basetype.image.type), 0));
ep_args += "* " + r.name + "_atomic";
ep_args += " [[buffer(" + convert_to_string(r.secondary_index) + ")";
if (interlocked_resources.count(var_id))
ep_args += ", raster_order_group(0)";
ep_args += "]]";
}
break;
}
case SPIRType::AccelerationStructure:
{
if (is_var_runtime_size_array(var))
{
add_spv_func_and_recompile(SPVFuncImplVariableDescriptor);
const auto &parent_type = get<SPIRType>(type.parent_type);
if (!ep_args.empty())
ep_args += ", ";
ep_args += "const device spvDescriptor<" + type_to_glsl(parent_type) + ">* " +
to_restrict(var_id, true) + r.name + "_";
ep_args += " [[buffer(" + convert_to_string(r.index) + ")]]";
}
else
{
if (!ep_args.empty())
ep_args += ", ";
ep_args += type_to_glsl(type, var_id) + " " + r.name;
ep_args += " [[buffer(" + convert_to_string(r.index) + ")]]";
}
break;
}
default:
if (!ep_args.empty())
ep_args += ", ";
if (!type.pointer)
ep_args += get_type_address_space(get<SPIRType>(var.basetype), var_id) + " " +
type_to_glsl(type, var_id) + "& " + r.name;
else
ep_args += type_to_glsl(type, var_id) + " " + r.name;
ep_args += " [[buffer(" + convert_to_string(r.index) + ")";
if (interlocked_resources.count(var_id))
ep_args += ", raster_order_group(0)";
ep_args += "]]";
break;
}
}
}
// Returns a string containing a comma-delimited list of args for the entry point function
// This is the "classic" method of MSL 1 when we don't have argument buffer support.
string CompilerMSL::entry_point_args_classic(bool append_comma)
{
string ep_args = entry_point_arg_stage_in();
entry_point_args_discrete_descriptors(ep_args);
entry_point_args_builtin(ep_args);
if (!ep_args.empty() && append_comma)
ep_args += ", ";
return ep_args;
}
void CompilerMSL::fix_up_shader_inputs_outputs()
{
auto &entry_func = this->get<SPIRFunction>(ir.default_entry_point);
// Emit a guard to ensure we don't execute beyond the last vertex.
// Vertex shaders shouldn't have the problems with barriers in non-uniform control flow that
// tessellation control shaders do, so early returns should be OK. We may need to revisit this
// if it ever becomes possible to use barriers from a vertex shader.
if (get_execution_model() == ExecutionModelVertex && msl_options.vertex_for_tessellation)
{
entry_func.fixup_hooks_in.push_back([this]() {
statement("if (any(", to_expression(builtin_invocation_id_id),
" >= ", to_expression(builtin_stage_input_size_id), "))");
statement(" return;");
});
}
// Look for sampled images and buffer. Add hooks to set up the swizzle constants or array lengths.
ir.for_each_typed_id<SPIRVariable>([&](uint32_t, SPIRVariable &var) {
auto &type = get_variable_data_type(var);
uint32_t var_id = var.self;
bool ssbo = has_decoration(type.self, DecorationBufferBlock);
if (var.storage == StorageClassUniformConstant && !is_hidden_variable(var))
{
if (msl_options.swizzle_texture_samples && has_sampled_images && is_sampled_image_type(type))
{
entry_func.fixup_hooks_in.push_back([this, &type, &var, var_id]() {
bool is_array_type = !type.array.empty();
uint32_t desc_set = get_decoration(var_id, DecorationDescriptorSet);
if (descriptor_set_is_argument_buffer(desc_set))
{
statement("constant uint", is_array_type ? "* " : "& ", to_swizzle_expression(var_id),
is_array_type ? " = &" : " = ", to_name(argument_buffer_ids[desc_set]),
".spvSwizzleConstants", "[",
convert_to_string(get_metal_resource_index(var, SPIRType::Image)), "];");
}
else
{
// If we have an array of images, we need to be able to index into it, so take a pointer instead.
statement("constant uint", is_array_type ? "* " : "& ", to_swizzle_expression(var_id),
is_array_type ? " = &" : " = ", to_name(swizzle_buffer_id), "[",
convert_to_string(get_metal_resource_index(var, SPIRType::Image)), "];");
}
});
}
}
else if ((var.storage == StorageClassStorageBuffer || (var.storage == StorageClassUniform && ssbo)) &&
!is_hidden_variable(var))
{
if (buffer_requires_array_length(var.self))
{
entry_func.fixup_hooks_in.push_back(
[this, &type, &var, var_id]()
{
bool is_array_type = !type.array.empty() && !is_var_runtime_size_array(var);
uint32_t desc_set = get_decoration(var_id, DecorationDescriptorSet);
if (descriptor_set_is_argument_buffer(desc_set))
{
statement("constant uint", is_array_type ? "* " : "& ", to_buffer_size_expression(var_id),
is_array_type ? " = &" : " = ", to_name(argument_buffer_ids[desc_set]),
".spvBufferSizeConstants", "[",
convert_to_string(get_metal_resource_index(var, SPIRType::Image)), "];");
}
else
{
// If we have an array of images, we need to be able to index into it, so take a pointer instead.
statement("constant uint", is_array_type ? "* " : "& ", to_buffer_size_expression(var_id),
is_array_type ? " = &" : " = ", to_name(buffer_size_buffer_id), "[",
convert_to_string(get_metal_resource_index(var, type.basetype)), "];");
}
});
}
}
if (msl_options.replace_recursive_inputs && type_contains_recursion(type) &&
(var.storage == StorageClassUniform || var.storage == StorageClassUniformConstant ||
var.storage == StorageClassPushConstant || var.storage == StorageClassStorageBuffer))
{
recursive_inputs.insert(type.self);
entry_func.fixup_hooks_in.push_back([this, &type, &var, var_id]() {
auto addr_space = get_argument_address_space(var);
auto var_name = to_name(var_id);
statement(addr_space, " auto& ", to_restrict(var_id, true), var_name,
" = *(", addr_space, " ", type_to_glsl(type), "*)", var_name, "_vp;");
});
}
});
// Builtin variables
ir.for_each_typed_id<SPIRVariable>([this, &entry_func](uint32_t, SPIRVariable &var) {
uint32_t var_id = var.self;
BuiltIn bi_type = ir.meta[var_id].decoration.builtin_type;
if (var.storage != StorageClassInput && var.storage != StorageClassOutput)
return;
if (!interface_variable_exists_in_entry_point(var.self))
return;
if (var.storage == StorageClassInput && is_builtin_variable(var) && active_input_builtins.get(bi_type))
{
switch (bi_type)
{
case BuiltInSamplePosition:
entry_func.fixup_hooks_in.push_back([=]() {
statement(builtin_type_decl(bi_type), " ", to_expression(var_id), " = get_sample_position(",
to_expression(builtin_sample_id_id), ");");
});
break;
case BuiltInFragCoord:
if (is_sample_rate())
{
entry_func.fixup_hooks_in.push_back([=]() {
statement(to_expression(var_id), ".xy += get_sample_position(",
to_expression(builtin_sample_id_id), ") - 0.5;");
});
}
break;
case BuiltInInvocationId:
// This is direct-mapped without multi-patch workgroups.
if (!is_tesc_shader() || !msl_options.multi_patch_workgroup)
break;
entry_func.fixup_hooks_in.push_back([=]() {
statement(builtin_type_decl(bi_type), " ", to_expression(var_id), " = ",
to_expression(builtin_invocation_id_id), ".x % ", this->get_entry_point().output_vertices,
";");
});
break;
case BuiltInPrimitiveId:
// This is natively supported by fragment and tessellation evaluation shaders.
// In tessellation control shaders, this is direct-mapped without multi-patch workgroups.
if (!is_tesc_shader() || !msl_options.multi_patch_workgroup)
break;
entry_func.fixup_hooks_in.push_back([=]() {
statement(builtin_type_decl(bi_type), " ", to_expression(var_id), " = min(",
to_expression(builtin_invocation_id_id), ".x / ", this->get_entry_point().output_vertices,
", spvIndirectParams[1] - 1);");
});
break;
case BuiltInPatchVertices:
if (is_tese_shader())
{
if (msl_options.raw_buffer_tese_input)
{
entry_func.fixup_hooks_in.push_back(
[=]() {
statement(builtin_type_decl(bi_type), " ", to_expression(var_id), " = ",
get_entry_point().output_vertices, ";");
});
}
else
{
entry_func.fixup_hooks_in.push_back(
[=]()
{
statement(builtin_type_decl(bi_type), " ", to_expression(var_id), " = ",
to_expression(patch_stage_in_var_id), ".gl_in.size();");
});
}
}
else
{
entry_func.fixup_hooks_in.push_back([=]() {
statement(builtin_type_decl(bi_type), " ", to_expression(var_id), " = spvIndirectParams[0];");
});
}
break;
case BuiltInTessCoord:
if (get_entry_point().flags.get(ExecutionModeQuads))
{
// The entry point will only have a float2 TessCoord variable.
// Pad to float3.
entry_func.fixup_hooks_in.push_back([=]() {
auto name = builtin_to_glsl(BuiltInTessCoord, StorageClassInput);
statement("float3 " + name + " = float3(" + name + "In.x, " + name + "In.y, 0.0);");
});
}
// Emit a fixup to account for the shifted domain. Don't do this for triangles;
// MoltenVK will just reverse the winding order instead.
if (msl_options.tess_domain_origin_lower_left && !is_tessellating_triangles())
{
string tc = to_expression(var_id);
entry_func.fixup_hooks_in.push_back([=]() { statement(tc, ".y = 1.0 - ", tc, ".y;"); });
}
break;
case BuiltInSubgroupId:
if (!msl_options.emulate_subgroups)
break;
// For subgroup emulation, this is the same as the local invocation index.
entry_func.fixup_hooks_in.push_back([=]() {
statement(builtin_type_decl(bi_type), " ", to_expression(var_id), " = ",
to_expression(builtin_local_invocation_index_id), ";");
});
break;
case BuiltInNumSubgroups:
if (!msl_options.emulate_subgroups)
break;
// For subgroup emulation, this is the same as the workgroup size.
entry_func.fixup_hooks_in.push_back([=]() {
auto &type = expression_type(builtin_workgroup_size_id);
string size_expr = to_expression(builtin_workgroup_size_id);
if (type.vecsize >= 3)
size_expr = join(size_expr, ".x * ", size_expr, ".y * ", size_expr, ".z");
else if (type.vecsize == 2)
size_expr = join(size_expr, ".x * ", size_expr, ".y");
statement(builtin_type_decl(bi_type), " ", to_expression(var_id), " = ", size_expr, ";");
});
break;
case BuiltInSubgroupLocalInvocationId:
if (!msl_options.emulate_subgroups)
break;
// For subgroup emulation, assume subgroups of size 1.
entry_func.fixup_hooks_in.push_back(
[=]() { statement(builtin_type_decl(bi_type), " ", to_expression(var_id), " = 0;"); });
break;
case BuiltInSubgroupSize:
if (msl_options.emulate_subgroups)
{
// For subgroup emulation, assume subgroups of size 1.
entry_func.fixup_hooks_in.push_back(
[=]() { statement(builtin_type_decl(bi_type), " ", to_expression(var_id), " = 1;"); });
}
else if (msl_options.fixed_subgroup_size != 0)
{
entry_func.fixup_hooks_in.push_back([=]() {
statement(builtin_type_decl(bi_type), " ", to_expression(var_id), " = ",
msl_options.fixed_subgroup_size, ";");
});
}
break;
case BuiltInSubgroupEqMask:
if (msl_options.is_ios() && !msl_options.supports_msl_version(2, 2))
SPIRV_CROSS_THROW("Subgroup ballot functionality requires Metal 2.2 on iOS.");
if (!msl_options.supports_msl_version(2, 1))
SPIRV_CROSS_THROW("Subgroup ballot functionality requires Metal 2.1.");
entry_func.fixup_hooks_in.push_back([=]() {
if (msl_options.is_ios())
{
statement(builtin_type_decl(bi_type), " ", to_expression(var_id), " = ", "uint4(1 << ",
to_expression(builtin_subgroup_invocation_id_id), ", uint3(0));");
}
else
{
statement(builtin_type_decl(bi_type), " ", to_expression(var_id), " = ",
to_expression(builtin_subgroup_invocation_id_id), " >= 32 ? uint4(0, (1 << (",
to_expression(builtin_subgroup_invocation_id_id), " - 32)), uint2(0)) : uint4(1 << ",
to_expression(builtin_subgroup_invocation_id_id), ", uint3(0));");
}
});
break;
case BuiltInSubgroupGeMask:
if (msl_options.is_ios() && !msl_options.supports_msl_version(2, 2))
SPIRV_CROSS_THROW("Subgroup ballot functionality requires Metal 2.2 on iOS.");
if (!msl_options.supports_msl_version(2, 1))
SPIRV_CROSS_THROW("Subgroup ballot functionality requires Metal 2.1.");
if (msl_options.fixed_subgroup_size != 0)
add_spv_func_and_recompile(SPVFuncImplSubgroupBallot);
entry_func.fixup_hooks_in.push_back([=]() {
// Case where index < 32, size < 32:
// mask0 = bfi(0, 0xFFFFFFFF, index, size - index);
// mask1 = bfi(0, 0xFFFFFFFF, 0, 0); // Gives 0
// Case where index < 32 but size >= 32:
// mask0 = bfi(0, 0xFFFFFFFF, index, 32 - index);
// mask1 = bfi(0, 0xFFFFFFFF, 0, size - 32);
// Case where index >= 32:
// mask0 = bfi(0, 0xFFFFFFFF, 32, 0); // Gives 0
// mask1 = bfi(0, 0xFFFFFFFF, index - 32, size - index);
// This is expressed without branches to avoid divergent
// control flow--hence the complicated min/max expressions.
// This is further complicated by the fact that if you attempt
// to bfi/bfe out-of-bounds on Metal, undefined behavior is the
// result.
if (msl_options.fixed_subgroup_size > 32)
{
// Don't use the subgroup size variable with fixed subgroup sizes,
// since the variables could be defined in the wrong order.
statement(builtin_type_decl(bi_type), " ", to_expression(var_id),
" = uint4(insert_bits(0u, 0xFFFFFFFF, min(",
to_expression(builtin_subgroup_invocation_id_id), ", 32u), (uint)max(32 - (int)",
to_expression(builtin_subgroup_invocation_id_id),
", 0)), insert_bits(0u, 0xFFFFFFFF,"
" (uint)max((int)",
to_expression(builtin_subgroup_invocation_id_id), " - 32, 0), ",
msl_options.fixed_subgroup_size, " - max(",
to_expression(builtin_subgroup_invocation_id_id),
", 32u)), uint2(0));");
}
else if (msl_options.fixed_subgroup_size != 0)
{
statement(builtin_type_decl(bi_type), " ", to_expression(var_id),
" = uint4(insert_bits(0u, 0xFFFFFFFF, ",
to_expression(builtin_subgroup_invocation_id_id), ", ",
msl_options.fixed_subgroup_size, " - ",
to_expression(builtin_subgroup_invocation_id_id),
"), uint3(0));");
}
else if (msl_options.is_ios())
{
// On iOS, the SIMD-group size will currently never exceed 32.
statement(builtin_type_decl(bi_type), " ", to_expression(var_id),
" = uint4(insert_bits(0u, 0xFFFFFFFF, ",
to_expression(builtin_subgroup_invocation_id_id), ", ",
to_expression(builtin_subgroup_size_id), " - ",
to_expression(builtin_subgroup_invocation_id_id), "), uint3(0));");
}
else
{
statement(builtin_type_decl(bi_type), " ", to_expression(var_id),
" = uint4(insert_bits(0u, 0xFFFFFFFF, min(",
to_expression(builtin_subgroup_invocation_id_id), ", 32u), (uint)max(min((int)",
to_expression(builtin_subgroup_size_id), ", 32) - (int)",
to_expression(builtin_subgroup_invocation_id_id),
", 0)), insert_bits(0u, 0xFFFFFFFF, (uint)max((int)",
to_expression(builtin_subgroup_invocation_id_id), " - 32, 0), (uint)max((int)",
to_expression(builtin_subgroup_size_id), " - (int)max(",
to_expression(builtin_subgroup_invocation_id_id), ", 32u), 0)), uint2(0));");
}
});
break;
case BuiltInSubgroupGtMask:
if (msl_options.is_ios() && !msl_options.supports_msl_version(2, 2))
SPIRV_CROSS_THROW("Subgroup ballot functionality requires Metal 2.2 on iOS.");
if (!msl_options.supports_msl_version(2, 1))
SPIRV_CROSS_THROW("Subgroup ballot functionality requires Metal 2.1.");
add_spv_func_and_recompile(SPVFuncImplSubgroupBallot);
entry_func.fixup_hooks_in.push_back([=]() {
// The same logic applies here, except now the index is one
// more than the subgroup invocation ID.
if (msl_options.fixed_subgroup_size > 32)
{
statement(builtin_type_decl(bi_type), " ", to_expression(var_id),
" = uint4(insert_bits(0u, 0xFFFFFFFF, min(",
to_expression(builtin_subgroup_invocation_id_id), " + 1, 32u), (uint)max(32 - (int)",
to_expression(builtin_subgroup_invocation_id_id),
" - 1, 0)), insert_bits(0u, 0xFFFFFFFF, (uint)max((int)",
to_expression(builtin_subgroup_invocation_id_id), " + 1 - 32, 0), ",
msl_options.fixed_subgroup_size, " - max(",
to_expression(builtin_subgroup_invocation_id_id),
" + 1, 32u)), uint2(0));");
}
else if (msl_options.fixed_subgroup_size != 0)
{
statement(builtin_type_decl(bi_type), " ", to_expression(var_id),
" = uint4(insert_bits(0u, 0xFFFFFFFF, ",
to_expression(builtin_subgroup_invocation_id_id), " + 1, ",
msl_options.fixed_subgroup_size, " - ",
to_expression(builtin_subgroup_invocation_id_id),
" - 1), uint3(0));");
}
else if (msl_options.is_ios())
{
statement(builtin_type_decl(bi_type), " ", to_expression(var_id),
" = uint4(insert_bits(0u, 0xFFFFFFFF, ",
to_expression(builtin_subgroup_invocation_id_id), " + 1, ",
to_expression(builtin_subgroup_size_id), " - ",
to_expression(builtin_subgroup_invocation_id_id), " - 1), uint3(0));");
}
else
{
statement(builtin_type_decl(bi_type), " ", to_expression(var_id),
" = uint4(insert_bits(0u, 0xFFFFFFFF, min(",
to_expression(builtin_subgroup_invocation_id_id), " + 1, 32u), (uint)max(min((int)",
to_expression(builtin_subgroup_size_id), ", 32) - (int)",
to_expression(builtin_subgroup_invocation_id_id),
" - 1, 0)), insert_bits(0u, 0xFFFFFFFF, (uint)max((int)",
to_expression(builtin_subgroup_invocation_id_id), " + 1 - 32, 0), (uint)max((int)",
to_expression(builtin_subgroup_size_id), " - (int)max(",
to_expression(builtin_subgroup_invocation_id_id), " + 1, 32u), 0)), uint2(0));");
}
});
break;
case BuiltInSubgroupLeMask:
if (msl_options.is_ios() && !msl_options.supports_msl_version(2, 2))
SPIRV_CROSS_THROW("Subgroup ballot functionality requires Metal 2.2 on iOS.");
if (!msl_options.supports_msl_version(2, 1))
SPIRV_CROSS_THROW("Subgroup ballot functionality requires Metal 2.1.");
add_spv_func_and_recompile(SPVFuncImplSubgroupBallot);
entry_func.fixup_hooks_in.push_back([=]() {
if (msl_options.is_ios())
{
statement(builtin_type_decl(bi_type), " ", to_expression(var_id),
" = uint4(extract_bits(0xFFFFFFFF, 0, ",
to_expression(builtin_subgroup_invocation_id_id), " + 1), uint3(0));");
}
else
{
statement(builtin_type_decl(bi_type), " ", to_expression(var_id),
" = uint4(extract_bits(0xFFFFFFFF, 0, min(",
to_expression(builtin_subgroup_invocation_id_id),
" + 1, 32u)), extract_bits(0xFFFFFFFF, 0, (uint)max((int)",
to_expression(builtin_subgroup_invocation_id_id), " + 1 - 32, 0)), uint2(0));");
}
});
break;
case BuiltInSubgroupLtMask:
if (msl_options.is_ios() && !msl_options.supports_msl_version(2, 2))
SPIRV_CROSS_THROW("Subgroup ballot functionality requires Metal 2.2 on iOS.");
if (!msl_options.supports_msl_version(2, 1))
SPIRV_CROSS_THROW("Subgroup ballot functionality requires Metal 2.1.");
add_spv_func_and_recompile(SPVFuncImplSubgroupBallot);
entry_func.fixup_hooks_in.push_back([=]() {
if (msl_options.is_ios())
{
statement(builtin_type_decl(bi_type), " ", to_expression(var_id),
" = uint4(extract_bits(0xFFFFFFFF, 0, ",
to_expression(builtin_subgroup_invocation_id_id), "), uint3(0));");
}
else
{
statement(builtin_type_decl(bi_type), " ", to_expression(var_id),
" = uint4(extract_bits(0xFFFFFFFF, 0, min(",
to_expression(builtin_subgroup_invocation_id_id),
", 32u)), extract_bits(0xFFFFFFFF, 0, (uint)max((int)",
to_expression(builtin_subgroup_invocation_id_id), " - 32, 0)), uint2(0));");
}
});
break;
case BuiltInViewIndex:
if (!msl_options.multiview)
{
// According to the Vulkan spec, when not running under a multiview
// render pass, ViewIndex is 0.
entry_func.fixup_hooks_in.push_back([=]() {
statement("const ", builtin_type_decl(bi_type), " ", to_expression(var_id), " = 0;");
});
}
else if (msl_options.view_index_from_device_index)
{
// In this case, we take the view index from that of the device we're running on.
entry_func.fixup_hooks_in.push_back([=]() {
statement("const ", builtin_type_decl(bi_type), " ", to_expression(var_id), " = ",
msl_options.device_index, ";");
});
// We actually don't want to set the render_target_array_index here.
