bgfx/examples/37-gpudrivenrendering/gpudrivenrendering.cpp
Branimir Karadžić aeeae5454f Fixed OSX build.
2018-03-04 21:44:08 -08:00

1230 lines
34 KiB
C++

/*
* Copyright 2018 Kostas Anagnostou. All rights reserved.
* License: https://github.com/bkaradzic/bgfx#license-bsd-2-clause
*/
/*
* References:
*
* Experiments in GPU-based occlusion culling
* https://interplayoflight.wordpress.com/2017/11/15/experiments-in-gpu-based-occlusion-culling/
*
* Experiments in GPU-based occlusion culling part 2: MultiDrawIndirect and mesh lodding
* https://interplayoflight.wordpress.com/2018/01/15/experiments-in-gpu-based-occlusion-culling-part-2-multidrawindirect-and-mesh-lodding/
*/
#include "common.h"
#include "bgfx_utils.h"
#include "imgui/imgui.h"
namespace
{
#define RENDER_PASS_HIZ_ID 0
#define RENDER_PASS_HIZ_DOWNSCALE_ID 1
#define RENDER_PASS_OCCLUDE_PROPS_ID 2
#define RENDER_PASS_COMPACT_STREAM_ID 3
#define RENDER_PASS_MAIN_ID 4
struct Camera
{
Camera()
{
reset();
}
void reset()
{
m_target.curr[0] = 0.0f;
m_target.curr[1] = 0.0f;
m_target.curr[2] = 0.0f;
m_target.dest[0] = 0.0f;
m_target.dest[1] = 0.0f;
m_target.dest[2] = 0.0f;
m_pos.curr[0] = 55.0f;
m_pos.curr[1] = 20.0f;
m_pos.curr[2] = 65.0f;
m_pos.dest[0] = 55.0f;
m_pos.dest[1] = 20.0f;
m_pos.dest[2] = 65.0f;
m_orbit[0] = 0.0f;
m_orbit[1] = 0.0f;
}
void mtxLookAt(float* _outViewMtx)
{
bx::mtxLookAt(_outViewMtx, m_pos.curr, m_target.curr);
}
void orbit(float _dx, float _dy)
{
m_orbit[0] += _dx;
m_orbit[1] += _dy;
}
void dolly(float _dz)
{
const float cnear = 1.0f;
const float cfar = 100.0f;
const float toTarget[3] =
{
m_target.dest[0] - m_pos.dest[0],
m_target.dest[1] - m_pos.dest[1],
m_target.dest[2] - m_pos.dest[2],
};
const float toTargetLen = bx::vec3Length(toTarget);
const float invToTargetLen = 1.0f / (toTargetLen + FLT_MIN);
const float toTargetNorm[3] =
{
toTarget[0] * invToTargetLen,
toTarget[1] * invToTargetLen,
toTarget[2] * invToTargetLen,
};
float delta = toTargetLen*_dz;
float newLen = toTargetLen + delta;
if ((cnear < newLen || _dz < 0.0f)
&& (newLen < cfar || _dz > 0.0f))
{
m_pos.dest[0] += toTargetNorm[0] * delta;
m_pos.dest[1] += toTargetNorm[1] * delta;
m_pos.dest[2] += toTargetNorm[2] * delta;
}
}
void consumeOrbit(float _amount)
{
float consume[2];
consume[0] = m_orbit[0] * _amount;
consume[1] = m_orbit[1] * _amount;
m_orbit[0] -= consume[0];
m_orbit[1] -= consume[1];
const float toPos[3] =
{
m_pos.curr[0] - m_target.curr[0],
m_pos.curr[1] - m_target.curr[1],
m_pos.curr[2] - m_target.curr[2],
};
const float toPosLen = bx::vec3Length(toPos);
const float invToPosLen = 1.0f / (toPosLen + FLT_MIN);
const float toPosNorm[3] =
{
toPos[0] * invToPosLen,
toPos[1] * invToPosLen,
toPos[2] * invToPosLen,
};
float ll[2];
latLongFromVec(ll[0], ll[1], toPosNorm);
ll[0] += consume[0];
ll[1] -= consume[1];
