bgfx/src/bgfx.cpp
Бранимир Караџић 49c0e49527
Removed WebGPU. (#3198)
2023-11-09 17:15:22 -08:00

5910 lines
168 KiB
C++

/*
* Copyright 2011-2023 Branimir Karadzic. All rights reserved.
* License: https://github.com/bkaradzic/bgfx/blob/master/LICENSE
*/
#include <bx/platform.h>
#include "bgfx_p.h"
#include <bgfx/embedded_shader.h>
#include <bx/file.h>
#include <bx/mutex.h>
#include "topology.h"
#if BX_PLATFORM_OSX || BX_PLATFORM_IOS
# include <objc/message.h>
#elif BX_PLATFORM_WINDOWS
# ifndef WIN32_LEAN_AND_MEAN
# define WIN32_LEAN_AND_MEAN
# endif // WIN32_LEAN_AND_MEAN
# include <windows.h>
#endif // BX_PLATFORM_OSX
BX_ERROR_RESULT(BGFX_ERROR_TEXTURE_VALIDATION, BX_MAKEFOURCC('b', 'g', 0, 1) );
BX_ERROR_RESULT(BGFX_ERROR_FRAME_BUFFER_VALIDATION, BX_MAKEFOURCC('b', 'g', 0, 2) );
BX_ERROR_RESULT(BGFX_ERROR_IDENTIFIER_VALIDATION, BX_MAKEFOURCC('b', 'g', 0, 3) );
namespace bgfx
{
#define BGFX_API_THREAD_MAGIC UINT32_C(0x78666762)
#if BGFX_CONFIG_MULTITHREADED
# define BGFX_CHECK_API_THREAD() \
BX_ASSERT(NULL != s_ctx, "Library is not initialized yet."); \
BX_ASSERT(BGFX_API_THREAD_MAGIC == s_threadIndex, "Must be called from main thread.")
# define BGFX_CHECK_RENDER_THREAD() \
BX_ASSERT( (NULL != s_ctx && s_ctx->m_singleThreaded) \
|| ~BGFX_API_THREAD_MAGIC == s_threadIndex \
, "Must be called from render thread." \
)
#else
# define BGFX_CHECK_API_THREAD()
# define BGFX_CHECK_RENDER_THREAD()
#endif // BGFX_CONFIG_MULTITHREADED
#define BGFX_CHECK_CAPS(_caps, _msg) \
BX_ASSERT(0 != (g_caps.supported & (_caps) ) \
, _msg " Use bgfx::getCaps to check " #_caps " backend renderer capabilities." \
);
#if BGFX_CONFIG_USE_TINYSTL
void* TinyStlAllocator::static_allocate(size_t _bytes)
{
return bx::alloc(g_allocator, _bytes);
}
void TinyStlAllocator::static_deallocate(void* _ptr, size_t /*_bytes*/)
{
if (NULL != _ptr)
{
bx::free(g_allocator, _ptr);
}
}
#endif // BGFX_CONFIG_USE_TINYSTL
struct CallbackStub : public CallbackI
{
virtual ~CallbackStub()
{
}
virtual void fatal(const char* _filePath, uint16_t _line, Fatal::Enum _code, const char* _str) override
{
bgfx::trace(_filePath, _line, "BGFX FATAL 0x%08x: %s\n", _code, _str);
if (Fatal::DebugCheck == _code)
{
bx::debugBreak();
}
else
{
abort();
}
}
virtual void traceVargs(const char* _filePath, uint16_t _line, const char* _format, va_list _argList) override
{
char temp[2048];
char* out = temp;
va_list argListCopy;
va_copy(argListCopy, _argList);
int32_t len = bx::snprintf(out, sizeof(temp), "%s (%d): ", _filePath, _line);
int32_t total = len + bx::vsnprintf(out + len, sizeof(temp)-len, _format, argListCopy);
va_end(argListCopy);
if ( (int32_t)sizeof(temp) < total)
{
out = (char*)alloca(total+1);
bx::memCopy(out, temp, len);
bx::vsnprintf(out + len, total-len, _format, _argList);
}
out[total] = '\0';
bx::debugOutput(out);
}
virtual void profilerBegin(const char* /*_name*/, uint32_t /*_abgr*/, const char* /*_filePath*/, uint16_t /*_line*/) override
{
}
virtual void profilerBeginLiteral(const char* /*_name*/, uint32_t /*_abgr*/, const char* /*_filePath*/, uint16_t /*_line*/) override
{
}
virtual void profilerEnd() override
{
}
virtual uint32_t cacheReadSize(uint64_t /*_id*/) override
{
return 0;
}
virtual bool cacheRead(uint64_t /*_id*/, void* /*_data*/, uint32_t /*_size*/) override
{
return false;
}
virtual void cacheWrite(uint64_t /*_id*/, const void* /*_data*/, uint32_t /*_size*/) override
{
}
virtual void screenShot(const char* _filePath, uint32_t _width, uint32_t _height, uint32_t _pitch, const void* _data, uint32_t _size, bool _yflip) override
{
BX_UNUSED(_filePath, _width, _height, _pitch, _data, _size, _yflip);
const int32_t len = bx::strLen(_filePath)+5;
char* filePath = (char*)alloca(len);
bx::strCopy(filePath, len, _filePath);
bx::strCat(filePath, len, ".tga");
bx::FileWriter writer;
if (bx::open(&writer, filePath) )
{
bimg::imageWriteTga(&writer, _width, _height, _pitch, _data, false, _yflip);
bx::close(&writer);
}
}
virtual void captureBegin(uint32_t /*_width*/, uint32_t /*_height*/, uint32_t /*_pitch*/, TextureFormat::Enum /*_format*/, bool /*_yflip*/) override
{
BX_TRACE("Warning: using capture without callback (a.k.a. pointless).");
}
virtual void captureEnd() override
{
}
virtual void captureFrame(const void* /*_data*/, uint32_t /*_size*/) override
{
}
};
#ifndef BGFX_CONFIG_MEMORY_TRACKING
# define BGFX_CONFIG_MEMORY_TRACKING (BGFX_CONFIG_DEBUG && BX_CONFIG_SUPPORTS_THREADING)
#endif // BGFX_CONFIG_MEMORY_TRACKING
const size_t kNaturalAlignment = 8;
class AllocatorStub : public bx::AllocatorI
{
public:
AllocatorStub()
#if BGFX_CONFIG_MEMORY_TRACKING
: m_numBlocks(0)
, m_maxBlocks(0)
#endif // BGFX_CONFIG_MEMORY_TRACKING
{
}
virtual void* realloc(void* _ptr, size_t _size, size_t _align, const char* _file, uint32_t _line) override
{
if (0 == _size)
{
if (NULL != _ptr)
{
if (kNaturalAlignment >= _align)
{
#if BGFX_CONFIG_MEMORY_TRACKING
{
bx::MutexScope scope(m_mutex);
BX_ASSERT(m_numBlocks > 0, "Number of blocks is 0. Possible alloc/free mismatch?");
--m_numBlocks;
}
#endif // BGFX_CONFIG_MEMORY_TRACKING
::free(_ptr);
}
else
{
bx::alignedFree(this, _ptr, _align, bx::Location(_file, _line) );
}
}
return NULL;
}
else if (NULL == _ptr)
{
if (kNaturalAlignment >= _align)
{
#if BGFX_CONFIG_MEMORY_TRACKING
{
bx::MutexScope scope(m_mutex);
++m_numBlocks;
m_maxBlocks = bx::max(m_maxBlocks, m_numBlocks);
}
#endif // BGFX_CONFIG_MEMORY_TRACKING
return ::malloc(_size);
}
return bx::alignedAlloc(this, _size, _align, bx::Location(_file, _line) );
}
if (kNaturalAlignment >= _align)
{
#if BGFX_CONFIG_MEMORY_TRACKING
if (NULL == _ptr)
{
bx::MutexScope scope(m_mutex);
++m_numBlocks;
m_maxBlocks = bx::max(m_maxBlocks, m_numBlocks);
}
#endif // BGFX_CONFIG_MEMORY_TRACKING
return ::realloc(_ptr, _size);
}
return bx::alignedRealloc(this, _ptr, _size, _align, bx::Location(_file, _line) );
}
void checkLeaks();
protected:
#if BGFX_CONFIG_MEMORY_TRACKING
bx::Mutex m_mutex;
uint32_t m_numBlocks;
uint32_t m_maxBlocks;
#endif // BGFX_CONFIG_MEMORY_TRACKING
};
static CallbackStub* s_callbackStub = NULL;
static AllocatorStub* s_allocatorStub = NULL;
static bool s_graphicsDebuggerPresent = false;
CallbackI* g_callback = NULL;
bx::AllocatorI* g_allocator = NULL;
Caps g_caps;
#if BGFX_CONFIG_MULTITHREADED && !defined(BX_THREAD_LOCAL)
class ThreadData
{
BX_CLASS(ThreadData
, NO_DEFAULT_CTOR
, NO_COPY
);
public:
ThreadData(uintptr_t _rhs)
{
union { uintptr_t ui; void* ptr; } cast = { _rhs };
m_tls.set(cast.ptr);
}
operator uintptr_t() const
{
union { uintptr_t ui; void* ptr; } cast;
cast.ptr = m_tls.get();
return cast.ui;
}
uintptr_t operator=(uintptr_t _rhs)
{
union { uintptr_t ui; void* ptr; } cast = { _rhs };
m_tls.set(cast.ptr);
return _rhs;
}
bool operator==(uintptr_t _rhs) const
{
uintptr_t lhs = *this;
return lhs == _rhs;
}
private:
bx::TlsData m_tls;
};
static ThreadData s_threadIndex(0);
#elif !BGFX_CONFIG_MULTITHREADED
static uint32_t s_threadIndex(0);
#else
static BX_THREAD_LOCAL uint32_t s_threadIndex(0);
#endif
static Context* s_ctx = NULL;
static bool s_renderFrameCalled = false;
InternalData g_internalData;
PlatformData g_platformData;
bool g_platformDataChangedSinceReset = false;
static Handle::TypeName s_typeName[] =
{
{ "DIB", "DynamicIndexBuffer" },
{ "DVB", "DynamicVertexBuffer" },
{ "FB", "FrameBuffer" },
{ "IB", "IndexBuffer" },
{ "IndB", "IndirectBuffer" },
{ "OQ", "OcclusionQuery" },
{ "P", "Program" },
{ "S", "Shader" },
{ "T", "Texture" },
{ "U", "Uniform" },
{ "VB", "VertexBuffer" },
{ "VL", "VertexLayout" },
{ "?", "?" },
};
BX_STATIC_ASSERT(BX_COUNTOF(s_typeName) == Handle::Count+1, "");
const Handle::TypeName& Handle::getTypeName(Handle::Enum _enum)
{
BX_ASSERT(_enum < Handle::Count, "Invalid Handle::Enum %d!", _enum);
return s_typeName[bx::min(_enum, Handle::Count)];
}
void AllocatorStub::checkLeaks()
{
#if BGFX_CONFIG_MEMORY_TRACKING
// BK - CallbackStub will be deleted after printing this info, so there is always one
// leak if CallbackStub is used.
BX_WARN(uint32_t(NULL != s_callbackStub ? 1 : 0) == m_numBlocks
, "\n\n"
"\n########################################################"
"\n"
"\nMEMORY LEAK: Number of leaked blocks %d (Max blocks: %d)"
"\n"
"\n########################################################"
"\n\n"
, m_numBlocks
, m_maxBlocks
);
#endif // BGFX_CONFIG_MEMORY_TRACKING
}
void setPlatformData(const PlatformData& _data)
{
if (NULL != s_ctx)
{
BGFX_FATAL(true
&& g_platformData.ndt == _data.ndt
&& g_platformData.context == _data.context
, Fatal::UnableToInitialize
, "Only backbuffer pointer and native window handle can be changed after initialization!"
);
}
bx::memCopy(&g_platformData, &_data, sizeof(PlatformData) );
g_platformDataChangedSinceReset = true;
}
const InternalData* getInternalData()
{
return &g_internalData;
}
uintptr_t overrideInternal(TextureHandle _handle, uintptr_t _ptr)
{
BGFX_CHECK_RENDER_THREAD();
RendererContextI* rci = s_ctx->m_renderCtx;
if (0 == rci->getInternal(_handle) )
{
return 0;
}
rci->overrideInternal(_handle, _ptr);
return rci->getInternal(_handle);
}
uintptr_t overrideInternal(TextureHandle _handle, uint16_t _width, uint16_t _height, uint8_t _numMips, TextureFormat::Enum _format, uint64_t _flags)
{
BGFX_CHECK_RENDER_THREAD();
RendererContextI* rci = s_ctx->m_renderCtx;
if (0 == rci->getInternal(_handle) )
{
return 0;
}
uint32_t size = sizeof(uint32_t) + sizeof(TextureCreate);
Memory* mem = const_cast<Memory*>(alloc(size) );
bx::StaticMemoryBlockWriter writer(mem->data, mem->size);
uint32_t magic = BGFX_CHUNK_MAGIC_TEX;
bx::write(&writer, magic, bx::ErrorAssert{});
TextureCreate tc;
tc.m_width = _width;
tc.m_height = _height;
tc.m_depth = 0;
tc.m_numLayers = 1;
tc.m_numMips = bx::max<uint8_t>(1, _numMips);
tc.m_format = _format;
tc.m_cubeMap = false;
tc.m_mem = NULL;
bx::write(&writer, tc, bx::ErrorAssert{});
rci->destroyTexture(_handle);
rci->createTexture(_handle, mem, _flags, 0);
release(mem);
return rci->getInternal(_handle);
}
void setGraphicsDebuggerPresent(bool _present)
{
BX_TRACE("Graphics debugger is %spresent.", _present ? "" : "not ");
s_graphicsDebuggerPresent = _present;
}
bool isGraphicsDebuggerPresent()
{
return s_graphicsDebuggerPresent;
}
void fatal(const char* _filePath, uint16_t _line, Fatal::Enum _code, const char* _format, ...)
{
va_list argList;
va_start(argList, _format);
char temp[8192];
char* out = temp;
int32_t len = bx::vsnprintf(out, sizeof(temp), _format, argList);
if ( (int32_t)sizeof(temp) < len)
{
out = (char*)alloca(len+1);
len = bx::vsnprintf(out, len, _format, argList);
}
out[len] = '\0';
if (BX_UNLIKELY(NULL == g_callback) )
{
bx::debugPrintf("%s(%d): BGFX FATAL 0x%08x: %s", _filePath, _line, _code, out);
abort();
}
else
{
g_callback->fatal(_filePath, _line, _code, out);
}
va_end(argList);
}
void trace(const char* _filePath, uint16_t _line, const char* _format, ...)
{
va_list argList;
va_start(argList, _format);
if (BX_UNLIKELY(NULL == g_callback) )
{
bx::debugPrintfVargs(_format, argList);
}
else
{
g_callback->traceVargs(_filePath, _line, _format, argList);
}
va_end(argList);
}
#include "vs_debugfont.bin.h"
#include "fs_debugfont.bin.h"
#include "vs_clear.bin.h"
#include "fs_clear0.bin.h"
#include "fs_clear1.bin.h"
#include "fs_clear2.bin.h"
#include "fs_clear3.bin.h"
#include "fs_clear4.bin.h"
#include "fs_clear5.bin.h"
#include "fs_clear6.bin.h"
#include "fs_clear7.bin.h"
static const EmbeddedShader s_embeddedShaders[] =
{
BGFX_EMBEDDED_SHADER(vs_debugfont),
BGFX_EMBEDDED_SHADER(fs_debugfont),
BGFX_EMBEDDED_SHADER(vs_clear),
BGFX_EMBEDDED_SHADER(fs_clear0),
BGFX_EMBEDDED_SHADER(fs_clear1),
BGFX_EMBEDDED_SHADER(fs_clear2),
BGFX_EMBEDDED_SHADER(fs_clear3),
BGFX_EMBEDDED_SHADER(fs_clear4),
BGFX_EMBEDDED_SHADER(fs_clear5),
BGFX_EMBEDDED_SHADER(fs_clear6),
BGFX_EMBEDDED_SHADER(fs_clear7),
BGFX_EMBEDDED_SHADER_END()
};
ShaderHandle createEmbeddedShader(const EmbeddedShader* _es, RendererType::Enum _type, const char* _name)
{
for (const EmbeddedShader* es = _es; NULL != es->name; ++es)
{
if (0 == bx::strCmp(_name, es->name) )
{
for (const EmbeddedShader::Data* esd = es->data; RendererType::Count != esd->type; ++esd)
{
if (_type == esd->type
&& 1 < esd->size)
{
ShaderHandle handle = createShader(makeRef(esd->data, esd->size) );
if (isValid(handle) )
{
setName(handle, _name);
}
return handle;
}
}
}
}
ShaderHandle handle = BGFX_INVALID_HANDLE;
return handle;
}
void dump(const VertexLayout& _layout)
{
if (BX_ENABLED(BGFX_CONFIG_DEBUG) )
{
BX_TRACE("VertexLayout %08x (%08x), stride %d"
, _layout.m_hash
, bx::hash<bx::HashMurmur2A>(_layout.m_attributes)
, _layout.m_stride
);
for (uint32_t attr = 0; attr < Attrib::Count; ++attr)
{
if (UINT16_MAX != _layout.m_attributes[attr])
{
uint8_t num;
AttribType::Enum type;
bool normalized;
bool asInt;
_layout.decode(Attrib::Enum(attr), num, type, normalized, asInt);
BX_TRACE("\tattr %2d: %-20s num %d, type %d, norm [%c], asint [%c], offset %2d"
, attr
, getAttribName(Attrib::Enum(attr) )
, num
, type
, normalized ? 'x' : ' '
, asInt ? 'x' : ' '
, _layout.m_offset[attr]
);
}
}
}
}
#include "charset.h"
void charsetFillTexture(const uint8_t* _charset, uint8_t* _rgba, uint32_t _height, uint32_t _pitch, uint32_t _bpp)
{
for (uint32_t ii = 0; ii < 256; ++ii)
{
uint8_t* pix = &_rgba[ii*8*_bpp];
for (uint32_t yy = 0; yy < _height; ++yy)
{
for (uint32_t xx = 0; xx < 8; ++xx)
{
uint8_t bit = 1<<(7-xx);
bx::memSet(&pix[xx*_bpp], _charset[ii*_height+yy]&bit ? 255 : 0, _bpp);
}
pix += _pitch;
}
}
}
static uint8_t parseAttrTo(char*& _ptr, char _to, uint8_t _default)
{
const bx::StringView str = bx::strFind(_ptr, _to);
if (!str.isEmpty()
&& 3 > str.getPtr()-_ptr)
{
char tmp[4];
int32_t len = int32_t(str.getPtr()-_ptr);
bx::strCopy(tmp, sizeof(tmp), _ptr, len);
uint32_t attr;
bx::fromString(&attr, tmp);
_ptr += len+1;
return uint8_t(attr);
}
return _default;
}
static uint8_t parseAttr(char*& _ptr, uint8_t _default)
{
char* ptr = _ptr;
if (*ptr++ != '[')
{
return _default;
}
if (0 == bx::strCmp(ptr, "0m", 2) )
{
_ptr = ptr + 2;
return _default;
}
uint8_t fg = parseAttrTo(ptr, ';', _default & 0xf);
uint8_t bg = parseAttrTo(ptr, 'm', _default >> 4);
uint8_t attr = (bg<<4) | fg;
_ptr = ptr;
return attr;
}
void TextVideoMem::printfVargs(uint16_t _x, uint16_t _y, uint8_t _attr, const char* _format, va_list _argList)
{
if (_x < m_width && _y < m_height)
{
va_list argListCopy;
va_copy(argListCopy, _argList);
uint32_t num = bx::vsnprintf(NULL, 0, _format, argListCopy) + 1;
char* temp = (char*)alloca(num);
va_copy(argListCopy, _argList);
num = bx::vsnprintf(temp, num, _format, argListCopy);
uint8_t attr = _attr;
MemSlot* mem = &m_mem[_y*m_width+_x];
for (uint32_t ii = 0, xx = _x; ii < num && xx < m_width; ++ii)
{
char ch = temp[ii];
if (BX_UNLIKELY(ch == '\x1b') )
{
char* ptr = &temp[ii+1];
attr = parseAttr(ptr, _attr);
ii += uint32_t(ptr - &temp[ii+1]);
}
else
{
mem->character = ch;
mem->attribute = attr;
++mem;
++xx;
}
}
}
}
static const uint32_t numCharsPerBatch = 1024;
static const uint32_t numBatchVertices = numCharsPerBatch*4;
static const uint32_t numBatchIndices = numCharsPerBatch*6;
void TextVideoMemBlitter::init(uint8_t scale)
{
BGFX_CHECK_API_THREAD();
m_layout
.begin()
.add(Attrib::Position, 3, AttribType::Float)
.add(Attrib::Color0, 4, AttribType::Uint8, true)
.add(Attrib::Color1, 4, AttribType::Uint8, true)
.add(Attrib::TexCoord0, 2, AttribType::Float)
.end();
uint16_t width = 2048;
uint16_t height = 24;
uint8_t bpp = 1;
uint32_t pitch = width*bpp;
const Memory* mem;
mem = alloc(pitch*height);
uint8_t* rgba = mem->data;
charsetFillTexture(vga8x8, rgba, 8, pitch, bpp);
charsetFillTexture(vga8x16, &rgba[8*pitch], 16, pitch, bpp);
m_texture = createTexture2D(width, height, false, 1, TextureFormat::R8
, BGFX_SAMPLER_MIN_POINT
| BGFX_SAMPLER_MAG_POINT
| BGFX_SAMPLER_MIP_POINT
| BGFX_SAMPLER_U_CLAMP
| BGFX_SAMPLER_V_CLAMP
, mem
);
ShaderHandle vsh = createEmbeddedShader(s_embeddedShaders, g_caps.rendererType, "vs_debugfont");
ShaderHandle fsh = createEmbeddedShader(s_embeddedShaders, g_caps.rendererType, "fs_debugfont");
BX_ASSERT(isValid(vsh) && isValid(fsh), "Failed to create embedded blit shaders");
m_program = createProgram(vsh, fsh, true);
m_vb = s_ctx->createTransientVertexBuffer(numBatchVertices*m_layout.m_stride, &m_layout);
m_ib = s_ctx->createTransientIndexBuffer(numBatchIndices*2);
m_scale = bx::max<uint8_t>(scale, 1);
}
void TextVideoMemBlitter::shutdown()
{
BGFX_CHECK_API_THREAD();
if (isValid(m_program) )
{
destroy(m_program);
}
destroy(m_texture);
s_ctx->destroyTransientVertexBuffer(m_vb);
s_ctx->destroyTransientIndexBuffer(m_ib);
}
static const uint32_t s_paletteSrgb[] =
{
0x0, // Black
0xffa46534, // Blue
0xff069a4e, // Green
0xff9a9806, // Cyan
0xff0000cc, // Red
0xff7b5075, // Magenta
0xff00a0c4, // Brown
0xffcfd7d3, // Light Gray
0xff535755, // Dark Gray
0xffcf9f72, // Light Blue
0xff34e28a, // Light Green
0xffe2e234, // Light Cyan
0xff2929ef, // Light Red
0xffa87fad, // Light Magenta
0xff4fe9fc, // Yellow
0xffeceeee, // White
};
BX_STATIC_ASSERT(BX_COUNTOF(s_paletteSrgb) == 16);
static const uint32_t s_paletteLinear[] =
{
0x0, // Black
0xff5e2108, // Blue
0xff005213, // Green
0xff525000, // Cyan
0xff000099, // Red
0xff32142d, // Magenta
0xff00598c, // Brown
0xff9fada6, // Light Gray
0xff161817, // Dark Gray
0xff9f582a, // Light Blue
0xff08c140, // Light Green
0xffc1c108, // Light Cyan
0xff0505dc, // Light Red
0xff63366a, // Light Magenta
0xff13cff8, // Yellow
0xffd5dada // White
};
BX_STATIC_ASSERT(BX_COUNTOF(s_paletteLinear) == 16);
void blit(RendererContextI* _renderCtx, TextVideoMemBlitter& _blitter, const TextVideoMem& _mem)
{
struct Vertex
{
float m_x;
float m_y;
float m_z;
uint32_t m_fg;
uint32_t m_bg;
float m_u;
float m_v;
};
uint32_t yy = 0;
uint32_t xx = 0;
const float texelWidth = 1.0f/2048.0f;
const float texelHeight = 1.0f/24.0f;
const float utop = (_mem.m_small ? 0.0f : 8.0f)*texelHeight;
const float ubottom = (_mem.m_small ? 8.0f : 24.0f)*texelHeight;
const float fontHeight = (_mem.m_small ? 8.0f : 16.0f)*_blitter.m_scale;
const float fontWidth = 8.0f * _blitter.m_scale;
_renderCtx->blitSetup(_blitter);
const uint32_t* palette = 0 != (s_ctx->m_init.resolution.reset & BGFX_RESET_SRGB_BACKBUFFER)
? s_paletteLinear
: s_paletteSrgb
;
for (;yy < _mem.m_height;)
{
Vertex* vertex = (Vertex*)_blitter.m_vb->data;
uint16_t* indices = (uint16_t*)_blitter.m_ib->data;
uint32_t startVertex = 0;
uint32_t numIndices = 0;
for (; yy < _mem.m_height && numIndices < numBatchIndices; ++yy)
{
xx = xx < _mem.m_width ? xx : 0;
const TextVideoMem::MemSlot* line = &_mem.m_mem[yy*_mem.m_width+xx];
for (; xx < _mem.m_width && numIndices < numBatchIndices; ++xx)
{
uint32_t ch = line->character;
const uint8_t attr = line->attribute;
if (ch > 0xff)
{
ch = 0;
}
if (0 != (ch|attr)
&& (' ' != ch || 0 != (attr&0xf0) ) )
{
const uint32_t fg = palette[attr&0xf];
const uint32_t bg = palette[(attr>>4)&0xf];
Vertex vert[4] =
{
{ (xx )*fontWidth, (yy )*fontHeight, 0.0f, fg, bg, (ch )*8.0f*texelWidth, utop },
{ (xx+1)*fontWidth, (yy )*fontHeight, 0.0f, fg, bg, (ch+1)*8.0f*texelWidth, utop },
{ (xx+1)*fontWidth, (yy+1)*fontHeight, 0.0f, fg, bg, (ch+1)*8.0f*texelWidth, ubottom },
{ (xx )*fontWidth, (yy+1)*fontHeight, 0.0f, fg, bg, (ch )*8.0f*texelWidth, ubottom },
};
bx::memCopy(vertex, vert, sizeof(vert) );
vertex += 4;
indices[0] = uint16_t(startVertex+0);
indices[1] = uint16_t(startVertex+1);
indices[2] = uint16_t(startVertex+2);
indices[3] = uint16_t(startVertex+2);
indices[4] = uint16_t(startVertex+3);
indices[5] = uint16_t(startVertex+0);
startVertex += 4;
indices += 6;
numIndices += 6;
}
line++;
}
if (numIndices >= numBatchIndices)
{
break;
}
}
_renderCtx->blitRender(_blitter, numIndices);
}
}
void ClearQuad::init()
{
BGFX_CHECK_API_THREAD();
if (RendererType::Noop != g_caps.rendererType)
{
m_layout
.begin()
.add(Attrib::Position, 2, AttribType::Float)
.end();
ShaderHandle vsh = createEmbeddedShader(s_embeddedShaders, g_caps.rendererType, "vs_clear");
BX_ASSERT(isValid(vsh), "Failed to create clear quad embedded vertex shader \"vs_clear\"");
for (uint32_t ii = 0, num = g_caps.limits.maxFBAttachments; ii < num; ++ii)
{
char name[32];
bx::snprintf(name, BX_COUNTOF(name), "fs_clear%d", ii);
ShaderHandle fsh = createEmbeddedShader(s_embeddedShaders, g_caps.rendererType, name);
BX_ASSERT(isValid(fsh), "Failed to create clear quad embedded fragment shader \"%s\"", name);
m_program[ii] = createProgram(vsh, fsh);
BX_ASSERT(isValid(m_program[ii]), "Failed to create clear quad program.");
destroy(fsh);
}
destroy(vsh);
struct Vertex
{
float m_x;
float m_y;
};
const uint16_t stride = m_layout.m_stride;
const bgfx::Memory* mem = bgfx::alloc(4 * stride);
Vertex* vertex = (Vertex*)mem->data;
BX_ASSERT(stride == sizeof(Vertex), "Stride/Vertex mismatch (stride %d, sizeof(Vertex) %d)", stride, sizeof(Vertex));
vertex->m_x = -1.0f;
vertex->m_y = -1.0f;
vertex++;
vertex->m_x = 1.0f;
vertex->m_y = -1.0f;
vertex++;
vertex->m_x = -1.0f;
vertex->m_y = 1.0f;
vertex++;
vertex->m_x = 1.0f;
vertex->m_y = 1.0f;
m_vb = s_ctx->createVertexBuffer(mem, m_layout, 0);
}
}
void ClearQuad::shutdown()
{
BGFX_CHECK_API_THREAD();
if (RendererType::Noop != g_caps.rendererType)
{
for (uint32_t ii = 0, num = g_caps.limits.maxFBAttachments; ii < num; ++ii)
{
if (isValid(m_program[ii]) )
{
destroy(m_program[ii]);
m_program[ii].idx = kInvalidHandle;
}
}
s_ctx->destroyVertexBuffer(m_vb);