// Since every physical device is rendering a different view,
// there's no need for layered rendering here.
}
else if (!msl_options.multiview_layered_rendering)
{
// In this case, the views are rendered one at a time. The view index, then,
// is just the first part of the "view mask".
entry_func.fixup_hooks_in.push_back([=]() {
statement("const ", builtin_type_decl(bi_type), " ", to_expression(var_id), " = ",
to_expression(view_mask_buffer_id), "[0];");
});
}
else if (get_execution_model() == ExecutionModelFragment)
{
// Because we adjusted the view index in the vertex shader, we have to
// adjust it back here.
entry_func.fixup_hooks_in.push_back([=]() {
statement(to_expression(var_id), " += ", to_expression(view_mask_buffer_id), "[0];");
});
}
else if (get_execution_model() == ExecutionModelVertex)
{
// Metal provides no special support for multiview, so we smuggle
// the view index in the instance index.
entry_func.fixup_hooks_in.push_back([=]() {
statement(builtin_type_decl(bi_type), " ", to_expression(var_id), " = ",
to_expression(view_mask_buffer_id), "[0] + (", to_expression(builtin_instance_idx_id),
" - ", to_expression(builtin_base_instance_id), ") % ",
to_expression(view_mask_buffer_id), "[1];");
statement(to_expression(builtin_instance_idx_id), " = (",
to_expression(builtin_instance_idx_id), " - ",
to_expression(builtin_base_instance_id), ") / ", to_expression(view_mask_buffer_id),
"[1] + ", to_expression(builtin_base_instance_id), ";");
});
// In addition to setting the variable itself, we also need to
// set the render_target_array_index with it on output. We have to
// offset this by the base view index, because Metal isn't in on
// our little game here.
entry_func.fixup_hooks_out.push_back([=]() {
statement(to_expression(builtin_layer_id), " = ", to_expression(var_id), " - ",
to_expression(view_mask_buffer_id), "[0];");
});
}
break;
case BuiltInDeviceIndex:
// Metal pipelines belong to the devices which create them, so we'll
// need to create a MTLPipelineState for every MTLDevice in a grouped
// VkDevice. We can assume, then, that the device index is constant.
entry_func.fixup_hooks_in.push_back([=]() {
statement("const ", builtin_type_decl(bi_type), " ", to_expression(var_id), " = ",
msl_options.device_index, ";");
});
break;
case BuiltInWorkgroupId:
if (!msl_options.dispatch_base || !active_input_builtins.get(BuiltInWorkgroupId))
break;
// The vkCmdDispatchBase() command lets the client set the base value
// of WorkgroupId. Metal has no direct equivalent; we must make this
// adjustment ourselves.
entry_func.fixup_hooks_in.push_back([=]() {
statement(to_expression(var_id), " += ", to_dereferenced_expression(builtin_dispatch_base_id), ";");
});
break;
case BuiltInGlobalInvocationId:
if (!msl_options.dispatch_base || !active_input_builtins.get(BuiltInGlobalInvocationId))
break;
// GlobalInvocationId is defined as LocalInvocationId + WorkgroupId * WorkgroupSize.
// This needs to be adjusted too.
entry_func.fixup_hooks_in.push_back([=]() {
auto &execution = this->get_entry_point();
uint32_t workgroup_size_id = execution.workgroup_size.constant;
if (workgroup_size_id)
statement(to_expression(var_id), " += ", to_dereferenced_expression(builtin_dispatch_base_id),
" * ", to_expression(workgroup_size_id), ";");
else
statement(to_expression(var_id), " += ", to_dereferenced_expression(builtin_dispatch_base_id),
" * uint3(", execution.workgroup_size.x, ", ", execution.workgroup_size.y, ", ",
execution.workgroup_size.z, ");");
});
break;
case BuiltInVertexId:
case BuiltInVertexIndex:
// This is direct-mapped normally.
if (!msl_options.vertex_for_tessellation)
break;
entry_func.fixup_hooks_in.push_back([=]() {
builtin_declaration = true;
switch (msl_options.vertex_index_type)
{
case Options::IndexType::None:
statement(builtin_type_decl(bi_type), " ", to_expression(var_id), " = ",
to_expression(builtin_invocation_id_id), ".x + ",
to_expression(builtin_dispatch_base_id), ".x;");
break;
case Options::IndexType::UInt16:
case Options::IndexType::UInt32:
statement(builtin_type_decl(bi_type), " ", to_expression(var_id), " = ", index_buffer_var_name,
"[", to_expression(builtin_invocation_id_id), ".x] + ",
to_expression(builtin_dispatch_base_id), ".x;");
break;
}
builtin_declaration = false;
});
break;
case BuiltInBaseVertex:
// This is direct-mapped normally.
if (!msl_options.vertex_for_tessellation)
break;
entry_func.fixup_hooks_in.push_back([=]() {
statement(builtin_type_decl(bi_type), " ", to_expression(var_id), " = ",
to_expression(builtin_dispatch_base_id), ".x;");
});
break;
case BuiltInInstanceId:
case BuiltInInstanceIndex:
// This is direct-mapped normally.
if (!msl_options.vertex_for_tessellation)
break;
entry_func.fixup_hooks_in.push_back([=]() {
builtin_declaration = true;
statement(builtin_type_decl(bi_type), " ", to_expression(var_id), " = ",
to_expression(builtin_invocation_id_id), ".y + ", to_expression(builtin_dispatch_base_id),
".y;");
builtin_declaration = false;
});
break;
case BuiltInBaseInstance:
// This is direct-mapped normally.
if (!msl_options.vertex_for_tessellation)
break;
entry_func.fixup_hooks_in.push_back([=]() {
statement(builtin_type_decl(bi_type), " ", to_expression(var_id), " = ",
to_expression(builtin_dispatch_base_id), ".y;");
});
break;
default:
break;
}
}
else if (var.storage == StorageClassOutput && get_execution_model() == ExecutionModelFragment &&
is_builtin_variable(var) && active_output_builtins.get(bi_type) &&
bi_type == BuiltInSampleMask && has_additional_fixed_sample_mask())
{
// If the additional fixed sample mask was set, we need to adjust the sample_mask
// output to reflect that. If the shader outputs the sample_mask itself too, we need
// to AND the two masks to get the final one.
string op_str = does_shader_write_sample_mask ? " &= " : " = ";
entry_func.fixup_hooks_out.push_back([=]() {
statement(to_expression(builtin_sample_mask_id), op_str, additional_fixed_sample_mask_str(), ";");
});
}
});
}
// Returns the Metal index of the resource of the specified type as used by the specified variable.
uint32_t CompilerMSL::get_metal_resource_index(SPIRVariable &var, SPIRType::BaseType basetype, uint32_t plane)
{
auto &execution = get_entry_point();
auto &var_dec = ir.meta[var.self].decoration;
auto &var_type = get<SPIRType>(var.basetype);
uint32_t var_desc_set = (var.storage == StorageClassPushConstant) ? kPushConstDescSet : var_dec.set;
uint32_t var_binding = (var.storage == StorageClassPushConstant) ? kPushConstBinding : var_dec.binding;
// If a matching binding has been specified, find and use it.
auto itr = resource_bindings.find({ execution.model, var_desc_set, var_binding });
// Atomic helper buffers for image atomics need to use secondary bindings as well.
bool use_secondary_binding = (var_type.basetype == SPIRType::SampledImage && basetype == SPIRType::Sampler) ||
basetype == SPIRType::AtomicCounter;
auto resource_decoration =
use_secondary_binding ? SPIRVCrossDecorationResourceIndexSecondary : SPIRVCrossDecorationResourceIndexPrimary;
if (plane == 1)
resource_decoration = SPIRVCrossDecorationResourceIndexTertiary;
if (plane == 2)
resource_decoration = SPIRVCrossDecorationResourceIndexQuaternary;
if (itr != end(resource_bindings))
{
auto &remap = itr->second;
remap.second = true;
switch (basetype)
{
case SPIRType::Image:
set_extended_decoration(var.self, resource_decoration, remap.first.msl_texture + plane);
return remap.first.msl_texture + plane;
case SPIRType::Sampler:
set_extended_decoration(var.self, resource_decoration, remap.first.msl_sampler);
return remap.first.msl_sampler;
default:
set_extended_decoration(var.self, resource_decoration, remap.first.msl_buffer);
return remap.first.msl_buffer;
}
}
// If we have already allocated an index, keep using it.
if (has_extended_decoration(var.self, resource_decoration))
return get_extended_decoration(var.self, resource_decoration);
auto &type = get<SPIRType>(var.basetype);
if (type_is_msl_framebuffer_fetch(type))
{
// Frame-buffer fetch gets its fallback resource index from the input attachment index,
// which is then treated as color index.
return get_decoration(var.self, DecorationInputAttachmentIndex);
}
else if (msl_options.enable_decoration_binding)
{
// Allow user to enable decoration binding.
// If there is no explicit mapping of bindings to MSL, use the declared binding as a fallback.
if (has_decoration(var.self, DecorationBinding))
{
var_binding = get_decoration(var.self, DecorationBinding);
// Avoid emitting sentinel bindings.
if (var_binding < 0x80000000u)
return var_binding;
}
}
// If we did not explicitly remap, allocate bindings on demand.
// We cannot reliably use Binding decorations since SPIR-V and MSL's binding models are very different.
bool allocate_argument_buffer_ids = false;
if (var.storage != StorageClassPushConstant)
allocate_argument_buffer_ids = descriptor_set_is_argument_buffer(var_desc_set);
uint32_t binding_stride = 1;
for (uint32_t i = 0; i < uint32_t(type.array.size()); i++)
binding_stride *= to_array_size_literal(type, i);
// If a binding has not been specified, revert to incrementing resource indices.
uint32_t resource_index;
if (allocate_argument_buffer_ids)
{
// Allocate from a flat ID binding space.
resource_index = next_metal_resource_ids[var_desc_set];
next_metal_resource_ids[var_desc_set] += binding_stride;
}
else
{
if (is_var_runtime_size_array(var))
{
basetype = SPIRType::Struct;
binding_stride = 1;
}
// Allocate from plain bindings which are allocated per resource type.
switch (basetype)
{
case SPIRType::Image:
resource_index = next_metal_resource_index_texture;
next_metal_resource_index_texture += binding_stride;
break;
case SPIRType::Sampler:
resource_index = next_metal_resource_index_sampler;
next_metal_resource_index_sampler += binding_stride;
break;
default:
resource_index = next_metal_resource_index_buffer;
next_metal_resource_index_buffer += binding_stride;
break;
}
}
set_extended_decoration(var.self, resource_decoration, resource_index);
return resource_index;
}
bool CompilerMSL::type_is_msl_framebuffer_fetch(const SPIRType &type) const
{
return type.basetype == SPIRType::Image && type.image.dim == DimSubpassData &&
msl_options.use_framebuffer_fetch_subpasses;
}
bool CompilerMSL::type_is_pointer(const SPIRType &type) const
{
if (!type.pointer)
return false;
auto &parent_type = get<SPIRType>(type.parent_type);
// Safeguards when we forget to set pointer_depth (there is an assert for it in type_to_glsl),
// but the extra check shouldn't hurt.
return (type.pointer_depth > parent_type.pointer_depth) || !parent_type.pointer;
}
bool CompilerMSL::type_is_pointer_to_pointer(const SPIRType &type) const
{
if (!type.pointer)
return false;
auto &parent_type = get<SPIRType>(type.parent_type);
return type.pointer_depth > parent_type.pointer_depth && type_is_pointer(parent_type);
}
const char *CompilerMSL::descriptor_address_space(uint32_t id, StorageClass storage, const char *plain_address_space) const
{
if (msl_options.argument_buffers)
{
bool storage_class_is_descriptor = storage == StorageClassUniform ||
storage == StorageClassStorageBuffer ||
storage == StorageClassUniformConstant;
uint32_t desc_set = get_decoration(id, DecorationDescriptorSet);
if (storage_class_is_descriptor && descriptor_set_is_argument_buffer(desc_set))
{
// An awkward case where we need to emit *more* address space declarations (yay!).
// An example is where we pass down an array of buffer pointers to leaf functions.
// It's a constant array containing pointers to constants.
// The pointer array is always constant however. E.g.
// device SSBO * constant (&array)[N].
// const device SSBO * constant (&array)[N].
// constant SSBO * constant (&array)[N].
// However, this only matters for argument buffers, since for MSL 1.0 style codegen,
// we emit the buffer array on stack instead, and that seems to work just fine apparently.
// If the argument was marked as being in device address space, any pointer to member would
// be const device, not constant.
if (argument_buffer_device_storage_mask & (1u << desc_set))
return "const device";
else
return "constant";
}
}
return plain_address_space;
}
string CompilerMSL::argument_decl(const SPIRFunction::Parameter &arg)
{
auto &var = get<SPIRVariable>(arg.id);
auto &type = get_variable_data_type(var);
auto &var_type = get<SPIRType>(arg.type);
StorageClass type_storage = var_type.storage;
// If we need to modify the name of the variable, make sure we use the original variable.
// Our alias is just a shadow variable.
uint32_t name_id = var.self;
if (arg.alias_global_variable && var.basevariable)
name_id = var.basevariable;
bool constref = !arg.alias_global_variable && is_pointer(var_type) && arg.write_count == 0;
// Framebuffer fetch is plain value, const looks out of place, but it is not wrong.
if (type_is_msl_framebuffer_fetch(type))
constref = false;
else if (type_storage == StorageClassUniformConstant)
constref = true;
bool type_is_image = type.basetype == SPIRType::Image || type.basetype == SPIRType::SampledImage ||
type.basetype == SPIRType::Sampler;
bool type_is_tlas = type.basetype == SPIRType::AccelerationStructure;
// For opaque types we handle const later due to descriptor address spaces.
const char *cv_qualifier = (constref && !type_is_image) ? "const " : "";
string decl;
// If this is a combined image-sampler for a 2D image with floating-point type,
// we emitted the 'spvDynamicImageSampler' type, and this is *not* an alias parameter
// for a global, then we need to emit a "dynamic" combined image-sampler.
// Unfortunately, this is necessary to properly support passing around
// combined image-samplers with Y'CbCr conversions on them.
bool is_dynamic_img_sampler = !arg.alias_global_variable && type.basetype == SPIRType::SampledImage &&
type.image.dim == Dim2D && type_is_floating_point(get<SPIRType>(type.image.type)) &&
spv_function_implementations.count(SPVFuncImplDynamicImageSampler);
// Allow Metal to use the array<T> template to make arrays a value type
string address_space = get_argument_address_space(var);
bool builtin = has_decoration(var.self, DecorationBuiltIn);
auto builtin_type = BuiltIn(get_decoration(arg.id, DecorationBuiltIn));
if (var.basevariable && (var.basevariable == stage_in_ptr_var_id || var.basevariable == stage_out_ptr_var_id))
decl = join(cv_qualifier, type_to_glsl(type, arg.id));
else if (builtin)
{
// Only use templated array for Clip/Cull distance when feasible.
// In other scenarios, we need need to override array length for tess levels (if used as outputs),
// or we need to emit the expected type for builtins (uint vs int).
auto storage = get<SPIRType>(var.basetype).storage;
if (storage == StorageClassInput &&
(builtin_type == BuiltInTessLevelInner || builtin_type == BuiltInTessLevelOuter))
{
is_using_builtin_array = false;
}
else if (builtin_type != BuiltInClipDistance && builtin_type != BuiltInCullDistance)
{
is_using_builtin_array = true;
}
if (storage == StorageClassOutput && variable_storage_requires_stage_io(storage) &&
!is_stage_output_builtin_masked(builtin_type))
is_using_builtin_array = true;
if (is_using_builtin_array)
decl = join(cv_qualifier, builtin_type_decl(builtin_type, arg.id));
else
decl = join(cv_qualifier, type_to_glsl(type, arg.id));
}
else if (is_var_runtime_size_array(var))
{
const auto *parent_type = &get<SPIRType>(type.parent_type);
auto type_name = type_to_glsl(*parent_type, arg.id);
if (type.basetype == SPIRType::AccelerationStructure)
decl = join("spvDescriptorArray<", type_name, ">");
else if (type_is_image)
decl = join("spvDescriptorArray<", cv_qualifier, type_name, ">");
else
decl = join("spvDescriptorArray<", address_space, " ", type_name, "*>");
address_space = "const";
}
else if ((type_storage == StorageClassUniform || type_storage == StorageClassStorageBuffer) && is_array(type))
{
is_using_builtin_array = true;
decl += join(cv_qualifier, type_to_glsl(type, arg.id), "*");
}
else if (is_dynamic_img_sampler)
{
decl = join(cv_qualifier, "spvDynamicImageSampler<", type_to_glsl(get<SPIRType>(type.image.type)), ">");
// Mark the variable so that we can handle passing it to another function.
set_extended_decoration(arg.id, SPIRVCrossDecorationDynamicImageSampler);
}
else
{
// The type is a pointer type we need to emit cv_qualifier late.
if (type_is_pointer(type))
{
decl = type_to_glsl(type, arg.id);
if (*cv_qualifier != '\0')
decl += join(" ", cv_qualifier);
}
else
{
decl = join(cv_qualifier, type_to_glsl(type, arg.id));
}
}
if (!builtin && !is_pointer(var_type) &&
(type_storage == StorageClassFunction || type_storage == StorageClassGeneric))
{
// If the argument is a pure value and not an opaque type, we will pass by value.
if (msl_options.force_native_arrays && is_array(type))
{
// We are receiving an array by value. This is problematic.
// We cannot be sure of the target address space since we are supposed to receive a copy,
// but this is not possible with MSL without some extra work.
// We will have to assume we're getting a reference in thread address space.
// If we happen to get a reference in constant address space, the caller must emit a copy and pass that.
// Thread const therefore becomes the only logical choice, since we cannot "create" a constant array from
// non-constant arrays, but we can create thread const from constant.
decl = string("thread const ") + decl;
decl += " (&";
const char *restrict_kw = to_restrict(name_id, true);
if (*restrict_kw)
{
decl += " ";
decl += restrict_kw;
}
decl += to_expression(name_id);
decl += ")";
decl += type_to_array_glsl(type);
}
else
{
if (!address_space.empty())
decl = join(address_space, " ", decl);
decl += " ";
decl += to_expression(name_id);
}
}
else if (is_array(type) && !type_is_image)
{
// Arrays of opaque types are special cased.
if (!address_space.empty())
decl = join(address_space, " ", decl);
// spvDescriptorArray absorbs the address space inside the template.
if (!is_var_runtime_size_array(var))
{
const char *argument_buffer_space = descriptor_address_space(name_id, type_storage, nullptr);
if (argument_buffer_space)
{
decl += " ";
decl += argument_buffer_space;
}
}
// Special case, need to override the array size here if we're using tess level as an argument.
if (is_tesc_shader() && builtin &&
(builtin_type == BuiltInTessLevelInner || builtin_type == BuiltInTessLevelOuter))
{
uint32_t array_size = get_physical_tess_level_array_size(builtin_type);
if (array_size == 1)
{
decl += " &";
decl += to_expression(name_id);
}
else
{
decl += " (&";
decl += to_expression(name_id);
decl += ")";
decl += join("[", array_size, "]");
}
}
else if (is_var_runtime_size_array(var))
{
decl += " " + to_expression(name_id);
}
else
{
auto array_size_decl = type_to_array_glsl(type);
if (array_size_decl.empty())
decl += "& ";
else
decl += " (&";
const char *restrict_kw = to_restrict(name_id, true);
if (*restrict_kw)
{
decl += " ";
decl += restrict_kw;
}
decl += to_expression(name_id);
if (!array_size_decl.empty())
{
decl += ")";
decl += array_size_decl;
}
}
}
else if (!type_is_image && !type_is_tlas &&
(!pull_model_inputs.count(var.basevariable) || type.basetype == SPIRType::Struct))
{
// If this is going to be a reference to a variable pointer, the address space
// for the reference has to go before the '&', but after the '*'.
if (!address_space.empty())
{
if (type_is_pointer(type))
{
if (*cv_qualifier == '\0')
decl += ' ';
decl += join(address_space, " ");
}
else
decl = join(address_space, " ", decl);
}
decl += "&";
decl += " ";
decl += to_restrict(name_id, true);
decl += to_expression(name_id);
}
else if (type_is_image || type_is_tlas)
{
if (is_var_runtime_size_array(var))
{
decl = address_space + " " + decl + " " + to_expression(name_id);
}
else if (type.array.empty())
{
// For non-arrayed types we can just pass opaque descriptors by value.