ll[1] = bx::clamp(ll[1], 0.02f, 0.98f);
float tmp[3];
vecFromLatLong(tmp, ll[0], ll[1]);
float diff[3];
diff[0] = (tmp[0] - toPosNorm[0])*toPosLen;
diff[1] = (tmp[1] - toPosNorm[1])*toPosLen;
diff[2] = (tmp[2] - toPosNorm[2])*toPosLen;
m_pos.curr[0] += diff[0];
m_pos.curr[1] += diff[1];
m_pos.curr[2] += diff[2];
m_pos.dest[0] += diff[0];
m_pos.dest[1] += diff[1];
m_pos.dest[2] += diff[2];
}
void update(float _dt)
{
const float amount = bx::min(_dt / 0.12f, 1.0f);
consumeOrbit(amount);
m_target.curr[0] = bx::lerp(m_target.curr[0], m_target.dest[0], amount);
m_target.curr[1] = bx::lerp(m_target.curr[1], m_target.dest[1], amount);
m_target.curr[2] = bx::lerp(m_target.curr[2], m_target.dest[2], amount);
m_pos.curr[0] = bx::lerp(m_pos.curr[0], m_pos.dest[0], amount);
m_pos.curr[1] = bx::lerp(m_pos.curr[1], m_pos.dest[1], amount);
m_pos.curr[2] = bx::lerp(m_pos.curr[2], m_pos.dest[2], amount);
}
void envViewMtx(float* _mtx)
{
const float toTarget[3] =
{
m_target.curr[0] - m_pos.curr[0],
m_target.curr[1] - m_pos.curr[1],
m_target.curr[2] - m_pos.curr[2],
};
const float toTargetLen = bx::vec3Length(toTarget);
const float invToTargetLen = 1.0f / (toTargetLen + FLT_MIN);
const float toTargetNorm[3] =
{
toTarget[0] * invToTargetLen,
toTarget[1] * invToTargetLen,
toTarget[2] * invToTargetLen,
};
float tmp[3];
const float fakeUp[3] = { 0.0f, 1.0f, 0.0f };
float right[3];
bx::vec3Cross(tmp, fakeUp, toTargetNorm);
bx::vec3Norm(right, tmp);
float up[3];
bx::vec3Cross(tmp, toTargetNorm, right);
bx::vec3Norm(up, tmp);
_mtx[0] = right[0];
_mtx[1] = right[1];
_mtx[2] = right[2];
_mtx[3] = 0.0f;
_mtx[4] = up[0];
_mtx[5] = up[1];
_mtx[6] = up[2];
_mtx[7] = 0.0f;
_mtx[8] = toTargetNorm[0];
_mtx[9] = toTargetNorm[1];
_mtx[10] = toTargetNorm[2];
_mtx[11] = 0.0f;
_mtx[12] = 0.0f;
_mtx[13] = 0.0f;
_mtx[14] = 0.0f;
_mtx[15] = 1.0f;
}
static inline void vecFromLatLong(float _vec[3], float _u, float _v)
{
const float phi = _u * 2.0f*bx::kPi;
const float theta = _v * bx::kPi;
const float st = bx::sin(theta);
const float sp = bx::sin(phi);
const float ct = bx::cos(theta);
const float cp = bx::cos(phi);
_vec[0] = -st*sp;
_vec[1] = ct;
_vec[2] = -st*cp;
}
static inline void latLongFromVec(float& _u, float& _v, const float _vec[3])
{
const float phi = bx::atan2(_vec[0], _vec[2]);
const float theta = bx::acos(_vec[1]);
_u = (bx::kPi + phi)*bx::kInvPi*0.5f;
_v = theta*bx::kInvPi;
}
struct Interp3f
{
float curr[3];
float dest[3];
};
Interp3f m_target;
Interp3f m_pos;
float m_orbit[2];
};
struct Mouse
{
Mouse()
: m_dx(0.0f)
, m_dy(0.0f)
, m_prevMx(0.0f)
, m_prevMy(0.0f)
, m_scroll(0)
, m_scrollPrev(0)
{
}
void update(float _mx, float _my, int32_t _mz, uint32_t _width, uint32_t _height)
{
const float widthf = float(int32_t(_width));
const float heightf = float(int32_t(_height));
// Delta movement.