}
}
const char* s_uniformTypeName[] =
{
"sampler1",
NULL,
"vec4",
"mat3",
"mat4",
};
BX_STATIC_ASSERT(UniformType::Count == BX_COUNTOF(s_uniformTypeName) );
const char* getUniformTypeName(UniformType::Enum _enum)
{
BX_ASSERT(_enum < UniformType::Count, "%d < UniformType::Count %d", _enum, UniformType::Count);
return s_uniformTypeName[_enum];
}
UniformType::Enum nameToUniformTypeEnum(const char* _name)
{
for (uint32_t ii = 0; ii < UniformType::Count; ++ii)
{
if (NULL != s_uniformTypeName[ii]
&& 0 == bx::strCmp(_name, s_uniformTypeName[ii]) )
{
return UniformType::Enum(ii);
}
}
return UniformType::Count;
}
static const char* s_predefinedName[PredefinedUniform::Count] =
{
"u_viewRect",
"u_viewTexel",
"u_view",
"u_invView",
"u_proj",
"u_invProj",
"u_viewProj",
"u_invViewProj",
"u_model",
"u_modelView",
"u_modelViewProj",
"u_alphaRef4",
};
const char* getPredefinedUniformName(PredefinedUniform::Enum _enum)
{
return s_predefinedName[_enum];
}
PredefinedUniform::Enum nameToPredefinedUniformEnum(const bx::StringView& _name)
{
for (uint32_t ii = 0; ii < PredefinedUniform::Count; ++ii)
{
if (0 == bx::strCmp(_name, s_predefinedName[ii]) )
{
return PredefinedUniform::Enum(ii);
}
}
return PredefinedUniform::Count;
}
void srtToMatrix4_x1(void* _dst, const void* _src)
{
Matrix4* mtx = reinterpret_cast< Matrix4*>(_dst);
const Srt* srt = reinterpret_cast<const Srt*>(_src);
const float rx = srt->rotate[0];
const float ry = srt->rotate[1];
const float rz = srt->rotate[2];
const float rw = srt->rotate[3];
const float xx2 = 2.0f * rx * rx;
const float yy2 = 2.0f * ry * ry;
const float zz2 = 2.0f * rz * rz;
const float yx2 = 2.0f * ry * rx;
const float yz2 = 2.0f * ry * rz;
const float yw2 = 2.0f * ry * rw;
const float wz2 = 2.0f * rw * rz;
const float wx2 = 2.0f * rw * rx;
const float xz2 = 2.0f * rx * rz;
const float sx = srt->scale[0];
const float sy = srt->scale[1];
const float sz = srt->scale[2];
mtx->un.val[ 0] = (1.0f - yy2 - zz2)*sx;
mtx->un.val[ 1] = ( yx2 + wz2)*sx;
mtx->un.val[ 2] = ( xz2 - yw2)*sx;
mtx->un.val[ 3] = 0.0f;
mtx->un.val[ 4] = ( yx2 - wz2)*sy;
mtx->un.val[ 5] = (1.0f - xx2 - zz2)*sy;
mtx->un.val[ 6] = ( yz2 + wx2)*sy;
mtx->un.val[ 7] = 0.0f;
mtx->un.val[ 8] = ( xz2 + yw2)*sz;
mtx->un.val[ 9] = ( yz2 - wx2)*sz;
mtx->un.val[10] = (1.0f - xx2 - yy2)*sz;
mtx->un.val[11] = 0.0f;
const float tx = srt->translate[0];
const float ty = srt->translate[1];
const float tz = srt->translate[2];
mtx->un.val[12] = tx;
mtx->un.val[13] = ty;
mtx->un.val[14] = tz;
mtx->un.val[15] = 1.0f;
}
void transpose(void* _dst, uint32_t _dstStride, const void* _src, uint32_t _srcStride = sizeof(bx::simd128_t) )
{
uint8_t* dst = reinterpret_cast< uint8_t *>(_dst);
const uint8_t* src = reinterpret_cast<const uint8_t *>(_src);
using namespace bx;
const simd128_t r0 = simd_ld<simd128_t>(src);
src += _srcStride;
const simd128_t r1 = simd_ld<simd128_t>(src);
src += _srcStride;
const simd128_t r2 = simd_ld<simd128_t>(src);
src += _srcStride;
const simd128_t r3 = simd_ld<simd128_t>(src);
const simd128_t aibj = simd_shuf_xAyB(r0, r2); // aibj
const simd128_t emfn = simd_shuf_xAyB(r1, r3); // emfn
const simd128_t ckdl = simd_shuf_zCwD(r0, r2); // ckdl
const simd128_t gohp = simd_shuf_zCwD(r1, r3); // gohp
const simd128_t aeim = simd_shuf_xAyB(aibj, emfn); // aeim
const simd128_t bfjn = simd_shuf_zCwD(aibj, emfn); // bfjn
const simd128_t cgko = simd_shuf_xAyB(ckdl, gohp); // cgko
const simd128_t dhlp = simd_shuf_zCwD(ckdl, gohp); // dhlp
simd_st(dst, aeim);
dst += _dstStride;
simd_st(dst, bfjn);
dst += _dstStride;
simd_st(dst, cgko);
dst += _dstStride;
simd_st(dst, dhlp);
}
void srtToMatrix4_x4_Ref(void* _dst, const void* _src)
{
uint8_t* dst = reinterpret_cast< uint8_t*>(_dst);
const uint8_t* src = reinterpret_cast<const uint8_t*>(_src);
srtToMatrix4_x1(dst + 0*sizeof(Matrix4), src + 0*sizeof(Srt) );
srtToMatrix4_x1(dst + 1*sizeof(Matrix4), src + 1*sizeof(Srt) );
srtToMatrix4_x1(dst + 2*sizeof(Matrix4), src + 2*sizeof(Srt) );
srtToMatrix4_x1(dst + 3*sizeof(Matrix4), src + 3*sizeof(Srt) );
}
void srtToMatrix4_x4_Simd(void* _dst, const void* _src)
{
using namespace bx;
simd128_t* dst = reinterpret_cast< simd128_t*>(_dst);
const simd128_t* src = reinterpret_cast<const simd128_t*>(_src);
simd128_t rotate[4];
simd128_t translate[4];
simd128_t scale[4];
transpose(rotate, sizeof(simd128_t), src + 0, sizeof(Srt) );
transpose(translate, sizeof(simd128_t), src + 1, sizeof(Srt) );
transpose(scale, sizeof(simd128_t), src + 2, sizeof(Srt) );
const simd128_t rx = simd_ld<simd128_t>(rotate + 0);
const simd128_t ry = simd_ld<simd128_t>(rotate + 1);
const simd128_t rz = simd_ld<simd128_t>(rotate + 2);
const simd128_t rw = simd_ld<simd128_t>(rotate + 3);
const simd128_t tx = simd_ld<simd128_t>(translate + 0);
const simd128_t ty = simd_ld<simd128_t>(translate + 1);
const simd128_t tz = simd_ld<simd128_t>(translate + 2);
const simd128_t sx = simd_ld<simd128_t>(scale + 0);
const simd128_t sy = simd_ld<simd128_t>(scale + 1);
const simd128_t sz = simd_ld<simd128_t>(scale + 2);
const simd128_t zero = simd_splat(0.0f);
const simd128_t one = simd_splat(1.0f);
const simd128_t two = simd_splat(2.0f);
const simd128_t xx = simd_mul(rx, rx);
const simd128_t xx2 = simd_mul(two, xx);
const simd128_t yy = simd_mul(ry, ry);
const simd128_t yy2 = simd_mul(two, yy);
const simd128_t zz = simd_mul(rz, rz);
const simd128_t zz2 = simd_mul(two, zz);
const simd128_t yx = simd_mul(ry, rx);
const simd128_t yx2 = simd_mul(two, yx);
const simd128_t yz = simd_mul(ry, rz);
const simd128_t yz2 = simd_mul(two, yz);
const simd128_t yw = simd_mul(ry, rw);
const simd128_t yw2 = simd_mul(two, yw);
const simd128_t wz = simd_mul(rw, rz);
const simd128_t wz2 = simd_mul(two, wz);
const simd128_t wx = simd_mul(rw, rx);
const simd128_t wx2 = simd_mul(two, wx);
const simd128_t xz = simd_mul(rx, rz);
const simd128_t xz2 = simd_mul(two, xz);
const simd128_t t0x = simd_sub(one, yy2);
const simd128_t r0x = simd_sub(t0x, zz2);
const simd128_t r0y = simd_add(yx2, wz2);
const simd128_t r0z = simd_sub(xz2, yw2);
const simd128_t r1x = simd_sub(yx2, wz2);
const simd128_t omxx2 = simd_sub(one, xx2);
const simd128_t r1y = simd_sub(omxx2, zz2);
const simd128_t r1z = simd_add(yz2, wx2);
const simd128_t r2x = simd_add(xz2, yw2);
const simd128_t r2y = simd_sub(yz2, wx2);
const simd128_t r2z = simd_sub(omxx2, yy2);
simd128_t tmp[4];
tmp[0] = simd_mul(r0x, sx);
tmp[1] = simd_mul(r0y, sx);
tmp[2] = simd_mul(r0z, sx);
tmp[3] = zero;
transpose(dst + 0, sizeof(Matrix4), tmp);
tmp[0] = simd_mul(r1x, sy);
tmp[1] = simd_mul(r1y, sy);
tmp[2] = simd_mul(r1z, sy);
tmp[3] = zero;
transpose(dst + 1, sizeof(Matrix4), tmp);
tmp[0] = simd_mul(r2x, sz);
tmp[1] = simd_mul(r2y, sz);
tmp[2] = simd_mul(r2z, sz);
tmp[3] = zero;
transpose(dst + 2, sizeof(Matrix4), tmp);
tmp[0] = tx;
tmp[1] = ty;
tmp[2] = tz;
tmp[3] = one;
transpose(dst + 3, sizeof(Matrix4), tmp);
}
void srtToMatrix4(void* _dst, const void* _src, uint32_t _num)
{
uint8_t* dst = reinterpret_cast< uint8_t*>(_dst);
const uint8_t* src = reinterpret_cast<const uint8_t*>(_src);
if (!bx::isAligned(src, 16) )
{
for (uint32_t ii = 0, num = _num / 4; ii < num; ++ii)
{
srtToMatrix4_x4_Ref(dst, src);
src += 4*sizeof(Srt);
dst += 4*sizeof(Matrix4);
}
}
else
{
for (uint32_t ii = 0, num = _num / 4; ii < num; ++ii)
{
srtToMatrix4_x4_Simd(dst, src);
src += 4*sizeof(Srt);
dst += 4*sizeof(Matrix4);
}
}
for (uint32_t ii = 0, num = _num & 3; ii < num; ++ii)
{
srtToMatrix4_x1(dst, src);
src += sizeof(Srt);
dst += sizeof(Matrix4);
}
}
void EncoderImpl::submit(ViewId _id, ProgramHandle _program, OcclusionQueryHandle _occlusionQuery, uint32_t _depth, uint8_t _flags)
{
if (BX_ENABLED(BGFX_CONFIG_DEBUG_UNIFORM)
&& (_flags & BGFX_DISCARD_STATE))
{
m_uniformSet.clear();
}
if (BX_ENABLED(BGFX_CONFIG_DEBUG_OCCLUSION)
&& isValid(_occlusionQuery) )
{
BX_ASSERT(m_occlusionQuerySet.end() == m_occlusionQuerySet.find(_occlusionQuery.idx)
, "OcclusionQuery %d was already used for this frame."
, _occlusionQuery.idx
);
m_occlusionQuerySet.insert(_occlusionQuery.idx);
}
if (m_discard)
{
discard(_flags);
return;
}
if (0 == m_draw.m_numVertices
&& 0 == m_draw.m_numIndices)
{
discard(_flags);
++m_numDropped;
return;
}
const uint32_t renderItemIdx = bx::atomicFetchAndAddsat<uint32_t>(&m_frame->m_numRenderItems, 1, BGFX_CONFIG_MAX_DRAW_CALLS);
if (BGFX_CONFIG_MAX_DRAW_CALLS <= renderItemIdx)
{
discard(_flags);
++m_numDropped;
return;
}
++m_numSubmitted;
UniformBuffer* uniformBuffer = m_frame->m_uniformBuffer[m_uniformIdx];
m_uniformEnd = uniformBuffer->getPos();
m_key.m_program = isValid(_program)
? _program
: ProgramHandle{0}
;
m_key.m_view = _id;
SortKey::Enum type;
switch (s_ctx->m_view[_id].m_mode)
{
case ViewMode::Sequential: m_key.m_seq = s_ctx->getSeqIncr(_id); type = SortKey::SortSequence; break;
case ViewMode::DepthAscending: m_key.m_depth = _depth; type = SortKey::SortDepth; break;
case ViewMode::DepthDescending: m_key.m_depth = UINT32_MAX-_depth; type = SortKey::SortDepth; break;
default: m_key.m_depth = _depth; type = SortKey::SortProgram; break;
}
uint64_t key = m_key.encodeDraw(type);
m_frame->m_sortKeys[renderItemIdx] = key;
m_frame->m_sortValues[renderItemIdx] = RenderItemCount(renderItemIdx);
m_draw.m_uniformIdx = m_uniformIdx;
m_draw.m_uniformBegin = m_uniformBegin;
m_draw.m_uniformEnd = m_uniformEnd;
if (UINT8_MAX != m_draw.m_streamMask)
{
uint32_t numVertices = UINT32_MAX;
for (uint32_t idx = 0, streamMask = m_draw.m_streamMask
; 0 != streamMask
; streamMask >>= 1, idx += 1
)
{
const uint32_t ntz = bx::uint32_cnttz(streamMask);
streamMask >>= ntz;
idx += ntz;
numVertices = bx::min(numVertices, m_numVertices[idx]);
}
m_draw.m_numVertices = numVertices;
}
else
{
m_draw.m_numVertices = m_numVertices[0];
}
if (isValid(_occlusionQuery) )
{
m_draw.m_stateFlags |= BGFX_STATE_INTERNAL_OCCLUSION_QUERY;
m_draw.m_occlusionQuery = _occlusionQuery;
}
m_frame->m_renderItem[renderItemIdx].draw = m_draw;
m_frame->m_renderItemBind[renderItemIdx] = m_bind;
m_draw.clear(_flags);
m_bind.clear(_flags);
if (_flags & BGFX_DISCARD_STATE)
{
m_uniformBegin = m_uniformEnd;
}
}
void EncoderImpl::dispatch(ViewId _id, ProgramHandle _handle, uint32_t _numX, uint32_t _numY, uint32_t _numZ, uint8_t _flags)
{
if (BX_ENABLED(BGFX_CONFIG_DEBUG_UNIFORM) )
{
m_uniformSet.clear();
}
if (m_discard)
{
discard(_flags);
return;
}
const uint32_t renderItemIdx = bx::atomicFetchAndAddsat<uint32_t>(&m_frame->m_numRenderItems, 1, BGFX_CONFIG_MAX_DRAW_CALLS);
if (BGFX_CONFIG_MAX_DRAW_CALLS-1 <= renderItemIdx)
{
discard(_flags);
++m_numDropped;
return;
}
++m_numSubmitted;
UniformBuffer* uniformBuffer = m_frame->m_uniformBuffer[m_uniformIdx];
m_uniformEnd = uniformBuffer->getPos();
m_compute.m_startMatrix = m_draw.m_startMatrix;
m_compute.m_numMatrices = m_draw.m_numMatrices;
m_compute.m_numX = bx::max(_numX, 1u);
m_compute.m_numY = bx::max(_numY, 1u);
m_compute.m_numZ = bx::max(_numZ, 1u);
m_key.m_program = _handle;
m_key.m_depth = 0;
m_key.m_view = _id;
m_key.m_seq = s_ctx->getSeqIncr(_id);
uint64_t key = m_key.encodeCompute();
m_frame->m_sortKeys[renderItemIdx] = key;
m_frame->m_sortValues[renderItemIdx] = RenderItemCount(renderItemIdx);
m_compute.m_uniformIdx = m_uniformIdx;
m_compute.m_uniformBegin = m_uniformBegin;
m_compute.m_uniformEnd = m_uniformEnd;
m_frame->m_renderItem[renderItemIdx].compute = m_compute;
m_frame->m_renderItemBind[renderItemIdx] = m_bind;
m_compute.clear(_flags);
m_bind.clear(_flags);
m_uniformBegin = m_uniformEnd;
}
void EncoderImpl::blit(ViewId _id, TextureHandle _dst, uint8_t _dstMip, uint16_t _dstX, uint16_t _dstY, uint16_t _dstZ, TextureHandle _src, uint8_t _srcMip, uint16_t _srcX, uint16_t _srcY, uint16_t _srcZ, uint16_t _width, uint16_t _height, uint16_t _depth)
{
BX_WARN(m_frame->m_numBlitItems < BGFX_CONFIG_MAX_BLIT_ITEMS
, "Exceed number of available blit items per frame. BGFX_CONFIG_MAX_BLIT_ITEMS is %d. Skipping blit."
, BGFX_CONFIG_MAX_BLIT_ITEMS
);
if (m_frame->m_numBlitItems < BGFX_CONFIG_MAX_BLIT_ITEMS)
{
uint16_t item = m_frame->m_numBlitItems++;
BlitItem& bi = m_frame->m_blitItem[item];
bi.m_srcX = _srcX;
bi.m_srcY = _srcY;
bi.m_srcZ = _srcZ;
bi.m_dstX = _dstX;
bi.m_dstY = _dstY;
bi.m_dstZ = _dstZ;
bi.m_width = _width;
bi.m_height = _height;
bi.m_depth = _depth;
bi.m_srcMip = _srcMip;
bi.m_dstMip = _dstMip;
bi.m_src = _src;
bi.m_dst = _dst;
BlitKey key;
key.m_view = _id;
key.m_item = item;
m_frame->m_blitKeys[item] = key.encode();
}
}
void Frame::sort()
{
BGFX_PROFILER_SCOPE("bgfx/Sort", 0xff2040ff);
ViewId viewRemap[BGFX_CONFIG_MAX_VIEWS];
for (uint32_t ii = 0; ii < BGFX_CONFIG_MAX_VIEWS; ++ii)
{
viewRemap[m_viewRemap[ii] ] = ViewId(ii);
View& view = m_view[ii];
Rect rect(0, 0, uint16_t(m_resolution.width), uint16_t(m_resolution.height) );
if (isValid(view.m_fbh) )
{
const FrameBufferRef& fbr = s_ctx->m_frameBufferRef[view.m_fbh.idx];
const BackbufferRatio::Enum bbRatio = fbr.m_window
? BackbufferRatio::Count
: BackbufferRatio::Enum(s_ctx->m_textureRef[fbr.un.m_th[0].idx].m_bbRatio)
;
if (BackbufferRatio::Count != bbRatio)
{
getTextureSizeFromRatio(bbRatio, rect.m_width, rect.m_height);
}
else
{
rect.m_width = fbr.m_width;
rect.m_height = fbr.m_height;
}
}
view.m_rect.intersect(rect);
if (!view.m_scissor.isZero() )
{
view.m_scissor.intersect(rect);
}
}
for (uint32_t ii = 0, num = m_numRenderItems; ii < num; ++ii)
{
m_sortKeys[ii] = SortKey::remapView(m_sortKeys[ii], viewRemap);
}
bx::radixSort(m_sortKeys, s_ctx->m_tempKeys, m_sortValues, s_ctx->m_tempValues, m_numRenderItems);
for (uint32_t ii = 0, num = m_numBlitItems; ii < num; ++ii)
{
m_blitKeys[ii] = BlitKey::remapView(m_blitKeys[ii], viewRemap);
}
bx::radixSort(m_blitKeys, (uint32_t*)&s_ctx->m_tempKeys, m_numBlitItems);
}
RenderFrame::Enum renderFrame(int32_t _msecs)
{
if (BX_ENABLED(BGFX_CONFIG_MULTITHREADED) )
{
if (s_renderFrameCalled)
{
BGFX_CHECK_RENDER_THREAD();
}
if (NULL == s_ctx)
{
s_renderFrameCalled = true;
s_threadIndex = ~BGFX_API_THREAD_MAGIC;
return RenderFrame::NoContext;
}
int32_t msecs = -1 == _msecs
? BGFX_CONFIG_API_SEMAPHORE_TIMEOUT
: _msecs
;
RenderFrame::Enum result = s_ctx->renderFrame(msecs);
if (RenderFrame::Exiting == result)
{
Context* ctx = s_ctx;
ctx->apiSemWait();
s_ctx = NULL;
ctx->renderSemPost();
}
return result;
}
BX_ASSERT(false, "This call only makes sense if used with multi-threaded renderer.");
return RenderFrame::NoContext;
}
const uint32_t g_uniformTypeSize[UniformType::Count+1] =
{
sizeof(int32_t),
0,
4*sizeof(float),
3*3*sizeof(float),
4*4*sizeof(float),
1,
};
void UniformBuffer::writeUniform(UniformType::Enum _type, uint16_t _loc, const void* _value, uint16_t _num)
{
uint32_t opcode = encodeOpcode(_type, _loc, _num, true);
write(opcode);
write(_value, g_uniformTypeSize[_type]*_num);
}
void UniformBuffer::writeUniformHandle(UniformType::Enum _type, uint16_t _loc, UniformHandle _handle, uint16_t _num)
{
uint32_t opcode = encodeOpcode(_type, _loc, _num, false);
write(opcode);
write(&_handle, sizeof(UniformHandle) );
}
void UniformBuffer::writeMarker(const char* _marker)
{
uint16_t num = (uint16_t)bx::strLen(_marker)+1;
uint32_t opcode = encodeOpcode(bgfx::UniformType::Count, 0, num, true);
write(opcode);
write(_marker, num);
}
struct CapsFlags
{
uint64_t m_flag;
const char* m_str;
};
static const CapsFlags s_capsFlags[] =
{
#define CAPS_FLAGS(_x) { _x, #_x }
CAPS_FLAGS(BGFX_CAPS_ALPHA_TO_COVERAGE),
CAPS_FLAGS(BGFX_CAPS_BLEND_INDEPENDENT),
CAPS_FLAGS(BGFX_CAPS_COMPUTE),
CAPS_FLAGS(BGFX_CAPS_CONSERVATIVE_RASTER),
CAPS_FLAGS(BGFX_CAPS_DRAW_INDIRECT),
CAPS_FLAGS(BGFX_CAPS_FRAGMENT_DEPTH),
CAPS_FLAGS(BGFX_CAPS_FRAGMENT_ORDERING),
CAPS_FLAGS(BGFX_CAPS_GRAPHICS_DEBUGGER),
CAPS_FLAGS(BGFX_CAPS_HDR10),
CAPS_FLAGS(BGFX_CAPS_HIDPI),
CAPS_FLAGS(BGFX_CAPS_IMAGE_RW),
CAPS_FLAGS(BGFX_CAPS_INDEX32),
CAPS_FLAGS(BGFX_CAPS_INSTANCING),
CAPS_FLAGS(BGFX_CAPS_OCCLUSION_QUERY),
CAPS_FLAGS(BGFX_CAPS_RENDERER_MULTITHREADED),
CAPS_FLAGS(BGFX_CAPS_SWAP_CHAIN),
CAPS_FLAGS(BGFX_CAPS_TEXTURE_2D_ARRAY),
CAPS_FLAGS(BGFX_CAPS_TEXTURE_3D),
CAPS_FLAGS(BGFX_CAPS_TEXTURE_BLIT),
CAPS_FLAGS(BGFX_CAPS_TRANSPARENT_BACKBUFFER),
CAPS_FLAGS(BGFX_CAPS_TEXTURE_COMPARE_ALL),
CAPS_FLAGS(BGFX_CAPS_TEXTURE_COMPARE_LEQUAL),
CAPS_FLAGS(BGFX_CAPS_TEXTURE_CUBE_ARRAY),
CAPS_FLAGS(BGFX_CAPS_TEXTURE_DIRECT_ACCESS),
CAPS_FLAGS(BGFX_CAPS_TEXTURE_READ_BACK),
CAPS_FLAGS(BGFX_CAPS_VERTEX_ATTRIB_HALF),
CAPS_FLAGS(BGFX_CAPS_VERTEX_ATTRIB_UINT10),
CAPS_FLAGS(BGFX_CAPS_VERTEX_ID),
CAPS_FLAGS(BGFX_CAPS_PRIMITIVE_ID),
CAPS_FLAGS(BGFX_CAPS_VIEWPORT_LAYER_ARRAY),
#undef CAPS_FLAGS
};
static void dumpCaps()
{
BX_TRACE("");
if (0 < g_caps.numGPUs)
{
BX_TRACE("Detected GPUs (%d):", g_caps.numGPUs);
BX_TRACE("\t +---------------- Index");
BX_TRACE("\t | +------------- Device ID");
BX_TRACE("\t | | +-------- Vendor ID");
for (uint32_t ii = 0; ii < g_caps.numGPUs; ++ii)
{
const Caps::GPU& gpu = g_caps.gpu[ii];
BX_UNUSED(gpu);
BX_TRACE("\t %d: %04x %04x"
, ii
, gpu.deviceId
, gpu.vendorId
);
}
BX_TRACE("");
}
BX_TRACE("GPU device, Device ID: %04x, Vendor ID: %04x", g_caps.deviceId, g_caps.vendorId);
BX_TRACE("");
RendererType::Enum renderers[RendererType::Count];
uint8_t num = getSupportedRenderers(BX_COUNTOF(renderers), renderers);
BX_TRACE("Supported renderer backends (%d):", num);
for (uint32_t ii = 0; ii < num; ++ii)
{
BX_TRACE("\t - %s", getRendererName(renderers[ii]) );
}
BX_TRACE("");
BX_TRACE("Sort key masks:");
BX_TRACE("\t View %016" PRIx64, kSortKeyViewMask);
BX_TRACE("\t Draw bit %016" PRIx64, kSortKeyDrawBit);
BX_TRACE("");
BX_TRACE("\tD Type %016" PRIx64, kSortKeyDrawTypeMask);
BX_TRACE("");
BX_TRACE("\tD0 Blend %016" PRIx64, kSortKeyDraw0BlendMask);
BX_TRACE("\tD0 Program %016" PRIx64, kSortKeyDraw0ProgramMask);
BX_TRACE("\tD0 Depth %016" PRIx64, kSortKeyDraw0DepthMask);
BX_TRACE("");
BX_TRACE("\tD1 Depth %016" PRIx64, kSortKeyDraw1DepthMask);
BX_TRACE("\tD1 Blend %016" PRIx64, kSortKeyDraw1BlendMask);
BX_TRACE("\tD1 Program %016" PRIx64, kSortKeyDraw1ProgramMask);
BX_TRACE("");
BX_TRACE("\tD2 Seq %016" PRIx64, kSortKeyDraw2SeqMask);
BX_TRACE("\tD2 Blend %016" PRIx64, kSortKeyDraw2BlendMask);
BX_TRACE("\tD2 Program %016" PRIx64, kSortKeyDraw2ProgramMask);
BX_TRACE("");
BX_TRACE("\t C Seq %016" PRIx64, kSortKeyComputeSeqMask);
BX_TRACE("\t C Program %016" PRIx64, kSortKeyComputeProgramMask);
BX_TRACE("");
BX_TRACE("Capabilities (renderer %s, vendor 0x%04x, device 0x%04x):"
, s_ctx->m_renderCtx->getRendererName()
, g_caps.vendorId
, g_caps.deviceId
);
for (uint32_t ii = 0; ii < BX_COUNTOF(s_capsFlags); ++ii)
{
BX_TRACE("\t[%c] %s"
, 0 != (g_caps.supported & s_capsFlags[ii].m_flag) ? 'x' : ' '
, s_capsFlags[ii].m_str
);
}
BX_UNUSED(s_capsFlags);
BX_TRACE("");
BX_TRACE("Limits:");
#define LIMITS(_x) BX_TRACE("\t%-24s%10d", #_x, g_caps.limits._x)
LIMITS(maxDrawCalls);
LIMITS(maxBlits);
LIMITS(maxTextureSize);
LIMITS(maxTextureLayers);
LIMITS(maxViews);
LIMITS(maxFrameBuffers);
LIMITS(maxFBAttachments);
LIMITS(maxPrograms);
LIMITS(maxShaders);
LIMITS(maxTextures);
LIMITS(maxTextureSamplers);
LIMITS(maxComputeBindings);
LIMITS(maxVertexLayouts);
LIMITS(maxVertexStreams);
LIMITS(maxIndexBuffers);
LIMITS(maxVertexBuffers);
LIMITS(maxDynamicIndexBuffers);
LIMITS(maxDynamicVertexBuffers);
LIMITS(maxUniforms);
LIMITS(maxOcclusionQueries);
LIMITS(maxEncoders);
LIMITS(minResourceCbSize);
LIMITS(transientVbSize);
LIMITS(transientIbSize);
#undef LIMITS
BX_TRACE("");
BX_TRACE("Supported texture formats:");
BX_TRACE("\t +---------------- 2D: x = supported / * = emulated");
BX_TRACE("\t |+--------------- 2D: sRGB format");
BX_TRACE("\t ||+-------------- 3D: x = supported / * = emulated");
BX_TRACE("\t |||+------------- 3D: sRGB format");
BX_TRACE("\t ||||+------------ Cube: x = supported / * = emulated");
BX_TRACE("\t |||||+----------- Cube: sRGB format");
BX_TRACE("\t ||||||+---------- vertex format");
BX_TRACE("\t |||||||+--------- image: i = read-write / r = read / w = write");
BX_TRACE("\t ||||||||+-------- framebuffer");
BX_TRACE("\t |||||||||+------- MSAA framebuffer");
BX_TRACE("\t ||||||||||+------ MSAA texture");
BX_TRACE("\t |||||||||||+----- Auto-generated mips");
BX_TRACE("\t |||||||||||| +-- name");
for (uint32_t ii = 0; ii < TextureFormat::Count; ++ii)
{
if (TextureFormat::Unknown != ii
&& TextureFormat::UnknownDepth != ii)
{
uint32_t flags = g_caps.formats[ii];
BX_TRACE("\t[%c%c%c%c%c%c%c%c%c%c%c%c] %s"
, flags&BGFX_CAPS_FORMAT_TEXTURE_2D ? 'x' : flags&BGFX_CAPS_FORMAT_TEXTURE_2D_EMULATED ? '*' : ' '
, flags&BGFX_CAPS_FORMAT_TEXTURE_2D_SRGB ? 'l' : ' '
, flags&BGFX_CAPS_FORMAT_TEXTURE_3D ? 'x' : flags&BGFX_CAPS_FORMAT_TEXTURE_3D_EMULATED ? '*' : ' '
, flags&BGFX_CAPS_FORMAT_TEXTURE_3D_SRGB ? 'l' : ' '
, flags&BGFX_CAPS_FORMAT_TEXTURE_CUBE ? 'x' : flags&BGFX_CAPS_FORMAT_TEXTURE_CUBE_EMULATED ? '*' : ' '
, flags&BGFX_CAPS_FORMAT_TEXTURE_CUBE_SRGB ? 'l' : ' '
, flags&BGFX_CAPS_FORMAT_TEXTURE_VERTEX ? 'v' : ' '
, (flags&BGFX_CAPS_FORMAT_TEXTURE_IMAGE_READ) &&
(flags&BGFX_CAPS_FORMAT_TEXTURE_IMAGE_WRITE) ? 'i' : flags&BGFX_CAPS_FORMAT_TEXTURE_IMAGE_READ ? 'r' : flags&BGFX_CAPS_FORMAT_TEXTURE_IMAGE_WRITE ? 'w' : ' '
, flags&BGFX_CAPS_FORMAT_TEXTURE_FRAMEBUFFER ? 'f' : ' '
, flags&BGFX_CAPS_FORMAT_TEXTURE_FRAMEBUFFER_MSAA ? '+' : ' '
, flags&BGFX_CAPS_FORMAT_TEXTURE_MSAA ? 'm' : ' '
, flags&BGFX_CAPS_FORMAT_TEXTURE_MIP_AUTOGEN ? 'M' : ' '
, getName(TextureFormat::Enum(ii) )
);
BX_UNUSED(flags);
}
}
BX_TRACE("");
BX_TRACE("NDC depth [%d, 1], origin %s left."