// This fixes problems if descriptors are passed by value from argument buffers and plain descriptors
// in same shader.
// There is no address space we can actually use, but value will work.
// This will break if applications attempt to pass down descriptor arrays as arguments, but
// fortunately that is extremely unlikely ...
decl += " ";
decl += to_expression(name_id);
}
else
{
const char *img_address_space = descriptor_address_space(name_id, type_storage, "thread const");
decl = join(img_address_space, " ", decl);
decl += "& ";
decl += to_expression(name_id);
}
}
else
{
if (!address_space.empty())
decl = join(address_space, " ", decl);
decl += " ";
decl += to_expression(name_id);
}
// Emulate texture2D atomic operations
auto *backing_var = maybe_get_backing_variable(name_id);
if (backing_var && atomic_image_vars_emulated.count(backing_var->self))
{
auto &flags = ir.get_decoration_bitset(backing_var->self);
const char *cv_flags = decoration_flags_signal_volatile(flags) ? "volatile " : "";
decl += join(", ", cv_flags, "device atomic_", type_to_glsl(get<SPIRType>(var_type.image.type), 0));
decl += "* " + to_expression(name_id) + "_atomic";
}
is_using_builtin_array = false;
return decl;
}
// If we're currently in the entry point function, and the object
// has a qualified name, use it, otherwise use the standard name.
string CompilerMSL::to_name(uint32_t id, bool allow_alias) const
{
if (current_function && (current_function->self == ir.default_entry_point))
{
auto *m = ir.find_meta(id);
if (m && !m->decoration.qualified_alias_explicit_override && !m->decoration.qualified_alias.empty())
return m->decoration.qualified_alias;
}
return Compiler::to_name(id, allow_alias);
}
// Appends the name of the member to the variable qualifier string, except for Builtins.
string CompilerMSL::append_member_name(const string &qualifier, const SPIRType &type, uint32_t index)
{
// Don't qualify Builtin names because they are unique and are treated as such when building expressions
BuiltIn builtin = BuiltInMax;
if (is_member_builtin(type, index, &builtin))
return builtin_to_glsl(builtin, type.storage);
// Strip any underscore prefix from member name
string mbr_name = to_member_name(type, index);
size_t startPos = mbr_name.find_first_not_of("_");
mbr_name = (startPos != string::npos) ? mbr_name.substr(startPos) : "";
return join(qualifier, "_", mbr_name);
}
// Ensures that the specified name is permanently usable by prepending a prefix
// if the first chars are _ and a digit, which indicate a transient name.
string CompilerMSL::ensure_valid_name(string name, string pfx)
{
return (name.size() >= 2 && name[0] == '_' && isdigit(name[1])) ? (pfx + name) : name;
}
const std::unordered_set<std::string> &CompilerMSL::get_reserved_keyword_set()
{
static const unordered_set<string> keywords = {
"kernel",
"vertex",
"fragment",
"compute",
"constant",
"device",
"bias",
"level",
"gradient2d",
"gradientcube",
"gradient3d",
"min_lod_clamp",
"assert",
"VARIABLE_TRACEPOINT",
"STATIC_DATA_TRACEPOINT",
"STATIC_DATA_TRACEPOINT_V",
"METAL_ALIGN",
"METAL_ASM",
"METAL_CONST",
"METAL_DEPRECATED",
"METAL_ENABLE_IF",
"METAL_FUNC",
"METAL_INTERNAL",
"METAL_NON_NULL_RETURN",
"METAL_NORETURN",
"METAL_NOTHROW",
"METAL_PURE",
"METAL_UNAVAILABLE",
"METAL_IMPLICIT",
"METAL_EXPLICIT",
"METAL_CONST_ARG",
"METAL_ARG_UNIFORM",
"METAL_ZERO_ARG",
"METAL_VALID_LOD_ARG",
"METAL_VALID_LEVEL_ARG",
"METAL_VALID_STORE_ORDER",
"METAL_VALID_LOAD_ORDER",
"METAL_VALID_COMPARE_EXCHANGE_FAILURE_ORDER",
"METAL_COMPATIBLE_COMPARE_EXCHANGE_ORDERS",
"METAL_VALID_RENDER_TARGET",
"is_function_constant_defined",
"CHAR_BIT",
"SCHAR_MAX",
"SCHAR_MIN",
"UCHAR_MAX",
"CHAR_MAX",
"CHAR_MIN",
"USHRT_MAX",
"SHRT_MAX",
"SHRT_MIN",
"UINT_MAX",
"INT_MAX",
"INT_MIN",
"FLT_DIG",
"FLT_MANT_DIG",
"FLT_MAX_10_EXP",
"FLT_MAX_EXP",
"FLT_MIN_10_EXP",
"FLT_MIN_EXP",
"FLT_RADIX",
"FLT_MAX",
"FLT_MIN",
"FLT_EPSILON",
"FP_ILOGB0",
"FP_ILOGBNAN",
"MAXFLOAT",
"HUGE_VALF",
"INFINITY",
"NAN",
"M_E_F",
"M_LOG2E_F",
"M_LOG10E_F",
"M_LN2_F",
"M_LN10_F",
"M_PI_F",
"M_PI_2_F",
"M_PI_4_F",
"M_1_PI_F",
"M_2_PI_F",
"M_2_SQRTPI_F",
"M_SQRT2_F",
"M_SQRT1_2_F",
"HALF_DIG",
"HALF_MANT_DIG",
"HALF_MAX_10_EXP",
"HALF_MAX_EXP",
"HALF_MIN_10_EXP",
"HALF_MIN_EXP",
"HALF_RADIX",
"HALF_MAX",
"HALF_MIN",
"HALF_EPSILON",
"MAXHALF",
"HUGE_VALH",
"M_E_H",
"M_LOG2E_H",
"M_LOG10E_H",
"M_LN2_H",
"M_LN10_H",
"M_PI_H",
"M_PI_2_H",
"M_PI_4_H",
"M_1_PI_H",
"M_2_PI_H",
"M_2_SQRTPI_H",
"M_SQRT2_H",
"M_SQRT1_2_H",
"DBL_DIG",
"DBL_MANT_DIG",
"DBL_MAX_10_EXP",
"DBL_MAX_EXP",
"DBL_MIN_10_EXP",
"DBL_MIN_EXP",
"DBL_RADIX",
"DBL_MAX",
"DBL_MIN",
"DBL_EPSILON",
"HUGE_VAL",
"M_E",
"M_LOG2E",
"M_LOG10E",
"M_LN2",
"M_LN10",
"M_PI",
"M_PI_2",
"M_PI_4",
"M_1_PI",
"M_2_PI",
"M_2_SQRTPI",
"M_SQRT2",
"M_SQRT1_2",
"quad_broadcast",
"thread",
"threadgroup",
};
return keywords;
}
const std::unordered_set<std::string> &CompilerMSL::get_illegal_func_names()
{
static const unordered_set<string> illegal_func_names = {
"main",
"saturate",
"assert",
"fmin3",
"fmax3",
"divide",
"VARIABLE_TRACEPOINT",
"STATIC_DATA_TRACEPOINT",
"STATIC_DATA_TRACEPOINT_V",
"METAL_ALIGN",
"METAL_ASM",
"METAL_CONST",
"METAL_DEPRECATED",
"METAL_ENABLE_IF",
"METAL_FUNC",
"METAL_INTERNAL",
"METAL_NON_NULL_RETURN",
"METAL_NORETURN",
"METAL_NOTHROW",
"METAL_PURE",
"METAL_UNAVAILABLE",
"METAL_IMPLICIT",
"METAL_EXPLICIT",
"METAL_CONST_ARG",
"METAL_ARG_UNIFORM",
"METAL_ZERO_ARG",
"METAL_VALID_LOD_ARG",
"METAL_VALID_LEVEL_ARG",
"METAL_VALID_STORE_ORDER",
"METAL_VALID_LOAD_ORDER",
"METAL_VALID_COMPARE_EXCHANGE_FAILURE_ORDER",
"METAL_COMPATIBLE_COMPARE_EXCHANGE_ORDERS",
"METAL_VALID_RENDER_TARGET",
"is_function_constant_defined",
"CHAR_BIT",
"SCHAR_MAX",
"SCHAR_MIN",
"UCHAR_MAX",
"CHAR_MAX",
"CHAR_MIN",
"USHRT_MAX",
"SHRT_MAX",
"SHRT_MIN",
"UINT_MAX",
"INT_MAX",
"INT_MIN",
"FLT_DIG",
"FLT_MANT_DIG",
"FLT_MAX_10_EXP",
"FLT_MAX_EXP",
"FLT_MIN_10_EXP",
"FLT_MIN_EXP",
"FLT_RADIX",
"FLT_MAX",
"FLT_MIN",
"FLT_EPSILON",
"FP_ILOGB0",
"FP_ILOGBNAN",
"MAXFLOAT",
"HUGE_VALF",
"INFINITY",
"NAN",
"M_E_F",
"M_LOG2E_F",
"M_LOG10E_F",
"M_LN2_F",
"M_LN10_F",
"M_PI_F",
"M_PI_2_F",
"M_PI_4_F",
"M_1_PI_F",
"M_2_PI_F",
"M_2_SQRTPI_F",
"M_SQRT2_F",
"M_SQRT1_2_F",
"HALF_DIG",
"HALF_MANT_DIG",
"HALF_MAX_10_EXP",
"HALF_MAX_EXP",
"HALF_MIN_10_EXP",
"HALF_MIN_EXP",
"HALF_RADIX",
"HALF_MAX",
"HALF_MIN",
"HALF_EPSILON",
"MAXHALF",
"HUGE_VALH",
"M_E_H",
"M_LOG2E_H",
"M_LOG10E_H",
"M_LN2_H",
"M_LN10_H",
"M_PI_H",
"M_PI_2_H",
"M_PI_4_H",
"M_1_PI_H",
"M_2_PI_H",
"M_2_SQRTPI_H",
"M_SQRT2_H",
"M_SQRT1_2_H",
"DBL_DIG",
"DBL_MANT_DIG",
"DBL_MAX_10_EXP",
"DBL_MAX_EXP",
"DBL_MIN_10_EXP",
"DBL_MIN_EXP",
"DBL_RADIX",
"DBL_MAX",
"DBL_MIN",
"DBL_EPSILON",
"HUGE_VAL",
"M_E",
"M_LOG2E",
"M_LOG10E",
"M_LN2",
"M_LN10",
"M_PI",
"M_PI_2",
"M_PI_4",
"M_1_PI",
"M_2_PI",
"M_2_SQRTPI",
"M_SQRT2",
"M_SQRT1_2",
};
return illegal_func_names;
}
// Replace all names that match MSL keywords or Metal Standard Library functions.
void CompilerMSL::replace_illegal_names()
{
// FIXME: MSL and GLSL are doing two different things here.
// Agree on convention and remove this override.
auto &keywords = get_reserved_keyword_set();
auto &illegal_func_names = get_illegal_func_names();
ir.for_each_typed_id<SPIRVariable>([&](uint32_t self, SPIRVariable &) {
auto *meta = ir.find_meta(self);
if (!meta)
return;
auto &dec = meta->decoration;
if (keywords.find(dec.alias) != end(keywords))
dec.alias += "0";
});
ir.for_each_typed_id<SPIRFunction>([&](uint32_t self, SPIRFunction &) {
auto *meta = ir.find_meta(self);
if (!meta)
return;
auto &dec = meta->decoration;
if (illegal_func_names.find(dec.alias) != end(illegal_func_names))
dec.alias += "0";
});
ir.for_each_typed_id<SPIRType>([&](uint32_t self, SPIRType &) {
auto *meta = ir.find_meta(self);
if (!meta)
return;
for (auto &mbr_dec : meta->members)
if (keywords.find(mbr_dec.alias) != end(keywords))
mbr_dec.alias += "0";
});
CompilerGLSL::replace_illegal_names();
}
void CompilerMSL::replace_illegal_entry_point_names()
{
auto &illegal_func_names = get_illegal_func_names();
// It is important to this before we fixup identifiers,
// since if ep_name is reserved, we will need to fix that up,
// and then copy alias back into entry.name after the fixup.
for (auto &entry : ir.entry_points)
{
// Change both the entry point name and the alias, to keep them synced.
string &ep_name = entry.second.name;
if (illegal_func_names.find(ep_name) != end(illegal_func_names))
ep_name += "0";
ir.meta[entry.first].decoration.alias = ep_name;
}
}
void CompilerMSL::sync_entry_point_aliases_and_names()
{
for (auto &entry : ir.entry_points)
entry.second.name = ir.meta[entry.first].decoration.alias;
}
string CompilerMSL::to_member_reference(uint32_t base, const SPIRType &type, uint32_t index, bool ptr_chain_is_resolved)
{
auto *var = maybe_get_backing_variable(base);
// If this is a buffer array, we have to dereference the buffer pointers.
// Otherwise, if this is a pointer expression, dereference it.
bool declared_as_pointer = false;
if (var)
{
// Only allow -> dereference for block types. This is so we get expressions like
// buffer[i]->first_member.second_member, rather than buffer[i]->first->second.
const bool is_block =
has_decoration(type.self, DecorationBlock) || has_decoration(type.self, DecorationBufferBlock);
bool is_buffer_variable =
is_block && (var->storage == StorageClassUniform || var->storage == StorageClassStorageBuffer);
declared_as_pointer = is_buffer_variable && is_array(get_pointee_type(var->basetype));
}
if (declared_as_pointer || (!ptr_chain_is_resolved && should_dereference(base)))
return join("->", to_member_name(type, index));
else
return join(".", to_member_name(type, index));
}
string CompilerMSL::to_qualifiers_glsl(uint32_t id)
{
string quals;
auto *var = maybe_get<SPIRVariable>(id);
auto &type = expression_type(id);
if (type.storage == StorageClassWorkgroup || (var && variable_decl_is_remapped_storage(*var, StorageClassWorkgroup)))
quals += "threadgroup ";
return quals;
}
// The optional id parameter indicates the object whose type we are trying
// to find the description for. It is optional. Most type descriptions do not
// depend on a specific object's use of that type.
string CompilerMSL::type_to_glsl(const SPIRType &type, uint32_t id, bool member)
{
string type_name;
// Pointer?
if (is_pointer(type) || type_is_array_of_pointers(type))
{
assert(type.pointer_depth > 0);
const char *restrict_kw;
auto type_address_space = get_type_address_space(type, id);
const auto *p_parent_type = &get<SPIRType>(type.parent_type);
// If we're wrapping buffer descriptors in a spvDescriptorArray, we'll have to handle it as a special case.
if (member && id)
{
auto &var = get<SPIRVariable>(id);
if (is_var_runtime_size_array(var) && is_runtime_size_array(*p_parent_type))
{
const bool ssbo = has_decoration(p_parent_type->self, DecorationBufferBlock);
bool buffer_desc =
(var.storage == StorageClassStorageBuffer || ssbo) &&
msl_options.runtime_array_rich_descriptor;
const char *wrapper_type = buffer_desc ? "spvBufferDescriptor" : "spvDescriptor";
add_spv_func_and_recompile(SPVFuncImplVariableDescriptorArray);
add_spv_func_and_recompile(buffer_desc ? SPVFuncImplVariableSizedDescriptor : SPVFuncImplVariableDescriptor);
type_name = join(wrapper_type, "<", type_address_space, " ", type_to_glsl(*p_parent_type, id), " *>");
return type_name;
}
}
// Work around C pointer qualifier rules. If glsl_type is a pointer type as well
// we'll need to emit the address space to the right.
// We could always go this route, but it makes the code unnatural.
// Prefer emitting thread T *foo over T thread* foo since it's more readable,
// but we'll have to emit thread T * thread * T constant bar; for example.
if (type_is_pointer_to_pointer(type))
type_name = join(type_to_glsl(*p_parent_type, id), " ", type_address_space, " ");
else
{
// Since this is not a pointer-to-pointer, ensure we've dug down to the base type.
// Some situations chain pointers even though they are not formally pointers-of-pointers.
while (type_is_pointer(*p_parent_type))
p_parent_type = &get<SPIRType>(p_parent_type->parent_type);
// If we're emitting BDA, just use the templated type.
// Emitting builtin arrays need a lot of cooperation with other code to ensure
// the C-style nesting works right.
// FIXME: This is somewhat of a hack.
bool old_is_using_builtin_array = is_using_builtin_array;
if (is_physical_pointer(type))
is_using_builtin_array = false;
type_name = join(type_address_space, " ", type_to_glsl(*p_parent_type, id));
is_using_builtin_array = old_is_using_builtin_array;
}
switch (type.basetype)
{
case SPIRType::Image:
case SPIRType::SampledImage:
case SPIRType::Sampler:
// These are handles.
break;
default:
// Anything else can be a raw pointer.
type_name += "*";
restrict_kw = to_restrict(id, false);
if (*restrict_kw)
{
type_name += " ";
type_name += restrict_kw;
}
break;
}
return type_name;
}
switch (type.basetype)
{
case SPIRType::Struct:
// Need OpName lookup here to get a "sensible" name for a struct.
// Allow Metal to use the array<T> template to make arrays a value type
type_name = to_name(type.self);
break;
case SPIRType::Image:
case SPIRType::SampledImage:
return image_type_glsl(type, id, member);
case SPIRType::Sampler:
return sampler_type(type, id, member);
case SPIRType::Void:
return "void";
case SPIRType::AtomicCounter:
return "atomic_uint";
case SPIRType::ControlPointArray:
return join("patch_control_point<", type_to_glsl(get<SPIRType>(type.parent_type), id), ">");
case SPIRType::Interpolant:
return join("interpolant<", type_to_glsl(get<SPIRType>(type.parent_type), id), ", interpolation::",
has_decoration(type.self, DecorationNoPerspective) ? "no_perspective" : "perspective", ">");
// Scalars
case SPIRType::Boolean:
{
auto *var = maybe_get_backing_variable(id);
if (var && var->basevariable)
var = &get<SPIRVariable>(var->basevariable);
// Need to special-case threadgroup booleans. They are supposed to be logical
// storage, but MSL compilers will sometimes crash if you use threadgroup bool.
// Workaround this by using 16-bit types instead and fixup on load-store to this data.
if ((var && var->storage == StorageClassWorkgroup) || type.storage == StorageClassWorkgroup || member)
type_name = "short";
else
type_name = "bool";
break;
}
case SPIRType::Char:
case SPIRType::SByte:
type_name = "char";
break;
case SPIRType::UByte:
type_name = "uchar";
break;
case SPIRType::Short:
type_name = "short";
break;
case SPIRType::UShort:
type_name = "ushort";
break;
case SPIRType::Int:
type_name = "int";
break;
case SPIRType::UInt:
type_name = "uint";
break;
case SPIRType::Int64:
if (!msl_options.supports_msl_version(2, 2))
SPIRV_CROSS_THROW("64-bit integers are only supported in MSL 2.2 and above.");
type_name = "long";
break;
case SPIRType::UInt64:
if (!msl_options.supports_msl_version(2, 2))
SPIRV_CROSS_THROW("64-bit integers are only supported in MSL 2.2 and above.");
type_name = "ulong";
break;
case SPIRType::Half:
type_name = "half";
break;
case SPIRType::Float:
type_name = "float";
break;
case SPIRType::Double:
type_name = "double"; // Currently unsupported
break;
case SPIRType::AccelerationStructure:
if (msl_options.supports_msl_version(2, 4))
type_name = "raytracing::acceleration_structure<raytracing::instancing>";
else if (msl_options.supports_msl_version(2, 3))
type_name = "raytracing::instance_acceleration_structure";
else
SPIRV_CROSS_THROW("Acceleration Structure Type is supported in MSL 2.3 and above.");
break;
case SPIRType::RayQuery:
return "raytracing::intersection_query<raytracing::instancing, raytracing::triangle_data>";
default:
return "unknown_type";
}
// Matrix?
if (type.columns > 1)
{
auto *var = maybe_get_backing_variable(id);
if (var && var->basevariable)
var = &get<SPIRVariable>(var->basevariable);
// Need to special-case threadgroup matrices. Due to an oversight, Metal's
// matrix struct prior to Metal 3 lacks constructors in the threadgroup AS,
// preventing us from default-constructing or initializing matrices in threadgroup storage.