m_dx = float(_mx - m_prevMx) / widthf;
m_dy = float(_my - m_prevMy) / heightf;
m_prevMx = _mx;
m_prevMy = _my;
// Scroll.
m_scroll = _mz - m_scrollPrev;
m_scrollPrev = _mz;
}
float m_dx; // Screen space.
float m_dy;
float m_prevMx;
float m_prevMy;
int32_t m_scroll;
int32_t m_scrollPrev;
};
struct PosVertex
{
float m_x;
float m_y;
float m_z;
static void init()
{
ms_decl
.begin()
.add(bgfx::Attrib::Position, 3, bgfx::AttribType::Float)
.end();
};
static bgfx::VertexDecl ms_decl;
};
bgfx::VertexDecl PosVertex::ms_decl;
static PosVertex s_cubeVertices[8] =
{
{-0.5f, 0.5f, 0.5f},
{ 0.5f, 0.5f, 0.5f},
{-0.5f, -0.5f, 0.5f},
{ 0.5f, -0.5f, 0.5f},
{-0.5f, 0.5f, -0.5f},
{ 0.5f, 0.5f, -0.5f},
{-0.5f, -0.5f, -0.5f},
{ 0.5f, -0.5f, -0.5f},
};
static const uint16_t s_cubeIndices[36] =
{
0, 1, 2, // 0
1, 3, 2,
4, 6, 5, // 2
5, 6, 7,
0, 2, 4, // 4
4, 2, 6,
1, 5, 3, // 6
5, 7, 3,
0, 4, 1, // 8
4, 5, 1,
2, 3, 6, // 10
6, 3, 7,
};
struct RenderPass
{
enum Enum
{
Occlusion = 1 << 0,
MainPass = 1 << 1,
All = Occlusion | MainPass
};
};
// All the per-instance data we store
struct InstanceData
{
float m_world[16];
float m_bboxMin[4];
float m_bboxMax[4];
};
//A description of each prop
struct Prop
{
PosVertex* m_vertices;
uint16_t* m_indices;
InstanceData* m_instances;
bgfx::VertexBufferHandle m_vertexbufferHandle;
bgfx::IndexBufferHandle m_indexbufferHandle;
uint16_t m_noofVertices;
uint16_t m_noofIndices;
uint16_t m_noofInstances;
uint16_t m_materialID;
RenderPass::Enum m_renderPass;
};
//A simplistic material, comprised of a colour only
struct Material
{
float m_colour[4];
};
inline void setVector4(float* dest, float x, float y, float z, float w)
{
dest[0] = x;
dest[1] = y;
dest[2] = z;
dest[3] = w;
}
//Sets up a prop
void createCubeMesh(Prop& prop)
{
prop.m_noofVertices = 8;
prop.m_noofIndices = 36;
prop.m_vertices = new PosVertex[prop.m_noofVertices];
prop.m_indices = new uint16_t[prop.m_noofIndices];
memcpy(prop.m_vertices, s_cubeVertices, prop.m_noofVertices * PosVertex::ms_decl.getStride());
memcpy(prop.m_indices, s_cubeIndices, prop.m_noofIndices * sizeof(uint16_t));
prop.m_vertexbufferHandle = bgfx::createVertexBuffer(
bgfx::makeRef(prop.m_vertices, prop.m_noofVertices * PosVertex::ms_decl.getStride()),
PosVertex::ms_decl);
prop.m_indexbufferHandle = bgfx::createIndexBuffer(bgfx::makeRef(prop.m_indices, prop.m_noofIndices * sizeof(uint16_t)));
}
//returns a random number between 0 and 1
float rand01()
{
return rand() / (float)RAND_MAX;
}
class GPUDrivenRendering : public entry::AppI
{
public:
GPUDrivenRendering(const char* _name, const char* _description)
: entry::AppI(_name, _description)
{
}
void init(int32_t _argc, const char* const* _argv, uint32_t _width, uint32_t _height) override
{
Args args(_argc, _argv);
m_width = _width;
m_height = _height;
//find largest pow of two dims less than backbuffer size
m_hiZwidth = (uint32_t)bx::pow(2.0f, bx::floor(bx::log2(float(m_width ) ) ) );
m_hiZheight = (uint32_t)bx::pow(2.0f, bx::floor(bx::log2(float(m_height) ) ) );
m_debug = BGFX_DEBUG_TEXT;
m_reset = BGFX_RESET_VSYNC;
bgfx::init(args.m_type, args.m_pciId);
bgfx::reset(m_width, m_height, m_reset);
// Enable debug text.