, g_caps.homogeneousDepth ? -1 : 0
, g_caps.originBottomLeft ? "bottom" : "top"
);
BX_TRACE("");
}
void dump(const Resolution& _resolution)
{
const uint32_t reset = _resolution.reset;
const uint32_t msaa = (reset&BGFX_RESET_MSAA_MASK)>>BGFX_RESET_MSAA_SHIFT;
BX_UNUSED(reset, msaa);
BX_TRACE("Reset back-buffer swap chain:");
BX_TRACE("\t%dx%d, format: %s, numBackBuffers: %d, maxFrameLatency: %d"
, _resolution.width
, _resolution.height
, TextureFormat::Count == _resolution.format
? "*default*"
: bimg::getName(bimg::TextureFormat::Enum(_resolution.format) )
, _resolution.numBackBuffers
, _resolution.maxFrameLatency
);
BX_TRACE("\t[%c] MSAAx%d", 0 != msaa ? 'x' : ' ', 1<<msaa);
BX_TRACE("\t[%c] Fullscreen", 0 != (reset & BGFX_RESET_FULLSCREEN) ? 'x' : ' ');
BX_TRACE("\t[%c] V-sync", 0 != (reset & BGFX_RESET_VSYNC) ? 'x' : ' ');
BX_TRACE("\t[%c] Max Anisotropy", 0 != (reset & BGFX_RESET_MAXANISOTROPY) ? 'x' : ' ');
BX_TRACE("\t[%c] Capture", 0 != (reset & BGFX_RESET_CAPTURE) ? 'x' : ' ');
BX_TRACE("\t[%c] Flush After Render", 0 != (reset & BGFX_RESET_FLUSH_AFTER_RENDER) ? 'x' : ' ');
BX_TRACE("\t[%c] Flip After Render", 0 != (reset & BGFX_RESET_FLIP_AFTER_RENDER) ? 'x' : ' ');
BX_TRACE("\t[%c] sRGB Back Buffer", 0 != (reset & BGFX_RESET_SRGB_BACKBUFFER) ? 'x' : ' ');
BX_TRACE("\t[%c] Transparent Back Buffer", 0 != (reset & BGFX_RESET_TRANSPARENT_BACKBUFFER) ? 'x' : ' ');
BX_TRACE("\t[%c] HDR10", 0 != (reset & BGFX_RESET_HDR10) ? 'x' : ' ');
BX_TRACE("\t[%c] Hi-DPI", 0 != (reset & BGFX_RESET_HIDPI) ? 'x' : ' ');
BX_TRACE("\t[%c] Depth Clamp", 0 != (reset & BGFX_RESET_DEPTH_CLAMP) ? 'x' : ' ');
BX_TRACE("\t[%c] Suspend", 0 != (reset & BGFX_RESET_SUSPEND) ? 'x' : ' ');
}
TextureFormat::Enum getViableTextureFormat(const bimg::ImageContainer& _imageContainer)
{
const uint32_t formatCaps = g_caps.formats[_imageContainer.m_format];
bool convert = 0 == formatCaps;
if (_imageContainer.m_cubeMap)
{
convert |= 0 == (formatCaps & BGFX_CAPS_FORMAT_TEXTURE_CUBE)
&& 0 != (formatCaps & BGFX_CAPS_FORMAT_TEXTURE_CUBE_EMULATED)
;
}
else if (_imageContainer.m_depth > 1)
{
convert |= 0 == (formatCaps & BGFX_CAPS_FORMAT_TEXTURE_3D)
&& 0 != (formatCaps & BGFX_CAPS_FORMAT_TEXTURE_3D_EMULATED)
;
}
else
{
convert |= 0 == (formatCaps & BGFX_CAPS_FORMAT_TEXTURE_2D)
&& 0 != (formatCaps & BGFX_CAPS_FORMAT_TEXTURE_2D_EMULATED)
;
}
if (convert)
{
return TextureFormat::BGRA8;
}
return TextureFormat::Enum(_imageContainer.m_format);
}
const char* getName(TextureFormat::Enum _fmt)
{
return bimg::getName(bimg::TextureFormat::Enum(_fmt));
}
const char* getName(UniformHandle _handle)
{
return s_ctx->m_uniformRef[_handle.idx].m_name.getPtr();
}
const char* getName(ShaderHandle _handle)
{
return s_ctx->m_shaderRef[_handle.idx].m_name.getPtr();
}
static const char* s_topologyName[] =
{
"Triangles",
"TriStrip",
"Lines",
"LineStrip",
"Points",
};
BX_STATIC_ASSERT(Topology::Count == BX_COUNTOF(s_topologyName) );
const char* getName(Topology::Enum _topology)
{
return s_topologyName[bx::min(_topology, Topology::PointList)];
}
const char* getShaderTypeName(uint32_t _magic)
{
if (isShaderType(_magic, 'C') )
{
return "Compute";
}
else if (isShaderType(_magic, 'F') )
{
return "Fragment";
}
else if (isShaderType(_magic, 'V') )
{
return "Vertex";
}
BX_ASSERT(false, "Invalid shader type!");
return NULL;
}
static TextureFormat::Enum s_emulatedFormats[] =
{
TextureFormat::BC1,
TextureFormat::BC2,
TextureFormat::BC3,
TextureFormat::BC4,
TextureFormat::BC5,
TextureFormat::ETC1,
TextureFormat::ETC2,
TextureFormat::ETC2A,
TextureFormat::ETC2A1,
TextureFormat::PTC12,
TextureFormat::PTC14,
TextureFormat::PTC12A,
TextureFormat::PTC14A,
TextureFormat::PTC22,
TextureFormat::PTC24,
TextureFormat::ATC,
TextureFormat::ATCE,
TextureFormat::ATCI,
TextureFormat::ASTC4x4,
TextureFormat::ASTC5x4,
TextureFormat::ASTC5x5,
TextureFormat::ASTC6x5,
TextureFormat::ASTC6x6,
TextureFormat::ASTC8x5,
TextureFormat::ASTC8x6,
TextureFormat::ASTC8x8,
TextureFormat::ASTC10x5,
TextureFormat::ASTC10x6,
TextureFormat::ASTC10x8,
TextureFormat::ASTC10x10,
TextureFormat::ASTC12x10,
TextureFormat::ASTC12x12,
TextureFormat::BGRA8, // GL doesn't support BGRA8 without extensions.
TextureFormat::RGBA8, // D3D9 doesn't support RGBA8
};
bool Context::init(const Init& _init)
{
if (m_rendererInitialized)
{
BX_TRACE("Already initialized!");
return false;
}
m_headless = true
&& RendererType::Noop != _init.type
&& NULL == _init.platformData.ndt
&& NULL == _init.platformData.nwh
&& NULL == _init.platformData.context
&& NULL == _init.platformData.backBuffer
&& NULL == _init.platformData.backBufferDS
;
BX_WARN(!m_headless, "bgfx platform data like window handle or backbuffer is not set, creating headless device.");
if (m_headless
&& 0 != _init.resolution.width
&& 0 != _init.resolution.height)
{
BX_TRACE("Initializing headless mode, resolution of non-existing backbuffer can't be larger than 0x0!");
return false;
}
m_init = _init;
m_init.resolution.reset &= ~BGFX_RESET_INTERNAL_FORCE;
m_init.resolution.numBackBuffers = bx::clamp<uint8_t>(_init.resolution.numBackBuffers, 2, BGFX_CONFIG_MAX_BACK_BUFFERS);
m_init.resolution.maxFrameLatency = bx::min<uint8_t>(_init.resolution.maxFrameLatency, BGFX_CONFIG_MAX_FRAME_LATENCY);
m_init.resolution.debugTextScale = bx::clamp<uint8_t>(_init.resolution.debugTextScale, 1, BGFX_CONFIG_DEBUG_TEXT_MAX_SCALE);
dump(m_init.resolution);
bx::memCopy(&g_platformData, &m_init.platformData, sizeof(PlatformData) );
m_exit = false;
m_flipped = true;
m_debug = BGFX_DEBUG_NONE;
m_frameTimeLast = bx::getHPCounter();
m_flipAfterRender = !!(m_init.resolution.reset & BGFX_RESET_FLIP_AFTER_RENDER);
m_submit->create(_init.limits.minResourceCbSize);
#if BGFX_CONFIG_MULTITHREADED
m_render->create(_init.limits.minResourceCbSize);
if (s_renderFrameCalled)
{
// When bgfx::renderFrame is called before init render thread
// should not be created.
BX_TRACE("Application called bgfx::renderFrame directly, not creating render thread.");
m_singleThreaded = true
&& ~BGFX_API_THREAD_MAGIC == s_threadIndex
;
}
else
{
BX_TRACE("Creating rendering thread.");
m_thread.init(renderThread, this, 0, "bgfx - renderer backend thread");
m_singleThreaded = false;
}
#else
BX_TRACE("Multithreaded renderer is disabled.");
m_singleThreaded = true;
#endif // BGFX_CONFIG_MULTITHREADED
BX_TRACE("Running in %s-threaded mode", m_singleThreaded ? "single" : "multi");
s_threadIndex = BGFX_API_THREAD_MAGIC;
for (uint32_t ii = 0; ii < BX_COUNTOF(m_viewRemap); ++ii)
{
m_viewRemap[ii] = ViewId(ii);
}
for (uint32_t ii = 0; ii < BGFX_CONFIG_MAX_VIEWS; ++ii)
{
resetView(ViewId(ii) );
}
for (uint32_t ii = 0; ii < BX_COUNTOF(m_clearColor); ++ii)
{
m_clearColor[ii][0] = 0.0f;
m_clearColor[ii][1] = 0.0f;
m_clearColor[ii][2] = 0.0f;
m_clearColor[ii][3] = 1.0f;
}
m_vertexLayoutRef.init();
CommandBuffer& cmdbuf = getCommandBuffer(CommandBuffer::RendererInit);
cmdbuf.write(_init);
frameNoRenderWait();
m_encoderHandle = bx::createHandleAlloc(g_allocator, _init.limits.maxEncoders);
m_encoder = (EncoderImpl*)bx::alignedAlloc(g_allocator, sizeof(EncoderImpl)*_init.limits.maxEncoders, BX_ALIGNOF(EncoderImpl) );
m_encoderStats = (EncoderStats*)bx::alloc(g_allocator, sizeof(EncoderStats)*_init.limits.maxEncoders);
for (uint32_t ii = 0, num = _init.limits.maxEncoders; ii < num; ++ii)
{
BX_PLACEMENT_NEW(&m_encoder[ii], EncoderImpl);
}
uint16_t idx = m_encoderHandle->alloc();
BX_ASSERT(0 == idx, "Internal encoder handle is not 0 (idx %d).", idx); BX_UNUSED(idx);
m_encoder[0].begin(m_submit, 0);
m_encoder0 = BX_ENABLED(BGFX_CONFIG_ENCODER_API_ONLY)
? NULL
: reinterpret_cast<Encoder*>(&m_encoder[0])
;
// Make sure renderer init is called from render thread.
// g_caps is initialized and available after this point.
frame();
if (!m_rendererInitialized)
{
getCommandBuffer(CommandBuffer::RendererShutdownEnd);
frame();
frame();
m_vertexLayoutRef.shutdown(m_layoutHandle);
m_submit->destroy();
#if BGFX_CONFIG_MULTITHREADED
m_render->destroy();
#endif // BGFX_CONFIG_MULTITHREADED
return false;
}
for (uint32_t ii = 0; ii < BX_COUNTOF(s_emulatedFormats); ++ii)
{
const uint32_t fmt = s_emulatedFormats[ii];
g_caps.formats[fmt] |= 0 == (g_caps.formats[fmt] & BGFX_CAPS_FORMAT_TEXTURE_2D ) ? BGFX_CAPS_FORMAT_TEXTURE_2D_EMULATED : 0;
g_caps.formats[fmt] |= 0 == (g_caps.formats[fmt] & BGFX_CAPS_FORMAT_TEXTURE_3D ) ? BGFX_CAPS_FORMAT_TEXTURE_3D_EMULATED : 0;
g_caps.formats[fmt] |= 0 == (g_caps.formats[fmt] & BGFX_CAPS_FORMAT_TEXTURE_CUBE) ? BGFX_CAPS_FORMAT_TEXTURE_CUBE_EMULATED : 0;
}
for (uint32_t ii = 0; ii < TextureFormat::UnknownDepth; ++ii)
{
bool convertable = bimg::imageConvert(bimg::TextureFormat::BGRA8, bimg::TextureFormat::Enum(ii) );
g_caps.formats[ii] |= 0 == (g_caps.formats[ii] & BGFX_CAPS_FORMAT_TEXTURE_2D ) && convertable ? BGFX_CAPS_FORMAT_TEXTURE_2D_EMULATED : 0;
g_caps.formats[ii] |= 0 == (g_caps.formats[ii] & BGFX_CAPS_FORMAT_TEXTURE_3D ) && convertable ? BGFX_CAPS_FORMAT_TEXTURE_3D_EMULATED : 0;
g_caps.formats[ii] |= 0 == (g_caps.formats[ii] & BGFX_CAPS_FORMAT_TEXTURE_CUBE) && convertable ? BGFX_CAPS_FORMAT_TEXTURE_CUBE_EMULATED : 0;
}
g_caps.rendererType = m_renderCtx->getRendererType();
initAttribTypeSizeTable(g_caps.rendererType);
g_caps.supported &= _init.capabilities;
g_caps.supported |= 0
| (BX_ENABLED(BGFX_CONFIG_MULTITHREADED) && !m_singleThreaded ? BGFX_CAPS_RENDERER_MULTITHREADED : 0)
| (isGraphicsDebuggerPresent() ? BGFX_CAPS_GRAPHICS_DEBUGGER : 0)
;
dumpCaps();
m_textVideoMemBlitter.init(m_init.resolution.debugTextScale);
m_clearQuad.init();
m_submit->m_transientVb = createTransientVertexBuffer(_init.limits.transientVbSize);
m_submit->m_transientIb = createTransientIndexBuffer(_init.limits.transientIbSize);
frame();
if (BX_ENABLED(BGFX_CONFIG_MULTITHREADED) )
{
m_submit->m_transientVb = createTransientVertexBuffer(_init.limits.transientVbSize);
m_submit->m_transientIb = createTransientIndexBuffer(_init.limits.transientIbSize);
frame();
}
g_internalData.caps = getCaps();
return true;
}
void Context::shutdown()
{
getCommandBuffer(CommandBuffer::RendererShutdownBegin);
frame();
destroyTransientVertexBuffer(m_submit->m_transientVb);
destroyTransientIndexBuffer(m_submit->m_transientIb);
m_textVideoMemBlitter.shutdown();
m_clearQuad.shutdown();
frame();
if (BX_ENABLED(BGFX_CONFIG_MULTITHREADED) )
{
destroyTransientVertexBuffer(m_submit->m_transientVb);
destroyTransientIndexBuffer(m_submit->m_transientIb);
frame();
}
frame(); // If any VertexLayouts needs to be destroyed.
getCommandBuffer(CommandBuffer::RendererShutdownEnd);
frame();
m_encoder[0].end(true);
m_encoderHandle->free(0);
bx::destroyHandleAlloc(g_allocator, m_encoderHandle);
m_encoderHandle = NULL;
for (uint32_t ii = 0, num = g_caps.limits.maxEncoders; ii < num; ++ii)
{
m_encoder[ii].~EncoderImpl();
}
bx::alignedFree(g_allocator, m_encoder, BX_ALIGNOF(EncoderImpl) );
bx::free(g_allocator, m_encoderStats);
m_dynVertexBufferAllocator.compact();
m_dynIndexBufferAllocator.compact();
BX_ASSERT(
m_layoutHandle.getNumHandles() == m_vertexLayoutRef.m_vertexLayoutMap.getNumElements()
, "VertexLayoutRef mismatch, num handles %d, handles in hash map %d."
, m_layoutHandle.getNumHandles()
, m_vertexLayoutRef.m_vertexLayoutMap.getNumElements()
);
m_vertexLayoutRef.shutdown(m_layoutHandle);
#if BGFX_CONFIG_MULTITHREADED
// Render thread shutdown sequence.
renderSemWait(); // Wait for previous frame.
apiSemPost(); // OK to set context to NULL.
// s_ctx is NULL here.
renderSemWait(); // In RenderFrame::Exiting state.