// Work around this by using our own type as storage.
if (((var && var->storage == StorageClassWorkgroup) || type.storage == StorageClassWorkgroup) &&
!msl_options.supports_msl_version(3, 0))
{
add_spv_func_and_recompile(SPVFuncImplStorageMatrix);
type_name = "spvStorage_" + type_name;
}
type_name += to_string(type.columns) + "x";
}
// Vector or Matrix?
if (type.vecsize > 1)
type_name += to_string(type.vecsize);
if (type.array.empty() || using_builtin_array())
{
return type_name;
}
else
{
// Allow Metal to use the array<T> template to make arrays a value type
add_spv_func_and_recompile(SPVFuncImplUnsafeArray);
string res;
string sizes;
for (uint32_t i = 0; i < uint32_t(type.array.size()); i++)
{
res += "spvUnsafeArray<";
sizes += ", ";
sizes += to_array_size(type, i);
sizes += ">";
}
res += type_name + sizes;
return res;
}
}
string CompilerMSL::type_to_glsl(const SPIRType &type, uint32_t id)
{
return type_to_glsl(type, id, false);
}
string CompilerMSL::type_to_array_glsl(const SPIRType &type)
{
// Allow Metal to use the array<T> template to make arrays a value type
switch (type.basetype)
{
case SPIRType::AtomicCounter:
case SPIRType::ControlPointArray:
case SPIRType::RayQuery:
return CompilerGLSL::type_to_array_glsl(type);
default:
if (type_is_array_of_pointers(type) || using_builtin_array())
return CompilerGLSL::type_to_array_glsl(type);
else
return "";
}
}
string CompilerMSL::constant_op_expression(const SPIRConstantOp &cop)
{
switch (cop.opcode)
{
case OpQuantizeToF16:
add_spv_func_and_recompile(SPVFuncImplQuantizeToF16);
return join("spvQuantizeToF16(", to_expression(cop.arguments[0]), ")");
default:
return CompilerGLSL::constant_op_expression(cop);
}
}
bool CompilerMSL::variable_decl_is_remapped_storage(const SPIRVariable &variable, spv::StorageClass storage) const
{
if (variable.storage == storage)
return true;
if (storage == StorageClassWorkgroup)
{
// Specially masked IO block variable.
// Normally, we will never access IO blocks directly here.
// The only scenario which that should occur is with a masked IO block.
if (is_tesc_shader() && variable.storage == StorageClassOutput &&
has_decoration(get<SPIRType>(variable.basetype).self, DecorationBlock))
{
return true;
}
return variable.storage == StorageClassOutput && is_tesc_shader() && is_stage_output_variable_masked(variable);
}
else if (storage == StorageClassStorageBuffer)
{
// These builtins are passed directly; we don't want to use remapping
// for them.
auto builtin = (BuiltIn)get_decoration(variable.self, DecorationBuiltIn);
if (is_tese_shader() && is_builtin_variable(variable) && (builtin == BuiltInTessCoord || builtin == BuiltInPrimitiveId))
return false;
// We won't be able to catch writes to control point outputs here since variable
// refers to a function local pointer.
// This is fine, as there cannot be concurrent writers to that memory anyways,
// so we just ignore that case.
return (variable.storage == StorageClassOutput || variable.storage == StorageClassInput) &&
!variable_storage_requires_stage_io(variable.storage) &&
(variable.storage != StorageClassOutput || !is_stage_output_variable_masked(variable));
}
else
{
return false;
}
}
// GCC workaround of lambdas calling protected funcs
std::string CompilerMSL::variable_decl(const SPIRType &type, const std::string &name, uint32_t id)
{
return CompilerGLSL::variable_decl(type, name, id);
}
std::string CompilerMSL::sampler_type(const SPIRType &type, uint32_t id, bool member)
{
auto *var = maybe_get<SPIRVariable>(id);
if (var && var->basevariable)
{
// Check against the base variable, and not a fake ID which might have been generated for this variable.
id = var->basevariable;
}
if (!type.array.empty())
{
if (!msl_options.supports_msl_version(2))
SPIRV_CROSS_THROW("MSL 2.0 or greater is required for arrays of samplers.");
if (type.array.size() > 1)
SPIRV_CROSS_THROW("Arrays of arrays of samplers are not supported in MSL.");
// Arrays of samplers in MSL must be declared with a special array<T, N> syntax ala C++11 std::array.
// If we have a runtime array, it could be a variable-count descriptor set binding.
auto &parent = get<SPIRType>(get_pointee_type(type).parent_type);
uint32_t array_size = get_resource_array_size(type, id);
if (array_size == 0)
{
add_spv_func_and_recompile(SPVFuncImplVariableDescriptor);
add_spv_func_and_recompile(SPVFuncImplVariableDescriptorArray);
const char *descriptor_wrapper = processing_entry_point ? "const device spvDescriptor" : "const spvDescriptorArray";
if (member)
descriptor_wrapper = "spvDescriptor";
return join(descriptor_wrapper, "<", sampler_type(parent, id, false), ">",
processing_entry_point ? "*" : "");
}
else
{
return join("array<", sampler_type(parent, id, false), ", ", array_size, ">");
}
}
else
return "sampler";
}
// Returns an MSL string describing the SPIR-V image type
string CompilerMSL::image_type_glsl(const SPIRType &type, uint32_t id, bool member)
{
auto *var = maybe_get<SPIRVariable>(id);
if (var && var->basevariable)
{
// For comparison images, check against the base variable,
// and not the fake ID which might have been generated for this variable.
id = var->basevariable;
}
if (!type.array.empty())
{
uint32_t major = 2, minor = 0;
if (msl_options.is_ios())
{
major = 1;
minor = 2;
}
if (!msl_options.supports_msl_version(major, minor))
{
if (msl_options.is_ios())
SPIRV_CROSS_THROW("MSL 1.2 or greater is required for arrays of textures.");
else
SPIRV_CROSS_THROW("MSL 2.0 or greater is required for arrays of textures.");
}
if (type.array.size() > 1)
SPIRV_CROSS_THROW("Arrays of arrays of textures are not supported in MSL.");
// Arrays of images in MSL must be declared with a special array<T, N> syntax ala C++11 std::array.
// If we have a runtime array, it could be a variable-count descriptor set binding.
auto &parent = get<SPIRType>(get_pointee_type(type).parent_type);
uint32_t array_size = get_resource_array_size(type, id);
if (array_size == 0)
{
add_spv_func_and_recompile(SPVFuncImplVariableDescriptor);
add_spv_func_and_recompile(SPVFuncImplVariableDescriptorArray);
const char *descriptor_wrapper = processing_entry_point ? "const device spvDescriptor" : "const spvDescriptorArray";
if (member)
{
descriptor_wrapper = "spvDescriptor";
// This requires a specialized wrapper type that packs image and sampler side by side.
// It is possible in theory.
if (type.basetype == SPIRType::SampledImage)
SPIRV_CROSS_THROW("Argument buffer runtime array currently not supported for combined image sampler.");
}
return join(descriptor_wrapper, "<", image_type_glsl(parent, id, false), ">",
processing_entry_point ? "*" : "");
}
else
{
return join("array<", image_type_glsl(parent, id, false), ", ", array_size, ">");
}
}
string img_type_name;
// Bypass pointers because we need the real image struct
auto &img_type = get<SPIRType>(type.self).image;
if (is_depth_image(type, id))
{
switch (img_type.dim)
{
case Dim1D:
case Dim2D:
if (img_type.dim == Dim1D && !msl_options.texture_1D_as_2D)
{
// Use a native Metal 1D texture
img_type_name += "depth1d_unsupported_by_metal";
break;
}
if (img_type.ms && img_type.arrayed)
{
if (!msl_options.supports_msl_version(2, 1))
SPIRV_CROSS_THROW("Multisampled array textures are supported from 2.1.");
img_type_name += "depth2d_ms_array";
}
else if (img_type.ms)
img_type_name += "depth2d_ms";
else if (img_type.arrayed)
img_type_name += "depth2d_array";
else
img_type_name += "depth2d";
break;
case Dim3D:
img_type_name += "depth3d_unsupported_by_metal";
break;
case DimCube:
if (!msl_options.emulate_cube_array)
img_type_name += (img_type.arrayed ? "depthcube_array" : "depthcube");
else
img_type_name += (img_type.arrayed ? "depth2d_array" : "depthcube");
break;
default:
img_type_name += "unknown_depth_texture_type";
break;
}
}
else
{
switch (img_type.dim)
{
case DimBuffer:
if (img_type.ms || img_type.arrayed)
SPIRV_CROSS_THROW("Cannot use texel buffers with multisampling or array layers.");
if (msl_options.texture_buffer_native)
{
if (!msl_options.supports_msl_version(2, 1))
SPIRV_CROSS_THROW("Native texture_buffer type is only supported in MSL 2.1.");
img_type_name = "texture_buffer";
}
else
img_type_name += "texture2d";
break;
case Dim1D:
case Dim2D:
case DimSubpassData:
{
bool subpass_array =
img_type.dim == DimSubpassData && (msl_options.multiview || msl_options.arrayed_subpass_input);
if (img_type.dim == Dim1D && !msl_options.texture_1D_as_2D)
{
// Use a native Metal 1D texture
img_type_name += (img_type.arrayed ? "texture1d_array" : "texture1d");
break;
}
// Use Metal's native frame-buffer fetch API for subpass inputs.
if (type_is_msl_framebuffer_fetch(type))
{
auto img_type_4 = get<SPIRType>(img_type.type);
img_type_4.vecsize = 4;
return type_to_glsl(img_type_4);
}
if (img_type.ms && (img_type.arrayed || subpass_array))
{
if (!msl_options.supports_msl_version(2, 1))
SPIRV_CROSS_THROW("Multisampled array textures are supported from 2.1.");
img_type_name += "texture2d_ms_array";
}
else if (img_type.ms)
img_type_name += "texture2d_ms";
else if (img_type.arrayed || subpass_array)
img_type_name += "texture2d_array";
else
img_type_name += "texture2d";
break;
}
case Dim3D:
img_type_name += "texture3d";
break;
case DimCube:
if (!msl_options.emulate_cube_array)
img_type_name += (img_type.arrayed ? "texturecube_array" : "texturecube");
else
img_type_name += (img_type.arrayed ? "texture2d_array" : "texturecube");
break;
default:
img_type_name += "unknown_texture_type";
break;
}
}
// Append the pixel type
img_type_name += "<";
img_type_name += type_to_glsl(get<SPIRType>(img_type.type));
// For unsampled images, append the sample/read/write access qualifier.
// For kernel images, the access qualifier my be supplied directly by SPIR-V.
// Otherwise it may be set based on whether the image is read from or written to within the shader.
if (type.basetype == SPIRType::Image && type.image.sampled == 2 && type.image.dim != DimSubpassData)
{
switch (img_type.access)
{
case AccessQualifierReadOnly:
img_type_name += ", access::read";
break;
case AccessQualifierWriteOnly:
img_type_name += ", access::write";
break;
case AccessQualifierReadWrite:
img_type_name += ", access::read_write";
break;
default:
{
auto *p_var = maybe_get_backing_variable(id);
if (p_var && p_var->basevariable)
p_var = maybe_get<SPIRVariable>(p_var->basevariable);
if (p_var && !has_decoration(p_var->self, DecorationNonWritable))
{
img_type_name += ", access::";
if (!has_decoration(p_var->self, DecorationNonReadable))
img_type_name += "read_";
img_type_name += "write";
}
break;
}
}
}
img_type_name += ">";
return img_type_name;
}
void CompilerMSL::emit_subgroup_op(const Instruction &i)
{
const uint32_t *ops = stream(i);
auto op = static_cast<Op>(i.op);
if (msl_options.emulate_subgroups)
{
// In this mode, only the GroupNonUniform cap is supported. The only op
// we need to handle, then, is OpGroupNonUniformElect.
if (op != OpGroupNonUniformElect)
SPIRV_CROSS_THROW("Subgroup emulation does not support operations other than Elect.");
// In this mode, the subgroup size is assumed to be one, so every invocation
// is elected.
emit_op(ops[0], ops[1], "true", true);
return;
}
// Metal 2.0 is required. iOS only supports quad ops on 11.0 (2.0), with
// full support in 13.0 (2.2). macOS only supports broadcast and shuffle on
// 10.13 (2.0), with full support in 10.14 (2.1).
// Note that Apple GPUs before A13 make no distinction between a quad-group
// and a SIMD-group; all SIMD-groups are quad-groups on those.
if (!msl_options.supports_msl_version(2))
SPIRV_CROSS_THROW("Subgroups are only supported in Metal 2.0 and up.");
// If we need to do implicit bitcasts, make sure we do it with the correct type.
uint32_t integer_width = get_integer_width_for_instruction(i);
auto int_type = to_signed_basetype(integer_width);
auto uint_type = to_unsigned_basetype(integer_width);
if (msl_options.is_ios() && (!msl_options.supports_msl_version(2, 3) || !msl_options.ios_use_simdgroup_functions))
{
switch (op)
{
default:
SPIRV_CROSS_THROW("Subgroup ops beyond broadcast, ballot, and shuffle on iOS require Metal 2.3 and up.");
case OpGroupNonUniformBroadcastFirst:
if (!msl_options.supports_msl_version(2, 2))
SPIRV_CROSS_THROW("BroadcastFirst on iOS requires Metal 2.2 and up.");
break;
case OpGroupNonUniformElect:
if (!msl_options.supports_msl_version(2, 2))
SPIRV_CROSS_THROW("Elect on iOS requires Metal 2.2 and up.");
break;
case OpGroupNonUniformAny:
case OpGroupNonUniformAll:
case OpGroupNonUniformAllEqual:
case OpGroupNonUniformBallot:
case OpGroupNonUniformInverseBallot:
case OpGroupNonUniformBallotBitExtract:
case OpGroupNonUniformBallotFindLSB:
case OpGroupNonUniformBallotFindMSB:
case OpGroupNonUniformBallotBitCount:
case OpSubgroupBallotKHR:
case OpSubgroupAllKHR:
case OpSubgroupAnyKHR:
case OpSubgroupAllEqualKHR:
if (!msl_options.supports_msl_version(2, 2))
SPIRV_CROSS_THROW("Ballot ops on iOS requires Metal 2.2 and up.");
break;
case OpGroupNonUniformBroadcast:
case OpGroupNonUniformShuffle:
case OpGroupNonUniformShuffleXor:
case OpGroupNonUniformShuffleUp:
case OpGroupNonUniformShuffleDown:
case OpGroupNonUniformQuadSwap:
case OpGroupNonUniformQuadBroadcast:
case OpSubgroupReadInvocationKHR:
break;
}
}
if (msl_options.is_macos() && !msl_options.supports_msl_version(2, 1))
{
switch (op)
{
default:
SPIRV_CROSS_THROW("Subgroup ops beyond broadcast and shuffle on macOS require Metal 2.1 and up.");
case OpGroupNonUniformBroadcast:
case OpGroupNonUniformShuffle:
case OpGroupNonUniformShuffleXor:
case OpGroupNonUniformShuffleUp:
case OpGroupNonUniformShuffleDown:
case OpSubgroupReadInvocationKHR:
break;
}
}
uint32_t op_idx = 0;
uint32_t result_type = ops[op_idx++];
uint32_t id = ops[op_idx++];
Scope scope;
switch (op)
{
case OpSubgroupBallotKHR:
case OpSubgroupFirstInvocationKHR:
case OpSubgroupReadInvocationKHR:
case OpSubgroupAllKHR:
case OpSubgroupAnyKHR:
case OpSubgroupAllEqualKHR:
// These earlier instructions don't have the scope operand.
scope = ScopeSubgroup;
break;
default:
scope = static_cast<Scope>(evaluate_constant_u32(ops[op_idx++]));
break;
}
if (scope != ScopeSubgroup)
SPIRV_CROSS_THROW("Only subgroup scope is supported.");
switch (op)
{
case OpGroupNonUniformElect:
if (msl_options.use_quadgroup_operation())
emit_op(result_type, id, "quad_is_first()", false);
else
emit_op(result_type, id, "simd_is_first()", false);
break;
case OpGroupNonUniformBroadcast:
case OpSubgroupReadInvocationKHR:
emit_binary_func_op(result_type, id, ops[op_idx], ops[op_idx + 1], "spvSubgroupBroadcast");
break;
case OpGroupNonUniformBroadcastFirst:
case OpSubgroupFirstInvocationKHR:
emit_unary_func_op(result_type, id, ops[op_idx], "spvSubgroupBroadcastFirst");
break;
case OpGroupNonUniformBallot:
case OpSubgroupBallotKHR:
emit_unary_func_op(result_type, id, ops[op_idx], "spvSubgroupBallot");
break;
case OpGroupNonUniformInverseBallot:
emit_binary_func_op(result_type, id, ops[op_idx], builtin_subgroup_invocation_id_id, "spvSubgroupBallotBitExtract");
break;
case OpGroupNonUniformBallotBitExtract:
emit_binary_func_op(result_type, id, ops[op_idx], ops[op_idx + 1], "spvSubgroupBallotBitExtract");
break;
case OpGroupNonUniformBallotFindLSB:
emit_binary_func_op(result_type, id, ops[op_idx], builtin_subgroup_size_id, "spvSubgroupBallotFindLSB");
break;
case OpGroupNonUniformBallotFindMSB:
emit_binary_func_op(result_type, id, ops[op_idx], builtin_subgroup_size_id, "spvSubgroupBallotFindMSB");
break;
case OpGroupNonUniformBallotBitCount:
{
auto operation = static_cast<GroupOperation>(ops[op_idx++]);
switch (operation)
{
case GroupOperationReduce:
emit_binary_func_op(result_type, id, ops[op_idx], builtin_subgroup_size_id, "spvSubgroupBallotBitCount");
break;
case GroupOperationInclusiveScan:
emit_binary_func_op(result_type, id, ops[op_idx], builtin_subgroup_invocation_id_id,
"spvSubgroupBallotInclusiveBitCount");
break;
case GroupOperationExclusiveScan:
emit_binary_func_op(result_type, id, ops[op_idx], builtin_subgroup_invocation_id_id,
"spvSubgroupBallotExclusiveBitCount");
break;
default:
SPIRV_CROSS_THROW("Invalid BitCount operation.");
}
break;
}
case OpGroupNonUniformShuffle:
emit_binary_func_op(result_type, id, ops[op_idx], ops[op_idx + 1], "spvSubgroupShuffle");
break;
case OpGroupNonUniformShuffleXor:
emit_binary_func_op(result_type, id, ops[op_idx], ops[op_idx + 1], "spvSubgroupShuffleXor");
break;
case OpGroupNonUniformShuffleUp:
emit_binary_func_op(result_type, id, ops[op_idx], ops[op_idx + 1], "spvSubgroupShuffleUp");
break;
case OpGroupNonUniformShuffleDown:
emit_binary_func_op(result_type, id, ops[op_idx], ops[op_idx + 1], "spvSubgroupShuffleDown");
break;
case OpGroupNonUniformAll:
case OpSubgroupAllKHR:
if (msl_options.use_quadgroup_operation())
emit_unary_func_op(result_type, id, ops[op_idx], "quad_all");
else
emit_unary_func_op(result_type, id, ops[op_idx], "simd_all");
break;
case OpGroupNonUniformAny:
case OpSubgroupAnyKHR:
if (msl_options.use_quadgroup_operation())
emit_unary_func_op(result_type, id, ops[op_idx], "quad_any");
else
emit_unary_func_op(result_type, id, ops[op_idx], "simd_any");
break;
case OpGroupNonUniformAllEqual:
case OpSubgroupAllEqualKHR:
emit_unary_func_op(result_type, id, ops[op_idx], "spvSubgroupAllEqual");
break;
// clang-format off
#define MSL_GROUP_OP(op, msl_op) \
case OpGroupNonUniform##op: \
{ \
auto operation = static_cast<GroupOperation>(ops[op_idx++]); \
if (operation == GroupOperationReduce) \
emit_unary_func_op(result_type, id, ops[op_idx], "simd_" #msl_op); \
else if (operation == GroupOperationInclusiveScan) \
emit_unary_func_op(result_type, id, ops[op_idx], "simd_prefix_inclusive_" #msl_op); \
else if (operation == GroupOperationExclusiveScan) \
emit_unary_func_op(result_type, id, ops[op_idx], "simd_prefix_exclusive_" #msl_op); \
else if (operation == GroupOperationClusteredReduce) \
{ \
/* Only cluster sizes of 4 are supported. */ \
uint32_t cluster_size = evaluate_constant_u32(ops[op_idx + 1]); \
if (cluster_size != 4) \
SPIRV_CROSS_THROW("Metal only supports quad ClusteredReduce."); \
emit_unary_func_op(result_type, id, ops[op_idx], "quad_" #msl_op); \
} \
else \
SPIRV_CROSS_THROW("Invalid group operation."); \
break; \
}
MSL_GROUP_OP(FAdd, sum)
MSL_GROUP_OP(FMul, product)
MSL_GROUP_OP(IAdd, sum)
MSL_GROUP_OP(IMul, product)
#undef MSL_GROUP_OP
// The others, unfortunately, don't support InclusiveScan or ExclusiveScan.