bgfx::setDebug(m_debug);
//create uniforms
u_inputRTSize = bgfx::createUniform("u_inputRTSize", bgfx::UniformType::Vec4);
u_cullingConfig = bgfx::createUniform("u_cullingConfig", bgfx::UniformType::Vec4);
u_colour = bgfx::createUniform("u_colour", bgfx::UniformType::Vec4);
//create props
{
m_totalInstancesCount = 0;
// Create vertex stream declaration.
PosVertex::init();
m_noofProps = 0;
m_props = new Prop[s_maxNoofProps];
//first create space for some materials
m_materials = new Material[s_maxNoofProps];
m_noofMaterials = 0;
//add a ground plane
{
Prop& prop = m_props[m_noofProps++];
prop.m_renderPass = RenderPass::MainPass;
createCubeMesh(prop);
prop.m_noofInstances = 1;
prop.m_instances = new InstanceData[prop.m_noofInstances];
bx::mtxSRT(prop.m_instances->m_world
, 100.0f, 0.1f, 100.0f
, 0.0f, 0.0f, 0.0f
, 0.0f, 0.0f, 0.0f
);
float temp[4];
setVector4(temp, -0.5f, -0.5f, -0.5f, 1.0f);
bx::vec4MulMtx(prop.m_instances->m_bboxMin, temp, prop.m_instances->m_world);
setVector4(temp, 0.5f, 0.5f, 0.5f, 1.0f);
bx::vec4MulMtx(prop.m_instances->m_bboxMax, temp, prop.m_instances->m_world);
prop.m_materialID = m_noofMaterials;
setVector4(m_materials[prop.m_materialID].m_colour, 0.0f, 0.6f, 0.0f, 1.0f);
m_noofMaterials++;
m_totalInstancesCount += prop.m_noofInstances;
}
//add a few instances of the occluding mesh
{
Prop& prop = m_props[m_noofProps++];
prop.m_renderPass = RenderPass::All;
//create prop
createCubeMesh(prop);
//add a few instances of the wall mesh
prop.m_noofInstances = 25;
prop.m_instances = new InstanceData[prop.m_noofInstances];
for (int i = 0; i < prop.m_noofInstances; i++)
{
//calculate world position
bx::mtxSRT(prop.m_instances[i].m_world
, 40.0f, 10.0f, 0.1f
, 0.0f, ( rand01() * 120.0f - 60.0f) * 3.1459f / 180.0f, 0.0f
, rand01() * 100.0f - 50.0f, 5.0f, rand01() * 100.0f - 50.0f
);
//calculate bounding box and transform to world space
float temp[4];
setVector4(temp, -0.5f, -0.5f, -0.5f, 1.0f);
bx::vec4MulMtx(prop.m_instances[i].m_bboxMin, temp, prop.m_instances[i].m_world );
setVector4(temp, 0.5f, 0.5f, 0.5f, 1.0f);
bx::vec4MulMtx(prop.m_instances[i].m_bboxMax, temp, prop.m_instances[i].m_world );
}
//set the material ID. Will be used in the shader to select the material
prop.m_materialID = m_noofMaterials;
//add a "material" for this prop
setVector4(m_materials[prop.m_materialID].m_colour, 0.0f, 0.0f, 1.0f, 0.0f);
m_noofMaterials++;