if (m_thread.isRunning() )
{
m_thread.shutdown();
}
m_render->destroy();
#endif // BGFX_CONFIG_MULTITHREADED
bx::memSet(&g_internalData, 0, sizeof(InternalData) );
s_ctx = NULL;
m_submit->destroy();
if (BX_ENABLED(BGFX_CONFIG_DEBUG) )
{
#define CHECK_HANDLE_LEAK(_name, _handleAlloc) \
BX_MACRO_BLOCK_BEGIN \
if (0 != _handleAlloc.getNumHandles() ) \
{ \
BX_TRACE("LEAK: %s %d (max: %d)" \
, _name \
, _handleAlloc.getNumHandles() \
, _handleAlloc.getMaxHandles() \
); \
for (uint16_t ii = 0, num = _handleAlloc.getNumHandles(); ii < num; ++ii) \
{ \
BX_TRACE("\t%3d: %4d", ii, _handleAlloc.getHandleAt(ii) ); \
} \
} \
BX_MACRO_BLOCK_END
#define CHECK_HANDLE_LEAK_NAME(_name, _handleAlloc, _type, _ref) \
BX_MACRO_BLOCK_BEGIN \
if (0 != _handleAlloc.getNumHandles() ) \
{ \
BX_TRACE("LEAK: %s %d (max: %d)" \
, _name \
, _handleAlloc.getNumHandles() \
, _handleAlloc.getMaxHandles() \
); \
for (uint16_t ii = 0, num = _handleAlloc.getNumHandles(); ii < num; ++ii) \
{ \
uint16_t idx = _handleAlloc.getHandleAt(ii); \
const _type& ref = _ref[idx]; BX_UNUSED(ref); \
BX_TRACE("\t%3d: %4d %s" \
, ii \
, idx \
, ref.m_name.getPtr() \
); \
} \
} \
BX_MACRO_BLOCK_END
#define CHECK_HANDLE_LEAK_RC_NAME(_name, _handleAlloc, _type, _ref) \
BX_MACRO_BLOCK_BEGIN \
if (0 != _handleAlloc.getNumHandles() ) \
{ \
BX_TRACE("LEAK: %s %d (max: %d)" \
, _name \
, _handleAlloc.getNumHandles() \
, _handleAlloc.getMaxHandles() \
); \
for (uint16_t ii = 0, num = _handleAlloc.getNumHandles(); ii < num; ++ii) \
{ \
uint16_t idx = _handleAlloc.getHandleAt(ii); \
const _type& ref = _ref[idx]; BX_UNUSED(ref); \
BX_TRACE("\t%3d: %4d %s (count %d)" \
, ii \
, idx \
, ref.m_name.getPtr() \
, ref.m_refCount \
); \
} \
} \
BX_MACRO_BLOCK_END
CHECK_HANDLE_LEAK ("DynamicIndexBufferHandle", m_dynamicIndexBufferHandle );
CHECK_HANDLE_LEAK ("DynamicVertexBufferHandle", m_dynamicVertexBufferHandle );
CHECK_HANDLE_LEAK_NAME ("IndexBufferHandle", m_indexBufferHandle, IndexBuffer, m_indexBuffers );
CHECK_HANDLE_LEAK ("VertexLayoutHandle", m_layoutHandle );
CHECK_HANDLE_LEAK_NAME ("VertexBufferHandle", m_vertexBufferHandle, VertexBuffer, m_vertexBuffers );
CHECK_HANDLE_LEAK_RC_NAME("ShaderHandle", m_shaderHandle, ShaderRef, m_shaderRef );
CHECK_HANDLE_LEAK ("ProgramHandle", m_programHandle );
CHECK_HANDLE_LEAK_RC_NAME("TextureHandle", m_textureHandle, TextureRef, m_textureRef );
CHECK_HANDLE_LEAK_NAME ("FrameBufferHandle", m_frameBufferHandle, FrameBufferRef, m_frameBufferRef);
CHECK_HANDLE_LEAK_RC_NAME("UniformHandle", m_uniformHandle, UniformRef, m_uniformRef );
CHECK_HANDLE_LEAK ("OcclusionQueryHandle", m_occlusionQueryHandle );
#undef CHECK_HANDLE_LEAK
#undef CHECK_HANDLE_LEAK_NAME
}
}
void Context::freeDynamicBuffers()
{
for (uint16_t ii = 0, num = m_numFreeDynamicIndexBufferHandles; ii < num; ++ii)
{
destroyDynamicIndexBufferInternal(m_freeDynamicIndexBufferHandle[ii]);
}
m_numFreeDynamicIndexBufferHandles = 0;
for (uint16_t ii = 0, num = m_numFreeDynamicVertexBufferHandles; ii < num; ++ii)
{
destroyDynamicVertexBufferInternal(m_freeDynamicVertexBufferHandle[ii]);
}
m_numFreeDynamicVertexBufferHandles = 0;
for (uint16_t ii = 0, num = m_numFreeOcclusionQueryHandles; ii < num; ++ii)
{
m_occlusionQueryHandle.free(m_freeOcclusionQueryHandle[ii].idx);
}
m_numFreeOcclusionQueryHandles = 0;
}
void Context::freeAllHandles(Frame* _frame)
{
for (uint16_t ii = 0, num = _frame->m_freeIndexBuffer.getNumQueued(); ii < num; ++ii)
{
m_indexBufferHandle.free(_frame->m_freeIndexBuffer.get(ii).idx);
}
for (uint16_t ii = 0, num = _frame->m_freeVertexBuffer.getNumQueued(); ii < num; ++ii)
{
destroyVertexBufferInternal(_frame->m_freeVertexBuffer.get(ii));
}
for (uint16_t ii = 0, num = _frame->m_freeVertexLayout.getNumQueued(); ii < num; ++ii)
{
m_layoutHandle.free(_frame->m_freeVertexLayout.get(ii).idx);
}
for (uint16_t ii = 0, num = _frame->m_freeShader.getNumQueued(); ii < num; ++ii)
{
m_shaderHandle.free(_frame->m_freeShader.get(ii).idx);
}
for (uint16_t ii = 0, num = _frame->m_freeProgram.getNumQueued(); ii < num; ++ii)
{
m_programHandle.free(_frame->m_freeProgram.get(ii).idx);
}
for (uint16_t ii = 0, num = _frame->m_freeTexture.getNumQueued(); ii < num; ++ii)
{
m_textureHandle.free(_frame->m_freeTexture.get(ii).idx);
}
for (uint16_t ii = 0, num = _frame->m_freeFrameBuffer.getNumQueued(); ii < num; ++ii)
{
m_frameBufferHandle.free(_frame->m_freeFrameBuffer.get(ii).idx);
}
for (uint16_t ii = 0, num = _frame->m_freeUniform.getNumQueued(); ii < num; ++ii)
{
m_uniformHandle.free(_frame->m_freeUniform.get(ii).idx);
}
}
Encoder* Context::begin(bool _forThread)
{
EncoderImpl* encoder = &m_encoder[0];
#if BGFX_CONFIG_MULTITHREADED
if (_forThread || BGFX_API_THREAD_MAGIC != s_threadIndex)
{
bx::MutexScope scopeLock(m_encoderApiLock);
uint16_t idx = m_encoderHandle->alloc();
if (kInvalidHandle == idx)
{
return NULL;
}
encoder = &m_encoder[idx];
encoder->begin(m_submit, uint8_t(idx) );
}
#else
BX_UNUSED(_forThread);
#endif // BGFX_CONFIG_MULTITHREADED
return reinterpret_cast<Encoder*>(encoder);
}
void Context::end(Encoder* _encoder)
{
#if BGFX_CONFIG_MULTITHREADED
EncoderImpl* encoder = reinterpret_cast<EncoderImpl*>(_encoder);
if (encoder != &m_encoder[0])
{
encoder->end(true);
m_encoderEndSem.post();
}
#else
BX_UNUSED(_encoder);
#endif // BGFX_CONFIG_MULTITHREADED
}
uint32_t Context::frame(bool _capture)
{
m_encoder[0].end(true);
#if BGFX_CONFIG_MULTITHREADED
bx::MutexScope resourceApiScope(m_resourceApiLock);
encoderApiWait();
bx::MutexScope encoderApiScope(m_encoderApiLock);
#else
encoderApiWait();
#endif // BGFX_CONFIG_MULTITHREADED
m_submit->m_capture = _capture;
uint32_t frameNum = m_submit->m_frameNum;
BGFX_PROFILER_SCOPE("bgfx/API thread frame", 0xff2040ff);
// wait for render thread to finish
renderSemWait();
frameNoRenderWait();
m_encoder[0].begin(m_submit, 0);
return frameNum;
}
void Context::frameNoRenderWait()
{
swap();
// release render thread
apiSemPost();
}
void Context::swap()
{
freeDynamicBuffers();
m_submit->m_resolution = m_init.resolution;
m_init.resolution.reset &= ~BGFX_RESET_INTERNAL_FORCE;
m_submit->m_debug = m_debug;
m_submit->m_perfStats.numViews = 0;
bx::memCopy(m_submit->m_viewRemap, m_viewRemap, sizeof(m_viewRemap) );
bx::memCopy(m_submit->m_view, m_view, sizeof(m_view) );
if (m_colorPaletteDirty > 0)
{
--m_colorPaletteDirty;
bx::memCopy(m_submit->m_colorPalette, m_clearColor, sizeof(m_clearColor) );
}
freeAllHandles(m_submit);
m_submit->resetFreeHandles();
m_submit->finish();
bx::swap(m_render, m_submit);
bx::memCopy(m_render->m_occlusion, m_submit->m_occlusion, sizeof(m_submit->m_occlusion) );
if (!BX_ENABLED(BGFX_CONFIG_MULTITHREADED)
|| m_singleThreaded)
{
renderFrame();
}
uint32_t nextFrameNum = m_render->m_frameNum + 1;
m_submit->start(nextFrameNum);
bx::memSet(m_seq, 0, sizeof(m_seq) );
m_submit->m_textVideoMem->resize(
m_render->m_textVideoMem->m_small
, m_init.resolution.width
, m_init.resolution.height
);
int64_t now = bx::getHPCounter();
m_submit->m_perfStats.cpuTimeFrame = now - m_frameTimeLast;
m_frameTimeLast = now;
}
///
RendererContextI* rendererCreate(const Init& _init);
///
void rendererDestroy(RendererContextI* _renderCtx);
void Context::flip()
{
if (m_rendererInitialized
&& !m_flipped)
{
m_renderCtx->flip();
m_flipped = true;
if (m_renderCtx->isDeviceRemoved() )
{
// Something horribly went wrong, fallback to noop renderer.
rendererDestroy(m_renderCtx);
Init init;
init.type = RendererType::Noop;
m_renderCtx = rendererCreate(init);
g_caps.rendererType = RendererType::Noop;
}
}
}
#if BX_PLATFORM_OSX || BX_PLATFORM_IOS
struct NSAutoreleasePoolScope
{
NSAutoreleasePoolScope()
{
id obj = class_createInstance(objc_getClass("NSAutoreleasePool"), 0);
typedef id(*objc_msgSend_init)(void*, SEL);
pool = ((objc_msgSend_init)objc_msgSend)(obj, sel_getUid("init") );
}
~NSAutoreleasePoolScope()
{
typedef void(*objc_msgSend_release)(void*, SEL);
((objc_msgSend_release)objc_msgSend)(pool, sel_getUid("release") );
}
id pool;
};
#endif // BX_PLATFORM_OSX
RenderFrame::Enum Context::renderFrame(int32_t _msecs)
{
BGFX_PROFILER_SCOPE("bgfx::renderFrame", 0xff2040ff);
#if BX_PLATFORM_OSX || BX_PLATFORM_IOS
NSAutoreleasePoolScope pool;
#endif // BX_PLATFORM_OSX
if (!m_flipAfterRender)
{
BGFX_PROFILER_SCOPE("bgfx/flip", 0xff2040ff);
flip();
}
if (apiSemWait(_msecs) )
{
{
BGFX_PROFILER_SCOPE("bgfx/Exec commands pre", 0xff2040ff);
rendererExecCommands(m_render->m_cmdPre);
}
if (m_rendererInitialized)
{
{
BGFX_PROFILER_SCOPE("bgfx/Render submit", 0xff2040ff);
m_renderCtx->submit(m_render, m_clearQuad, m_textVideoMemBlitter);
m_flipped = false;
}
{
BGFX_PROFILER_SCOPE("bgfx/Screenshot", 0xff2040ff);
for (uint8_t ii = 0, num = m_render->m_numScreenShots; ii < num; ++ii)
{
const ScreenShot& screenShot = m_render->m_screenShot[ii];
m_renderCtx->requestScreenShot(screenShot.handle, screenShot.filePath.getCPtr() );
}
}
}
{
BGFX_PROFILER_SCOPE("bgfx/Exec commands post", 0xff2040ff);
rendererExecCommands(m_render->m_cmdPost);
}
renderSemPost();
if (m_flipAfterRender)
{
BGFX_PROFILER_SCOPE("bgfx/flip", 0xff2040ff);
flip();
}
}
else
{
return RenderFrame::Timeout;
}
return m_exit
? RenderFrame::Exiting
: RenderFrame::Render
;
}
void rendererUpdateUniforms(RendererContextI* _renderCtx, UniformBuffer* _uniformBuffer, uint32_t _begin, uint32_t _end)
{
_uniformBuffer->reset(_begin);
while (_uniformBuffer->getPos() < _end)
{
uint32_t opcode = _uniformBuffer->read();
if (UniformType::End == opcode)
{
break;
}
UniformType::Enum type;
uint16_t loc;
uint16_t num;
uint16_t copy;
UniformBuffer::decodeOpcode(opcode, type, loc, num, copy);
uint32_t size = g_uniformTypeSize[type]*num;
const char* data = _uniformBuffer->read(size);
if (UniformType::Count > type)
{
if (copy)
{
_renderCtx->updateUniform(loc, data, size);
}
else
{
_renderCtx->updateUniform(loc, *(const char**)(data), size);
}
}
else
{
_renderCtx->setMarker(data, uint16_t(size)-1);
}
}
}
void Context::flushTextureUpdateBatch(CommandBuffer& _cmdbuf)
{
if (m_textureUpdateBatch.sort() )
{
const uint32_t pos = _cmdbuf.m_pos;
uint32_t currentKey = UINT32_MAX;
for (uint32_t ii = 0, num = m_textureUpdateBatch.m_num; ii < num; ++ii)
{
_cmdbuf.m_pos = m_textureUpdateBatch.m_values[ii];
TextureHandle handle;
_cmdbuf.read(handle);
uint8_t side;
_cmdbuf.read(side);
uint8_t mip;
_cmdbuf.read(mip);
Rect rect;
_cmdbuf.read(rect);
uint16_t zz;
_cmdbuf.read(zz);
uint16_t depth;
_cmdbuf.read(depth);
uint16_t pitch;
_cmdbuf.read(pitch);
const Memory* mem;
_cmdbuf.read(mem);
uint32_t key = m_textureUpdateBatch.m_keys[ii];
if (key != currentKey)
{
if (currentKey != UINT32_MAX)
{
m_renderCtx->updateTextureEnd();
}
currentKey = key;
m_renderCtx->updateTextureBegin(handle, side, mip);
}
m_renderCtx->updateTexture(handle, side, mip, rect, zz, depth, pitch, mem);
release(mem);
}
if (currentKey != UINT32_MAX)
{
m_renderCtx->updateTextureEnd();
}
m_textureUpdateBatch.reset();
_cmdbuf.m_pos = pos;
}
}
typedef RendererContextI* (*RendererCreateFn)(const Init& _init);
typedef void (*RendererDestroyFn)();
#define BGFX_RENDERER_CONTEXT(_namespace) \
namespace _namespace \
{ \
extern RendererContextI* rendererCreate(const Init& _init); \
extern void rendererDestroy(); \
}
BGFX_RENDERER_CONTEXT(noop);
BGFX_RENDERER_CONTEXT(agc);
BGFX_RENDERER_CONTEXT(d3d11);
BGFX_RENDERER_CONTEXT(d3d12);
BGFX_RENDERER_CONTEXT(gnm);
BGFX_RENDERER_CONTEXT(mtl);
BGFX_RENDERER_CONTEXT(nvn);
BGFX_RENDERER_CONTEXT(gl);
BGFX_RENDERER_CONTEXT(vk);
#undef BGFX_RENDERER_CONTEXT
struct RendererCreator
{
RendererCreateFn createFn;
RendererDestroyFn destroyFn;
const char* name;
bool supported;
};
static RendererCreator s_rendererCreator[] =
{
{ noop::rendererCreate, noop::rendererDestroy, BGFX_RENDERER_NOOP_NAME, true }, // Noop
{ agc::rendererCreate, agc::rendererDestroy, BGFX_RENDERER_AGC_NAME, !!BGFX_CONFIG_RENDERER_AGC }, // GNM
{ d3d11::rendererCreate, d3d11::rendererDestroy, BGFX_RENDERER_DIRECT3D11_NAME, !!BGFX_CONFIG_RENDERER_DIRECT3D11 }, // Direct3D11
{ d3d12::rendererCreate, d3d12::rendererDestroy, BGFX_RENDERER_DIRECT3D12_NAME, !!BGFX_CONFIG_RENDERER_DIRECT3D12 }, // Direct3D12
{ gnm::rendererCreate, gnm::rendererDestroy, BGFX_RENDERER_GNM_NAME, !!BGFX_CONFIG_RENDERER_GNM }, // GNM
#if BX_PLATFORM_OSX || BX_PLATFORM_IOS
{ mtl::rendererCreate, mtl::rendererDestroy, BGFX_RENDERER_METAL_NAME, !!BGFX_CONFIG_RENDERER_METAL }, // Metal
#else
{ noop::rendererCreate, noop::rendererDestroy, BGFX_RENDERER_NOOP_NAME, false }, // Noop
#endif // BX_PLATFORM_OSX || BX_PLATFORM_IOS
{ nvn::rendererCreate, nvn::rendererDestroy, BGFX_RENDERER_NVN_NAME, !!BGFX_CONFIG_RENDERER_NVN }, // NVN
{ gl::rendererCreate, gl::rendererDestroy, BGFX_RENDERER_OPENGL_NAME, !!BGFX_CONFIG_RENDERER_OPENGLES }, // OpenGLES
{ gl::rendererCreate, gl::rendererDestroy, BGFX_RENDERER_OPENGL_NAME, !!BGFX_CONFIG_RENDERER_OPENGL }, // OpenGL
{ vk::rendererCreate, vk::rendererDestroy, BGFX_RENDERER_VULKAN_NAME, !!BGFX_CONFIG_RENDERER_VULKAN }, // Vulkan
};
BX_STATIC_ASSERT(BX_COUNTOF(s_rendererCreator) == RendererType::Count);
bool windowsVersionIs(Condition::Enum _op, uint32_t _version)
{
#if BX_PLATFORM_WINDOWS
static const uint8_t s_condition[] =
{
VER_LESS_EQUAL,
VER_GREATER_EQUAL,
};
OSVERSIONINFOEXA ovi;
bx::memSet(&ovi, 0, sizeof(ovi) );
ovi.dwOSVersionInfoSize = sizeof(ovi);
// _WIN32_WINNT_WINBLUE 0x0603
// _WIN32_WINNT_WIN8 0x0602
// _WIN32_WINNT_WIN7 0x0601
// _WIN32_WINNT_VISTA 0x0600
ovi.dwMajorVersion = HIBYTE(_version);
ovi.dwMinorVersion = LOBYTE(_version);
DWORDLONG cond = 0;
VER_SET_CONDITION(cond, VER_MAJORVERSION, s_condition[_op]);
VER_SET_CONDITION(cond, VER_MINORVERSION, s_condition[_op]);
return !!VerifyVersionInfoA(&ovi, VER_MAJORVERSION | VER_MINORVERSION, cond);
#else
BX_UNUSED(_op, _version);
return false;
#endif // BX_PLATFORM_WINDOWS
}
RendererContextI* rendererCreate(const Init& _init)
{
int32_t scores[RendererType::Count];
uint32_t numScores = 0;
for (uint32_t ii = 0; ii < RendererType::Count; ++ii)
{
RendererType::Enum renderer = RendererType::Enum(ii);
if (s_rendererCreator[ii].supported)
{
int32_t score = 0;
if (_init.type == renderer)
{
score += 1000;
}
score += RendererType::Noop != renderer ? 1 : 0;
if (BX_ENABLED(BX_PLATFORM_WINDOWS) )
{
if (windowsVersionIs(Condition::GreaterEqual, 0x0602) )
{
score += RendererType::Direct3D11 == renderer ? 20 : 0;
score += RendererType::Direct3D12 == renderer ? 10 : 0;
}
else if (windowsVersionIs(Condition::GreaterEqual, 0x0601) )
{
score += RendererType::Direct3D11 == renderer ? 20 : 0;
score += RendererType::Direct3D12 == renderer ? -100 : 0;
}
else
{
score += RendererType::Direct3D12 == renderer ? -100 : 0;
}
}
else if (BX_ENABLED(BX_PLATFORM_LINUX) )
{
score += RendererType::Vulkan == renderer ? 50 : 0;
score += RendererType::OpenGL == renderer ? 40 : 0;
score += RendererType::OpenGLES == renderer ? 30 : 0;
score += RendererType::Direct3D12 == renderer ? 20 : 0;
score += RendererType::Direct3D11 == renderer ? 10 : 0;
}
else if (BX_ENABLED(BX_PLATFORM_OSX) )
{
score += RendererType::Metal == renderer ? 20 : 0;
score += RendererType::OpenGL == renderer ? 10 : 0;
}
else if (BX_ENABLED(BX_PLATFORM_IOS) )
{
score += RendererType::Metal == renderer ? 20 : 0;
score += RendererType::OpenGLES == renderer ? 10 : 0;
}
else if (BX_ENABLED(0
|| BX_PLATFORM_ANDROID
|| BX_PLATFORM_EMSCRIPTEN
|| BX_PLATFORM_RPI
) )
{
score += RendererType::OpenGLES == renderer ? 20 : 0;
}
else if (BX_ENABLED(BX_PLATFORM_PS4) )
{
score += RendererType::Gnm == renderer ? 20 : 0;
}
else if (BX_ENABLED(0
|| BX_PLATFORM_XBOXONE
|| BX_PLATFORM_WINRT
) )
{
score += RendererType::Direct3D12 == renderer ? 20 : 0;
score += RendererType::Direct3D11 == renderer ? 10 : 0;
}
scores[numScores++] = (score<<8) | uint8_t(renderer);
}
}
bx::quickSort(scores, numScores, bx::compareDescending<int32_t>);
RendererContextI* renderCtx = NULL;
for (uint32_t ii = 0; ii < numScores; ++ii)
{
RendererType::Enum renderer = RendererType::Enum(scores[ii] & 0xff);
renderCtx = s_rendererCreator[renderer].createFn(_init);
if (NULL != renderCtx)
{
break;
}
s_rendererCreator[renderer].supported = false;
}
return renderCtx;
}
void rendererDestroy(RendererContextI* _renderCtx)
{
if (NULL != _renderCtx)
{
s_rendererCreator[_renderCtx->getRendererType()].destroyFn();
}
}
void Context::rendererExecCommands(CommandBuffer& _cmdbuf)
{
_cmdbuf.reset();
bool end = false;
if (NULL == m_renderCtx)
{
uint8_t command;
_cmdbuf.read(command);
switch (command)
{
case CommandBuffer::RendererShutdownEnd:
m_exit = true;
return;
case CommandBuffer::End:
return;
default:
{
BX_ASSERT(CommandBuffer::RendererInit == command
, "RendererInit must be the first command in command buffer before initialization. Unexpected command %d?"
, command
);
BX_ASSERT(!m_rendererInitialized, "This shouldn't happen! Bad synchronization?");
Init init;
_cmdbuf.read(init);
m_renderCtx = rendererCreate(init);
m_rendererInitialized = NULL != m_renderCtx;
if (!m_rendererInitialized)
{
_cmdbuf.read(command);
BX_ASSERT(CommandBuffer::End == command, "Unexpected command %d?"
, command
);
return;
}
}
break;
}
}
do
{
uint8_t command;
_cmdbuf.read(command);
switch (command)
{
case CommandBuffer::RendererShutdownBegin:
{
BX_ASSERT(m_rendererInitialized, "This shouldn't happen! Bad synchronization?");
m_rendererInitialized = false;
}
break;
case CommandBuffer::RendererShutdownEnd:
{
BX_ASSERT(!m_rendererInitialized && !m_exit, "This shouldn't happen! Bad synchronization?");
rendererDestroy(m_renderCtx);
m_renderCtx = NULL;
m_exit = true;
}
BX_FALLTHROUGH;
case CommandBuffer::End:
end = true;
break;
case CommandBuffer::CreateIndexBuffer:
{
BGFX_PROFILER_SCOPE("CreateIndexBuffer", 0xff2040ff);
IndexBufferHandle handle;
_cmdbuf.read(handle);
const Memory* mem;
_cmdbuf.read(mem);
uint16_t flags;
_cmdbuf.read(flags);
m_renderCtx->createIndexBuffer(handle, mem, flags);
release(mem);
}
break;
case CommandBuffer::DestroyIndexBuffer:
{
BGFX_PROFILER_SCOPE("DestroyIndexBuffer", 0xff2040ff);
IndexBufferHandle handle;
_cmdbuf.read(handle);
m_renderCtx->destroyIndexBuffer(handle);
}
break;
case CommandBuffer::CreateVertexLayout:
{
BGFX_PROFILER_SCOPE("CreateVertexLayout", 0xff2040ff);
VertexLayoutHandle handle;
_cmdbuf.read(handle);
VertexLayout layout;
_cmdbuf.read(layout);
m_renderCtx->createVertexLayout(handle, layout);
}
break;
case CommandBuffer::DestroyVertexLayout:
{
BGFX_PROFILER_SCOPE("DestroyVertexLayout", 0xff2040ff);
VertexLayoutHandle handle;
_cmdbuf.read(handle);
m_renderCtx->destroyVertexLayout(handle);
}
break;
case CommandBuffer::CreateVertexBuffer:
{
BGFX_PROFILER_SCOPE("CreateVertexBuffer", 0xff2040ff);
VertexBufferHandle handle;
_cmdbuf.read(handle);
const Memory* mem;
_cmdbuf.read(mem);
VertexLayoutHandle layoutHandle;
_cmdbuf.read(layoutHandle);
uint16_t flags;
_cmdbuf.read(flags);
m_renderCtx->createVertexBuffer(handle, mem, layoutHandle, flags);
release(mem);
}
break;
case CommandBuffer::DestroyVertexBuffer:
{
BGFX_PROFILER_SCOPE("DestroyVertexBuffer", 0xff2040ff);
VertexBufferHandle handle;
_cmdbuf.read(handle);
m_renderCtx->destroyVertexBuffer(handle);
}
break;
case CommandBuffer::CreateDynamicIndexBuffer:
{
BGFX_PROFILER_SCOPE("CreateDynamicIndexBuffer", 0xff2040ff);
IndexBufferHandle handle;
_cmdbuf.read(handle);
uint32_t size;
_cmdbuf.read(size);
uint16_t flags;
_cmdbuf.read(flags);
m_renderCtx->createDynamicIndexBuffer(handle, size, flags);
}
break;
case CommandBuffer::UpdateDynamicIndexBuffer:
{
BGFX_PROFILER_SCOPE("UpdateDynamicIndexBuffer", 0xff2040ff);
IndexBufferHandle handle;
_cmdbuf.read(handle);
uint32_t offset;
_cmdbuf.read(offset);
uint32_t size;
_cmdbuf.read(size);
const Memory* mem;
_cmdbuf.read(mem);
m_renderCtx->updateDynamicIndexBuffer(handle, offset, size, mem);
release(mem);
}
break;
case CommandBuffer::DestroyDynamicIndexBuffer:
{
BGFX_PROFILER_SCOPE("DestroyDynamicIndexBuffer", 0xff2040ff);
IndexBufferHandle handle;
_cmdbuf.read(handle);
m_renderCtx->destroyDynamicIndexBuffer(handle);
}
break;
case CommandBuffer::CreateDynamicVertexBuffer:
{
BGFX_PROFILER_SCOPE("CreateDynamicVertexBuffer", 0xff2040ff);
VertexBufferHandle handle;
_cmdbuf.read(handle);
uint32_t size;
_cmdbuf.read(size);
uint16_t flags;
_cmdbuf.read(flags);
m_renderCtx->createDynamicVertexBuffer(handle, size, flags);
}
break;
case CommandBuffer::UpdateDynamicVertexBuffer:
{
BGFX_PROFILER_SCOPE("UpdateDynamicVertexBuffer", 0xff2040ff);
VertexBufferHandle handle;
_cmdbuf.read(handle);
uint32_t offset;
_cmdbuf.read(offset);
uint32_t size;
_cmdbuf.read(size);
const Memory* mem;
_cmdbuf.read(mem);
m_renderCtx->updateDynamicVertexBuffer(handle, offset, size, mem);
release(mem);
}
break;
case CommandBuffer::DestroyDynamicVertexBuffer:
{
BGFX_PROFILER_SCOPE("DestroyDynamicVertexBuffer", 0xff2040ff);
VertexBufferHandle handle;
_cmdbuf.read(handle);
m_renderCtx->destroyDynamicVertexBuffer(handle);
}
break;
case CommandBuffer::CreateShader:
{
BGFX_PROFILER_SCOPE("CreateShader", 0xff2040ff);
ShaderHandle handle;
_cmdbuf.read(handle);
const Memory* mem;
_cmdbuf.read(mem);
m_renderCtx->createShader(handle, mem);
release(mem);
}
break;
case CommandBuffer::DestroyShader:
{
BGFX_PROFILER_SCOPE("DestroyShader", 0xff2040ff);
ShaderHandle handle;
_cmdbuf.read(handle);
m_renderCtx->destroyShader(handle);
}
break;
case CommandBuffer::CreateProgram:
{
BGFX_PROFILER_SCOPE("CreateProgram", 0xff2040ff);
ProgramHandle handle;
_cmdbuf.read(handle);
ShaderHandle vsh;
_cmdbuf.read(vsh);
ShaderHandle fsh;
_cmdbuf.read(fsh);
m_renderCtx->createProgram(handle, vsh, fsh);
}
break;
case CommandBuffer::DestroyProgram:
{
BGFX_PROFILER_SCOPE("DestroyProgram", 0xff2040ff);
ProgramHandle handle;
_cmdbuf.read(handle);
m_renderCtx->destroyProgram(handle);
}
break;
case CommandBuffer::CreateTexture:
{
BGFX_PROFILER_SCOPE("CreateTexture", 0xff2040ff);
TextureHandle handle;
_cmdbuf.read(handle);
const Memory* mem;
_cmdbuf.read(mem);
uint64_t flags;
_cmdbuf.read(flags);
uint8_t skip;
_cmdbuf.read(skip);
void* ptr = m_renderCtx->createTexture(handle, mem, flags, skip);
if (NULL != ptr)
{
setDirectAccessPtr(handle, ptr);
}
bx::MemoryReader reader(mem->data, mem->size);
bx::Error err;
uint32_t magic;
bx::read(&reader, magic, &err);
if (BGFX_CHUNK_MAGIC_TEX == magic)
{
TextureCreate tc;