#define MSL_GROUP_OP(op, msl_op) \
case OpGroupNonUniform##op: \
{ \
auto operation = static_cast<GroupOperation>(ops[op_idx++]); \
if (operation == GroupOperationReduce) \
emit_unary_func_op(result_type, id, ops[op_idx], "simd_" #msl_op); \
else if (operation == GroupOperationInclusiveScan) \
SPIRV_CROSS_THROW("Metal doesn't support InclusiveScan for OpGroupNonUniform" #op "."); \
else if (operation == GroupOperationExclusiveScan) \
SPIRV_CROSS_THROW("Metal doesn't support ExclusiveScan for OpGroupNonUniform" #op "."); \
else if (operation == GroupOperationClusteredReduce) \
{ \
/* Only cluster sizes of 4 are supported. */ \
uint32_t cluster_size = evaluate_constant_u32(ops[op_idx + 1]); \
if (cluster_size != 4) \
SPIRV_CROSS_THROW("Metal only supports quad ClusteredReduce."); \
emit_unary_func_op(result_type, id, ops[op_idx], "quad_" #msl_op); \
} \
else \
SPIRV_CROSS_THROW("Invalid group operation."); \
break; \
}
#define MSL_GROUP_OP_CAST(op, msl_op, type) \
case OpGroupNonUniform##op: \
{ \
auto operation = static_cast<GroupOperation>(ops[op_idx++]); \
if (operation == GroupOperationReduce) \
emit_unary_func_op_cast(result_type, id, ops[op_idx], "simd_" #msl_op, type, type); \
else if (operation == GroupOperationInclusiveScan) \
SPIRV_CROSS_THROW("Metal doesn't support InclusiveScan for OpGroupNonUniform" #op "."); \
else if (operation == GroupOperationExclusiveScan) \
SPIRV_CROSS_THROW("Metal doesn't support ExclusiveScan for OpGroupNonUniform" #op "."); \
else if (operation == GroupOperationClusteredReduce) \
{ \
/* Only cluster sizes of 4 are supported. */ \
uint32_t cluster_size = evaluate_constant_u32(ops[op_idx + 1]); \
if (cluster_size != 4) \
SPIRV_CROSS_THROW("Metal only supports quad ClusteredReduce."); \
emit_unary_func_op_cast(result_type, id, ops[op_idx], "quad_" #msl_op, type, type); \
} \
else \
SPIRV_CROSS_THROW("Invalid group operation."); \
break; \
}
MSL_GROUP_OP(FMin, min)
MSL_GROUP_OP(FMax, max)
MSL_GROUP_OP_CAST(SMin, min, int_type)
MSL_GROUP_OP_CAST(SMax, max, int_type)
MSL_GROUP_OP_CAST(UMin, min, uint_type)
MSL_GROUP_OP_CAST(UMax, max, uint_type)
MSL_GROUP_OP(BitwiseAnd, and)
MSL_GROUP_OP(BitwiseOr, or)
MSL_GROUP_OP(BitwiseXor, xor)
MSL_GROUP_OP(LogicalAnd, and)
MSL_GROUP_OP(LogicalOr, or)
MSL_GROUP_OP(LogicalXor, xor)
// clang-format on
#undef MSL_GROUP_OP
#undef MSL_GROUP_OP_CAST
case OpGroupNonUniformQuadSwap:
emit_binary_func_op(result_type, id, ops[op_idx], ops[op_idx + 1], "spvQuadSwap");
break;
case OpGroupNonUniformQuadBroadcast:
emit_binary_func_op(result_type, id, ops[op_idx], ops[op_idx + 1], "spvQuadBroadcast");
break;
default:
SPIRV_CROSS_THROW("Invalid opcode for subgroup.");
}
register_control_dependent_expression(id);
}
string CompilerMSL::bitcast_glsl_op(const SPIRType &out_type, const SPIRType &in_type)
{
if (out_type.basetype == in_type.basetype)
return "";
assert(out_type.basetype != SPIRType::Boolean);
assert(in_type.basetype != SPIRType::Boolean);
bool integral_cast = type_is_integral(out_type) && type_is_integral(in_type) && (out_type.vecsize == in_type.vecsize);
bool same_size_cast = (out_type.width * out_type.vecsize) == (in_type.width * in_type.vecsize);
// Bitcasting can only be used between types of the same overall size.
// And always formally cast between integers, because it's trivial, and also
// because Metal can internally cast the results of some integer ops to a larger
// size (eg. short shift right becomes int), which means chaining integer ops
// together may introduce size variations that SPIR-V doesn't know about.
if (same_size_cast && !integral_cast)
return "as_type<" + type_to_glsl(out_type) + ">";
else
return type_to_glsl(out_type);
}
bool CompilerMSL::emit_complex_bitcast(uint32_t, uint32_t, uint32_t)
{
// This is handled from the outside where we deal with PtrToU/UToPtr and friends.
return false;
}
// Returns an MSL string identifying the name of a SPIR-V builtin.
// Output builtins are qualified with the name of the stage out structure.
string CompilerMSL::builtin_to_glsl(BuiltIn builtin, StorageClass storage)
{
switch (builtin)
{
// Handle HLSL-style 0-based vertex/instance index.
// Override GLSL compiler strictness
case BuiltInVertexId:
ensure_builtin(StorageClassInput, BuiltInVertexId);
if (msl_options.enable_base_index_zero && msl_options.supports_msl_version(1, 1) &&
(msl_options.ios_support_base_vertex_instance || msl_options.is_macos()))
{
if (builtin_declaration)
{
if (needs_base_vertex_arg != TriState::No)
needs_base_vertex_arg = TriState::Yes;
return "gl_VertexID";
}
else
{
ensure_builtin(StorageClassInput, BuiltInBaseVertex);
return "(gl_VertexID - gl_BaseVertex)";
}
}
else
{
return "gl_VertexID";
}
case BuiltInInstanceId:
ensure_builtin(StorageClassInput, BuiltInInstanceId);
if (msl_options.enable_base_index_zero && msl_options.supports_msl_version(1, 1) &&
(msl_options.ios_support_base_vertex_instance || msl_options.is_macos()))
{
if (builtin_declaration)
{
if (needs_base_instance_arg != TriState::No)
needs_base_instance_arg = TriState::Yes;
return "gl_InstanceID";
}
else
{
ensure_builtin(StorageClassInput, BuiltInBaseInstance);
return "(gl_InstanceID - gl_BaseInstance)";
}
}
else
{
return "gl_InstanceID";
}
case BuiltInVertexIndex:
ensure_builtin(StorageClassInput, BuiltInVertexIndex);
if (msl_options.enable_base_index_zero && msl_options.supports_msl_version(1, 1) &&
(msl_options.ios_support_base_vertex_instance || msl_options.is_macos()))
{
if (builtin_declaration)
{
if (needs_base_vertex_arg != TriState::No)
needs_base_vertex_arg = TriState::Yes;
return "gl_VertexIndex";
}
else
{
ensure_builtin(StorageClassInput, BuiltInBaseVertex);
return "(gl_VertexIndex - gl_BaseVertex)";
}
}
else
{
return "gl_VertexIndex";
}
case BuiltInInstanceIndex:
ensure_builtin(StorageClassInput, BuiltInInstanceIndex);
if (msl_options.enable_base_index_zero && msl_options.supports_msl_version(1, 1) &&
(msl_options.ios_support_base_vertex_instance || msl_options.is_macos()))
{
if (builtin_declaration)
{
if (needs_base_instance_arg != TriState::No)
needs_base_instance_arg = TriState::Yes;
return "gl_InstanceIndex";
}
else
{
ensure_builtin(StorageClassInput, BuiltInBaseInstance);
return "(gl_InstanceIndex - gl_BaseInstance)";
}
}
else
{
return "gl_InstanceIndex";
}
case BuiltInBaseVertex:
if (msl_options.supports_msl_version(1, 1) &&
(msl_options.ios_support_base_vertex_instance || msl_options.is_macos()))
{
needs_base_vertex_arg = TriState::No;
return "gl_BaseVertex";
}
else
{
SPIRV_CROSS_THROW("BaseVertex requires Metal 1.1 and Mac or Apple A9+ hardware.");
}
case BuiltInBaseInstance:
if (msl_options.supports_msl_version(1, 1) &&
(msl_options.ios_support_base_vertex_instance || msl_options.is_macos()))
{
needs_base_instance_arg = TriState::No;
return "gl_BaseInstance";
}
else
{
SPIRV_CROSS_THROW("BaseInstance requires Metal 1.1 and Mac or Apple A9+ hardware.");
}
case BuiltInDrawIndex:
SPIRV_CROSS_THROW("DrawIndex is not supported in MSL.");
// When used in the entry function, output builtins are qualified with output struct name.
// Test storage class as NOT Input, as output builtins might be part of generic type.
// Also don't do this for tessellation control shaders.
case BuiltInViewportIndex:
if (!msl_options.supports_msl_version(2, 0))
SPIRV_CROSS_THROW("ViewportIndex requires Metal 2.0.");
/* fallthrough */
case BuiltInFragDepth:
case BuiltInFragStencilRefEXT:
if ((builtin == BuiltInFragDepth && !msl_options.enable_frag_depth_builtin) ||
(builtin == BuiltInFragStencilRefEXT && !msl_options.enable_frag_stencil_ref_builtin))
break;
/* fallthrough */
case BuiltInPosition:
case BuiltInPointSize:
case BuiltInClipDistance:
case BuiltInCullDistance:
case BuiltInLayer:
if (is_tesc_shader())
break;
if (storage != StorageClassInput && current_function && (current_function->self == ir.default_entry_point) &&
!is_stage_output_builtin_masked(builtin))
return stage_out_var_name + "." + CompilerGLSL::builtin_to_glsl(builtin, storage);
break;
case BuiltInSampleMask:
if (storage == StorageClassInput && current_function && (current_function->self == ir.default_entry_point) &&
(has_additional_fixed_sample_mask() || needs_sample_id))
{
string samp_mask_in;
samp_mask_in += "(" + CompilerGLSL::builtin_to_glsl(builtin, storage);
if (has_additional_fixed_sample_mask())
samp_mask_in += " & " + additional_fixed_sample_mask_str();
if (needs_sample_id)
samp_mask_in += " & (1 << gl_SampleID)";
samp_mask_in += ")";
return samp_mask_in;
}
if (storage != StorageClassInput && current_function && (current_function->self == ir.default_entry_point) &&
!is_stage_output_builtin_masked(builtin))
return stage_out_var_name + "." + CompilerGLSL::builtin_to_glsl(builtin, storage);
break;
case BuiltInBaryCoordKHR:
case BuiltInBaryCoordNoPerspKHR:
if (storage == StorageClassInput && current_function && (current_function->self == ir.default_entry_point))
return stage_in_var_name + "." + CompilerGLSL::builtin_to_glsl(builtin, storage);
break;
case BuiltInTessLevelOuter:
if (is_tesc_shader() && storage != StorageClassInput && current_function &&
(current_function->self == ir.default_entry_point))
{
return join(tess_factor_buffer_var_name, "[", to_expression(builtin_primitive_id_id),
"].edgeTessellationFactor");
}
break;
case BuiltInTessLevelInner:
if (is_tesc_shader() && storage != StorageClassInput && current_function &&
(current_function->self == ir.default_entry_point))
{
return join(tess_factor_buffer_var_name, "[", to_expression(builtin_primitive_id_id),
"].insideTessellationFactor");
}
break;
case BuiltInHelperInvocation:
if (needs_manual_helper_invocation_updates())
break;
if (msl_options.is_ios() && !msl_options.supports_msl_version(2, 3))
SPIRV_CROSS_THROW("simd_is_helper_thread() requires version 2.3 on iOS.");
else if (msl_options.is_macos() && !msl_options.supports_msl_version(2, 1))
SPIRV_CROSS_THROW("simd_is_helper_thread() requires version 2.1 on macOS.");
// In SPIR-V 1.6 with Volatile HelperInvocation, we cannot emit a fixup early.
return "simd_is_helper_thread()";
default:
break;
}
return CompilerGLSL::builtin_to_glsl(builtin, storage);
}
// Returns an MSL string attribute qualifer for a SPIR-V builtin
string CompilerMSL::builtin_qualifier(BuiltIn builtin)
{
auto &execution = get_entry_point();
switch (builtin)
{
// Vertex function in
case BuiltInVertexId:
return "vertex_id";
case BuiltInVertexIndex:
return "vertex_id";
case BuiltInBaseVertex:
return "base_vertex";
case BuiltInInstanceId:
return "instance_id";
case BuiltInInstanceIndex:
return "instance_id";
case BuiltInBaseInstance:
return "base_instance";
case BuiltInDrawIndex:
SPIRV_CROSS_THROW("DrawIndex is not supported in MSL.");
// Vertex function out
case BuiltInClipDistance:
return "clip_distance";
case BuiltInPointSize:
return "point_size";
case BuiltInPosition:
if (position_invariant)
{
if (!msl_options.supports_msl_version(2, 1))
SPIRV_CROSS_THROW("Invariant position is only supported on MSL 2.1 and up.");
return "position, invariant";
}
else
return "position";
case BuiltInLayer:
return "render_target_array_index";
case BuiltInViewportIndex:
if (!msl_options.supports_msl_version(2, 0))
SPIRV_CROSS_THROW("ViewportIndex requires Metal 2.0.");
return "viewport_array_index";
// Tess. control function in
case BuiltInInvocationId:
if (msl_options.multi_patch_workgroup)
{
// Shouldn't be reached.
SPIRV_CROSS_THROW("InvocationId is computed manually with multi-patch workgroups in MSL.");
}
return "thread_index_in_threadgroup";
case BuiltInPatchVertices:
// Shouldn't be reached.
SPIRV_CROSS_THROW("PatchVertices is derived from the auxiliary buffer in MSL.");
case BuiltInPrimitiveId:
switch (execution.model)
{
case ExecutionModelTessellationControl:
if (msl_options.multi_patch_workgroup)
{
// Shouldn't be reached.
SPIRV_CROSS_THROW("PrimitiveId is computed manually with multi-patch workgroups in MSL.");
}
return "threadgroup_position_in_grid";
case ExecutionModelTessellationEvaluation:
return "patch_id";
case ExecutionModelFragment:
if (msl_options.is_ios() && !msl_options.supports_msl_version(2, 3))
SPIRV_CROSS_THROW("PrimitiveId on iOS requires MSL 2.3.");
else if (msl_options.is_macos() && !msl_options.supports_msl_version(2, 2))
SPIRV_CROSS_THROW("PrimitiveId on macOS requires MSL 2.2.");
return "primitive_id";
default:
SPIRV_CROSS_THROW("PrimitiveId is not supported in this execution model.");
}
// Tess. control function out
case BuiltInTessLevelOuter:
case BuiltInTessLevelInner:
// Shouldn't be reached.
SPIRV_CROSS_THROW("Tessellation levels are handled specially in MSL.");
// Tess. evaluation function in
case BuiltInTessCoord:
return "position_in_patch";
// Fragment function in
case BuiltInFrontFacing:
return "front_facing";
case BuiltInPointCoord:
return "point_coord";
case BuiltInFragCoord:
return "position";
case BuiltInSampleId:
return "sample_id";
case BuiltInSampleMask:
return "sample_mask";
case BuiltInSamplePosition:
// Shouldn't be reached.
SPIRV_CROSS_THROW("Sample position is retrieved by a function in MSL.");
case BuiltInViewIndex:
if (execution.model != ExecutionModelFragment)
SPIRV_CROSS_THROW("ViewIndex is handled specially outside fragment shaders.");
// The ViewIndex was implicitly used in the prior stages to set the render_target_array_index,
// so we can get it from there.
return "render_target_array_index";
// Fragment function out
case BuiltInFragDepth:
if (execution.flags.get(ExecutionModeDepthGreater))
return "depth(greater)";
else if (execution.flags.get(ExecutionModeDepthLess))
return "depth(less)";
else
return "depth(any)";
case BuiltInFragStencilRefEXT:
return "stencil";
// Compute function in
case BuiltInGlobalInvocationId:
return "thread_position_in_grid";
case BuiltInWorkgroupId:
return "threadgroup_position_in_grid";
case BuiltInNumWorkgroups:
return "threadgroups_per_grid";
case BuiltInLocalInvocationId:
return "thread_position_in_threadgroup";
case BuiltInLocalInvocationIndex:
return "thread_index_in_threadgroup";
case BuiltInSubgroupSize:
if (msl_options.emulate_subgroups || msl_options.fixed_subgroup_size != 0)
// Shouldn't be reached.
SPIRV_CROSS_THROW("Emitting threads_per_simdgroup attribute with fixed subgroup size??");
if (execution.model == ExecutionModelFragment)
{
if (!msl_options.supports_msl_version(2, 2))
SPIRV_CROSS_THROW("threads_per_simdgroup requires Metal 2.2 in fragment shaders.");
return "threads_per_simdgroup";
}
else
{
// thread_execution_width is an alias for threads_per_simdgroup, and it's only available since 1.0,
// but not in fragment.
return "thread_execution_width";
}
case BuiltInNumSubgroups:
if (msl_options.emulate_subgroups)
// Shouldn't be reached.
SPIRV_CROSS_THROW("NumSubgroups is handled specially with emulation.");
if (!msl_options.supports_msl_version(2))
SPIRV_CROSS_THROW("Subgroup builtins require Metal 2.0.");
return msl_options.use_quadgroup_operation() ? "quadgroups_per_threadgroup" : "simdgroups_per_threadgroup";
case BuiltInSubgroupId:
if (msl_options.emulate_subgroups)
// Shouldn't be reached.
SPIRV_CROSS_THROW("SubgroupId is handled specially with emulation.");
if (!msl_options.supports_msl_version(2))
SPIRV_CROSS_THROW("Subgroup builtins require Metal 2.0.");
return msl_options.use_quadgroup_operation() ? "quadgroup_index_in_threadgroup" : "simdgroup_index_in_threadgroup";
case BuiltInSubgroupLocalInvocationId:
if (msl_options.emulate_subgroups)
// Shouldn't be reached.
SPIRV_CROSS_THROW("SubgroupLocalInvocationId is handled specially with emulation.");
if (execution.model == ExecutionModelFragment)
{
if (!msl_options.supports_msl_version(2, 2))
SPIRV_CROSS_THROW("thread_index_in_simdgroup requires Metal 2.2 in fragment shaders.");
return "thread_index_in_simdgroup";
}
else if (execution.model == ExecutionModelKernel || execution.model == ExecutionModelGLCompute ||
execution.model == ExecutionModelTessellationControl ||
(execution.model == ExecutionModelVertex && msl_options.vertex_for_tessellation))
{
// We are generating a Metal kernel function.
if (!msl_options.supports_msl_version(2))
SPIRV_CROSS_THROW("Subgroup builtins in kernel functions require Metal 2.0.");
return msl_options.use_quadgroup_operation() ? "thread_index_in_quadgroup" : "thread_index_in_simdgroup";
}
else
SPIRV_CROSS_THROW("Subgroup builtins are not available in this type of function.");
case BuiltInSubgroupEqMask:
case BuiltInSubgroupGeMask:
case BuiltInSubgroupGtMask:
case BuiltInSubgroupLeMask:
case BuiltInSubgroupLtMask:
// Shouldn't be reached.