m_totalInstancesCount += prop.m_noofInstances;
}
//add a few "regular" props
{
//add cubes
{
Prop& prop = m_props[m_noofProps++];
prop.m_renderPass = RenderPass::MainPass;
createCubeMesh(prop);
prop.m_noofInstances = 200;
prop.m_instances = new InstanceData[prop.m_noofInstances];
for (int i = 0; i < prop.m_noofInstances; i++)
{
bx::mtxSRT(prop.m_instances[i].m_world
, 2.0f, 2.0f, 2.0f
, 0.0f, 0.0f, 0.0f
, rand01() * 100.0f - 50.0f, 1.0f, rand01() * 100.0f - 50.0f
);
float temp[4];
setVector4(temp, -0.5f, -0.5f, -0.5f, 1.0f);
bx::vec4MulMtx(prop.m_instances[i].m_bboxMin, temp, prop.m_instances[i].m_world);
setVector4(temp, 0.5f, 0.5f, 0.5f, 1.0f);
bx::vec4MulMtx(prop.m_instances[i].m_bboxMax, temp, prop.m_instances[i].m_world);
}
prop.m_materialID = m_noofMaterials;
setVector4(m_materials[prop.m_materialID].m_colour, 1.0f, 1.0f, 0.0f, 1.0f);
m_noofMaterials++;
m_totalInstancesCount += prop.m_noofInstances;
}
//add some more cubes
{
Prop& prop = m_props[m_noofProps++];
prop.m_renderPass = RenderPass::MainPass;
createCubeMesh(prop);
prop.m_noofInstances = 300;
prop.m_instances = new InstanceData[prop.m_noofInstances];
for (int i = 0; i < prop.m_noofInstances; i++)
{
bx::mtxSRT(prop.m_instances[i].m_world
, 2.0f, 4.0f, 2.0f
, 0.0f, 0.0f, 0.0f
, rand01() * 100.0f - 50.0f, 2.0f, rand01() * 100.0f - 50.0f
);
float temp[4];
setVector4(temp, -0.5f, -0.5f, -0.5f, 1.0f);
bx::vec4MulMtx(prop.m_instances[i].m_bboxMin, temp, prop.m_instances[i].m_world );
setVector4(temp, 0.5f, 0.5f, 0.5f, 1.0f);
bx::vec4MulMtx(prop.m_instances[i].m_bboxMax, temp, prop.m_instances[i].m_world);
}
prop.m_materialID = m_noofMaterials;
setVector4(m_materials[prop.m_materialID].m_colour, 1.0f, 0.0f, 0.0f, 1.0f);
m_noofMaterials++;
m_totalInstancesCount += prop.m_noofInstances;
}
}
}
//Setup Occlusion pass
{
const uint32_t samplerFlags = 0
| BGFX_TEXTURE_RT
| BGFX_TEXTURE_MIN_POINT
| BGFX_TEXTURE_MAG_POINT
| BGFX_TEXTURE_MIP_POINT
| BGFX_TEXTURE_U_CLAMP
| BGFX_TEXTURE_V_CLAMP
;
// Create buffers for the HiZ pass
m_hiZDepthBuffer = bgfx::createFrameBuffer(uint16_t(m_hiZwidth), uint16_t(m_hiZheight), bgfx::TextureFormat::D32, samplerFlags);
bgfx::TextureHandle buffer = bgfx::createTexture2D(uint16_t(m_hiZwidth), uint16_t(m_hiZheight), true, 1, bgfx::TextureFormat::R32F, BGFX_TEXTURE_COMPUTE_WRITE | samplerFlags);
m_hiZBuffer = bgfx::createFrameBuffer(1, &buffer, true);
//how many mip will the Hi Z buffer have?