bx::read(&reader, tc, &err);
if (NULL != tc.m_mem)
{
release(tc.m_mem);
}
}
release(mem);
}
break;
case CommandBuffer::UpdateTexture:
{
BGFX_PROFILER_SCOPE("UpdateTexture", 0xff2040ff);
if (m_textureUpdateBatch.isFull() )
{
flushTextureUpdateBatch(_cmdbuf);
}
uint32_t value = _cmdbuf.m_pos;
TextureHandle handle;
_cmdbuf.read(handle);
uint8_t side;
_cmdbuf.read(side);
uint8_t mip;
_cmdbuf.read(mip);
_cmdbuf.skip<Rect>();
_cmdbuf.skip<uint16_t>();
_cmdbuf.skip<uint16_t>();
_cmdbuf.skip<uint16_t>();
_cmdbuf.skip<Memory*>();
uint32_t key = (handle.idx<<16)
| (side<<8)
| mip
;
m_textureUpdateBatch.add(key, value);
}
break;
case CommandBuffer::ReadTexture:
{
BGFX_PROFILER_SCOPE("ReadTexture", 0xff2040ff);
TextureHandle handle;
_cmdbuf.read(handle);
void* data;
_cmdbuf.read(data);
uint8_t mip;
_cmdbuf.read(mip);
m_renderCtx->readTexture(handle, data, mip);
}
break;
case CommandBuffer::ResizeTexture:
{
BGFX_PROFILER_SCOPE("ResizeTexture", 0xff2040ff);
TextureHandle handle;
_cmdbuf.read(handle);
uint16_t width;
_cmdbuf.read(width);
uint16_t height;
_cmdbuf.read(height);
uint8_t numMips;
_cmdbuf.read(numMips);
uint16_t numLayers;
_cmdbuf.read(numLayers);
m_renderCtx->resizeTexture(handle, width, height, numMips, numLayers);
}
break;
case CommandBuffer::DestroyTexture:
{
BGFX_PROFILER_SCOPE("DestroyTexture", 0xff2040ff);
TextureHandle handle;
_cmdbuf.read(handle);
m_renderCtx->destroyTexture(handle);
}
break;
case CommandBuffer::CreateFrameBuffer:
{
BGFX_PROFILER_SCOPE("CreateFrameBuffer", 0xff2040ff);
FrameBufferHandle handle;
_cmdbuf.read(handle);
bool window;
_cmdbuf.read(window);
if (window)
{
void* nwh;
_cmdbuf.read(nwh);
uint16_t width;
_cmdbuf.read(width);
uint16_t height;
_cmdbuf.read(height);
TextureFormat::Enum format;
_cmdbuf.read(format);
TextureFormat::Enum depthFormat;
_cmdbuf.read(depthFormat);
m_renderCtx->createFrameBuffer(handle, nwh, width, height, format, depthFormat);
}
else
{
uint8_t num;
_cmdbuf.read(num);
Attachment attachment[BGFX_CONFIG_MAX_FRAME_BUFFER_ATTACHMENTS];
_cmdbuf.read(attachment, sizeof(Attachment) * num);
m_renderCtx->createFrameBuffer(handle, num, attachment);
}
}
break;
case CommandBuffer::DestroyFrameBuffer:
{
BGFX_PROFILER_SCOPE("DestroyFrameBuffer", 0xff2040ff);
FrameBufferHandle handle;
_cmdbuf.read(handle);
m_renderCtx->destroyFrameBuffer(handle);
}
break;
case CommandBuffer::CreateUniform:
{
BGFX_PROFILER_SCOPE("CreateUniform", 0xff2040ff);
UniformHandle handle;
_cmdbuf.read(handle);
UniformType::Enum type;
_cmdbuf.read(type);
uint16_t num;
_cmdbuf.read(num);
uint8_t len;
_cmdbuf.read(len);
const char* name = (const char*)_cmdbuf.skip(len);
m_renderCtx->createUniform(handle, type, num, name);
}
break;
case CommandBuffer::DestroyUniform:
{
BGFX_PROFILER_SCOPE("DestroyUniform", 0xff2040ff);
UniformHandle handle;
_cmdbuf.read(handle);
m_renderCtx->destroyUniform(handle);
}
break;
case CommandBuffer::UpdateViewName:
{
BGFX_PROFILER_SCOPE("UpdateViewName", 0xff2040ff);
ViewId id;
_cmdbuf.read(id);
uint16_t len;
_cmdbuf.read(len);
const char* name = (const char*)_cmdbuf.skip(len);
m_renderCtx->updateViewName(id, name);
}
break;
case CommandBuffer::InvalidateOcclusionQuery:
{
BGFX_PROFILER_SCOPE("InvalidateOcclusionQuery", 0xff2040ff);
OcclusionQueryHandle handle;
_cmdbuf.read(handle);
m_renderCtx->invalidateOcclusionQuery(handle);
}
break;
case CommandBuffer::SetName:
{
BGFX_PROFILER_SCOPE("SetName", 0xff2040ff);
Handle handle;
_cmdbuf.read(handle);
uint16_t len;
_cmdbuf.read(len);
const char* name = (const char*)_cmdbuf.skip(len);
m_renderCtx->setName(handle, name, len-1);
}
break;
default:
BX_ASSERT(false, "Invalid command: %d", command);
break;
}
} while (!end);
flushTextureUpdateBatch(_cmdbuf);
}
uint32_t weldVertices(void* _output, const VertexLayout& _layout, const void* _data, uint32_t _num, bool _index32, float _epsilon)
{
return weldVertices(_output, _layout, _data, _num, _index32, _epsilon, g_allocator);
}
uint32_t topologyConvert(TopologyConvert::Enum _conversion, void* _dst, uint32_t _dstSize, const void* _indices, uint32_t _numIndices, bool _index32)
{
return topologyConvert(_conversion, _dst, _dstSize, _indices, _numIndices, _index32, g_allocator);
}
void topologySortTriList(TopologySort::Enum _sort, void* _dst, uint32_t _dstSize, const float _dir[3], const float _pos[3], const void* _vertices, uint32_t _stride, const void* _indices, uint32_t _numIndices, bool _index32)
{
topologySortTriList(_sort, _dst, _dstSize, _dir, _pos, _vertices, _stride, _indices, _numIndices, _index32, g_allocator);
}
uint8_t getSupportedRenderers(uint8_t _max, RendererType::Enum* _enum)
{
_enum = _max == 0 ? NULL : _enum;
uint8_t num = 0;
for (uint8_t ii = 0; ii < RendererType::Count; ++ii)
{
if ( (RendererType::Direct3D11 == ii || RendererType::Direct3D12 == ii)
&& windowsVersionIs(Condition::LessEqual, 0x0502) )
{
continue;
}
if (NULL == _enum)
{
num++;
}
else
{
if (num < _max
&& s_rendererCreator[ii].supported)
{
_enum[num++] = RendererType::Enum(ii);
}
}
}
return num;
}
const char* getRendererName(RendererType::Enum _type)
{
BX_ASSERT(_type < RendererType::Count, "Invalid renderer type %d.", _type);
return s_rendererCreator[_type].name;
}
PlatformData::PlatformData()
: ndt(NULL)
, nwh(NULL)
, context(NULL)
, backBuffer(NULL)
, backBufferDS(NULL)
, type(NativeWindowHandleType::Default)
{
}
Resolution::Resolution()
: format(TextureFormat::RGBA8)
, width(1280)
, height(720)
, reset(BGFX_RESET_NONE)
, numBackBuffers(2)
, maxFrameLatency(0)
, debugTextScale(0)
{
}
Init::Limits::Limits()
: maxEncoders(BGFX_CONFIG_DEFAULT_MAX_ENCODERS)
, minResourceCbSize(BGFX_CONFIG_MIN_RESOURCE_COMMAND_BUFFER_SIZE)
, transientVbSize(BGFX_CONFIG_TRANSIENT_VERTEX_BUFFER_SIZE)
, transientIbSize(BGFX_CONFIG_TRANSIENT_INDEX_BUFFER_SIZE)
{
}
Init::Init()
: type(RendererType::Count)
, vendorId(BGFX_PCI_ID_NONE)
, deviceId(0)
, capabilities(UINT64_MAX)
, debug(BX_ENABLED(BGFX_CONFIG_DEBUG) )
, profile(BX_ENABLED(BGFX_CONFIG_DEBUG_ANNOTATION) )
, callback(NULL)
, allocator(NULL)
{
}
void Attachment::init(TextureHandle _handle, Access::Enum _access, uint16_t _layer, uint16_t _numLayers, uint16_t _mip, uint8_t _resolve)
{
access = _access;
handle = _handle;
mip = _mip;
layer = _layer;
numLayers = _numLayers;
resolve = _resolve;
}
bool init(const Init& _userInit)
{
if (NULL != s_ctx)
{
BX_TRACE("bgfx is already initialized.");
return false;
}
Init init = _userInit;
init.limits.maxEncoders = bx::clamp<uint16_t>(init.limits.maxEncoders, 1, (0 != BGFX_CONFIG_MULTITHREADED) ? 128 : 1);
init.limits.minResourceCbSize = bx::min<uint32_t>(init.limits.minResourceCbSize, BGFX_CONFIG_MIN_RESOURCE_COMMAND_BUFFER_SIZE);
struct ErrorState
{
enum Enum
{
Default,
ContextAllocated,
};
};
ErrorState::Enum errorState = ErrorState::Default;
if (NULL != init.allocator)
{
g_allocator = init.allocator;
}
else
{
bx::DefaultAllocator allocator;
g_allocator =
s_allocatorStub = BX_NEW(&allocator, AllocatorStub);
}
if (NULL != init.callback)
{
g_callback = init.callback;
}
else
{
g_callback =
s_callbackStub = BX_NEW(g_allocator, CallbackStub);
}
bx::memSet(&g_caps, 0, sizeof(g_caps) );
g_caps.limits.maxDrawCalls = BGFX_CONFIG_MAX_DRAW_CALLS;
g_caps.limits.maxBlits = BGFX_CONFIG_MAX_BLIT_ITEMS;
g_caps.limits.maxTextureSize = 0;
g_caps.limits.maxTextureLayers = 1;
g_caps.limits.maxViews = BGFX_CONFIG_MAX_VIEWS;
g_caps.limits.maxFrameBuffers = BGFX_CONFIG_MAX_FRAME_BUFFERS;
g_caps.limits.maxPrograms = BGFX_CONFIG_MAX_PROGRAMS;
g_caps.limits.maxShaders = BGFX_CONFIG_MAX_SHADERS;
g_caps.limits.maxTextures = BGFX_CONFIG_MAX_TEXTURES;
g_caps.limits.maxTextureSamplers = BGFX_CONFIG_MAX_TEXTURE_SAMPLERS;
g_caps.limits.maxComputeBindings = 0;
g_caps.limits.maxVertexLayouts = BGFX_CONFIG_MAX_VERTEX_LAYOUTS;
g_caps.limits.maxVertexStreams = 1;
g_caps.limits.maxIndexBuffers = BGFX_CONFIG_MAX_INDEX_BUFFERS;
g_caps.limits.maxVertexBuffers = BGFX_CONFIG_MAX_VERTEX_BUFFERS;
g_caps.limits.maxDynamicIndexBuffers = BGFX_CONFIG_MAX_DYNAMIC_INDEX_BUFFERS;
g_caps.limits.maxDynamicVertexBuffers = BGFX_CONFIG_MAX_DYNAMIC_VERTEX_BUFFERS;
g_caps.limits.maxUniforms = BGFX_CONFIG_MAX_UNIFORMS;
g_caps.limits.maxOcclusionQueries = BGFX_CONFIG_MAX_OCCLUSION_QUERIES;
g_caps.limits.maxFBAttachments = 1;
g_caps.limits.maxEncoders = init.limits.maxEncoders;
g_caps.limits.minResourceCbSize = init.limits.minResourceCbSize;
g_caps.limits.transientVbSize = init.limits.transientVbSize;
g_caps.limits.transientIbSize = init.limits.transientIbSize;
g_caps.vendorId = init.vendorId;
g_caps.deviceId = init.deviceId;
BX_TRACE("Init...");
// bgfx 1.104.7082
// ^ ^^^ ^^^^
// | | +--- Commit number (https://github.com/bkaradzic/bgfx / git rev-list --count HEAD)
// | +------- API version (from https://github.com/bkaradzic/bgfx/blob/master/scripts/bgfx.idl#L4)
// +--------- Major revision (always 1)
BX_TRACE("Version 1.%d.%d (commit: " BGFX_REV_SHA1 ")", BGFX_API_VERSION, BGFX_REV_NUMBER);
errorState = ErrorState::ContextAllocated;
s_ctx = BX_ALIGNED_NEW(g_allocator, Context, Context::kAlignment);
if (s_ctx->init(init) )
{
BX_TRACE("Init complete.");
return true;
}
BX_TRACE("Init failed.");
switch (errorState)
{
case ErrorState::ContextAllocated:
bx::deleteObject(g_allocator, s_ctx, Context::kAlignment);
s_ctx = NULL;
BX_FALLTHROUGH;
case ErrorState::Default:
if (NULL != s_callbackStub)
{
bx::deleteObject(g_allocator, s_callbackStub);
s_callbackStub = NULL;
}
if (NULL != s_allocatorStub)
{
bx::DefaultAllocator allocator;
bx::deleteObject(&allocator, s_allocatorStub);
s_allocatorStub = NULL;
}
s_threadIndex = 0;
g_callback = NULL;
g_allocator = NULL;
break;
}
return false;
}
void shutdown()
{
BX_TRACE("Shutdown...");
BGFX_CHECK_API_THREAD();
Context* ctx = s_ctx; // it's going to be NULLd inside shutdown.
ctx->shutdown();
BX_ASSERT(NULL == s_ctx, "bgfx is should be uninitialized here.");
bx::deleteObject(g_allocator, ctx, Context::kAlignment);
BX_TRACE("Shutdown complete.");
if (NULL != s_allocatorStub)
{
s_allocatorStub->checkLeaks();
}
if (NULL != s_callbackStub)
{
bx::deleteObject(g_allocator, s_callbackStub);
s_callbackStub = NULL;
}
if (NULL != s_allocatorStub)
{
bx::DefaultAllocator allocator;
bx::deleteObject(&allocator, s_allocatorStub);
s_allocatorStub = NULL;
}
s_threadIndex = 0;
g_callback = NULL;
g_allocator = NULL;
}
void reset(uint32_t _width, uint32_t _height, uint32_t _flags, TextureFormat::Enum _format)
{
BGFX_CHECK_API_THREAD();
BX_ASSERT(0 == (_flags&BGFX_RESET_RESERVED_MASK), "Do not set reset reserved flags!");
s_ctx->reset(_width, _height, _flags, _format);
}
Encoder* begin(bool _forThread)
{
return s_ctx->begin(_forThread);
}
#define BGFX_ENCODER(_func) reinterpret_cast<EncoderImpl*>(this)->_func
void Encoder::setMarker(const char* _marker)
{
BGFX_ENCODER(setMarker(_marker) );
}
void Encoder::setState(uint64_t _state, uint32_t _rgba)
{
BX_ASSERT(0 == (_state&BGFX_STATE_RESERVED_MASK), "Do not set state reserved flags!");
BGFX_ENCODER(setState(_state, _rgba) );
}
void Encoder::setCondition(OcclusionQueryHandle _handle, bool _visible)
{
BGFX_CHECK_CAPS(BGFX_CAPS_OCCLUSION_QUERY, "Occlusion query is not supported!");
BGFX_ENCODER(setCondition(_handle, _visible) );
}
void Encoder::setStencil(uint32_t _fstencil, uint32_t _bstencil)
{
BGFX_ENCODER(setStencil(_fstencil, _bstencil) );
}
uint16_t Encoder::setScissor(uint16_t _x, uint16_t _y, uint16_t _width, uint16_t _height)
{
return BGFX_ENCODER(setScissor(_x, _y, _width, _height) );
}
void Encoder::setScissor(uint16_t _cache)
{
BGFX_ENCODER(setScissor(_cache) );
}
uint32_t Encoder::setTransform(const void* _mtx, uint16_t _num)
{
return BGFX_ENCODER(setTransform(_mtx, _num) );
}
uint32_t Encoder::allocTransform(Transform* _transform, uint16_t _num)
{
return BGFX_ENCODER(allocTransform(_transform, _num) );
}
void Encoder::setTransform(uint32_t _cache, uint16_t _num)
{
BGFX_ENCODER(setTransform(_cache, _num) );
}
void Encoder::setUniform(UniformHandle _handle, const void* _value, uint16_t _num)
{
BGFX_CHECK_HANDLE("setUniform", s_ctx->m_uniformHandle, _handle);
const UniformRef& uniform = s_ctx->m_uniformRef[_handle.idx];
BX_ASSERT(isValid(_handle) && 0 < uniform.m_refCount, "Setting invalid uniform (handle %3d)!", _handle.idx);
BX_ASSERT(_num == UINT16_MAX || uniform.m_num >= _num, "Truncated uniform update. %d (max: %d)", _num, uniform.m_num);
BGFX_ENCODER(setUniform(uniform.m_type, _handle, _value, UINT16_MAX != _num ? _num : uniform.m_num) );
}
void Encoder::setIndexBuffer(IndexBufferHandle _handle)
{
setIndexBuffer(_handle, 0, UINT32_MAX);
}
void Encoder::setIndexBuffer(IndexBufferHandle _handle, uint32_t _firstIndex, uint32_t _numIndices)
{
BGFX_CHECK_HANDLE("setIndexBuffer", s_ctx->m_indexBufferHandle, _handle);
const IndexBuffer& ib = s_ctx->m_indexBuffers[_handle.idx];
BGFX_ENCODER(setIndexBuffer(_handle, ib, _firstIndex, _numIndices) );
}
void Encoder::setIndexBuffer(DynamicIndexBufferHandle _handle)
{
setIndexBuffer(_handle, 0, UINT32_MAX);
}
void Encoder::setIndexBuffer(DynamicIndexBufferHandle _handle, uint32_t _firstIndex, uint32_t _numIndices)
{
BGFX_CHECK_HANDLE("setIndexBuffer", s_ctx->m_dynamicIndexBufferHandle, _handle);
const DynamicIndexBuffer& dib = s_ctx->m_dynamicIndexBuffers[_handle.idx];
BGFX_ENCODER(setIndexBuffer(dib, _firstIndex, _numIndices) );
}
void Encoder::setIndexBuffer(const TransientIndexBuffer* _tib)
{
setIndexBuffer(_tib, 0, UINT32_MAX);
}
void Encoder::setIndexBuffer(const TransientIndexBuffer* _tib, uint32_t _firstIndex, uint32_t _numIndices)
{
BX_ASSERT(NULL != _tib, "_tib can't be NULL");
BGFX_CHECK_HANDLE("setIndexBuffer", s_ctx->m_indexBufferHandle, _tib->handle);
BGFX_ENCODER(setIndexBuffer(_tib, _firstIndex, _numIndices) );
}
void Encoder::setVertexBuffer(
uint8_t _stream
, VertexBufferHandle _handle
, uint32_t _startVertex
, uint32_t _numVertices
, VertexLayoutHandle _layoutHandle
)
{
BGFX_CHECK_HANDLE("setVertexBuffer", s_ctx->m_vertexBufferHandle, _handle);
BGFX_CHECK_HANDLE_INVALID_OK("setVertexBuffer", s_ctx->m_layoutHandle, _layoutHandle);
BGFX_ENCODER(setVertexBuffer(_stream, _handle, _startVertex, _numVertices, _layoutHandle) );
}
void Encoder::setVertexBuffer(uint8_t _stream, VertexBufferHandle _handle)
{
setVertexBuffer(_stream, _handle, 0, UINT32_MAX);
}
void Encoder::setVertexBuffer(
uint8_t _stream
, DynamicVertexBufferHandle _handle
, uint32_t _startVertex
, uint32_t _numVertices
, VertexLayoutHandle _layoutHandle
)
{
BGFX_CHECK_HANDLE("setVertexBuffer", s_ctx->m_dynamicVertexBufferHandle, _handle);
BGFX_CHECK_HANDLE_INVALID_OK("setVertexBuffer", s_ctx->m_layoutHandle, _layoutHandle);
const DynamicVertexBuffer& dvb = s_ctx->m_dynamicVertexBuffers[_handle.idx];
BGFX_ENCODER(setVertexBuffer(_stream, dvb, _startVertex, _numVertices, _layoutHandle) );
}
void Encoder::setVertexBuffer(uint8_t _stream, DynamicVertexBufferHandle _handle)
{
setVertexBuffer(_stream, _handle, 0, UINT32_MAX);
}
void Encoder::setVertexBuffer(
uint8_t _stream
, const TransientVertexBuffer* _tvb
, uint32_t _startVertex
, uint32_t _numVertices
, VertexLayoutHandle _layoutHandle
)
{
BX_ASSERT(NULL != _tvb, "_tvb can't be NULL");
BGFX_CHECK_HANDLE("setVertexBuffer", s_ctx->m_vertexBufferHandle, _tvb->handle);
BGFX_CHECK_HANDLE_INVALID_OK("setVertexBuffer", s_ctx->m_layoutHandle, _layoutHandle);
BGFX_ENCODER(setVertexBuffer(_stream, _tvb, _startVertex, _numVertices, _layoutHandle) );
}
void Encoder::setVertexBuffer(uint8_t _stream, const TransientVertexBuffer* _tvb)
{
setVertexBuffer(_stream, _tvb, 0, UINT32_MAX);
}
void Encoder::setVertexCount(uint32_t _numVertices)
{
BGFX_CHECK_CAPS(BGFX_CAPS_VERTEX_ID, "Auto generated vertices are not supported!");
BGFX_ENCODER(setVertexCount(_numVertices) );
}
void Encoder::setInstanceDataBuffer(const InstanceDataBuffer* _idb)
{
setInstanceDataBuffer(_idb, 0, UINT32_MAX);
}
void Encoder::setInstanceDataBuffer(const InstanceDataBuffer* _idb, uint32_t _start, uint32_t _num)
{
BX_ASSERT(NULL != _idb, "_idb can't be NULL");
BGFX_ENCODER(setInstanceDataBuffer(_idb, _start, _num) );
}
void Encoder::setInstanceDataBuffer(VertexBufferHandle _handle, uint32_t _startVertex, uint32_t _num)
{
BGFX_CHECK_HANDLE("setInstanceDataBuffer", s_ctx->m_vertexBufferHandle, _handle);
const VertexBuffer& vb = s_ctx->m_vertexBuffers[_handle.idx];
BGFX_ENCODER(setInstanceDataBuffer(_handle, _startVertex, _num, vb.m_stride) );
}
void Encoder::setInstanceDataBuffer(DynamicVertexBufferHandle _handle, uint32_t _startVertex, uint32_t _num)
{
BGFX_CHECK_HANDLE("setInstanceDataBuffer", s_ctx->m_dynamicVertexBufferHandle, _handle);
const DynamicVertexBuffer& dvb = s_ctx->m_dynamicVertexBuffers[_handle.idx];
BGFX_ENCODER(setInstanceDataBuffer(dvb.m_handle
, dvb.m_startVertex + _startVertex
, _num
, dvb.m_stride
) );
}
void Encoder::setInstanceCount(uint32_t _numInstances)
{
BGFX_CHECK_CAPS(BGFX_CAPS_VERTEX_ID, "Auto generated instances are not supported!");
BGFX_ENCODER(setInstanceCount(_numInstances) );
}
void Encoder::setTexture(uint8_t _stage, UniformHandle _sampler, TextureHandle _handle, uint32_t _flags)
{
BGFX_CHECK_HANDLE("setTexture/UniformHandle", s_ctx->m_uniformHandle, _sampler);
BGFX_CHECK_HANDLE_INVALID_OK("setTexture/TextureHandle", s_ctx->m_textureHandle, _handle);
BX_ASSERT(_stage < g_caps.limits.maxTextureSamplers, "Invalid stage %d (max %d).", _stage, g_caps.limits.maxTextureSamplers);
if (isValid(_handle) )
{
const TextureRef& ref = s_ctx->m_textureRef[_handle.idx];
BX_ASSERT(!ref.isReadBack()
, "Can't sample from texture which was created with BGFX_TEXTURE_READ_BACK. This is CPU only texture."
);
BX_UNUSED(ref);
}
BGFX_ENCODER(setTexture(_stage, _sampler, _handle, _flags) );
}
void Encoder::touch(ViewId _id)
{
discard();
submit(_id, BGFX_INVALID_HANDLE);
}
void Encoder::submit(ViewId _id, ProgramHandle _program, uint32_t _depth, uint8_t _flags)
{
OcclusionQueryHandle handle = BGFX_INVALID_HANDLE;
submit(_id, _program, handle, _depth, _flags);
}
void Encoder::submit(ViewId _id, ProgramHandle _program, OcclusionQueryHandle _occlusionQuery, uint32_t _depth, uint8_t _flags)
{
BX_ASSERT(false
|| !isValid(_occlusionQuery)
|| 0 != (g_caps.supported & BGFX_CAPS_OCCLUSION_QUERY)
, "Occlusion query is not supported! Use bgfx::getCaps to check BGFX_CAPS_OCCLUSION_QUERY backend renderer capabilities."
);
BGFX_CHECK_HANDLE_INVALID_OK("submit", s_ctx->m_programHandle, _program);
BGFX_CHECK_HANDLE_INVALID_OK("submit", s_ctx->m_occlusionQueryHandle, _occlusionQuery);
BGFX_ENCODER(submit(_id, _program, _occlusionQuery, _depth, _flags) );
}
void Encoder::submit(ViewId _id, ProgramHandle _program, IndirectBufferHandle _indirectHandle, uint16_t _start, uint16_t _num, uint32_t _depth, uint8_t _flags)
{
BGFX_CHECK_HANDLE_INVALID_OK("submit", s_ctx->m_programHandle, _program);
BGFX_CHECK_HANDLE("submit", s_ctx->m_vertexBufferHandle, _indirectHandle);
BGFX_CHECK_CAPS(BGFX_CAPS_DRAW_INDIRECT, "Draw indirect is not supported!");
BGFX_ENCODER(submit(_id, _program, _indirectHandle, _start, _num, _depth, _flags) );
}
void Encoder::submit(ViewId _id, ProgramHandle _program, IndirectBufferHandle _indirectHandle, uint16_t _start, IndexBufferHandle _numHandle, uint32_t _numIndex, uint16_t _numMax, uint32_t _depth, uint8_t _flags)
{
BGFX_CHECK_HANDLE_INVALID_OK("submit", s_ctx->m_programHandle, _program);
BGFX_CHECK_HANDLE("submit", s_ctx->m_vertexBufferHandle, _indirectHandle);
BGFX_CHECK_HANDLE("submit", s_ctx->m_indexBufferHandle, _numHandle);
BGFX_CHECK_CAPS(BGFX_CAPS_DRAW_INDIRECT, "Draw indirect is not supported!");
BGFX_CHECK_CAPS(BGFX_CAPS_DRAW_INDIRECT_COUNT, "Draw indirect count is not supported!");
BGFX_ENCODER(submit(_id, _program, _indirectHandle, _start, _numHandle, _numIndex, _numMax, _depth, _flags) );
}
void Encoder::setBuffer(uint8_t _stage, IndexBufferHandle _handle, Access::Enum _access)
{
BX_ASSERT(_stage < g_caps.limits.maxComputeBindings, "Invalid stage %d (max %d).", _stage, g_caps.limits.maxComputeBindings);
BGFX_CHECK_HANDLE("setBuffer", s_ctx->m_indexBufferHandle, _handle);
BGFX_ENCODER(setBuffer(_stage, _handle, _access) );
}
void Encoder::setBuffer(uint8_t _stage, VertexBufferHandle _handle, Access::Enum _access)
{
BX_ASSERT(_stage < g_caps.limits.maxComputeBindings, "Invalid stage %d (max %d).", _stage, g_caps.limits.maxComputeBindings);
BGFX_CHECK_HANDLE("setBuffer", s_ctx->m_vertexBufferHandle, _handle);
BGFX_ENCODER(setBuffer(_stage, _handle, _access) );
}
void Encoder::setBuffer(uint8_t _stage, DynamicIndexBufferHandle _handle, Access::Enum _access)
{
BX_ASSERT(_stage < g_caps.limits.maxComputeBindings, "Invalid stage %d (max %d).", _stage, g_caps.limits.maxComputeBindings);
BGFX_CHECK_HANDLE("setBuffer", s_ctx->m_dynamicIndexBufferHandle, _handle);
const DynamicIndexBuffer& dib = s_ctx->m_dynamicIndexBuffers[_handle.idx];
BGFX_ENCODER(setBuffer(_stage, dib.m_handle, _access) );
}
void Encoder::setBuffer(uint8_t _stage, DynamicVertexBufferHandle _handle, Access::Enum _access)
{
BX_ASSERT(_stage < g_caps.limits.maxComputeBindings, "Invalid stage %d (max %d).", _stage, g_caps.limits.maxComputeBindings);
BGFX_CHECK_HANDLE("setBuffer", s_ctx->m_dynamicVertexBufferHandle, _handle);
const DynamicVertexBuffer& dvb = s_ctx->m_dynamicVertexBuffers[_handle.idx];
BGFX_ENCODER(setBuffer(_stage, dvb.m_handle, _access) );
}
void Encoder::setBuffer(uint8_t _stage, IndirectBufferHandle _handle, Access::Enum _access)
{
BX_ASSERT(_stage < g_caps.limits.maxComputeBindings, "Invalid stage %d (max %d).", _stage, g_caps.limits.maxComputeBindings);
BGFX_CHECK_HANDLE("setBuffer", s_ctx->m_vertexBufferHandle, _handle);
VertexBufferHandle handle = { _handle.idx };
BGFX_ENCODER(setBuffer(_stage, handle, _access) );
}
void Encoder::setImage(uint8_t _stage, TextureHandle _handle, uint8_t _mip, Access::Enum _access, TextureFormat::Enum _format)
{
BX_ASSERT(_stage < g_caps.limits.maxComputeBindings, "Invalid stage %d (max %d).", _stage, g_caps.limits.maxComputeBindings);
BGFX_CHECK_HANDLE_INVALID_OK("setImage/TextureHandle", s_ctx->m_textureHandle, _handle);
_format = TextureFormat::Count == _format
? TextureFormat::Enum(s_ctx->m_textureRef[_handle.idx].m_format)
: _format
;
BX_ASSERT(_format != TextureFormat::BGRA8
, "Can't use TextureFormat::BGRA8 with compute, use TextureFormat::RGBA8 instead."