SPIRV_CROSS_THROW("Subgroup ballot masks are handled specially in MSL.");
case BuiltInBaryCoordKHR:
if (msl_options.is_ios() && !msl_options.supports_msl_version(2, 3))
SPIRV_CROSS_THROW("Barycentrics are only supported in MSL 2.3 and above on iOS.");
else if (!msl_options.supports_msl_version(2, 2))
SPIRV_CROSS_THROW("Barycentrics are only supported in MSL 2.2 and above on macOS.");
return "barycentric_coord, center_perspective";
case BuiltInBaryCoordNoPerspKHR:
if (msl_options.is_ios() && !msl_options.supports_msl_version(2, 3))
SPIRV_CROSS_THROW("Barycentrics are only supported in MSL 2.3 and above on iOS.");
else if (!msl_options.supports_msl_version(2, 2))
SPIRV_CROSS_THROW("Barycentrics are only supported in MSL 2.2 and above on macOS.");
return "barycentric_coord, center_no_perspective";
default:
return "unsupported-built-in";
}
}
// Returns an MSL string type declaration for a SPIR-V builtin
string CompilerMSL::builtin_type_decl(BuiltIn builtin, uint32_t id)
{
switch (builtin)
{
// Vertex function in
case BuiltInVertexId:
return "uint";
case BuiltInVertexIndex:
return "uint";
case BuiltInBaseVertex:
return "uint";
case BuiltInInstanceId:
return "uint";
case BuiltInInstanceIndex:
return "uint";
case BuiltInBaseInstance:
return "uint";
case BuiltInDrawIndex:
SPIRV_CROSS_THROW("DrawIndex is not supported in MSL.");
// Vertex function out
case BuiltInClipDistance:
case BuiltInCullDistance:
return "float";
case BuiltInPointSize:
return "float";
case BuiltInPosition:
return "float4";
case BuiltInLayer:
return "uint";
case BuiltInViewportIndex:
if (!msl_options.supports_msl_version(2, 0))
SPIRV_CROSS_THROW("ViewportIndex requires Metal 2.0.");
return "uint";
// Tess. control function in
case BuiltInInvocationId:
return "uint";
case BuiltInPatchVertices:
return "uint";
case BuiltInPrimitiveId:
return "uint";
// Tess. control function out
case BuiltInTessLevelInner:
if (is_tese_shader())
return (msl_options.raw_buffer_tese_input || is_tessellating_triangles()) ? "float" : "float2";
return "half";
case BuiltInTessLevelOuter:
if (is_tese_shader())
return (msl_options.raw_buffer_tese_input || is_tessellating_triangles()) ? "float" : "float4";
return "half";
// Tess. evaluation function in
case BuiltInTessCoord:
return "float3";
// Fragment function in
case BuiltInFrontFacing:
return "bool";
case BuiltInPointCoord:
return "float2";
case BuiltInFragCoord:
return "float4";
case BuiltInSampleId:
return "uint";
case BuiltInSampleMask:
return "uint";
case BuiltInSamplePosition:
return "float2";
case BuiltInViewIndex:
return "uint";
case BuiltInHelperInvocation:
return "bool";
case BuiltInBaryCoordKHR:
case BuiltInBaryCoordNoPerspKHR:
// Use the type as declared, can be 1, 2 or 3 components.
return type_to_glsl(get_variable_data_type(get<SPIRVariable>(id)));
// Fragment function out
case BuiltInFragDepth:
return "float";
case BuiltInFragStencilRefEXT:
return "uint";
// Compute function in
case BuiltInGlobalInvocationId:
case BuiltInLocalInvocationId:
case BuiltInNumWorkgroups:
case BuiltInWorkgroupId:
return "uint3";
case BuiltInLocalInvocationIndex:
case BuiltInNumSubgroups:
case BuiltInSubgroupId:
case BuiltInSubgroupSize:
case BuiltInSubgroupLocalInvocationId:
return "uint";
case BuiltInSubgroupEqMask:
case BuiltInSubgroupGeMask:
case BuiltInSubgroupGtMask:
case BuiltInSubgroupLeMask:
case BuiltInSubgroupLtMask:
return "uint4";
case BuiltInDeviceIndex:
return "int";
default:
return "unsupported-built-in-type";
}
}
// Returns the declaration of a built-in argument to a function
string CompilerMSL::built_in_func_arg(BuiltIn builtin, bool prefix_comma)
{
string bi_arg;
if (prefix_comma)
bi_arg += ", ";
// Handle HLSL-style 0-based vertex/instance index.
builtin_declaration = true;
bi_arg += builtin_type_decl(builtin);
bi_arg += string(" ") + builtin_to_glsl(builtin, StorageClassInput);
bi_arg += string(" [[") + builtin_qualifier(builtin) + string("]]");
builtin_declaration = false;
return bi_arg;
}
const SPIRType &CompilerMSL::get_physical_member_type(const SPIRType &type, uint32_t index) const
{
if (member_is_remapped_physical_type(type, index))
return get<SPIRType>(get_extended_member_decoration(type.self, index, SPIRVCrossDecorationPhysicalTypeID));
else
return get<SPIRType>(type.member_types[index]);
}
SPIRType CompilerMSL::get_presumed_input_type(const SPIRType &ib_type, uint32_t index) const
{
SPIRType type = get_physical_member_type(ib_type, index);
uint32_t loc = get_member_decoration(ib_type.self, index, DecorationLocation);
uint32_t cmp = get_member_decoration(ib_type.self, index, DecorationComponent);
auto p_va = inputs_by_location.find({loc, cmp});
if (p_va != end(inputs_by_location) && p_va->second.vecsize > type.vecsize)
type.vecsize = p_va->second.vecsize;
return type;
}
uint32_t CompilerMSL::get_declared_type_array_stride_msl(const SPIRType &type, bool is_packed, bool row_major) const
{
// Array stride in MSL is always size * array_size. sizeof(float3) == 16,
// unlike GLSL and HLSL where array stride would be 16 and size 12.
// We could use parent type here and recurse, but that makes creating physical type remappings
// far more complicated. We'd rather just create the final type, and ignore having to create the entire type
// hierarchy in order to compute this value, so make a temporary type on the stack.
auto basic_type = type;
basic_type.array.clear();
basic_type.array_size_literal.clear();
uint32_t value_size = get_declared_type_size_msl(basic_type, is_packed, row_major);
uint32_t dimensions = uint32_t(type.array.size());
assert(dimensions > 0);
dimensions--;
// Multiply together every dimension, except the last one.
for (uint32_t dim = 0; dim < dimensions; dim++)
{
uint32_t array_size = to_array_size_literal(type, dim);
value_size *= max<uint32_t>(array_size, 1u);
}
return value_size;
}
uint32_t CompilerMSL::get_declared_struct_member_array_stride_msl(const SPIRType &type, uint32_t index) const
{
return get_declared_type_array_stride_msl(get_physical_member_type(type, index),
member_is_packed_physical_type(type, index),
has_member_decoration(type.self, index, DecorationRowMajor));
}
uint32_t CompilerMSL::get_declared_input_array_stride_msl(const SPIRType &type, uint32_t index) const
{
return get_declared_type_array_stride_msl(get_presumed_input_type(type, index), false,
has_member_decoration(type.self, index, DecorationRowMajor));
}
uint32_t CompilerMSL::get_declared_type_matrix_stride_msl(const SPIRType &type, bool packed, bool row_major) const
{
// For packed matrices, we just use the size of the vector type.
// Otherwise, MatrixStride == alignment, which is the size of the underlying vector type.
if (packed)
return (type.width / 8) * ((row_major && type.columns > 1) ? type.columns : type.vecsize);
else
return get_declared_type_alignment_msl(type, false, row_major);
}
uint32_t CompilerMSL::get_declared_struct_member_matrix_stride_msl(const SPIRType &type, uint32_t index) const
{
return get_declared_type_matrix_stride_msl(get_physical_member_type(type, index),
member_is_packed_physical_type(type, index),
has_member_decoration(type.self, index, DecorationRowMajor));
}
uint32_t CompilerMSL::get_declared_input_matrix_stride_msl(const SPIRType &type, uint32_t index) const
{
return get_declared_type_matrix_stride_msl(get_presumed_input_type(type, index), false,
has_member_decoration(type.self, index, DecorationRowMajor));
}
uint32_t CompilerMSL::get_declared_struct_size_msl(const SPIRType &struct_type, bool ignore_alignment,
bool ignore_padding) const
{
// If we have a target size, that is the declared size as well.
if (!ignore_padding && has_extended_decoration(struct_type.self, SPIRVCrossDecorationPaddingTarget))
return get_extended_decoration(struct_type.self, SPIRVCrossDecorationPaddingTarget);
if (struct_type.member_types.empty())
return 0;
uint32_t mbr_cnt = uint32_t(struct_type.member_types.size());
// In MSL, a struct's alignment is equal to the maximum alignment of any of its members.
uint32_t alignment = 1;
if (!ignore_alignment)
{
for (uint32_t i = 0; i < mbr_cnt; i++)
{
uint32_t mbr_alignment = get_declared_struct_member_alignment_msl(struct_type, i);
alignment = max(alignment, mbr_alignment);
}
}
// Last member will always be matched to the final Offset decoration, but size of struct in MSL now depends
// on physical size in MSL, and the size of the struct itself is then aligned to struct alignment.
uint32_t spirv_offset = type_struct_member_offset(struct_type, mbr_cnt - 1);
uint32_t msl_size = spirv_offset + get_declared_struct_member_size_msl(struct_type, mbr_cnt - 1);
msl_size = (msl_size + alignment - 1) & ~(alignment - 1);
return msl_size;
}
// Returns the byte size of a struct member.
uint32_t CompilerMSL::get_declared_type_size_msl(const SPIRType &type, bool is_packed, bool row_major) const
{
// Pointers take 8 bytes each
if (type.pointer && type.storage == StorageClassPhysicalStorageBuffer)
{
uint32_t type_size = 8 * (type.vecsize == 3 ? 4 : type.vecsize);
// Work our way through potentially layered arrays,
// stopping when we hit a pointer that is not also an array.
int32_t dim_idx = (int32_t)type.array.size() - 1;
auto *p_type = &type;
while (!type_is_pointer(*p_type) && dim_idx >= 0)
{
type_size *= to_array_size_literal(*p_type, dim_idx);
p_type = &get<SPIRType>(p_type->parent_type);
dim_idx--;
}
return type_size;
}
switch (type.basetype)
{
case SPIRType::Unknown:
case SPIRType::Void:
case SPIRType::AtomicCounter:
case SPIRType::Image:
case SPIRType::SampledImage:
case SPIRType::Sampler:
SPIRV_CROSS_THROW("Querying size of opaque object.");
default:
{
if (!type.array.empty())
{
uint32_t array_size = to_array_size_literal(type);
return get_declared_type_array_stride_msl(type, is_packed, row_major) * max<uint32_t>(array_size, 1u);
}
if (type.basetype == SPIRType::Struct)
return get_declared_struct_size_msl(type);
if (is_packed)
{
return type.vecsize * type.columns * (type.width / 8);
}
else
{
// An unpacked 3-element vector or matrix column is the same memory size as a 4-element.
uint32_t vecsize = type.vecsize;
uint32_t columns = type.columns;
if (row_major && columns > 1)
swap(vecsize, columns);
if (vecsize == 3)
vecsize = 4;
return vecsize * columns * (type.width / 8);
}
}
}
}
uint32_t CompilerMSL::get_declared_struct_member_size_msl(const SPIRType &type, uint32_t index) const
{
return get_declared_type_size_msl(get_physical_member_type(type, index),
member_is_packed_physical_type(type, index),
has_member_decoration(type.self, index, DecorationRowMajor));
}
uint32_t CompilerMSL::get_declared_input_size_msl(const SPIRType &type, uint32_t index) const
{
return get_declared_type_size_msl(get_presumed_input_type(type, index), false,
has_member_decoration(type.self, index, DecorationRowMajor));
}
// Returns the byte alignment of a type.
uint32_t CompilerMSL::get_declared_type_alignment_msl(const SPIRType &type, bool is_packed, bool row_major) const
{
// Pointers aligns on multiples of 8 bytes
if (type.pointer && type.storage == StorageClassPhysicalStorageBuffer)
return 8 * (type.vecsize == 3 ? 4 : type.vecsize);
switch (type.basetype)
{
case SPIRType::Unknown:
case SPIRType::Void:
case SPIRType::AtomicCounter:
case SPIRType::Image:
case SPIRType::SampledImage:
case SPIRType::Sampler:
SPIRV_CROSS_THROW("Querying alignment of opaque object.");
case SPIRType::Double:
SPIRV_CROSS_THROW("double types are not supported in buffers in MSL.");
case SPIRType::Struct:
{
// In MSL, a struct's alignment is equal to the maximum alignment of any of its members.
uint32_t alignment = 1;
for (uint32_t i = 0; i < type.member_types.size(); i++)
alignment = max(alignment, uint32_t(get_declared_struct_member_alignment_msl(type, i)));
return alignment;
}
default:
{
if (type.basetype == SPIRType::Int64 && !msl_options.supports_msl_version(2, 3))
SPIRV_CROSS_THROW("long types in buffers are only supported in MSL 2.3 and above.");
if (type.basetype == SPIRType::UInt64 && !msl_options.supports_msl_version(2, 3))
SPIRV_CROSS_THROW("ulong types in buffers are only supported in MSL 2.3 and above.");
// Alignment of packed type is the same as the underlying component or column size.
// Alignment of unpacked type is the same as the vector size.
// Alignment of 3-elements vector is the same as 4-elements (including packed using column).
if (is_packed)
{
// If we have packed_T and friends, the alignment is always scalar.
return type.width / 8;
}
else
{
// This is the general rule for MSL. Size == alignment.
uint32_t vecsize = (row_major && type.columns > 1) ? type.columns : type.vecsize;
return (type.width / 8) * (vecsize == 3 ? 4 : vecsize);
}
}
}
}
uint32_t CompilerMSL::get_declared_struct_member_alignment_msl(const SPIRType &type, uint32_t index) const
{
return get_declared_type_alignment_msl(get_physical_member_type(type, index),
member_is_packed_physical_type(type, index),
has_member_decoration(type.self, index, DecorationRowMajor));
}
uint32_t CompilerMSL::get_declared_input_alignment_msl(const SPIRType &type, uint32_t index) const
{
return get_declared_type_alignment_msl(get_presumed_input_type(type, index), false,
has_member_decoration(type.self, index, DecorationRowMajor));
}
bool CompilerMSL::skip_argument(uint32_t) const
{
return false;
}
void CompilerMSL::analyze_sampled_image_usage()
{
if (msl_options.swizzle_texture_samples)
{
SampledImageScanner scanner(*this);
traverse_all_reachable_opcodes(get<SPIRFunction>(ir.default_entry_point), scanner);
}
}
bool CompilerMSL::SampledImageScanner::handle(spv::Op opcode, const uint32_t *args, uint32_t length)
{
switch (opcode)
{
case OpLoad:
case OpImage:
case OpSampledImage:
{
if (length < 3)
return false;
uint32_t result_type = args[0];
auto &type = compiler.get<SPIRType>(result_type);
if ((type.basetype != SPIRType::Image && type.basetype != SPIRType::SampledImage) || type.image.sampled != 1)
return true;
uint32_t id = args[1];
compiler.set<SPIRExpression>(id, "", result_type, true);
break;
}
case OpImageSampleExplicitLod:
case OpImageSampleProjExplicitLod:
case OpImageSampleDrefExplicitLod:
case OpImageSampleProjDrefExplicitLod:
case OpImageSampleImplicitLod:
case OpImageSampleProjImplicitLod:
case OpImageSampleDrefImplicitLod:
case OpImageSampleProjDrefImplicitLod:
case OpImageFetch:
case OpImageGather:
case OpImageDrefGather:
compiler.has_sampled_images =
compiler.has_sampled_images || compiler.is_sampled_image_type(compiler.expression_type(args[2]));
compiler.needs_swizzle_buffer_def = compiler.needs_swizzle_buffer_def || compiler.has_sampled_images;
break;
default:
break;
}
return true;
}
// If a needed custom function wasn't added before, add it and force a recompile.
void CompilerMSL::add_spv_func_and_recompile(SPVFuncImpl spv_func)
{
if (spv_function_implementations.count(spv_func) == 0)
{
spv_function_implementations.insert(spv_func);
suppress_missing_prototypes = true;
force_recompile();
}
}
bool CompilerMSL::OpCodePreprocessor::handle(Op opcode, const uint32_t *args, uint32_t length)
{
// Since MSL exists in a single execution scope, function prototype declarations are not
// needed, and clutter the output. If secondary functions are output (either as a SPIR-V
// function implementation or as indicated by the presence of OpFunctionCall), then set
// suppress_missing_prototypes to suppress compiler warnings of missing function prototypes.
// Mark if the input requires the implementation of an SPIR-V function that does not exist in Metal.
SPVFuncImpl spv_func = get_spv_func_impl(opcode, args);
if (spv_func != SPVFuncImplNone)
{
compiler.spv_function_implementations.insert(spv_func);
suppress_missing_prototypes = true;
}
switch (opcode)
{
case OpFunctionCall:
suppress_missing_prototypes = true;
break;
case OpDemoteToHelperInvocationEXT:
uses_discard = true;
break;
// Emulate texture2D atomic operations
case OpImageTexelPointer:
{
if (!compiler.msl_options.supports_msl_version(3, 1))
{
auto *var = compiler.maybe_get_backing_variable(args[2]);
image_pointers_emulated[args[1]] = var ? var->self : ID(0);
}
break;
}
case OpImageWrite:
uses_image_write = true;
break;
case OpStore:
check_resource_write(args[0]);
break;
// Emulate texture2D atomic operations
case OpAtomicExchange:
case OpAtomicCompareExchange:
case OpAtomicCompareExchangeWeak:
case OpAtomicIIncrement:
case OpAtomicIDecrement:
case OpAtomicIAdd:
case OpAtomicFAddEXT:
case OpAtomicISub:
case OpAtomicSMin:
case OpAtomicUMin:
case OpAtomicSMax:
case OpAtomicUMax:
case OpAtomicAnd:
case OpAtomicOr:
case OpAtomicXor:
{
uses_atomics = true;
auto it = image_pointers_emulated.find(args[2]);
if (it != image_pointers_emulated.end())
{
uses_image_write = true;
compiler.atomic_image_vars_emulated.insert(it->second);
}
else
check_resource_write(args[2]);
break;
}
case OpAtomicStore:
{
uses_atomics = true;
auto it = image_pointers_emulated.find(args[0]);
if (it != image_pointers_emulated.end())
{
compiler.atomic_image_vars_emulated.insert(it->second);
uses_image_write = true;
}
else
check_resource_write(args[0]);
break;
}
case OpAtomicLoad:
{
uses_atomics = true;
auto it = image_pointers_emulated.find(args[2]);
if (it != image_pointers_emulated.end())
{
compiler.atomic_image_vars_emulated.insert(it->second);
}
break;
}
case OpGroupNonUniformInverseBallot:
needs_subgroup_invocation_id = true;
break;
case OpGroupNonUniformBallotFindLSB:
case OpGroupNonUniformBallotFindMSB:
needs_subgroup_size = true;
break;
case OpGroupNonUniformBallotBitCount:
if (args[3] == GroupOperationReduce)
needs_subgroup_size = true;
else
needs_subgroup_invocation_id = true;
break;
case OpArrayLength:
{
auto *var = compiler.maybe_get_backing_variable(args[2]);
if (var != nullptr)
{
if (!compiler.is_var_runtime_size_array(*var))
compiler.buffers_requiring_array_length.insert(var->self);
}
break;
}
case OpInBoundsAccessChain:
case OpAccessChain:
case OpPtrAccessChain:
{
// OpArrayLength might want to know if taking ArrayLength of an array of SSBOs.
uint32_t result_type = args[0];
uint32_t id = args[1];
uint32_t ptr = args[2];
compiler.set<SPIRExpression>(id, "", result_type, true);
compiler.register_read(id, ptr, true);
compiler.ir.ids[id].set_allow_type_rewrite();
break;
}
case OpExtInst:
{
uint32_t extension_set = args[2];
if (compiler.get<SPIRExtension>(extension_set).ext == SPIRExtension::GLSL)
{
auto op_450 = static_cast<GLSLstd450>(args[3]);
switch (op_450)
{
case GLSLstd450InterpolateAtCentroid:
case GLSLstd450InterpolateAtSample:
case GLSLstd450InterpolateAtOffset:
{
if (!compiler.msl_options.supports_msl_version(2, 3))
SPIRV_CROSS_THROW("Pull-model interpolation requires MSL 2.3.");
// Fragment varyings used with pull-model interpolation need special handling,
// due to the way pull-model interpolation works in Metal.
auto *var = compiler.maybe_get_backing_variable(args[4]);
if (var)
{
compiler.pull_model_inputs.insert(var->self);
auto &var_type = compiler.get_variable_element_type(*var);
// In addition, if this variable has a 'Sample' decoration, we need the sample ID
// in order to do default interpolation.
if (compiler.has_decoration(var->self, DecorationSample))
{
needs_sample_id = true;
}
else if (var_type.basetype == SPIRType::Struct)
{
// Now we need to check each member and see if it has this decoration.
for (uint32_t i = 0; i < var_type.member_types.size(); ++i)
{
if (compiler.has_member_decoration(var_type.self, i, DecorationSample))
{
needs_sample_id = true;
break;
}
}
}
}
break;
}
default:
break;
}
}
break;
}
case OpIsHelperInvocationEXT:
if (compiler.needs_manual_helper_invocation_updates())
needs_helper_invocation = true;
break;
default:
break;
}
// If it has one, keep track of the instruction's result type, mapped by ID
uint32_t result_type, result_id;
if (compiler.instruction_to_result_type(result_type, result_id, opcode, args, length))
result_types[result_id] = result_type;
return true;
}
// If the variable is a Uniform or StorageBuffer, mark that a resource has been written to.
void CompilerMSL::OpCodePreprocessor::check_resource_write(uint32_t var_id)
{
auto *p_var = compiler.maybe_get_backing_variable(var_id);
StorageClass sc = p_var ? p_var->storage : StorageClassMax;
if (sc == StorageClassUniform || sc == StorageClassStorageBuffer)
uses_buffer_write = true;
}
// Returns an enumeration of a SPIR-V function that needs to be output for certain Op codes.
CompilerMSL::SPVFuncImpl CompilerMSL::OpCodePreprocessor::get_spv_func_impl(Op opcode, const uint32_t *args)
{
switch (opcode)
{
case OpFMod:
return SPVFuncImplMod;
case OpFAdd:
case OpFSub:
if (compiler.msl_options.invariant_float_math ||
compiler.has_decoration(args[1], DecorationNoContraction))
{
return opcode == OpFAdd ? SPVFuncImplFAdd : SPVFuncImplFSub;
}
break;
case OpFMul:
case OpOuterProduct:
case OpMatrixTimesVector:
case OpVectorTimesMatrix:
case OpMatrixTimesMatrix:
if (compiler.msl_options.invariant_float_math ||
compiler.has_decoration(args[1], DecorationNoContraction))
{
return SPVFuncImplFMul;
}
break;
case OpQuantizeToF16:
return SPVFuncImplQuantizeToF16;
case OpTypeArray:
{
// Allow Metal to use the array<T> template to make arrays a value type
return SPVFuncImplUnsafeArray;
}
// Emulate texture2D atomic operations
case OpAtomicExchange:
case OpAtomicCompareExchange:
case OpAtomicCompareExchangeWeak:
case OpAtomicIIncrement:
case OpAtomicIDecrement:
case OpAtomicIAdd:
case OpAtomicFAddEXT:
case OpAtomicISub:
case OpAtomicSMin:
case OpAtomicUMin:
case OpAtomicSMax:
case OpAtomicUMax:
case OpAtomicAnd:
case OpAtomicOr:
case OpAtomicXor:
case OpAtomicLoad:
case OpAtomicStore:
{
auto it = image_pointers_emulated.find(args[opcode == OpAtomicStore ? 0 : 2]);
if (it != image_pointers_emulated.end())
{
uint32_t tid = compiler.get<SPIRVariable>(it->second).basetype;
if (tid && compiler.get<SPIRType>(tid).image.dim == Dim2D)
return SPVFuncImplImage2DAtomicCoords;
}
break;
}
case OpImageFetch:
case OpImageRead:
case OpImageWrite:
{
// Retrieve the image type, and if it's a Buffer, emit a texel coordinate function
uint32_t tid = result_types[args[opcode == OpImageWrite ? 0 : 2]];
if (tid && compiler.get<SPIRType>(tid).image.dim == DimBuffer && !compiler.msl_options.texture_buffer_native)
return SPVFuncImplTexelBufferCoords;
break;
}
case OpExtInst:
{
uint32_t extension_set = args[2];
if (compiler.get<SPIRExtension>(extension_set).ext == SPIRExtension::GLSL)
{
auto op_450 = static_cast<GLSLstd450>(args[3]);
switch (op_450)
{
case GLSLstd450Radians:
return SPVFuncImplRadians;
case GLSLstd450Degrees:
return SPVFuncImplDegrees;
case GLSLstd450FindILsb:
return SPVFuncImplFindILsb;
case GLSLstd450FindSMsb:
return SPVFuncImplFindSMsb;
case GLSLstd450FindUMsb:
return SPVFuncImplFindUMsb;
case GLSLstd450SSign:
return SPVFuncImplSSign;
case GLSLstd450Reflect:
{
auto &type = compiler.get<SPIRType>(args[0]);
if (type.vecsize == 1)
return SPVFuncImplReflectScalar;
break;
}
case GLSLstd450Refract:
{
auto &type = compiler.get<SPIRType>(args[0]);
if (type.vecsize == 1)
return SPVFuncImplRefractScalar;
break;
}
case GLSLstd450FaceForward:
{
auto &type = compiler.get<SPIRType>(args[0]);
if (type.vecsize == 1)
return SPVFuncImplFaceForwardScalar;
break;
}
case GLSLstd450MatrixInverse:
{
auto &mat_type = compiler.get<SPIRType>(args[0]);
switch (mat_type.columns)
{
case 2:
return SPVFuncImplInverse2x2;
case 3:
return SPVFuncImplInverse3x3;
case 4:
return SPVFuncImplInverse4x4;
default:
break;
}
break;
}
default:
break;
}
}
break;
}
case OpGroupNonUniformBroadcast:
case OpSubgroupReadInvocationKHR:
return SPVFuncImplSubgroupBroadcast;
case OpGroupNonUniformBroadcastFirst:
case OpSubgroupFirstInvocationKHR:
return SPVFuncImplSubgroupBroadcastFirst;
case OpGroupNonUniformBallot:
case OpSubgroupBallotKHR:
return SPVFuncImplSubgroupBallot;
case OpGroupNonUniformInverseBallot:
case OpGroupNonUniformBallotBitExtract:
return SPVFuncImplSubgroupBallotBitExtract;
case OpGroupNonUniformBallotFindLSB:
return SPVFuncImplSubgroupBallotFindLSB;
case OpGroupNonUniformBallotFindMSB:
return SPVFuncImplSubgroupBallotFindMSB;
case OpGroupNonUniformBallotBitCount:
return SPVFuncImplSubgroupBallotBitCount;
case OpGroupNonUniformAllEqual:
case OpSubgroupAllEqualKHR:
return SPVFuncImplSubgroupAllEqual;
case OpGroupNonUniformShuffle:
return SPVFuncImplSubgroupShuffle;
case OpGroupNonUniformShuffleXor:
return SPVFuncImplSubgroupShuffleXor;
case OpGroupNonUniformShuffleUp:
return SPVFuncImplSubgroupShuffleUp;
case OpGroupNonUniformShuffleDown:
return SPVFuncImplSubgroupShuffleDown;
case OpGroupNonUniformQuadBroadcast:
return SPVFuncImplQuadBroadcast;
case OpGroupNonUniformQuadSwap:
return SPVFuncImplQuadSwap;
case OpSDot:
case OpUDot:
case OpSUDot:
case OpSDotAccSat:
case OpUDotAccSat:
case OpSUDotAccSat:
return SPVFuncImplReduceAdd;
default:
break;
}
return SPVFuncImplNone;
}
// Sort both type and meta member content based on builtin status (put builtins at end),
// then by the required sorting aspect.
void CompilerMSL::MemberSorter::sort()
{
// Create a temporary array of consecutive member indices and sort it based on how
// the members should be reordered, based on builtin and sorting aspect meta info.
size_t mbr_cnt = type.member_types.size();
SmallVector<uint32_t> mbr_idxs(mbr_cnt);
std::iota(mbr_idxs.begin(), mbr_idxs.end(), 0); // Fill with consecutive indices
std::stable_sort(mbr_idxs.begin(), mbr_idxs.end(), *this); // Sort member indices based on sorting aspect
bool sort_is_identity = true;
for (uint32_t mbr_idx = 0; mbr_idx < mbr_cnt; mbr_idx++)
{
if (mbr_idx != mbr_idxs[mbr_idx])
{
sort_is_identity = false;
break;
}
}
if (sort_is_identity)
return;
if (meta.members.size() < type.member_types.size())
{
// This should never trigger in normal circumstances, but to be safe.
meta.members.resize(type.member_types.size());
}
// Move type and meta member info to the order defined by the sorted member indices.
// This is done by creating temporary copies of both member types and meta, and then
// copying back to the original content at the sorted indices.
auto mbr_types_cpy = type.member_types;
auto mbr_meta_cpy = meta.members;
for (uint32_t mbr_idx = 0; mbr_idx < mbr_cnt; mbr_idx++)
{
type.member_types[mbr_idx] = mbr_types_cpy[mbr_idxs[mbr_idx]];
meta.members[mbr_idx] = mbr_meta_cpy[mbr_idxs[mbr_idx]];
}
// If we're sorting by Offset, this might affect user code which accesses a buffer block.
// We will need to redirect member indices from defined index to sorted index using reverse lookup.
if (sort_aspect == SortAspect::Offset)
{
type.member_type_index_redirection.resize(mbr_cnt);
for (uint32_t map_idx = 0; map_idx < mbr_cnt; map_idx++)
type.member_type_index_redirection[mbr_idxs[map_idx]] = map_idx;
}
}
bool CompilerMSL::MemberSorter::operator()(uint32_t mbr_idx1, uint32_t mbr_idx2)
{
auto &mbr_meta1 = meta.members[mbr_idx1];
auto &mbr_meta2 = meta.members[mbr_idx2];
if (sort_aspect == LocationThenBuiltInType)
{
// Sort first by builtin status (put builtins at end), then by the sorting aspect.
if (mbr_meta1.builtin != mbr_meta2.builtin)
return mbr_meta2.builtin;
else if (mbr_meta1.builtin)
return mbr_meta1.builtin_type < mbr_meta2.builtin_type;
else if (mbr_meta1.location == mbr_meta2.location)
return mbr_meta1.component < mbr_meta2.component;
else
return mbr_meta1.location < mbr_meta2.location;
}
else
return mbr_meta1.offset < mbr_meta2.offset;
}
CompilerMSL::MemberSorter::MemberSorter(SPIRType &t, Meta &m, SortAspect sa)
: type(t)
, meta(m)
, sort_aspect(sa)
{
// Ensure enough meta info is available
meta.members.resize(max(type.member_types.size(), meta.members.size()));
}
void CompilerMSL::remap_constexpr_sampler(VariableID id, const MSLConstexprSampler &sampler)
{
auto &type = get<SPIRType>(get<SPIRVariable>(id).basetype);
if (type.basetype != SPIRType::SampledImage && type.basetype != SPIRType::Sampler)
SPIRV_CROSS_THROW("Can only remap SampledImage and Sampler type.");
if (!type.array.empty())
SPIRV_CROSS_THROW("Can not remap array of samplers.");
constexpr_samplers_by_id[id] = sampler;
}
void CompilerMSL::remap_constexpr_sampler_by_binding(uint32_t desc_set, uint32_t binding,
const MSLConstexprSampler &sampler)
{
constexpr_samplers_by_binding[{ desc_set, binding }] = sampler;
}
void CompilerMSL::cast_from_variable_load(uint32_t source_id, std::string &expr, const SPIRType &expr_type)
{
bool is_packed = has_extended_decoration(source_id, SPIRVCrossDecorationPhysicalTypePacked);
auto *source_expr = maybe_get<SPIRExpression>(source_id);
auto *var = maybe_get_backing_variable(source_id);
const SPIRType *var_type = nullptr, *phys_type = nullptr;
if (uint32_t phys_id = get_extended_decoration(source_id, SPIRVCrossDecorationPhysicalTypeID))
phys_type = &get<SPIRType>(phys_id);
else
phys_type = &expr_type;
if (var)
{
source_id = var->self;
var_type = &get_variable_data_type(*var);
}
bool rewrite_boolean_load =
expr_type.basetype == SPIRType::Boolean &&
(var && (var->storage == StorageClassWorkgroup || var_type->basetype == SPIRType::Struct));
// Type fixups for workgroup variables if they are booleans.
if (rewrite_boolean_load)
{
if (is_array(expr_type))
expr = to_rerolled_array_expression(expr_type, expr, expr_type);
else
expr = join(type_to_glsl(expr_type), "(", expr, ")");
}
// Type fixups for workgroup variables if they are matrices.
// Don't do fixup for packed types; those are handled specially.
// FIXME: Maybe use a type like spvStorageMatrix for packed matrices?
if (!msl_options.supports_msl_version(3, 0) && var &&
(var->storage == StorageClassWorkgroup ||
(var_type->basetype == SPIRType::Struct &&
has_extended_decoration(var_type->self, SPIRVCrossDecorationWorkgroupStruct) && !is_packed)) &&
expr_type.columns > 1)
{
SPIRType matrix_type = *phys_type;
if (source_expr && source_expr->need_transpose)
swap(matrix_type.vecsize, matrix_type.columns);
matrix_type.array.clear();
matrix_type.array_size_literal.clear();
expr = join(type_to_glsl(matrix_type), "(", expr, ")");
}
// Only interested in standalone builtin variables in the switch below.
if (!has_decoration(source_id, DecorationBuiltIn))
{
// If the backing variable does not match our expected sign, we can fix it up here.
// See ensure_correct_input_type().
if (var && var->storage == StorageClassInput)
{
auto &base_type = get<SPIRType>(var->basetype);
if (base_type.basetype != SPIRType::Struct && expr_type.basetype != base_type.basetype)
expr = join(type_to_glsl(expr_type), "(", expr, ")");
}
return;
}
auto builtin = static_cast<BuiltIn>(get_decoration(source_id, DecorationBuiltIn));
auto expected_type = expr_type.basetype;
auto expected_width = expr_type.width;
switch (builtin)
{
case BuiltInGlobalInvocationId:
case BuiltInLocalInvocationId:
case BuiltInWorkgroupId:
case BuiltInLocalInvocationIndex:
case BuiltInWorkgroupSize:
case BuiltInNumWorkgroups:
case BuiltInLayer:
case BuiltInViewportIndex:
case BuiltInFragStencilRefEXT:
case BuiltInPrimitiveId:
case BuiltInSubgroupSize:
case BuiltInSubgroupLocalInvocationId:
case BuiltInViewIndex:
case BuiltInVertexIndex:
case BuiltInInstanceIndex:
case BuiltInBaseInstance:
case BuiltInBaseVertex:
case BuiltInSampleMask:
expected_type = SPIRType::UInt;
expected_width = 32;
break;
case BuiltInTessLevelInner:
case BuiltInTessLevelOuter:
if (is_tesc_shader())
{
expected_type = SPIRType::Half;
expected_width = 16;
}
break;
default:
break;
}
if (is_array(expr_type) && builtin == BuiltInSampleMask)
{
// Needs special handling.
auto wrap_expr = join(type_to_glsl(expr_type), "({ ");
wrap_expr += join(type_to_glsl(get<SPIRType>(expr_type.parent_type)), "(", expr, ")");
wrap_expr += " })";
expr = std::move(wrap_expr);
}
else if (expected_type != expr_type.basetype)
{
if (is_array(expr_type) && (builtin == BuiltInTessLevelInner || builtin == BuiltInTessLevelOuter))
{
// Triggers when loading TessLevel directly as an array.
// Need explicit padding + cast.
auto wrap_expr = join(type_to_glsl(expr_type), "({ ");
uint32_t array_size = get_physical_tess_level_array_size(builtin);
for (uint32_t i = 0; i < array_size; i++)
{
if (array_size > 1)
wrap_expr += join("float(", expr, "[", i, "])");
else
wrap_expr += join("float(", expr, ")");
if (i + 1 < array_size)
wrap_expr += ", ";
}
if (is_tessellating_triangles())
wrap_expr += ", 0.0";
wrap_expr += " })";
expr = std::move(wrap_expr);
}
else
{
// These are of different widths, so we cannot do a straight bitcast.
if (expected_width != expr_type.width)
expr = join(type_to_glsl(expr_type), "(", expr, ")");
else
expr = bitcast_expression(expr_type, expected_type, expr);
}
}
}
void CompilerMSL::cast_to_variable_store(uint32_t target_id, std::string &expr, const SPIRType &expr_type)
{
bool is_packed = has_extended_decoration(target_id, SPIRVCrossDecorationPhysicalTypePacked);
auto *target_expr = maybe_get<SPIRExpression>(target_id);
auto *var = maybe_get_backing_variable(target_id);
const SPIRType *var_type = nullptr, *phys_type = nullptr;
if (uint32_t phys_id = get_extended_decoration(target_id, SPIRVCrossDecorationPhysicalTypeID))
phys_type = &get<SPIRType>(phys_id);
else
phys_type = &expr_type;
if (var)
{
target_id = var->self;
var_type = &get_variable_data_type(*var);
}
bool rewrite_boolean_store =
expr_type.basetype == SPIRType::Boolean &&
(var && (var->storage == StorageClassWorkgroup || var_type->basetype == SPIRType::Struct));
// Type fixups for workgroup variables or struct members if they are booleans.
if (rewrite_boolean_store)
{
if (is_array(expr_type))
{
expr = to_rerolled_array_expression(*var_type, expr, expr_type);
}
else
{
auto short_type = expr_type;
short_type.basetype = SPIRType::Short;
expr = join(type_to_glsl(short_type), "(", expr, ")");
}
}
// Type fixups for workgroup variables if they are matrices.
// Don't do fixup for packed types; those are handled specially.
// FIXME: Maybe use a type like spvStorageMatrix for packed matrices?
if (!msl_options.supports_msl_version(3, 0) && var &&
(var->storage == StorageClassWorkgroup ||
(var_type->basetype == SPIRType::Struct &&
has_extended_decoration(var_type->self, SPIRVCrossDecorationWorkgroupStruct) && !is_packed)) &&
expr_type.columns > 1)
{
SPIRType matrix_type = *phys_type;
if (target_expr && target_expr->need_transpose)
swap(matrix_type.vecsize, matrix_type.columns);
expr = join("spvStorage_", type_to_glsl(matrix_type), "(", expr, ")");
}
// Only interested in standalone builtin variables.
if (!has_decoration(target_id, DecorationBuiltIn))
return;
auto builtin = static_cast<BuiltIn>(get_decoration(target_id, DecorationBuiltIn));
auto expected_type = expr_type.basetype;
auto expected_width = expr_type.width;
switch (builtin)
{
case BuiltInLayer:
case BuiltInViewportIndex:
case BuiltInFragStencilRefEXT:
case BuiltInPrimitiveId:
case BuiltInViewIndex:
expected_type = SPIRType::UInt;
expected_width = 32;
break;
case BuiltInTessLevelInner:
case BuiltInTessLevelOuter:
expected_type = SPIRType::Half;
expected_width = 16;
break;
default:
break;
}
if (expected_type != expr_type.basetype)
{
if (expected_width != expr_type.width)
{
// These are of different widths, so we cannot do a straight bitcast.
auto type = expr_type;
type.basetype = expected_type;
type.width = expected_width;
expr = join(type_to_glsl(type), "(", expr, ")");
}
else
{
auto type = expr_type;
type.basetype = expected_type;
expr = bitcast_expression(type, expr_type.basetype, expr);
}
}
}
string CompilerMSL::to_initializer_expression(const SPIRVariable &var)
{
// We risk getting an array initializer here with MSL. If we have an array.
// FIXME: We cannot handle non-constant arrays being initialized.
// We will need to inject spvArrayCopy here somehow ...
auto &type = get<SPIRType>(var.basetype);
string expr;
if (ir.ids[var.initializer].get_type() == TypeConstant &&
(!type.array.empty() || type.basetype == SPIRType::Struct))
expr = constant_expression(get<SPIRConstant>(var.initializer));
else
expr = CompilerGLSL::to_initializer_expression(var);
// If the initializer has more vector components than the variable, add a swizzle.
// FIXME: This can't handle arrays or structs.
auto &init_type = expression_type(var.initializer);
if (type.array.empty() && type.basetype != SPIRType::Struct && init_type.vecsize > type.vecsize)
expr = enclose_expression(expr + vector_swizzle(type.vecsize, 0));
return expr;
}
string CompilerMSL::to_zero_initialized_expression(uint32_t)
{
return "{}";
}
bool CompilerMSL::descriptor_set_is_argument_buffer(uint32_t desc_set) const
{
if (!msl_options.argument_buffers)
return false;
if (desc_set >= kMaxArgumentBuffers)
return false;
return (argument_buffer_discrete_mask & (1u << desc_set)) == 0;
}
bool CompilerMSL::is_supported_argument_buffer_type(const SPIRType &type) const
{
// iOS Tier 1 argument buffers do not support writable images.
// When the argument buffer is encoded, we don't know whether this image will have a
// NonWritable decoration, so just use discrete arguments for all storage images on iOS.
bool is_supported_type = !(type.basetype == SPIRType::Image &&
type.image.sampled == 2 &&
msl_options.is_ios() &&
msl_options.argument_buffers_tier <= Options::ArgumentBuffersTier::Tier1);
return is_supported_type && !type_is_msl_framebuffer_fetch(type);
}
void CompilerMSL::analyze_argument_buffers()
{
// Gather all used resources and sort them out into argument buffers.
// Each argument buffer corresponds to a descriptor set in SPIR-V.
// The [[id(N)]] values used correspond to the resource mapping we have for MSL.
// Otherwise, the binding number is used, but this is generally not safe some types like
// combined image samplers and arrays of resources. Metal needs different indices here,
// while SPIR-V can have one descriptor set binding. To use argument buffers in practice,
// you will need to use the remapping from the API.
for (auto &id : argument_buffer_ids)
id = 0;
// Output resources, sorted by resource index & type.
struct Resource
{
SPIRVariable *var;
SPIRVariable *descriptor_alias;
string name;
SPIRType::BaseType basetype;
uint32_t index;
uint32_t plane;
};
SmallVector<Resource> resources_in_set[kMaxArgumentBuffers];
SmallVector<uint32_t> inline_block_vars;
bool set_needs_swizzle_buffer[kMaxArgumentBuffers] = {};
bool set_needs_buffer_sizes[kMaxArgumentBuffers] = {};
bool needs_buffer_sizes = false;
ir.for_each_typed_id<SPIRVariable>([&](uint32_t self, SPIRVariable &var) {
if ((var.storage == StorageClassUniform || var.storage == StorageClassUniformConstant ||
var.storage == StorageClassStorageBuffer) &&
!is_hidden_variable(var))
{
uint32_t desc_set = get_decoration(self, DecorationDescriptorSet);
// Ignore if it's part of a push descriptor set.
if (!descriptor_set_is_argument_buffer(desc_set))
return;
uint32_t var_id = var.self;
auto &type = get_variable_data_type(var);
if (desc_set >= kMaxArgumentBuffers)
SPIRV_CROSS_THROW("Descriptor set index is out of range.");
const MSLConstexprSampler *constexpr_sampler = nullptr;
if (type.basetype == SPIRType::SampledImage || type.basetype == SPIRType::Sampler)
{
constexpr_sampler = find_constexpr_sampler(var_id);
if (constexpr_sampler)
{
// Mark this ID as a constexpr sampler for later in case it came from set/bindings.
constexpr_samplers_by_id[var_id] = *constexpr_sampler;
}
}
// Handle descriptor aliasing as well as we can.