);
if (isValid(_handle) )
{
const TextureRef& ref = s_ctx->m_textureRef[_handle.idx];
BX_ASSERT(!ref.isReadBack()
, "Can't texture (handle %d, '%S') which was created with BGFX_TEXTURE_READ_BACK with compute. This is CPU only texture."
, _handle.idx
, &ref.m_name
);
BX_UNUSED(ref);
}
BGFX_ENCODER(setImage(_stage, _handle, _mip, _access, _format) );
}
void Encoder::dispatch(ViewId _id, ProgramHandle _program, uint32_t _numX, uint32_t _numY, uint32_t _numZ, uint8_t _flags)
{
BGFX_CHECK_CAPS(BGFX_CAPS_COMPUTE, "Compute is not supported!");
BGFX_CHECK_HANDLE_INVALID_OK("dispatch", s_ctx->m_programHandle, _program);
BGFX_ENCODER(dispatch(_id, _program, _numX, _numY, _numZ, _flags) );
}
void Encoder::dispatch(ViewId _id, ProgramHandle _program, IndirectBufferHandle _indirectHandle, uint16_t _start, uint16_t _num, uint8_t _flags)
{
BGFX_CHECK_CAPS(BGFX_CAPS_DRAW_INDIRECT, "Dispatch indirect is not supported!");
BGFX_CHECK_CAPS(BGFX_CAPS_COMPUTE, "Compute is not supported!");
BGFX_CHECK_HANDLE_INVALID_OK("dispatch", s_ctx->m_programHandle, _program);
BGFX_CHECK_HANDLE("dispatch", s_ctx->m_vertexBufferHandle, _indirectHandle);
BGFX_ENCODER(dispatch(_id, _program, _indirectHandle, _start, _num, _flags) );
}
void Encoder::discard(uint8_t _flags)
{
BGFX_ENCODER(discard(_flags) );
}
void Encoder::blit(ViewId _id, TextureHandle _dst, uint16_t _dstX, uint16_t _dstY, TextureHandle _src, uint16_t _srcX, uint16_t _srcY, uint16_t _width, uint16_t _height)
{
blit(_id, _dst, 0, _dstX, _dstY, 0, _src, 0, _srcX, _srcY, 0, _width, _height, 0);
}
void Encoder::blit(ViewId _id, TextureHandle _dst, uint8_t _dstMip, uint16_t _dstX, uint16_t _dstY, uint16_t _dstZ, TextureHandle _src, uint8_t _srcMip, uint16_t _srcX, uint16_t _srcY, uint16_t _srcZ, uint16_t _width, uint16_t _height, uint16_t _depth)
{
BGFX_CHECK_CAPS(BGFX_CAPS_TEXTURE_BLIT, "Texture blit is not supported!");
BGFX_CHECK_HANDLE("blit/src TextureHandle", s_ctx->m_textureHandle, _src);
BGFX_CHECK_HANDLE("blit/dst TextureHandle", s_ctx->m_textureHandle, _dst);
const TextureRef& src = s_ctx->m_textureRef[_src.idx];
const TextureRef& dst = s_ctx->m_textureRef[_dst.idx];
BX_ASSERT(dst.isBlitDst()
, "Blit destination texture (handle %d, '%S') is not created with `BGFX_TEXTURE_BLIT_DST` flag."
, _dst.idx
, &dst.m_name
);
BX_ASSERT(src.m_format == dst.m_format
, "Texture format must match (src %s, dst %s)."
, bimg::getName(bimg::TextureFormat::Enum(src.m_format) )
, bimg::getName(bimg::TextureFormat::Enum(dst.m_format) )
);
BX_ASSERT(_srcMip < src.m_numMips, "Invalid blit src mip (%d > %d)", _srcMip, src.m_numMips - 1);
BX_ASSERT(_dstMip < dst.m_numMips, "Invalid blit dst mip (%d > %d)", _dstMip, dst.m_numMips - 1);
uint32_t srcWidth = bx::max<uint32_t>(1, src.m_width >> _srcMip);
uint32_t srcHeight = bx::max<uint32_t>(1, src.m_height >> _srcMip);
uint32_t dstWidth = bx::max<uint32_t>(1, dst.m_width >> _dstMip);
uint32_t dstHeight = bx::max<uint32_t>(1, dst.m_height >> _dstMip);
uint32_t srcDepth = src.isCubeMap() ? 6 : bx::max<uint32_t>(1, src.m_depth >> _srcMip);
uint32_t dstDepth = dst.isCubeMap() ? 6 : bx::max<uint32_t>(1, dst.m_depth >> _dstMip);
BX_ASSERT(_srcX < srcWidth && _srcY < srcHeight && _srcZ < srcDepth
, "Blit src coordinates out of range (%d, %d, %d) >= (%d, %d, %d)"
, _srcX, _srcY, _srcZ
, srcWidth, srcHeight, srcDepth
);
BX_ASSERT(_dstX < dstWidth && _dstY < dstHeight && _dstZ < dstDepth
, "Blit dst coordinates out of range (%d, %d, %d) >= (%d, %d, %d)"
, _dstX, _dstY, _dstZ
, dstWidth, dstHeight, dstDepth
);
srcWidth = bx::min<uint32_t>(srcWidth, _srcX + _width ) - _srcX;
srcHeight = bx::min<uint32_t>(srcHeight, _srcY + _height) - _srcY;
srcDepth = bx::min<uint32_t>(srcDepth, _srcZ + _depth ) - _srcZ;
dstWidth = bx::min<uint32_t>(dstWidth, _dstX + _width ) - _dstX;
dstHeight = bx::min<uint32_t>(dstHeight, _dstY + _height) - _dstY;
dstDepth = bx::min<uint32_t>(dstDepth, _dstZ + _depth ) - _dstZ;
const uint16_t width = uint16_t(bx::min(srcWidth, dstWidth ) );
const uint16_t height = uint16_t(bx::min(srcHeight, dstHeight) );
const uint16_t depth = uint16_t(bx::min(srcDepth, dstDepth ) );
BGFX_ENCODER(blit(_id, _dst, _dstMip, _dstX, _dstY, _dstZ, _src, _srcMip, _srcX, _srcY, _srcZ, width, height, depth) );
}
#undef BGFX_ENCODER
void end(Encoder* _encoder)
{
s_ctx->end(_encoder);
}
uint32_t frame(bool _capture)
{
BGFX_CHECK_API_THREAD();
return s_ctx->frame(_capture);
}
const Caps* getCaps()
{
return &g_caps;
}
const Stats* getStats()
{
return s_ctx->getPerfStats();
}
RendererType::Enum getRendererType()
{
return g_caps.rendererType;
}
const Memory* alloc(uint32_t _size)
{
BX_ASSERT(0 < _size, "Invalid memory operation. _size is 0.");
Memory* mem = (Memory*)bx::alloc(g_allocator, sizeof(Memory) + _size);
mem->size = _size;
mem->data = (uint8_t*)mem + sizeof(Memory);
return mem;
}
const Memory* copy(const void* _data, uint32_t _size)
{
BX_ASSERT(0 < _size, "Invalid memory operation. _size is 0.");
const Memory* mem = alloc(_size);
bx::memCopy(mem->data, _data, _size);
return mem;
}
struct MemoryRef
{
Memory mem;
ReleaseFn releaseFn;
void* userData;
};
const Memory* makeRef(const void* _data, uint32_t _size, ReleaseFn _releaseFn, void* _userData)
{
MemoryRef* memRef = (MemoryRef*)bx::alloc(g_allocator, sizeof(MemoryRef) );
memRef->mem.size = _size;
memRef->mem.data = (uint8_t*)_data;
memRef->releaseFn = _releaseFn;
memRef->userData = _userData;
return &memRef->mem;
}
bool isMemoryRef(const Memory* _mem)
{
return _mem->data != (uint8_t*)_mem + sizeof(Memory);
}
void release(const Memory* _mem)
{
BX_ASSERT(NULL != _mem, "_mem can't be NULL");
Memory* mem = const_cast<Memory*>(_mem);
if (isMemoryRef(mem) )
{
MemoryRef* memRef = reinterpret_cast<MemoryRef*>(mem);
if (NULL != memRef->releaseFn)
{
memRef->releaseFn(mem->data, memRef->userData);
}
}
bx::free(g_allocator, mem);
}
void setDebug(uint32_t _debug)
{
BGFX_CHECK_API_THREAD();
s_ctx->setDebug(_debug);
}
void dbgTextClear(uint8_t _attr, bool _small)
{
BGFX_CHECK_API_THREAD();
s_ctx->dbgTextClear(_attr, _small);
}
void dbgTextPrintfVargs(uint16_t _x, uint16_t _y, uint8_t _attr, const char* _format, va_list _argList)
{
s_ctx->dbgTextPrintfVargs(_x, _y, _attr, _format, _argList);
}
void dbgTextPrintf(uint16_t _x, uint16_t _y, uint8_t _attr, const char* _format, ...)
{
BGFX_CHECK_API_THREAD();
va_list argList;
va_start(argList, _format);
s_ctx->dbgTextPrintfVargs(_x, _y, _attr, _format, argList);
va_end(argList);
}
void dbgTextImage(uint16_t _x, uint16_t _y, uint16_t _width, uint16_t _height, const void* _data, uint16_t _pitch)
{
BGFX_CHECK_API_THREAD();
s_ctx->dbgTextImage(_x, _y, _width, _height, _data, _pitch);
}
IndexBufferHandle createIndexBuffer(const Memory* _mem, uint16_t _flags)
{
BX_ASSERT(
0 == (_flags & BGFX_BUFFER_INDEX32) || 0 != (g_caps.supported & BGFX_CAPS_INDEX32)
, "32-bit indices are not supported. Use bgfx::getCaps to check BGFX_CAPS_INDEX32 backend renderer capabilities."
);
BX_ASSERT(NULL != _mem, "_mem can't be NULL");
return s_ctx->createIndexBuffer(_mem, _flags);
}
void setName(IndexBufferHandle _handle, const char* _name, int32_t _len)
{
s_ctx->setName(_handle, bx::StringView(_name, _len) );
}
void destroy(IndexBufferHandle _handle)
{
s_ctx->destroyIndexBuffer(_handle);
}
VertexLayoutHandle createVertexLayout(const VertexLayout& _layout)
{
return s_ctx->createVertexLayout(_layout);
}
void destroy(VertexLayoutHandle _handle)
{
s_ctx->destroyVertexLayout(_handle);
}
VertexBufferHandle createVertexBuffer(const Memory* _mem, const VertexLayout& _layout, uint16_t _flags)
{
BX_ASSERT(NULL != _mem, "_mem can't be NULL");
BX_ASSERT(isValid(_layout), "Invalid VertexLayout.");
return s_ctx->createVertexBuffer(_mem, _layout, _flags);
}
void setName(VertexBufferHandle _handle, const char* _name, int32_t _len)
{
s_ctx->setName(_handle, bx::StringView(_name, _len) );
}
void destroy(VertexBufferHandle _handle)
{
s_ctx->destroyVertexBuffer(_handle);
}
DynamicIndexBufferHandle createDynamicIndexBuffer(uint32_t _num, uint16_t _flags)
{
return s_ctx->createDynamicIndexBuffer(_num, _flags);
}
DynamicIndexBufferHandle createDynamicIndexBuffer(const Memory* _mem, uint16_t _flags)
{
BX_ASSERT(
0 == (_flags & BGFX_BUFFER_INDEX32) || 0 != (g_caps.supported & BGFX_CAPS_INDEX32)
, "32-bit indices are not supported. Use bgfx::getCaps to check BGFX_CAPS_INDEX32 backend renderer capabilities."
);
BX_ASSERT(NULL != _mem, "_mem can't be NULL");
return s_ctx->createDynamicIndexBuffer(_mem, _flags);
}
void update(DynamicIndexBufferHandle _handle, uint32_t _startIndex, const Memory* _mem)
{
BX_ASSERT(NULL != _mem, "_mem can't be NULL");
s_ctx->update(_handle, _startIndex, _mem);
}
void destroy(DynamicIndexBufferHandle _handle)
{
s_ctx->destroyDynamicIndexBuffer(_handle);
}
DynamicVertexBufferHandle createDynamicVertexBuffer(uint32_t _num, const VertexLayout& _layout, uint16_t _flags)
{
BX_ASSERT(isValid(_layout), "Invalid VertexLayout.");
return s_ctx->createDynamicVertexBuffer(_num, _layout, _flags);
}
DynamicVertexBufferHandle createDynamicVertexBuffer(const Memory* _mem, const VertexLayout& _layout, uint16_t _flags)
{
BX_ASSERT(NULL != _mem, "_mem can't be NULL");
BX_ASSERT(isValid(_layout), "Invalid VertexLayout.");
return s_ctx->createDynamicVertexBuffer(_mem, _layout, _flags);
}
void update(DynamicVertexBufferHandle _handle, uint32_t _startVertex, const Memory* _mem)
{
BX_ASSERT(NULL != _mem, "_mem can't be NULL");
s_ctx->update(_handle, _startVertex, _mem);
}
void destroy(DynamicVertexBufferHandle _handle)
{
s_ctx->destroyDynamicVertexBuffer(_handle);
}
uint32_t getAvailTransientIndexBuffer(uint32_t _num, bool _index32)
{
BX_ASSERT(0 < _num, "Requesting 0 indices.");
return s_ctx->getAvailTransientIndexBuffer(_num, _index32);
}
uint32_t getAvailTransientVertexBuffer(uint32_t _num, const VertexLayout& _layout)
{
BX_ASSERT(0 < _num, "Requesting 0 vertices.");
BX_ASSERT(isValid(_layout), "Invalid VertexLayout.");
return s_ctx->getAvailTransientVertexBuffer(_num, _layout.m_stride);
}
uint32_t getAvailInstanceDataBuffer(uint32_t _num, uint16_t _stride)
{
BX_ASSERT(0 < _num, "Requesting 0 instances.");
return s_ctx->getAvailTransientVertexBuffer(_num, _stride);
}
void allocTransientIndexBuffer(TransientIndexBuffer* _tib, uint32_t _num, bool _index32)
{
BX_ASSERT(NULL != _tib, "_tib can't be NULL");
BX_ASSERT(0 < _num, "Requesting 0 indices.");
BX_ASSERT(
!_index32 || 0 != (g_caps.supported & BGFX_CAPS_INDEX32)
, "32-bit indices are not supported. Use bgfx::getCaps to check BGFX_CAPS_INDEX32 backend renderer capabilities."
);
s_ctx->allocTransientIndexBuffer(_tib, _num, _index32);
const uint32_t indexSize = _tib->isIndex16 ? 2 : 4;
BX_ASSERT(_num == _tib->size/ indexSize
, "Failed to allocate transient index buffer (requested %d, available %d). "
"Use bgfx::getAvailTransient* functions to ensure availability."
, _num
, _tib->size/indexSize
);
BX_UNUSED(indexSize);
}
void allocTransientVertexBuffer(TransientVertexBuffer* _tvb, uint32_t _num, const VertexLayout& _layout)
{
BX_ASSERT(NULL != _tvb, "_tvb can't be NULL");
BX_ASSERT(0 < _num, "Requesting 0 vertices.");
BX_ASSERT(isValid(_layout), "Invalid VertexLayout.");
VertexLayoutHandle layoutHandle;
{
BGFX_MUTEX_SCOPE(s_ctx->m_resourceApiLock);
layoutHandle = s_ctx->findOrCreateVertexLayout(_layout, true);
}
BX_ASSERT(isValid(layoutHandle), "Failed to allocate vertex layout handle (BGFX_CONFIG_MAX_VERTEX_LAYOUTS, max: %d).", BGFX_CONFIG_MAX_VERTEX_LAYOUTS);
s_ctx->allocTransientVertexBuffer(_tvb, _num, layoutHandle, _layout.m_stride);
BX_ASSERT(_num == _tvb->size / _layout.m_stride
, "Failed to allocate transient vertex buffer (requested %d, available %d). "
"Use bgfx::getAvailTransient* functions to ensure availability."
, _num
, _tvb->size / _layout.m_stride
);
}
bool allocTransientBuffers(bgfx::TransientVertexBuffer* _tvb, const bgfx::VertexLayout& _layout, uint32_t _numVertices, bgfx::TransientIndexBuffer* _tib, uint32_t _numIndices, bool _index32)
{
BGFX_MUTEX_SCOPE(s_ctx->m_resourceApiLock);
if (_numVertices == getAvailTransientVertexBuffer(_numVertices, _layout)
&& _numIndices == getAvailTransientIndexBuffer(_numIndices, _index32) )
{
allocTransientVertexBuffer(_tvb, _numVertices, _layout);
allocTransientIndexBuffer(_tib, _numIndices, _index32);
return true;
}
return false;
}
void allocInstanceDataBuffer(InstanceDataBuffer* _idb, uint32_t _num, uint16_t _stride)
{
BGFX_CHECK_CAPS(BGFX_CAPS_INSTANCING, "Instancing is not supported!");
BX_ASSERT(bx::isAligned(_stride, 16), "Stride must be multiple of 16.");
BX_ASSERT(0 < _num, "Requesting 0 instanced data vertices.");
s_ctx->allocInstanceDataBuffer(_idb, _num, _stride);
BX_ASSERT(_num == _idb->size / _stride
, "Failed to allocate instance data buffer (requested %d, available %d). "
"Use bgfx::getAvailTransient* functions to ensure availability."
, _num
, _idb->size / _stride
);
}
IndirectBufferHandle createIndirectBuffer(uint32_t _num)
{
return s_ctx->createIndirectBuffer(_num);
}
void destroy(IndirectBufferHandle _handle)
{
s_ctx->destroyIndirectBuffer(_handle);
}
ShaderHandle createShader(const Memory* _mem)
{
BX_ASSERT(NULL != _mem, "_mem can't be NULL");
return s_ctx->createShader(_mem);
}
uint16_t getShaderUniforms(ShaderHandle _handle, UniformHandle* _uniforms, uint16_t _max)
{
BX_WARN(NULL == _uniforms || 0 != _max
, "Passing uniforms array pointer, but array maximum capacity is set to 0."
);
uint16_t num = s_ctx->getShaderUniforms(_handle, _uniforms, _max);
BX_WARN(0 == _max || num <= _max
, "Shader has more uniforms that capacity of output array. Output is truncated (num %d, max %d)."
, num
, _max
);
return num;
}
void setName(ShaderHandle _handle, const char* _name, int32_t _len)
{
s_ctx->setName(_handle, bx::StringView(_name, _len) );
}
void destroy(ShaderHandle _handle)
{
s_ctx->destroyShader(_handle);
}
ProgramHandle createProgram(ShaderHandle _vsh, ShaderHandle _fsh, bool _destroyShaders)
{
if (!isValid(_fsh) )
{
return createProgram(_vsh, _destroyShaders);
}
return s_ctx->createProgram(_vsh, _fsh, _destroyShaders);
}
ProgramHandle createProgram(ShaderHandle _csh, bool _destroyShader)
{
return s_ctx->createProgram(_csh, _destroyShader);
}
void destroy(ProgramHandle _handle)
{
s_ctx->destroyProgram(_handle);
}
void isFrameBufferValid(uint8_t _num, const Attachment* _attachment, bx::Error* _err)
{
BX_ERROR_SCOPE(_err, "Frame buffer validation");
uint8_t color = 0;
uint8_t depth = 0;
const TextureRef& firstTexture = s_ctx->m_textureRef[_attachment[0].handle.idx];
const uint16_t firstAttachmentWidth = bx::max<uint16_t>(firstTexture.m_width >> _attachment[0].mip, 1);
const uint16_t firstAttachmentHeight = bx::max<uint16_t>(firstTexture.m_height >> _attachment[0].mip, 1);
for (uint32_t ii = 0; ii < _num; ++ii)
{
const Attachment& at = _attachment[ii];
const TextureHandle texHandle = at.handle;
const TextureRef& tr = s_ctx->m_textureRef[texHandle.idx];
BGFX_ERROR_CHECK(true
&& isValid(texHandle)
&& s_ctx->m_textureHandle.isValid(texHandle.idx)
, _err
, BGFX_ERROR_FRAME_BUFFER_VALIDATION
, "Invalid texture attachment."
, "Attachment %d, texture handle %d."
, ii
, texHandle.idx
);
BGFX_ERROR_CHECK(true
&& at.mip < tr.m_numMips
, _err
, BGFX_ERROR_FRAME_BUFFER_VALIDATION
, "Invalid texture mip level."
, "Attachment %d, Mip %d, texture (handle %d) number of mips %d."
, ii
, at.mip
, texHandle.idx
, tr.m_numMips
);
{
const uint16_t numLayers = tr.is3D()
? bx::max<uint16_t>(tr.m_depth >> at.mip, 1)
: tr.m_numLayers * (tr.isCubeMap() ? 6 : 1)
;
BGFX_ERROR_CHECK(true
&& (at.layer + at.numLayers) <= numLayers
, _err
, BGFX_ERROR_FRAME_BUFFER_VALIDATION
, "Invalid texture layer range."
, "Attachment %d, Layer: %d, Num: %d, Max number of layers: %d."
, ii
, at.layer
, at.numLayers
, numLayers
);
}
BGFX_ERROR_CHECK(true
&& _attachment[0].numLayers == at.numLayers
, _err
, BGFX_ERROR_FRAME_BUFFER_VALIDATION
, "Mismatch in attachment layer count."
, "Attachment %d, Given: %d, Expected: %d."
, ii
, at.numLayers
, _attachment[0].numLayers
);
BGFX_ERROR_CHECK(true
&& firstTexture.m_bbRatio == tr.m_bbRatio
, _err
, BGFX_ERROR_FRAME_BUFFER_VALIDATION
, "Mismatch in texture back-buffer ratio."
, "Attachment %d, Given: %d, Expected: %d."
, ii
, tr.m_bbRatio
, firstTexture.m_bbRatio
);
BGFX_ERROR_CHECK(true
&& firstTexture.m_numSamples == tr.m_numSamples
, _err
, BGFX_ERROR_FRAME_BUFFER_VALIDATION
, "Mismatch in texture sample count."
, "Attachment %d, Given: %d, Expected: %d."
, ii
, tr.m_numSamples
, firstTexture.m_numSamples
);
if (BackbufferRatio::Count == firstTexture.m_bbRatio)
{
const uint16_t width = bx::max<uint16_t>(tr.m_width >> at.mip, 1);
const uint16_t height = bx::max<uint16_t>(tr.m_height >> at.mip, 1);
BGFX_ERROR_CHECK(true
&& width == firstAttachmentWidth
&& height == firstAttachmentHeight
, _err
, BGFX_ERROR_FRAME_BUFFER_VALIDATION
, "Mismatch in texture size."
, "Attachment %d, Given: %dx%d, Expected: %dx%d."
, ii
, width
, height
, firstAttachmentWidth
, firstAttachmentHeight
);
}
if (bimg::isDepth(bimg::TextureFormat::Enum(tr.m_format) ) )
{
++depth;
BGFX_ERROR_CHECK(
// if BGFX_TEXTURE_RT_MSAA_X2 or greater than BGFX_TEXTURE_RT_WRITE_ONLY is required
// if BGFX_TEXTURE_RT with no MSSA then WRITE_ONLY is not required.
(1 == ((tr.m_flags & BGFX_TEXTURE_RT_MSAA_MASK) >> BGFX_TEXTURE_RT_MSAA_SHIFT))
|| (0 != (tr.m_flags & BGFX_TEXTURE_RT_WRITE_ONLY))
, _err
, BGFX_ERROR_FRAME_BUFFER_VALIDATION
, "Frame buffer depth MSAA texture cannot be resolved. It must be created with `BGFX_TEXTURE_RT_WRITE_ONLY` flag."
, "Attachment %d, texture flags 0x%016" PRIx64 "."
, ii
, tr.m_flags
);
}
else
{
++color;
}
BGFX_ERROR_CHECK(true
&& 0 == (tr.m_flags & BGFX_TEXTURE_READ_BACK)
, _err
, BGFX_ERROR_FRAME_BUFFER_VALIDATION
, "Frame buffer texture cannot be created with `BGFX_TEXTURE_READ_BACK`."
, "Attachment %d, texture flags 0x%016" PRIx64 "."
, ii
, tr.m_flags
);
BGFX_ERROR_CHECK(true
&& 0 != (tr.m_flags & BGFX_TEXTURE_RT_MASK)
, _err
, BGFX_ERROR_FRAME_BUFFER_VALIDATION
, "Frame buffer texture is not created with one of `BGFX_TEXTURE_RT*` flags."
, "Attachment %d, texture flags 0x%016" PRIx64 "."
, ii
, tr.m_flags
);
}
BGFX_ERROR_CHECK(true
&& color <= g_caps.limits.maxFBAttachments
, _err
, BGFX_ERROR_FRAME_BUFFER_VALIDATION
, "Too many frame buffer color attachments."
, "Num: %d, Max: %d."
, _num
, g_caps.limits.maxFBAttachments
);
BGFX_ERROR_CHECK(true
&& depth <= 1
, _err
, BGFX_ERROR_FRAME_BUFFER_VALIDATION
, "There can be only one depth texture attachment."
, "Num depth attachments %d."
, depth
);
}
bool isFrameBufferValid(uint8_t _num, const Attachment* _attachment)
{
BGFX_MUTEX_SCOPE(s_ctx->m_resourceApiLock);
bx::Error err;
isFrameBufferValid(_num, _attachment, &err);
return err.isOk();
}
static void isTextureValid(uint16_t _width, uint16_t _height, uint16_t _depth, bool _cubeMap, uint16_t _numLayers, TextureFormat::Enum _format, uint64_t _flags, bx::Error* _err)
{
BX_ERROR_SCOPE(_err, "Texture validation");
const bool is3DTexture = 1 < _depth;
BGFX_ERROR_CHECK(false
|| !_cubeMap
|| !is3DTexture
, _err
, BGFX_ERROR_TEXTURE_VALIDATION
, "Texture can't be 3D and cube map at the same time."
, ""
);
BGFX_ERROR_CHECK(false
|| !is3DTexture
|| 0 != (g_caps.supported & BGFX_CAPS_TEXTURE_3D)
, _err
, BGFX_ERROR_TEXTURE_VALIDATION
, "Texture3D is not supported! "
"Use bgfx::getCaps to check `BGFX_CAPS_TEXTURE_3D` backend renderer capabilities."
, ""
);
BGFX_ERROR_CHECK(false
|| _width <= g_caps.limits.maxTextureSize
|| _height <= g_caps.limits.maxTextureSize
, _err
, BGFX_ERROR_TEXTURE_VALIDATION
, "Requested texture width/height is above the `maxTextureSize` limit."
, "Texture width x height requested %d x %d (Max: %d)."
, _width
, _height
, g_caps.limits.maxTextureSize
);
BGFX_ERROR_CHECK(false
|| 0 == (_flags & BGFX_TEXTURE_RT_MASK)
|| 0 == (_flags & BGFX_TEXTURE_READ_BACK)
, _err
, BGFX_ERROR_TEXTURE_VALIDATION
, "Can't create render target with `BGFX_TEXTURE_READ_BACK` flag."
, ""
);
BGFX_ERROR_CHECK(false
|| 0 == (_flags & BGFX_TEXTURE_COMPUTE_WRITE)
|| 0 == (_flags & BGFX_TEXTURE_READ_BACK)
, _err
, BGFX_ERROR_TEXTURE_VALIDATION
, "Can't create compute texture with `BGFX_TEXTURE_READ_BACK` flag."
, ""
);
BGFX_ERROR_CHECK(false
|| 1 >= _numLayers
|| 0 != (g_caps.supported & BGFX_CAPS_TEXTURE_2D_ARRAY)
, _err
, BGFX_ERROR_TEXTURE_VALIDATION
, "Texture array is not supported! "
"Use bgfx::getCaps to check `BGFX_CAPS_TEXTURE_2D_ARRAY` backend renderer capabilities."
, ""
);
BGFX_ERROR_CHECK(false
|| _numLayers <= g_caps.limits.maxTextureLayers
, _err
, BGFX_ERROR_TEXTURE_VALIDATION
, "Requested number of texture array layers is above the `maxTextureLayers` limit."
, "Number of texture array layers requested %d (Max: %d)."
, _numLayers
, g_caps.limits.maxTextureLayers
);
bool formatSupported;
if (0 != (_flags & (BGFX_TEXTURE_RT | BGFX_TEXTURE_RT_WRITE_ONLY)) )
{
formatSupported = 0 != (g_caps.formats[_format] & BGFX_CAPS_FORMAT_TEXTURE_FRAMEBUFFER);
}
else
{
formatSupported = 0 != (g_caps.formats[_format] & (0
| BGFX_CAPS_FORMAT_TEXTURE_2D
| BGFX_CAPS_FORMAT_TEXTURE_2D_EMULATED
| BGFX_CAPS_FORMAT_TEXTURE_2D_SRGB
) );
}
uint16_t srgbCaps = BGFX_CAPS_FORMAT_TEXTURE_2D_SRGB;
if (_cubeMap)
{
formatSupported = 0 != (g_caps.formats[_format] & (0
| BGFX_CAPS_FORMAT_TEXTURE_CUBE
| BGFX_CAPS_FORMAT_TEXTURE_CUBE_EMULATED
| BGFX_CAPS_FORMAT_TEXTURE_CUBE_SRGB
) );
srgbCaps = BGFX_CAPS_FORMAT_TEXTURE_CUBE_SRGB;
}
else if (is3DTexture)
{
formatSupported = 0 != (g_caps.formats[_format] & (0
| BGFX_CAPS_FORMAT_TEXTURE_3D
| BGFX_CAPS_FORMAT_TEXTURE_3D_EMULATED
| BGFX_CAPS_FORMAT_TEXTURE_3D_SRGB
) );
srgbCaps = BGFX_CAPS_FORMAT_TEXTURE_3D_SRGB;
}
if (formatSupported
&& 0 != (_flags & BGFX_TEXTURE_RT_MASK) )
{
formatSupported = 0 != (g_caps.formats[_format] & (0
| BGFX_CAPS_FORMAT_TEXTURE_FRAMEBUFFER
) );
}
BGFX_ERROR_CHECK(
formatSupported
, _err
, BGFX_ERROR_TEXTURE_VALIDATION
, "Texture format is not supported! "
"Use bgfx::isTextureValid to check support for texture format before creating it."
, "Texture format: %s."
, getName(_format)
);
BGFX_ERROR_CHECK(false
|| 0 == (_flags & BGFX_TEXTURE_MSAA_SAMPLE)
|| 0 != (g_caps.formats[_format] & BGFX_CAPS_FORMAT_TEXTURE_MSAA)
, _err
, BGFX_ERROR_TEXTURE_VALIDATION
, "MSAA sampling for this texture format is not supported."
, "Texture format: %s."
, getName(_format)
);
BGFX_ERROR_CHECK(false
|| 0 == (_flags & BGFX_TEXTURE_SRGB)
|| 0 != (g_caps.formats[_format] & srgbCaps & (0
| BGFX_CAPS_FORMAT_TEXTURE_2D_SRGB
| BGFX_CAPS_FORMAT_TEXTURE_3D_SRGB
| BGFX_CAPS_FORMAT_TEXTURE_CUBE_SRGB
) )
, _err
, BGFX_ERROR_TEXTURE_VALIDATION
, "sRGB sampling for this texture format is not supported."
, "Texture format: %s."
, getName(_format)
);
}
bool isTextureValid(uint16_t _depth, bool _cubeMap, uint16_t _numLayers, TextureFormat::Enum _format, uint64_t _flags)
{
bx::Error err;
isTextureValid(0, 0, _depth, _cubeMap, _numLayers, _format, _flags, &err);
return err.isOk();
}
void isIdentifierValid(const bx::StringView& _name, bx::Error* _err)
{
BX_ERROR_SCOPE(_err, "Uniform identifier validation");
BGFX_ERROR_CHECK(false
|| !_name.isEmpty()
, _err
, BGFX_ERROR_IDENTIFIER_VALIDATION
, "Identifier can't be empty."
, ""
);
BGFX_ERROR_CHECK(false
|| PredefinedUniform::Count == nameToPredefinedUniformEnum(_name)
, _err
, BGFX_ERROR_IDENTIFIER_VALIDATION
, "Identifier can't use predefined uniform name."
, ""
);
const char ch = *_name.getPtr();
BGFX_ERROR_CHECK(false
|| bx::isAlpha(ch)
|| '_' == ch
, _err
, BGFX_ERROR_IDENTIFIER_VALIDATION
, "The first character of an identifier should be either an alphabet character or an underscore."
, ""
);
bool result = true;
for (const char* ptr = _name.getPtr() + 1, *term = _name.getTerm()
; ptr != term && result
; ++ptr
)
{
result &= bx::isAlphaNum(*ptr) || '_' == *ptr;
}
BGFX_ERROR_CHECK(false
|| result
, _err
, BGFX_ERROR_IDENTIFIER_VALIDATION
, "Identifier contains invalid characters. Identifier must be the alphabet character, number, or underscore."
, ""
);
}
void calcTextureSize(TextureInfo& _info, uint16_t _width, uint16_t _height, uint16_t _depth, bool _cubeMap, bool _hasMips, uint16_t _numLayers, TextureFormat::Enum _format)
{
bimg::imageGetSize( (bimg::TextureInfo*)&_info, _width, _height, _depth, _cubeMap, _hasMips, _numLayers, bimg::TextureFormat::Enum(_format) );
}
TextureHandle createTexture(const Memory* _mem, uint64_t _flags, uint8_t _skip, TextureInfo* _info)
{
BX_ASSERT(NULL != _mem, "_mem can't be NULL");
return s_ctx->createTexture(_mem, _flags, _skip, _info, BackbufferRatio::Count, false);
}
void getTextureSizeFromRatio(BackbufferRatio::Enum _ratio, uint16_t& _width, uint16_t& _height)
{
switch (_ratio)
{
case BackbufferRatio::Half: _width /= 2; _height /= 2; break;
case BackbufferRatio::Quarter: _width /= 4; _height /= 4; break;
case BackbufferRatio::Eighth: _width /= 8; _height /= 8; break;
case BackbufferRatio::Sixteenth: _width /= 16; _height /= 16; break;
case BackbufferRatio::Double: _width *= 2; _height *= 2; break;
default:
break;
}
_width = bx::max<uint16_t>(1, _width);
_height = bx::max<uint16_t>(1, _height);
}
static TextureHandle createTexture2D(BackbufferRatio::Enum _ratio, uint16_t _width, uint16_t _height, bool _hasMips, uint16_t _numLayers, TextureFormat::Enum _format, uint64_t _flags, const Memory* _mem)
{
if (BackbufferRatio::Count != _ratio)
{
_width = uint16_t(s_ctx->m_init.resolution.width);
_height = uint16_t(s_ctx->m_init.resolution.height);
getTextureSizeFromRatio(_ratio, _width, _height);
}
bx::ErrorAssert err;
isTextureValid(_width, _height, 0, false, _numLayers, _format, _flags, &err);
if (!err.isOk() )
{
return BGFX_INVALID_HANDLE;
}
const uint8_t numMips = calcNumMips(_hasMips, _width, _height);
_numLayers = bx::max<uint16_t>(_numLayers, 1);
if (BX_ENABLED(BGFX_CONFIG_DEBUG)
&& NULL != _mem)
{
TextureInfo ti;
calcTextureSize(ti, _width, _height, 1, false, _hasMips, _numLayers, _format);
BX_ASSERT(ti.storageSize == _mem->size
, "createTexture2D: Texture storage size doesn't match passed memory size (storage size: %d, memory size: %d)"
, ti.storageSize
, _mem->size
);
}
uint32_t size = sizeof(uint32_t)+sizeof(TextureCreate);
const Memory* mem = alloc(size);
bx::StaticMemoryBlockWriter writer(mem->data, mem->size);
uint32_t magic = BGFX_CHUNK_MAGIC_TEX;
bx::write(&writer, magic, bx::ErrorAssert{});
TextureCreate tc;
tc.m_width = _width;
tc.m_height = _height;
tc.m_depth = 0;
tc.m_numLayers = _numLayers;
tc.m_numMips = numMips;
tc.m_format = _format;
tc.m_cubeMap = false;
tc.m_mem = _mem;
bx::write(&writer, tc, bx::ErrorAssert{});
return s_ctx->createTexture(mem, _flags, 0, NULL, _ratio, NULL != _mem);
}
TextureHandle createTexture2D(uint16_t _width, uint16_t _height, bool _hasMips, uint16_t _numLayers, TextureFormat::Enum _format, uint64_t _flags, const Memory* _mem)
{
BX_ASSERT(_width > 0 && _height > 0, "Invalid texture size (width %d, height %d).", _width, _height);
return createTexture2D(BackbufferRatio::Count, _width, _height, _hasMips, _numLayers, _format, _flags, _mem);
}
TextureHandle createTexture2D(BackbufferRatio::Enum _ratio, bool _hasMips, uint16_t _numLayers, TextureFormat::Enum _format, uint64_t _flags)
{
BX_ASSERT(_ratio < BackbufferRatio::Count, "Invalid back buffer ratio.");
return createTexture2D(_ratio, 0, 0, _hasMips, _numLayers, _format, _flags, NULL);
}
TextureHandle createTexture3D(uint16_t _width, uint16_t _height, uint16_t _depth, bool _hasMips, TextureFormat::Enum _format, uint64_t _flags, const Memory* _mem)
{
bx::ErrorAssert err;
isTextureValid(_width, _height, _depth, false, 1, _format, _flags, &err);
if (!err.isOk() )
{
return BGFX_INVALID_HANDLE;
}
const uint8_t numMips = calcNumMips(_hasMips, _width, _height, _depth);
if (BX_ENABLED(BGFX_CONFIG_DEBUG)
&& NULL != _mem)
{
TextureInfo ti;
calcTextureSize(ti, _width, _height, _depth, false, _hasMips, 1, _format);
BX_ASSERT(ti.storageSize == _mem->size
, "createTexture3D: Texture storage size doesn't match passed memory size (storage size: %d, memory size: %d)"
, ti.storageSize
, _mem->size
);
}
uint32_t size = sizeof(uint32_t)+sizeof(TextureCreate);
const Memory* mem = alloc(size);
bx::StaticMemoryBlockWriter writer(mem->data, mem->size);
uint32_t magic = BGFX_CHUNK_MAGIC_TEX;
bx::write(&writer, magic, bx::ErrorAssert{});
TextureCreate tc;
tc.m_width = _width;
tc.m_height = _height;
tc.m_depth = _depth;
tc.m_numLayers = 1;
tc.m_numMips = numMips;
tc.m_format = _format;
tc.m_cubeMap = false;
tc.m_mem = _mem;
bx::write(&writer, tc, bx::ErrorAssert{});
return s_ctx->createTexture(mem, _flags, 0, NULL, BackbufferRatio::Count, NULL != _mem);
}
TextureHandle createTextureCube(uint16_t _size, bool _hasMips, uint16_t _numLayers, TextureFormat::Enum _format, uint64_t _flags, const Memory* _mem)
{
bx::ErrorAssert err;
isTextureValid(_size, _size, 0, true, _numLayers, _format, _flags, &err);
if (!err.isOk() )
{
return BGFX_INVALID_HANDLE;
}
const uint8_t numMips = calcNumMips(_hasMips, _size, _size);
_numLayers = bx::max<uint16_t>(_numLayers, 1);
if (BX_ENABLED(BGFX_CONFIG_DEBUG)
&& NULL != _mem)
{
TextureInfo ti;
calcTextureSize(ti, _size, _size, 1, true, _hasMips, _numLayers, _format);
BX_ASSERT(ti.storageSize == _mem->size
, "createTextureCube: Texture storage size doesn't match passed memory size (storage size: %d, memory size: %d)"
, ti.storageSize
, _mem->size
);
}
uint32_t size = sizeof(uint32_t)+sizeof(TextureCreate);
const Memory* mem = alloc(size);
bx::StaticMemoryBlockWriter writer(mem->data, mem->size);
uint32_t magic = BGFX_CHUNK_MAGIC_TEX;
bx::write(&writer, magic, bx::ErrorAssert{});
TextureCreate tc;
tc.m_width = _size;
tc.m_height = _size;
tc.m_depth = 0;
tc.m_numLayers = _numLayers;
tc.m_numMips = numMips;
tc.m_format = _format;
tc.m_cubeMap = true;
tc.m_mem = _mem;
bx::write(&writer, tc, bx::ErrorAssert{});
return s_ctx->createTexture(mem, _flags, 0, NULL, BackbufferRatio::Count, NULL != _mem);
}
void setName(TextureHandle _handle, const char* _name, int32_t _len)
{
s_ctx->setName(_handle, bx::StringView(_name, _len) );
}
void* getDirectAccessPtr(TextureHandle _handle)
{
return s_ctx->getDirectAccessPtr(_handle);
}
void destroy(TextureHandle _handle)
{
s_ctx->destroyTexture(_handle);
}
void updateTexture2D(TextureHandle _handle, uint16_t _layer, uint8_t _mip, uint16_t _x, uint16_t _y, uint16_t _width, uint16_t _height, const Memory* _mem, uint16_t _pitch)
{
BX_ASSERT(NULL != _mem, "_mem can't be NULL");
if (_width == 0
|| _height == 0)
{
release(_mem);
}
else
{
s_ctx->updateTexture(_handle, 0, _mip, _x, _y, _layer, _width, _height, 1, _pitch, _mem);
}
}
void updateTexture3D(TextureHandle _handle, uint8_t _mip, uint16_t _x, uint16_t _y, uint16_t _z, uint16_t _width, uint16_t _height, uint16_t _depth, const Memory* _mem)
{
BX_ASSERT(NULL != _mem, "_mem can't be NULL");
BGFX_CHECK_CAPS(BGFX_CAPS_TEXTURE_3D, "Texture3D is not supported!");
if (0 == _width
|| 0 == _height
|| 0 == _depth)
{
release(_mem);
}
else
{
s_ctx->updateTexture(_handle, 0, _mip, _x, _y, _z, _width, _height, _depth, UINT16_MAX, _mem);
}
}
void updateTextureCube(TextureHandle _handle, uint16_t _layer, uint8_t _side, uint8_t _mip, uint16_t _x, uint16_t _y, uint16_t _width, uint16_t _height, const Memory* _mem, uint16_t _pitch)
{
BX_ASSERT(NULL != _mem, "_mem can't be NULL");
BX_ASSERT(_side <= 5, "Invalid side %d.", _side);
if (0 == _width
|| 0 == _height)
{
release(_mem);
}
else
{
s_ctx->updateTexture(_handle, _side, _mip, _x, _y, _layer, _width, _height, 1, _pitch, _mem);
}
}
uint32_t readTexture(TextureHandle _handle, void* _data, uint8_t _mip)
{
BX_ASSERT(NULL != _data, "_data can't be NULL");
BGFX_CHECK_CAPS(BGFX_CAPS_TEXTURE_READ_BACK, "Texture read-back is not supported!");
return s_ctx->readTexture(_handle, _data, _mip);
}
FrameBufferHandle createFrameBuffer(uint16_t _width, uint16_t _height, TextureFormat::Enum _format, uint64_t _textureFlags)
{
_textureFlags |= _textureFlags&BGFX_TEXTURE_RT_MSAA_MASK ? 0 : BGFX_TEXTURE_RT;
TextureHandle th = createTexture2D(_width, _height, false, 1, _format, _textureFlags);
return createFrameBuffer(1, &th, true);
}
FrameBufferHandle createFrameBuffer(BackbufferRatio::Enum _ratio, TextureFormat::Enum _format, uint64_t _textureFlags)
{
BX_ASSERT(_ratio < BackbufferRatio::Count, "Invalid back buffer ratio.");
_textureFlags |= _textureFlags&BGFX_TEXTURE_RT_MSAA_MASK ? 0 : BGFX_TEXTURE_RT;
TextureHandle th = createTexture2D(_ratio, false, 1, _format, _textureFlags);
return createFrameBuffer(1, &th, true);
}
FrameBufferHandle createFrameBuffer(uint8_t _num, const TextureHandle* _handles, bool _destroyTextures)
{
Attachment attachment[BGFX_CONFIG_MAX_FRAME_BUFFER_ATTACHMENTS];
for (uint8_t ii = 0; ii < _num; ++ii)
{
Attachment& at = attachment[ii];
at.init(_handles[ii], Access::Write, 0, 1, 0, BGFX_RESOLVE_AUTO_GEN_MIPS);
}
return createFrameBuffer(_num, attachment, _destroyTextures);
}
FrameBufferHandle createFrameBuffer(uint8_t _num, const Attachment* _attachment, bool _destroyTextures)
{
BX_ASSERT(_num != 0, "Number of frame buffer attachments can't be 0.");
BX_ASSERT(_num <= BGFX_CONFIG_MAX_FRAME_BUFFER_ATTACHMENTS
, "Number of frame buffer attachments is larger than allowed %d (max: %d)."
, _num
, BGFX_CONFIG_MAX_FRAME_BUFFER_ATTACHMENTS
);
BX_ASSERT(NULL != _attachment, "_attachment can't be NULL");
return s_ctx->createFrameBuffer(_num, _attachment, _destroyTextures);
}
FrameBufferHandle createFrameBuffer(void* _nwh, uint16_t _width, uint16_t _height, TextureFormat::Enum _format, TextureFormat::Enum _depthFormat)
{
BGFX_CHECK_CAPS(BGFX_CAPS_SWAP_CHAIN, "Swap chain is not supported!");
BX_WARN(_width > 0 && _height > 0
, "Invalid frame buffer dimensions (width %d, height %d)."
, _width
, _height
);
BX_ASSERT(_format == TextureFormat::Count || bimg::isColor(bimg::TextureFormat::Enum(_format) )
, "Invalid texture format for color (%s)."
, bimg::getName(bimg::TextureFormat::Enum(_format) )
);
BX_ASSERT(_depthFormat == TextureFormat::Count || bimg::isDepth(bimg::TextureFormat::Enum(_depthFormat) )
, "Invalid texture format for depth (%s)."
, bimg::getName(bimg::TextureFormat::Enum(_depthFormat) )
);
return s_ctx->createFrameBuffer(
_nwh
, bx::max<uint16_t>(_width, 1)
, bx::max<uint16_t>(_height, 1)
, _format
, _depthFormat
);
}
void setName(FrameBufferHandle _handle, const char* _name, int32_t _len)
{
s_ctx->setName(_handle, bx::StringView(_name, _len) );
}
TextureHandle getTexture(FrameBufferHandle _handle, uint8_t _attachment)
{
return s_ctx->getTexture(_handle, _attachment);
}
void destroy(FrameBufferHandle _handle)
{
s_ctx->destroyFrameBuffer(_handle);
}
UniformHandle createUniform(const char* _name, UniformType::Enum _type, uint16_t _num)
{
return s_ctx->createUniform(_name, _type, _num);
}
void getUniformInfo(UniformHandle _handle, UniformInfo& _info)
{
s_ctx->getUniformInfo(_handle, _info);
}
void destroy(UniformHandle _handle)
{
s_ctx->destroyUniform(_handle);
}
OcclusionQueryHandle createOcclusionQuery()
{
BGFX_CHECK_CAPS(BGFX_CAPS_OCCLUSION_QUERY, "Occlusion query is not supported!");
return s_ctx->createOcclusionQuery();
}
OcclusionQueryResult::Enum getResult(OcclusionQueryHandle _handle, int32_t* _result)
{
BGFX_CHECK_CAPS(BGFX_CAPS_OCCLUSION_QUERY, "Occlusion query is not supported!");
return s_ctx->getResult(_handle, _result);
}
void destroy(OcclusionQueryHandle _handle)
{
BGFX_CHECK_CAPS(BGFX_CAPS_OCCLUSION_QUERY, "Occlusion query is not supported!");
s_ctx->destroyOcclusionQuery(_handle);
}
void setPaletteColor(uint8_t _index, uint32_t _rgba)
{
const uint8_t rr = uint8_t(_rgba>>24);
const uint8_t gg = uint8_t(_rgba>>16);
const uint8_t bb = uint8_t(_rgba>> 8);
const uint8_t aa = uint8_t(_rgba>> 0);
const float rgba[4] =
{
rr * 1.0f/255.0f,
gg * 1.0f/255.0f,
bb * 1.0f/255.0f,
aa * 1.0f/255.0f,
};
s_ctx->setPaletteColor(_index, rgba);
}
void setPaletteColor(uint8_t _index, float _r, float _g, float _b, float _a)
{
float rgba[4] = { _r, _g, _b, _a };
s_ctx->setPaletteColor(_index, rgba);
}
void setPaletteColor(uint8_t _index, const float _rgba[4])
{
s_ctx->setPaletteColor(_index, _rgba);
}
bool checkView(ViewId _id)
{
// workaround GCC 4.9 type-limit check.
const uint32_t id = _id;
return id < BGFX_CONFIG_MAX_VIEWS;
}
void setViewName(ViewId _id, const char* _name)
{
BX_ASSERT(checkView(_id), "Invalid view id: %d", _id);
s_ctx->setViewName(_id, _name);
}
void setViewRect(ViewId _id, uint16_t _x, uint16_t _y, uint16_t _width, uint16_t _height)
{
BX_ASSERT(checkView(_id), "Invalid view id: %d", _id);
s_ctx->setViewRect(_id, _x, _y, _width, _height);
}
void setViewRect(ViewId _id, uint16_t _x, uint16_t _y, BackbufferRatio::Enum _ratio)
{
BX_ASSERT(checkView(_id), "Invalid view id: %d", _id);
uint16_t width = uint16_t(s_ctx->m_init.resolution.width);
uint16_t height = uint16_t(s_ctx->m_init.resolution.height);
getTextureSizeFromRatio(_ratio, width, height);
setViewRect(_id, _x, _y, width, height);
}
void setViewScissor(ViewId _id, uint16_t _x, uint16_t _y, uint16_t _width, uint16_t _height)
{
BX_ASSERT(checkView(_id), "Invalid view id: %d", _id);
s_ctx->setViewScissor(_id, _x, _y, _width, _height);
}
void setViewClear(ViewId _id, uint16_t _flags, uint32_t _rgba, float _depth, uint8_t _stencil)
{
BX_ASSERT(checkView(_id), "Invalid view id: %d", _id);
s_ctx->setViewClear(_id, _flags, _rgba, _depth, _stencil);
}
void setViewClear(ViewId _id, uint16_t _flags, float _depth, uint8_t _stencil, uint8_t _0, uint8_t _1, uint8_t _2, uint8_t _3, uint8_t _4, uint8_t _5, uint8_t _6, uint8_t _7)
{
BX_ASSERT(checkView(_id), "Invalid view id: %d", _id);
s_ctx->setViewClear(_id, _flags, _depth, _stencil, _0, _1, _2, _3, _4, _5, _6, _7);
}
void setViewMode(ViewId _id, ViewMode::Enum _mode)
{
BX_ASSERT(checkView(_id), "Invalid view id: %d", _id);
s_ctx->setViewMode(_id, _mode);
}
void setViewFrameBuffer(ViewId _id, FrameBufferHandle _handle)
{
BX_ASSERT(checkView(_id), "Invalid view id: %d", _id);
s_ctx->setViewFrameBuffer(_id, _handle);
}
void setViewTransform(ViewId _id, const void* _view, const void* _proj)
{
BX_ASSERT(checkView(_id), "Invalid view id: %d", _id);
s_ctx->setViewTransform(_id, _view, _proj);
}
void setViewOrder(ViewId _id, uint16_t _num, const ViewId* _order)
{
BX_ASSERT(checkView(_id), "Invalid view id: %d", _id);
s_ctx->setViewOrder(_id, _num, _order);
}
void resetView(ViewId _id)
{
BX_ASSERT(checkView(_id), "Invalid view id: %d", _id);
s_ctx->resetView(_id);
}
#define BGFX_CHECK_ENCODER0() \
BGFX_CHECK_API_THREAD(); \
BGFX_FATAL(NULL != s_ctx->m_encoder0, Fatal::DebugCheck \
, "bgfx is configured to allow only encoder API. See: `BGFX_CONFIG_ENCODER_API_ONLY`.")