// We can handle aliasing of buffers by casting pointers, but not for typed resources.
// Inline UBOs cannot be handled since it's not a pointer, but inline data.
SPIRVariable *descriptor_alias = nullptr;
if (var.storage == StorageClassUniform || var.storage == StorageClassStorageBuffer)
{
for (auto &resource : resources_in_set[desc_set])
{
if (get_decoration(resource.var->self, DecorationBinding) ==
get_decoration(var_id, DecorationBinding) &&
resource.basetype == SPIRType::Struct && type.basetype == SPIRType::Struct &&
(resource.var->storage == StorageClassUniform ||
resource.var->storage == StorageClassStorageBuffer))
{
descriptor_alias = resource.var;
// Self-reference marks that we should declare the resource,
// and it's being used as an alias (so we can emit void* instead).
resource.descriptor_alias = resource.var;
// Need to promote interlocked usage so that the primary declaration is correct.
if (interlocked_resources.count(var_id))
interlocked_resources.insert(resource.var->self);
break;
}
}
}
uint32_t binding = get_decoration(var_id, DecorationBinding);
if (type.basetype == SPIRType::SampledImage)
{
add_resource_name(var_id);
uint32_t plane_count = 1;
if (constexpr_sampler && constexpr_sampler->ycbcr_conversion_enable)
plane_count = constexpr_sampler->planes;
for (uint32_t i = 0; i < plane_count; i++)
{
uint32_t image_resource_index = get_metal_resource_index(var, SPIRType::Image, i);
resources_in_set[desc_set].push_back(
{ &var, descriptor_alias, to_name(var_id), SPIRType::Image, image_resource_index, i });
}
if (type.image.dim != DimBuffer && !constexpr_sampler)
{
uint32_t sampler_resource_index = get_metal_resource_index(var, SPIRType::Sampler);
resources_in_set[desc_set].push_back(
{ &var, descriptor_alias, to_sampler_expression(var_id), SPIRType::Sampler, sampler_resource_index, 0 });
}
}
else if (inline_uniform_blocks.count(SetBindingPair{ desc_set, binding }))
{
inline_block_vars.push_back(var_id);
}
else if (!constexpr_sampler && is_supported_argument_buffer_type(type))
{
// constexpr samplers are not declared as resources.
// Inline uniform blocks are always emitted at the end.
add_resource_name(var_id);
uint32_t resource_index = ~0u;
if (!descriptor_alias)
resource_index = get_metal_resource_index(var, type.basetype);
resources_in_set[desc_set].push_back(
{ &var, descriptor_alias, to_name(var_id), type.basetype, resource_index, 0 });
// Emulate texture2D atomic operations
if (atomic_image_vars_emulated.count(var.self))
{
uint32_t buffer_resource_index = get_metal_resource_index(var, SPIRType::AtomicCounter, 0);
resources_in_set[desc_set].push_back(
{ &var, descriptor_alias, to_name(var_id) + "_atomic", SPIRType::Struct, buffer_resource_index, 0 });
}
}
// Check if this descriptor set needs a swizzle buffer.
if (needs_swizzle_buffer_def && is_sampled_image_type(type))
set_needs_swizzle_buffer[desc_set] = true;
else if (buffer_requires_array_length(var_id))
{
set_needs_buffer_sizes[desc_set] = true;
needs_buffer_sizes = true;
}
}
});
if (needs_swizzle_buffer_def || needs_buffer_sizes)
{
uint32_t uint_ptr_type_id = 0;
// We might have to add a swizzle buffer resource to the set.
for (uint32_t desc_set = 0; desc_set < kMaxArgumentBuffers; desc_set++)
{
if (!set_needs_swizzle_buffer[desc_set] && !set_needs_buffer_sizes[desc_set])
continue;
if (uint_ptr_type_id == 0)
{
uint_ptr_type_id = ir.increase_bound_by(1);
// Create a buffer to hold extra data, including the swizzle constants.
SPIRType uint_type_pointer = get_uint_type();
uint_type_pointer.op = OpTypePointer;
uint_type_pointer.pointer = true;
uint_type_pointer.pointer_depth++;
uint_type_pointer.parent_type = get_uint_type_id();
uint_type_pointer.storage = StorageClassUniform;
set<SPIRType>(uint_ptr_type_id, uint_type_pointer);
set_decoration(uint_ptr_type_id, DecorationArrayStride, 4);
}
if (set_needs_swizzle_buffer[desc_set])
{
uint32_t var_id = ir.increase_bound_by(1);
auto &var = set<SPIRVariable>(var_id, uint_ptr_type_id, StorageClassUniformConstant);
set_name(var_id, "spvSwizzleConstants");
set_decoration(var_id, DecorationDescriptorSet, desc_set);
set_decoration(var_id, DecorationBinding, kSwizzleBufferBinding);
resources_in_set[desc_set].push_back(
{ &var, nullptr, to_name(var_id), SPIRType::UInt, get_metal_resource_index(var, SPIRType::UInt), 0 });
}
if (set_needs_buffer_sizes[desc_set])
{
uint32_t var_id = ir.increase_bound_by(1);
auto &var = set<SPIRVariable>(var_id, uint_ptr_type_id, StorageClassUniformConstant);
set_name(var_id, "spvBufferSizeConstants");
set_decoration(var_id, DecorationDescriptorSet, desc_set);
set_decoration(var_id, DecorationBinding, kBufferSizeBufferBinding);
resources_in_set[desc_set].push_back(
{ &var, nullptr, to_name(var_id), SPIRType::UInt, get_metal_resource_index(var, SPIRType::UInt), 0 });
}
}
}
// Now add inline uniform blocks.
for (uint32_t var_id : inline_block_vars)
{
auto &var = get<SPIRVariable>(var_id);
uint32_t desc_set = get_decoration(var_id, DecorationDescriptorSet);
add_resource_name(var_id);
resources_in_set[desc_set].push_back(
{ &var, nullptr, to_name(var_id), SPIRType::Struct, get_metal_resource_index(var, SPIRType::Struct), 0 });
}
for (uint32_t desc_set = 0; desc_set < kMaxArgumentBuffers; desc_set++)
{
auto &resources = resources_in_set[desc_set];
if (resources.empty())
continue;
assert(descriptor_set_is_argument_buffer(desc_set));
uint32_t next_id = ir.increase_bound_by(3);
uint32_t type_id = next_id + 1;
uint32_t ptr_type_id = next_id + 2;
argument_buffer_ids[desc_set] = next_id;
auto &buffer_type = set<SPIRType>(type_id, OpTypeStruct);
buffer_type.basetype = SPIRType::Struct;
if ((argument_buffer_device_storage_mask & (1u << desc_set)) != 0)
{
buffer_type.storage = StorageClassStorageBuffer;
// Make sure the argument buffer gets marked as const device.
set_decoration(next_id, DecorationNonWritable);
// Need to mark the type as a Block to enable this.
set_decoration(type_id, DecorationBlock);
}
else
buffer_type.storage = StorageClassUniform;
set_name(type_id, join("spvDescriptorSetBuffer", desc_set));
auto &ptr_type = set<SPIRType>(ptr_type_id, OpTypePointer);
ptr_type = buffer_type;
ptr_type.op = spv::OpTypePointer;
ptr_type.pointer = true;
ptr_type.pointer_depth++;
ptr_type.parent_type = type_id;
uint32_t buffer_variable_id = next_id;
set<SPIRVariable>(buffer_variable_id, ptr_type_id, StorageClassUniform);
set_name(buffer_variable_id, join("spvDescriptorSet", desc_set));
// Ids must be emitted in ID order.
stable_sort(begin(resources), end(resources), [&](const Resource &lhs, const Resource &rhs) -> bool {
return tie(lhs.index, lhs.basetype) < tie(rhs.index, rhs.basetype);
});
uint32_t member_index = 0;
uint32_t next_arg_buff_index = 0;
for (auto &resource : resources)
{
auto &var = *resource.var;
auto &type = get_variable_data_type(var);
if (is_var_runtime_size_array(var) && (argument_buffer_device_storage_mask & (1u << desc_set)) == 0)
SPIRV_CROSS_THROW("Runtime sized variables must be in device storage argument buffers.");
// If needed, synthesize and add padding members.
// member_index and next_arg_buff_index are incremented when padding members are added.
if (msl_options.pad_argument_buffer_resources)
{
auto &rez_bind = get_argument_buffer_resource(desc_set, next_arg_buff_index);
if (!resource.descriptor_alias)
{
while (resource.index > next_arg_buff_index)
{
switch (rez_bind.basetype)
{
case SPIRType::Void:
case SPIRType::Boolean:
case SPIRType::SByte:
case SPIRType::UByte:
case SPIRType::Short:
case SPIRType::UShort:
case SPIRType::Int:
case SPIRType::UInt:
case SPIRType::Int64:
case SPIRType::UInt64:
case SPIRType::AtomicCounter:
case SPIRType::Half:
case SPIRType::Float:
case SPIRType::Double:
add_argument_buffer_padding_buffer_type(buffer_type, member_index, next_arg_buff_index, rez_bind);
break;
case SPIRType::Image:
add_argument_buffer_padding_image_type(buffer_type, member_index, next_arg_buff_index, rez_bind);
break;
case SPIRType::Sampler:
add_argument_buffer_padding_sampler_type(buffer_type, member_index, next_arg_buff_index, rez_bind);
break;
case SPIRType::SampledImage:
if (next_arg_buff_index == rez_bind.msl_sampler)
add_argument_buffer_padding_sampler_type(buffer_type, member_index, next_arg_buff_index, rez_bind);
else
add_argument_buffer_padding_image_type(buffer_type, member_index, next_arg_buff_index, rez_bind);
break;
default:
break;
}
}
}
// Adjust the number of slots consumed by current member itself.
// Use the count value from the app, instead of the shader, in case the
// shader is only accesing part, or even one element, of the array.
next_arg_buff_index += rez_bind.count;
}
string mbr_name = ensure_valid_name(resource.name, "m");
if (resource.plane > 0)
mbr_name += join(plane_name_suffix, resource.plane);
set_member_name(buffer_type.self, member_index, mbr_name);
if (resource.basetype == SPIRType::Sampler && type.basetype != SPIRType::Sampler)
{
// Have to synthesize a sampler type here.
bool type_is_array = !type.array.empty();
uint32_t sampler_type_id = ir.increase_bound_by(type_is_array ? 2 : 1);
auto &new_sampler_type = set<SPIRType>(sampler_type_id, OpTypeSampler);
new_sampler_type.basetype = SPIRType::Sampler;
new_sampler_type.storage = StorageClassUniformConstant;
if (type_is_array)
{
uint32_t sampler_type_array_id = sampler_type_id + 1;
auto &sampler_type_array = set<SPIRType>(sampler_type_array_id, OpTypeArray);
sampler_type_array = new_sampler_type;
sampler_type_array.array = type.array;
sampler_type_array.array_size_literal = type.array_size_literal;
sampler_type_array.parent_type = sampler_type_id;
buffer_type.member_types.push_back(sampler_type_array_id);
}
else
buffer_type.member_types.push_back(sampler_type_id);
}
else
{
uint32_t binding = get_decoration(var.self, DecorationBinding);
SetBindingPair pair = { desc_set, binding };
if (resource.basetype == SPIRType::Image || resource.basetype == SPIRType::Sampler ||
resource.basetype == SPIRType::SampledImage)
{
// Drop pointer information when we emit the resources into a struct.
buffer_type.member_types.push_back(get_variable_data_type_id(var));
if (resource.plane == 0)
set_qualified_name(var.self, join(to_name(buffer_variable_id), ".", mbr_name));
}
else if (buffers_requiring_dynamic_offset.count(pair))
{
if (resource.descriptor_alias)
SPIRV_CROSS_THROW("Descriptor aliasing is currently not supported with dynamic offsets.");
// Don't set the qualified name here; we'll define a variable holding the corrected buffer address later.
buffer_type.member_types.push_back(var.basetype);
buffers_requiring_dynamic_offset[pair].second = var.self;
}
else if (inline_uniform_blocks.count(pair))
{
if (resource.descriptor_alias)
SPIRV_CROSS_THROW("Descriptor aliasing is currently not supported with inline UBOs.");
// Put the buffer block itself into the argument buffer.
buffer_type.member_types.push_back(get_variable_data_type_id(var));
set_qualified_name(var.self, join(to_name(buffer_variable_id), ".", mbr_name));
}
else if (atomic_image_vars_emulated.count(var.self))
{
// Emulate texture2D atomic operations.
// Don't set the qualified name: it's already set for this variable,
// and the code that references the buffer manually appends "_atomic"
// to the name.
uint32_t offset = ir.increase_bound_by(2);
uint32_t atomic_type_id = offset;
uint32_t type_ptr_id = offset + 1;
SPIRType atomic_type { OpTypeInt };
atomic_type.basetype = SPIRType::AtomicCounter;
atomic_type.width = 32;
atomic_type.vecsize = 1;
set<SPIRType>(atomic_type_id, atomic_type);
atomic_type.op = OpTypePointer;
atomic_type.pointer = true;
atomic_type.pointer_depth++;
atomic_type.parent_type = atomic_type_id;
atomic_type.storage = StorageClassStorageBuffer;
auto &atomic_ptr_type = set<SPIRType>(type_ptr_id, atomic_type);
atomic_ptr_type.self = atomic_type_id;
buffer_type.member_types.push_back(type_ptr_id);
}
else
{
if (!resource.descriptor_alias || resource.descriptor_alias == resource.var)
buffer_type.member_types.push_back(var.basetype);
if (resource.descriptor_alias && resource.descriptor_alias != resource.var)
buffer_aliases_argument.push_back({ var.self, resource.descriptor_alias->self });
else if (type.array.empty())
set_qualified_name(var.self, join("(*", to_name(buffer_variable_id), ".", mbr_name, ")"));
else
set_qualified_name(var.self, join(to_name(buffer_variable_id), ".", mbr_name));
}
}
set_extended_member_decoration(buffer_type.self, member_index, SPIRVCrossDecorationResourceIndexPrimary,
resource.index);
set_extended_member_decoration(buffer_type.self, member_index, SPIRVCrossDecorationInterfaceOrigID,
var.self);
member_index++;
}
}
}
// Return the resource type of the app-provided resources for the descriptor set,
// that matches the resource index of the argument buffer index.
// This is a two-step lookup, first lookup the resource binding number from the argument buffer index,
// then lookup the resource binding using the binding number.
MSLResourceBinding &CompilerMSL::get_argument_buffer_resource(uint32_t desc_set, uint32_t arg_idx)
{
auto stage = get_entry_point().model;
StageSetBinding arg_idx_tuple = { stage, desc_set, arg_idx };
auto arg_itr = resource_arg_buff_idx_to_binding_number.find(arg_idx_tuple);
if (arg_itr != end(resource_arg_buff_idx_to_binding_number))
{
StageSetBinding bind_tuple = { stage, desc_set, arg_itr->second };
auto bind_itr = resource_bindings.find(bind_tuple);
if (bind_itr != end(resource_bindings))
return bind_itr->second.first;
}
SPIRV_CROSS_THROW("Argument buffer resource base type could not be determined. When padding argument buffer "
"elements, all descriptor set resources must be supplied with a base type by the app.");
}
// Adds an argument buffer padding argument buffer type as one or more members of the struct type at the member index.
// Metal does not support arrays of buffers, so these are emitted as multiple struct members.
void CompilerMSL::add_argument_buffer_padding_buffer_type(SPIRType &struct_type, uint32_t &mbr_idx,
uint32_t &arg_buff_index, MSLResourceBinding &rez_bind)
{
if (!argument_buffer_padding_buffer_type_id)
{
uint32_t buff_type_id = ir.increase_bound_by(2);
auto &buff_type = set<SPIRType>(buff_type_id, OpNop);
buff_type.basetype = rez_bind.basetype;
buff_type.storage = StorageClassUniformConstant;
uint32_t ptr_type_id = buff_type_id + 1;
auto &ptr_type = set<SPIRType>(ptr_type_id, OpTypePointer);
ptr_type = buff_type;
ptr_type.op = spv::OpTypePointer;
ptr_type.pointer = true;
ptr_type.pointer_depth++;
ptr_type.parent_type = buff_type_id;
argument_buffer_padding_buffer_type_id = ptr_type_id;
}
add_argument_buffer_padding_type(argument_buffer_padding_buffer_type_id, struct_type, mbr_idx, arg_buff_index, rez_bind.count);
}
// Adds an argument buffer padding argument image type as a member of the struct type at the member index.
void CompilerMSL::add_argument_buffer_padding_image_type(SPIRType &struct_type, uint32_t &mbr_idx,
uint32_t &arg_buff_index, MSLResourceBinding &rez_bind)
{
if (!argument_buffer_padding_image_type_id)
{
uint32_t base_type_id = ir.increase_bound_by(2);
auto &base_type = set<SPIRType>(base_type_id, OpTypeFloat);
base_type.basetype = SPIRType::Float;
base_type.width = 32;
uint32_t img_type_id = base_type_id + 1;
auto &img_type = set<SPIRType>(img_type_id, OpTypeImage);
img_type.basetype = SPIRType::Image;
img_type.storage = StorageClassUniformConstant;
img_type.image.type = base_type_id;
img_type.image.dim = Dim2D;
img_type.image.depth = false;
img_type.image.arrayed = false;
img_type.image.ms = false;
img_type.image.sampled = 1;
img_type.image.format = ImageFormatUnknown;
img_type.image.access = AccessQualifierMax;
argument_buffer_padding_image_type_id = img_type_id;
}
add_argument_buffer_padding_type(argument_buffer_padding_image_type_id, struct_type, mbr_idx, arg_buff_index, rez_bind.count);
}
// Adds an argument buffer padding argument sampler type as a member of the struct type at the member index.
void CompilerMSL::add_argument_buffer_padding_sampler_type(SPIRType &struct_type, uint32_t &mbr_idx,
uint32_t &arg_buff_index, MSLResourceBinding &rez_bind)
{
if (!argument_buffer_padding_sampler_type_id)
{
uint32_t samp_type_id = ir.increase_bound_by(1);
auto &samp_type = set<SPIRType>(samp_type_id, OpTypeSampler);
samp_type.basetype = SPIRType::Sampler;
samp_type.storage = StorageClassUniformConstant;
argument_buffer_padding_sampler_type_id = samp_type_id;
}
add_argument_buffer_padding_type(argument_buffer_padding_sampler_type_id, struct_type, mbr_idx, arg_buff_index, rez_bind.count);
}
// Adds the argument buffer padding argument type as a member of the struct type at the member index.
// Advances both arg_buff_index and mbr_idx to next argument slots.
void CompilerMSL::add_argument_buffer_padding_type(uint32_t mbr_type_id, SPIRType &struct_type, uint32_t &mbr_idx,
uint32_t &arg_buff_index, uint32_t count)
{
uint32_t type_id = mbr_type_id;
if (count > 1)
{
uint32_t ary_type_id = ir.increase_bound_by(1);
auto &ary_type = set<SPIRType>(ary_type_id, get<SPIRType>(type_id));
ary_type.op = OpTypeArray;
ary_type.array.push_back(count);
ary_type.array_size_literal.push_back(true);
ary_type.parent_type = type_id;
type_id = ary_type_id;
}
set_member_name(struct_type.self, mbr_idx, join("_m", arg_buff_index, "_pad"));
set_extended_member_decoration(struct_type.self, mbr_idx, SPIRVCrossDecorationResourceIndexPrimary, arg_buff_index);
struct_type.member_types.push_back(type_id);
arg_buff_index += count;
mbr_idx++;
}
void CompilerMSL::activate_argument_buffer_resources()
{
// For ABI compatibility, force-enable all resources which are part of argument buffers.
ir.for_each_typed_id<SPIRVariable>([&](uint32_t self, const SPIRVariable &) {
if (!has_decoration(self, DecorationDescriptorSet))
return;
uint32_t desc_set = get_decoration(self, DecorationDescriptorSet);
if (descriptor_set_is_argument_buffer(desc_set))
add_active_interface_variable(self);
});
}
bool CompilerMSL::using_builtin_array() const
{
return msl_options.force_native_arrays || is_using_builtin_array;
}
void CompilerMSL::set_combined_sampler_suffix(const char *suffix)
{
sampler_name_suffix = suffix;
}
const char *CompilerMSL::get_combined_sampler_suffix() const
{
return sampler_name_suffix.c_str();
}
void CompilerMSL::emit_block_hints(const SPIRBlock &)
{
}
string CompilerMSL::additional_fixed_sample_mask_str() const
{
char print_buffer[32];
#ifdef _MSC_VER
// snprintf does not exist or is buggy on older MSVC versions, some of
// them being used by MinGW. Use sprintf instead and disable
// corresponding warning.
#pragma warning(push)
#pragma warning(disable : 4996)
#endif
#if defined(_WIN32)
sprintf(print_buffer, "0x%x", msl_options.additional_fixed_sample_mask);
#else
snprintf(print_buffer, sizeof(print_buffer), "0x%x", msl_options.additional_fixed_sample_mask);
#endif
#ifdef _MSC_VER
#pragma warning(pop)
#endif
return print_buffer;
}