void setMarker(const char* _marker)
{
BGFX_CHECK_ENCODER0();
s_ctx->m_encoder0->setMarker(_marker);
}
void setState(uint64_t _state, uint32_t _rgba)
{
BGFX_CHECK_ENCODER0();
s_ctx->m_encoder0->setState(_state, _rgba);
}
void setCondition(OcclusionQueryHandle _handle, bool _visible)
{
BGFX_CHECK_ENCODER0();
s_ctx->m_encoder0->setCondition(_handle, _visible);
}
void setStencil(uint32_t _fstencil, uint32_t _bstencil)
{
BGFX_CHECK_ENCODER0();
s_ctx->m_encoder0->setStencil(_fstencil, _bstencil);
}
uint16_t setScissor(uint16_t _x, uint16_t _y, uint16_t _width, uint16_t _height)
{
BGFX_CHECK_ENCODER0();
return s_ctx->m_encoder0->setScissor(_x, _y, _width, _height);
}
void setScissor(uint16_t _cache)
{
BGFX_CHECK_ENCODER0();
s_ctx->m_encoder0->setScissor(_cache);
}
uint32_t setTransform(const void* _mtx, uint16_t _num)
{
BGFX_CHECK_ENCODER0();
return s_ctx->m_encoder0->setTransform(_mtx, _num);
}
uint32_t allocTransform(Transform* _transform, uint16_t _num)
{
BGFX_CHECK_ENCODER0();
return s_ctx->m_encoder0->allocTransform(_transform, _num);
}
void setTransform(uint32_t _cache, uint16_t _num)
{
BGFX_CHECK_ENCODER0();
s_ctx->m_encoder0->setTransform(_cache, _num);
}
void setUniform(UniformHandle _handle, const void* _value, uint16_t _num)
{
BGFX_CHECK_ENCODER0();
s_ctx->m_encoder0->setUniform(_handle, _value, _num);
}
void setIndexBuffer(IndexBufferHandle _handle)
{
BGFX_CHECK_ENCODER0();
s_ctx->m_encoder0->setIndexBuffer(_handle);
}
void setIndexBuffer(IndexBufferHandle _handle, uint32_t _firstIndex, uint32_t _numIndices)
{
BGFX_CHECK_ENCODER0();
s_ctx->m_encoder0->setIndexBuffer(_handle, _firstIndex, _numIndices);
}
void setIndexBuffer(DynamicIndexBufferHandle _handle)
{
BGFX_CHECK_ENCODER0();
s_ctx->m_encoder0->setIndexBuffer(_handle);
}
void setIndexBuffer(DynamicIndexBufferHandle _handle, uint32_t _firstIndex, uint32_t _numIndices)
{
BGFX_CHECK_ENCODER0();
s_ctx->m_encoder0->setIndexBuffer(_handle, _firstIndex, _numIndices);
}
void setIndexBuffer(const TransientIndexBuffer* _tib)
{
BGFX_CHECK_ENCODER0();
s_ctx->m_encoder0->setIndexBuffer(_tib);
}
void setIndexBuffer(const TransientIndexBuffer* _tib, uint32_t _firstIndex, uint32_t _numIndices)
{
BGFX_CHECK_ENCODER0();
s_ctx->m_encoder0->setIndexBuffer(_tib, _firstIndex, _numIndices);
}
void setVertexBuffer(
uint8_t _stream
, VertexBufferHandle _handle
, uint32_t _startVertex
, uint32_t _numVertices
, VertexLayoutHandle _layoutHandle
)
{
BGFX_CHECK_ENCODER0();
s_ctx->m_encoder0->setVertexBuffer(_stream, _handle, _startVertex, _numVertices, _layoutHandle);
}
void setVertexBuffer(uint8_t _stream, VertexBufferHandle _handle)
{
BGFX_CHECK_ENCODER0();
s_ctx->m_encoder0->setVertexBuffer(_stream, _handle);
}
void setVertexBuffer(
uint8_t _stream
, DynamicVertexBufferHandle _handle
, uint32_t _startVertex
, uint32_t _numVertices
, VertexLayoutHandle _layoutHandle
)
{
BGFX_CHECK_ENCODER0();
s_ctx->m_encoder0->setVertexBuffer(_stream, _handle, _startVertex, _numVertices, _layoutHandle);
}
void setVertexBuffer(uint8_t _stream, DynamicVertexBufferHandle _handle)
{
BGFX_CHECK_ENCODER0();
s_ctx->m_encoder0->setVertexBuffer(_stream, _handle);
}
void setVertexBuffer(
uint8_t _stream
, const TransientVertexBuffer* _tvb
, uint32_t _startVertex
, uint32_t _numVertices
, VertexLayoutHandle _layoutHandle
)
{
BGFX_CHECK_ENCODER0();
s_ctx->m_encoder0->setVertexBuffer(_stream, _tvb, _startVertex, _numVertices, _layoutHandle);
}
void setVertexBuffer(uint8_t _stream, const TransientVertexBuffer* _tvb)
{
BGFX_CHECK_ENCODER0();
s_ctx->m_encoder0->setVertexBuffer(_stream, _tvb);
}
void setVertexCount(uint32_t _numVertices)
{
BGFX_CHECK_ENCODER0();
s_ctx->m_encoder0->setVertexCount(_numVertices);
}
void setInstanceDataBuffer(const InstanceDataBuffer* _idb)
{
BGFX_CHECK_ENCODER0();
s_ctx->m_encoder0->setInstanceDataBuffer(_idb);
}
void setInstanceDataBuffer(const InstanceDataBuffer* _idb, uint32_t _start, uint32_t _num)
{
BGFX_CHECK_ENCODER0();
s_ctx->m_encoder0->setInstanceDataBuffer(_idb, _start, _num);
}
void setInstanceDataBuffer(VertexBufferHandle _handle, uint32_t _startVertex, uint32_t _num)
{
BGFX_CHECK_ENCODER0();
s_ctx->m_encoder0->setInstanceDataBuffer(_handle, _startVertex, _num);
}
void setInstanceDataBuffer(DynamicVertexBufferHandle _handle, uint32_t _startVertex, uint32_t _num)
{
BGFX_CHECK_ENCODER0();
s_ctx->m_encoder0->setInstanceDataBuffer(_handle, _startVertex, _num);
}
void setInstanceCount(uint32_t _numInstances)
{
BGFX_CHECK_ENCODER0();
s_ctx->m_encoder0->setInstanceCount(_numInstances);
}
void setTexture(uint8_t _stage, UniformHandle _sampler, TextureHandle _handle, uint32_t _flags)
{
BGFX_CHECK_ENCODER0();
s_ctx->m_encoder0->setTexture(_stage, _sampler, _handle, _flags);
}
void touch(ViewId _id)
{
BGFX_CHECK_ENCODER0();
s_ctx->m_encoder0->touch(_id);
}
void submit(ViewId _id, ProgramHandle _program, uint32_t _depth, uint8_t _flags)
{
BGFX_CHECK_ENCODER0();
s_ctx->m_encoder0->submit(_id, _program, _depth, _flags);
}
void submit(ViewId _id, ProgramHandle _program, OcclusionQueryHandle _occlusionQuery, uint32_t _depth, uint8_t _flags)
{
BGFX_CHECK_ENCODER0();
s_ctx->m_encoder0->submit(_id, _program, _occlusionQuery, _depth, _flags);
}
void submit(ViewId _id, ProgramHandle _program, IndirectBufferHandle _indirectHandle, uint16_t _start, uint16_t _num, uint32_t _depth, uint8_t _flags)
{
BGFX_CHECK_ENCODER0();
s_ctx->m_encoder0->submit(_id, _program, _indirectHandle, _start, _num, _depth, _flags);
}
void submit(ViewId _id, ProgramHandle _program, IndirectBufferHandle _indirectHandle, uint16_t _start, IndexBufferHandle _numHandle, uint32_t _numIndex, uint16_t _numMax, uint32_t _depth, uint8_t _flags)
{
BGFX_CHECK_ENCODER0();
s_ctx->m_encoder0->submit(_id, _program, _indirectHandle, _start, _numHandle, _numIndex, _numMax, _depth, _flags);
}
void setBuffer(uint8_t _stage, IndexBufferHandle _handle, Access::Enum _access)
{
BGFX_CHECK_ENCODER0();
s_ctx->m_encoder0->setBuffer(_stage, _handle, _access);
}
void setBuffer(uint8_t _stage, VertexBufferHandle _handle, Access::Enum _access)
{
BGFX_CHECK_ENCODER0();
s_ctx->m_encoder0->setBuffer(_stage, _handle, _access);
}
void setBuffer(uint8_t _stage, DynamicIndexBufferHandle _handle, Access::Enum _access)
{
BGFX_CHECK_ENCODER0();
s_ctx->m_encoder0->setBuffer(_stage, _handle, _access);
}
void setBuffer(uint8_t _stage, DynamicVertexBufferHandle _handle, Access::Enum _access)
{
BGFX_CHECK_ENCODER0();
s_ctx->m_encoder0->setBuffer(_stage, _handle, _access);
}
void setBuffer(uint8_t _stage, IndirectBufferHandle _handle, Access::Enum _access)
{
BGFX_CHECK_ENCODER0();
s_ctx->m_encoder0->setBuffer(_stage, _handle, _access);
}
void setImage(uint8_t _stage, TextureHandle _handle, uint8_t _mip, Access::Enum _access, TextureFormat::Enum _format)
{
BGFX_CHECK_ENCODER0();
s_ctx->m_encoder0->setImage(_stage, _handle, _mip, _access, _format);
}
void dispatch(ViewId _id, ProgramHandle _handle, uint32_t _numX, uint32_t _numY, uint32_t _numZ, uint8_t _flags)
{
BGFX_CHECK_ENCODER0();
s_ctx->m_encoder0->dispatch(_id, _handle, _numX, _numY, _numZ, _flags);
}
void dispatch(ViewId _id, ProgramHandle _handle, IndirectBufferHandle _indirectHandle, uint16_t _start, uint16_t _num, uint8_t _flags)
{
BGFX_CHECK_ENCODER0();
s_ctx->m_encoder0->dispatch(_id, _handle, _indirectHandle, _start, _num, _flags);
}
void discard(uint8_t _flags)
{
BGFX_CHECK_ENCODER0();
s_ctx->m_encoder0->discard(_flags);
}
void blit(ViewId _id, TextureHandle _dst, uint16_t _dstX, uint16_t _dstY, TextureHandle _src, uint16_t _srcX, uint16_t _srcY, uint16_t _width, uint16_t _height)
{
BGFX_CHECK_ENCODER0();
s_ctx->m_encoder0->blit(_id, _dst, _dstX, _dstY, _src, _srcX, _srcY, _width, _height);
}
void blit(ViewId _id, TextureHandle _dst, uint8_t _dstMip, uint16_t _dstX, uint16_t _dstY, uint16_t _dstZ, TextureHandle _src, uint8_t _srcMip, uint16_t _srcX, uint16_t _srcY, uint16_t _srcZ, uint16_t _width, uint16_t _height, uint16_t _depth)
{
BGFX_CHECK_ENCODER0();
s_ctx->m_encoder0->blit(_id, _dst, _dstMip, _dstX, _dstY, _dstZ, _src, _srcMip, _srcX, _srcY, _srcZ, _width, _height, _depth);
}
void requestScreenShot(FrameBufferHandle _handle, const char* _filePath)
{
BGFX_CHECK_API_THREAD();
s_ctx->requestScreenShot(_handle, _filePath);
}
#undef BGFX_CHECK_ENCODER0
} // namespace bgfx
#if BGFX_CONFIG_PREFER_DISCRETE_GPU
extern "C"
{
// When laptop setup has integrated and discrete GPU, following driver workarounds will
// select discrete GPU:
// Reference(s):
// - https://web.archive.org/web/20180722051003/https://docs.nvidia.com/gameworks/content/technologies/desktop/optimus.htm
//
__declspec(dllexport) uint32_t NvOptimusEnablement = UINT32_C(1);
// Reference(s):
// - https://web.archive.org/web/20180722051032/https://gpuopen.com/amdpowerxpressrequesthighperformance/
//
__declspec(dllexport) uint32_t AmdPowerXpressRequestHighPerformance = UINT32_C(1);
}
#endif // BGFX_CONFIG_PREFER_DISCRETE_GPU
#define BGFX_TEXTURE_FORMAT_BIMG(_fmt) \
BX_STATIC_ASSERT(uint32_t(bgfx::TextureFormat::_fmt) == uint32_t(bimg::TextureFormat::_fmt) )
BGFX_TEXTURE_FORMAT_BIMG(BC1);
BGFX_TEXTURE_FORMAT_BIMG(BC2);
BGFX_TEXTURE_FORMAT_BIMG(BC3);
BGFX_TEXTURE_FORMAT_BIMG(BC4);
BGFX_TEXTURE_FORMAT_BIMG(BC5);
BGFX_TEXTURE_FORMAT_BIMG(BC6H);
BGFX_TEXTURE_FORMAT_BIMG(BC7);
BGFX_TEXTURE_FORMAT_BIMG(ETC1);
BGFX_TEXTURE_FORMAT_BIMG(ETC2);
BGFX_TEXTURE_FORMAT_BIMG(ETC2A);
BGFX_TEXTURE_FORMAT_BIMG(ETC2A1);
BGFX_TEXTURE_FORMAT_BIMG(PTC12);
BGFX_TEXTURE_FORMAT_BIMG(PTC14);
BGFX_TEXTURE_FORMAT_BIMG(PTC12A);
BGFX_TEXTURE_FORMAT_BIMG(PTC14A);
BGFX_TEXTURE_FORMAT_BIMG(PTC22);
BGFX_TEXTURE_FORMAT_BIMG(PTC24);
BGFX_TEXTURE_FORMAT_BIMG(ATC);
BGFX_TEXTURE_FORMAT_BIMG(ATCE);
BGFX_TEXTURE_FORMAT_BIMG(ATCI);
BGFX_TEXTURE_FORMAT_BIMG(ASTC4x4);
BGFX_TEXTURE_FORMAT_BIMG(ASTC5x4);
BGFX_TEXTURE_FORMAT_BIMG(ASTC5x5);
BGFX_TEXTURE_FORMAT_BIMG(ASTC6x5);
BGFX_TEXTURE_FORMAT_BIMG(ASTC6x6);
BGFX_TEXTURE_FORMAT_BIMG(ASTC8x5);
BGFX_TEXTURE_FORMAT_BIMG(ASTC8x6);
BGFX_TEXTURE_FORMAT_BIMG(ASTC8x8);
BGFX_TEXTURE_FORMAT_BIMG(ASTC10x5);
BGFX_TEXTURE_FORMAT_BIMG(ASTC10x6);
BGFX_TEXTURE_FORMAT_BIMG(ASTC10x8);
BGFX_TEXTURE_FORMAT_BIMG(ASTC10x10);
BGFX_TEXTURE_FORMAT_BIMG(ASTC12x10);
BGFX_TEXTURE_FORMAT_BIMG(ASTC12x12);
BGFX_TEXTURE_FORMAT_BIMG(Unknown);
BGFX_TEXTURE_FORMAT_BIMG(R1);
BGFX_TEXTURE_FORMAT_BIMG(A8);
BGFX_TEXTURE_FORMAT_BIMG(R8);
BGFX_TEXTURE_FORMAT_BIMG(R8I);
BGFX_TEXTURE_FORMAT_BIMG(R8U);
BGFX_TEXTURE_FORMAT_BIMG(R8S);
BGFX_TEXTURE_FORMAT_BIMG(R16);
BGFX_TEXTURE_FORMAT_BIMG(R16I);
BGFX_TEXTURE_FORMAT_BIMG(R16U);
BGFX_TEXTURE_FORMAT_BIMG(R16F);
BGFX_TEXTURE_FORMAT_BIMG(R16S);
BGFX_TEXTURE_FORMAT_BIMG(R32I);
BGFX_TEXTURE_FORMAT_BIMG(R32U);
BGFX_TEXTURE_FORMAT_BIMG(R32F);
BGFX_TEXTURE_FORMAT_BIMG(RG8);
BGFX_TEXTURE_FORMAT_BIMG(RG8I);
BGFX_TEXTURE_FORMAT_BIMG(RG8U);
BGFX_TEXTURE_FORMAT_BIMG(RG8S);
BGFX_TEXTURE_FORMAT_BIMG(RG16);
BGFX_TEXTURE_FORMAT_BIMG(RG16I);
BGFX_TEXTURE_FORMAT_BIMG(RG16U);
BGFX_TEXTURE_FORMAT_BIMG(RG16F);
BGFX_TEXTURE_FORMAT_BIMG(RG16S);
BGFX_TEXTURE_FORMAT_BIMG(RG32I);
BGFX_TEXTURE_FORMAT_BIMG(RG32U);
BGFX_TEXTURE_FORMAT_BIMG(RG32F);
BGFX_TEXTURE_FORMAT_BIMG(RGB8);
BGFX_TEXTURE_FORMAT_BIMG(RGB8I);
BGFX_TEXTURE_FORMAT_BIMG(RGB8U);
BGFX_TEXTURE_FORMAT_BIMG(RGB8S);
BGFX_TEXTURE_FORMAT_BIMG(RGB9E5F);
BGFX_TEXTURE_FORMAT_BIMG(BGRA8);
BGFX_TEXTURE_FORMAT_BIMG(RGBA8);
BGFX_TEXTURE_FORMAT_BIMG(RGBA8I);
BGFX_TEXTURE_FORMAT_BIMG(RGBA8U);
BGFX_TEXTURE_FORMAT_BIMG(RGBA8S);
BGFX_TEXTURE_FORMAT_BIMG(RGBA16);
BGFX_TEXTURE_FORMAT_BIMG(RGBA16I);
BGFX_TEXTURE_FORMAT_BIMG(RGBA16U);
BGFX_TEXTURE_FORMAT_BIMG(RGBA16F);
BGFX_TEXTURE_FORMAT_BIMG(RGBA16S);
BGFX_TEXTURE_FORMAT_BIMG(RGBA32I);
BGFX_TEXTURE_FORMAT_BIMG(RGBA32U);
BGFX_TEXTURE_FORMAT_BIMG(RGBA32F);
BGFX_TEXTURE_FORMAT_BIMG(B5G6R5);
BGFX_TEXTURE_FORMAT_BIMG(R5G6B5);
BGFX_TEXTURE_FORMAT_BIMG(BGRA4);
BGFX_TEXTURE_FORMAT_BIMG(RGBA4);
BGFX_TEXTURE_FORMAT_BIMG(BGR5A1);
BGFX_TEXTURE_FORMAT_BIMG(RGB5A1);
BGFX_TEXTURE_FORMAT_BIMG(RGB10A2);
BGFX_TEXTURE_FORMAT_BIMG(RG11B10F);
BGFX_TEXTURE_FORMAT_BIMG(UnknownDepth);
BGFX_TEXTURE_FORMAT_BIMG(D16);
BGFX_TEXTURE_FORMAT_BIMG(D24);
BGFX_TEXTURE_FORMAT_BIMG(D24S8);
BGFX_TEXTURE_FORMAT_BIMG(D32);
BGFX_TEXTURE_FORMAT_BIMG(D16F);
BGFX_TEXTURE_FORMAT_BIMG(D24F);
BGFX_TEXTURE_FORMAT_BIMG(D32F);
BGFX_TEXTURE_FORMAT_BIMG(D0S8);
BGFX_TEXTURE_FORMAT_BIMG(Count);
#undef BGFX_TEXTURE_FORMAT_BIMG
#include <bgfx/c99/bgfx.h>
#define FLAGS_MASK_TEST(_flags, _mask) ( (_flags) == ( (_flags) & (_mask) ) )
BX_STATIC_ASSERT(FLAGS_MASK_TEST(0
| BGFX_SAMPLER_INTERNAL_DEFAULT
| BGFX_SAMPLER_INTERNAL_SHARED
, BGFX_SAMPLER_RESERVED_MASK
) );
BX_STATIC_ASSERT(FLAGS_MASK_TEST(0
| BGFX_RESET_INTERNAL_FORCE
, BGFX_RESET_RESERVED_MASK
) );
BX_STATIC_ASSERT(FLAGS_MASK_TEST(0
| BGFX_STATE_INTERNAL_SCISSOR
| BGFX_STATE_INTERNAL_OCCLUSION_QUERY
, BGFX_STATE_RESERVED_MASK
) );
BX_STATIC_ASSERT(FLAGS_MASK_TEST(0
| BGFX_SUBMIT_INTERNAL_OCCLUSION_VISIBLE
, BGFX_SUBMIT_INTERNAL_RESERVED_MASK
) );
BX_STATIC_ASSERT( (0
| BGFX_STATE_ALPHA_REF_MASK
| BGFX_STATE_BLEND_ALPHA_TO_COVERAGE
| BGFX_STATE_BLEND_EQUATION_MASK
| BGFX_STATE_BLEND_INDEPENDENT
| BGFX_STATE_BLEND_MASK
| BGFX_STATE_CONSERVATIVE_RASTER
| BGFX_STATE_CULL_MASK
| BGFX_STATE_DEPTH_TEST_MASK
| BGFX_STATE_FRONT_CCW
| BGFX_STATE_LINEAA
| BGFX_STATE_MSAA
| BGFX_STATE_POINT_SIZE_MASK
| BGFX_STATE_PT_MASK
| BGFX_STATE_RESERVED_MASK
| BGFX_STATE_WRITE_MASK
) == (0
^ BGFX_STATE_ALPHA_REF_MASK
^ BGFX_STATE_BLEND_ALPHA_TO_COVERAGE
^ BGFX_STATE_BLEND_EQUATION_MASK
^ BGFX_STATE_BLEND_INDEPENDENT
^ BGFX_STATE_BLEND_MASK
^ BGFX_STATE_CONSERVATIVE_RASTER
^ BGFX_STATE_CULL_MASK
^ BGFX_STATE_DEPTH_TEST_MASK
^ BGFX_STATE_FRONT_CCW
^ BGFX_STATE_LINEAA
^ BGFX_STATE_MSAA
^ BGFX_STATE_POINT_SIZE_MASK
^ BGFX_STATE_PT_MASK
^ BGFX_STATE_RESERVED_MASK
^ BGFX_STATE_WRITE_MASK
) );
BX_STATIC_ASSERT(FLAGS_MASK_TEST(BGFX_CAPS_TEXTURE_COMPARE_LEQUAL, BGFX_CAPS_TEXTURE_COMPARE_ALL) );
BX_STATIC_ASSERT( (0
| BGFX_CAPS_ALPHA_TO_COVERAGE
| BGFX_CAPS_BLEND_INDEPENDENT
| BGFX_CAPS_COMPUTE
| BGFX_CAPS_CONSERVATIVE_RASTER
| BGFX_CAPS_DRAW_INDIRECT
| BGFX_CAPS_FRAGMENT_DEPTH
| BGFX_CAPS_FRAGMENT_ORDERING
| BGFX_CAPS_GRAPHICS_DEBUGGER
| BGFX_CAPS_HDR10
| BGFX_CAPS_HIDPI
| BGFX_CAPS_INDEX32
| BGFX_CAPS_INSTANCING
| BGFX_CAPS_OCCLUSION_QUERY
| BGFX_CAPS_RENDERER_MULTITHREADED
| BGFX_CAPS_SWAP_CHAIN
| BGFX_CAPS_TEXTURE_2D_ARRAY
| BGFX_CAPS_TEXTURE_3D
| BGFX_CAPS_TEXTURE_BLIT
| BGFX_CAPS_TEXTURE_CUBE_ARRAY
| BGFX_CAPS_TEXTURE_DIRECT_ACCESS
| BGFX_CAPS_TEXTURE_READ_BACK
| BGFX_CAPS_VERTEX_ATTRIB_HALF
| BGFX_CAPS_VERTEX_ATTRIB_UINT10
| BGFX_CAPS_VERTEX_ID
| BGFX_CAPS_PRIMITIVE_ID
| BGFX_CAPS_VIEWPORT_LAYER_ARRAY
| BGFX_CAPS_DRAW_INDIRECT_COUNT
) == (0
^ BGFX_CAPS_ALPHA_TO_COVERAGE
^ BGFX_CAPS_BLEND_INDEPENDENT
^ BGFX_CAPS_COMPUTE
^ BGFX_CAPS_CONSERVATIVE_RASTER
^ BGFX_CAPS_DRAW_INDIRECT
^ BGFX_CAPS_FRAGMENT_DEPTH
^ BGFX_CAPS_FRAGMENT_ORDERING
^ BGFX_CAPS_GRAPHICS_DEBUGGER
^ BGFX_CAPS_HDR10
^ BGFX_CAPS_HIDPI
^ BGFX_CAPS_INDEX32
^ BGFX_CAPS_INSTANCING
^ BGFX_CAPS_OCCLUSION_QUERY
^ BGFX_CAPS_RENDERER_MULTITHREADED
^ BGFX_CAPS_SWAP_CHAIN
^ BGFX_CAPS_TEXTURE_2D_ARRAY
^ BGFX_CAPS_TEXTURE_3D
^ BGFX_CAPS_TEXTURE_BLIT
^ BGFX_CAPS_TEXTURE_CUBE_ARRAY
^ BGFX_CAPS_TEXTURE_DIRECT_ACCESS
^ BGFX_CAPS_TEXTURE_READ_BACK
^ BGFX_CAPS_VERTEX_ATTRIB_HALF
^ BGFX_CAPS_VERTEX_ATTRIB_UINT10
^ BGFX_CAPS_VERTEX_ID
^ BGFX_CAPS_PRIMITIVE_ID
^ BGFX_CAPS_VIEWPORT_LAYER_ARRAY
^ BGFX_CAPS_DRAW_INDIRECT_COUNT
) );
#undef FLAGS_MASK_TEST
namespace bgfx
{
struct CallbackC99 : public CallbackI
{
virtual ~CallbackC99()
{
}
virtual void fatal(const char* _filePath, uint16_t _line, Fatal::Enum _code, const char* _str) override
{
m_interface->vtbl->fatal(m_interface, _filePath, _line, (bgfx_fatal_t)_code, _str);
}
virtual void traceVargs(const char* _filePath, uint16_t _line, const char* _format, va_list _argList) override
{
m_interface->vtbl->trace_vargs(m_interface, _filePath, _line, _format, _argList);
}
virtual void profilerBegin(const char* _name, uint32_t _abgr, const char* _filePath, uint16_t _line) override
{
m_interface->vtbl->profiler_begin(m_interface, _name, _abgr, _filePath, _line);
}
virtual void profilerBeginLiteral(const char* _name, uint32_t _abgr, const char* _filePath, uint16_t _line) override
{
m_interface->vtbl->profiler_begin_literal(m_interface, _name, _abgr, _filePath, _line);
}
virtual void profilerEnd() override
{
m_interface->vtbl->profiler_end(m_interface);
}
virtual uint32_t cacheReadSize(uint64_t _id) override
{
return m_interface->vtbl->cache_read_size(m_interface, _id);
}
virtual bool cacheRead(uint64_t _id, void* _data, uint32_t _size) override
{
return m_interface->vtbl->cache_read(m_interface, _id, _data, _size);
}
virtual void cacheWrite(uint64_t _id, const void* _data, uint32_t _size) override
{
m_interface->vtbl->cache_write(m_interface, _id, _data, _size);
}
virtual void screenShot(const char* _filePath, uint32_t _width, uint32_t _height, uint32_t _pitch, const void* _data, uint32_t _size, bool _yflip) override
{
m_interface->vtbl->screen_shot(m_interface, _filePath, _width, _height, _pitch, _data, _size, _yflip);
}
virtual void captureBegin(uint32_t _width, uint32_t _height, uint32_t _pitch, TextureFormat::Enum _format, bool _yflip) override
{
m_interface->vtbl->capture_begin(m_interface, _width, _height, _pitch, (bgfx_texture_format_t)_format, _yflip);
}
virtual void captureEnd() override
{
m_interface->vtbl->capture_end(m_interface);
}
virtual void captureFrame(const void* _data, uint32_t _size) override
{
m_interface->vtbl->capture_frame(m_interface, _data, _size);
}
bgfx_callback_interface_t* m_interface;
};
class AllocatorC99 : public bx::AllocatorI
{
public:
virtual ~AllocatorC99()
{
}
virtual void* realloc(void* _ptr, size_t _size, size_t _align, const char* _file, uint32_t _line) override
{
return m_interface->vtbl->realloc(m_interface, _ptr, _size, _align, _file, _line);
}
bgfx_allocator_interface_t* m_interface;
};
} // namespace bgfx
#include "bgfx.idl.inl"