m_noofHiZMips = (uint8_t)(1 + bx::floor(bx::log2(float(bx::max(m_hiZwidth, m_hiZheight) ) ) ) );
// Setup compute shader buffers
//The compute shader will write how many unoccluded instances per drawcall there are here
m_drawcallInstanceCounts = bgfx::createDynamicIndexBuffer(s_maxNoofProps, BGFX_BUFFER_INDEX32 | BGFX_BUFFER_COMPUTE_READ_WRITE);
//the compute shader will write the result of the occlusion test for each instance here
m_instancePredicates = bgfx::createDynamicIndexBuffer(s_maxNoofInstances, BGFX_BUFFER_COMPUTE_READ_WRITE);
//bounding box for each instance, will be fed to the compute shader to calculate occlusion
{
bgfx::VertexDecl computeVertexDecl;
computeVertexDecl.begin()
.add(bgfx::Attrib::TexCoord0, 4, bgfx::AttribType::Float)
.end();
//initialise the buffer with the bounding boxes of all instances
const int sizeOfBuffer = 2 * 4 * m_totalInstancesCount;
float* boundingBoxes = new float[sizeOfBuffer];
float* data = boundingBoxes;
for (uint16_t i = 0; i < m_noofProps; i++)
{
Prop& prop = m_props[i];
const uint32_t numInstances = prop.m_noofInstances;
for (uint32_t j = 0; j < numInstances; j++)
{
memcpy(data, prop.m_instances[j].m_bboxMin, 3 * sizeof(float));
data[3] = (float)i; // store the drawcall ID here to avoid creating a separate buffer
data += 4;
memcpy(data, prop.m_instances[j].m_bboxMax, 3 * sizeof(float));
data += 4;
}
}
const bgfx::Memory* mem = bgfx::makeRef(boundingBoxes, sizeof(float) * sizeOfBuffer);
m_instanceBoundingBoxes = bgfx::createDynamicVertexBuffer(mem, computeVertexDecl, BGFX_BUFFER_COMPUTE_READ);
}
//pre and post occlusion culling instance data buffers
{
bgfx::VertexDecl instanceBufferVertexDecl;
instanceBufferVertexDecl.begin()
.add(bgfx::Attrib::TexCoord0, 4, bgfx::AttribType::Float)
.add(bgfx::Attrib::TexCoord1, 4, bgfx::AttribType::Float)
.add(bgfx::Attrib::TexCoord2, 4, bgfx::AttribType::Float)
.add(bgfx::Attrib::TexCoord3, 4, bgfx::AttribType::Float)
.end();
//initialise the buffer with data for all instances
//Currently we only store a world matrix (16 floats)
const int sizeOfBuffer = 16 * m_totalInstancesCount;
float* instanceData = new float[sizeOfBuffer];
float* data = instanceData;
for (uint16_t i = 0; i < m_noofProps; i++)
{
Prop& prop = m_props[i];
const uint32_t numInstances = prop.m_noofInstances;
for (uint32_t j = 0; j < numInstances; j++)
{
memcpy(data, prop.m_instances[j].m_world, 16 * sizeof(float));
data[3] = (float)i; // store the drawcall ID here to avoid creating a separate buffer
data += 16;
}
}
const bgfx::Memory* mem = bgfx::makeRef(instanceData, sizeof(float) * sizeOfBuffer);
//pre occlusion buffer
m_instanceBuffer = bgfx::createVertexBuffer(mem, instanceBufferVertexDecl, BGFX_BUFFER_COMPUTE_READ);
//post occlusion buffer
m_culledInstanceBuffer = bgfx::createDynamicVertexBuffer(4 * m_totalInstancesCount, instanceBufferVertexDecl, BGFX_BUFFER_COMPUTE_WRITE);
}
//we use one "drawcall" per prop to render all its instances
m_indirectBuffer = bgfx::createIndirectBuffer(m_noofProps);
// Create programs from shaders for occlusion pass.
m_programOcclusionPass = loadProgram("vs_gdr_render_occlusion", "fs_gdr_render_occlusion");
m_programDownscaleHiZ = loadProgram("cs_gdr_downscale_hi_z", NULL);
m_programOccludeProps = loadProgram("cs_gdr_occlude_props", NULL);
m_programStreamCompaction = loadProgram("cs_gdr_stream_compaction", NULL);
// Set view RENDER_PASS_HIZ_ID clear state.
bgfx::setViewClear(RENDER_PASS_HIZ_ID
, BGFX_CLEAR_DEPTH
, 0x0
, 1.0f
, 0
);
}
// Setup Main pass
{
// Set view 0 clear state.
bgfx::setViewClear(RENDER_PASS_MAIN_ID
, BGFX_CLEAR_COLOR | BGFX_CLEAR_DEPTH
, 0x303030ff
, 1.0f
, 0
);
// Create program from shaders.
m_programMainPass = loadProgram("vs_gdr_instanced_indirect_rendering", "fs_gdr_instanced_indirect_rendering");
}
// Create static vertex buffer for all props.
// Calculate how many vertices/indices the master buffers will need.
uint16_t totalNoofVertices = 0;
uint16_t totalNoofIndices = 0;
for (uint16_t i = 0; i < m_noofProps; i++)
{
Prop& prop = m_props[i];
totalNoofVertices += prop.m_noofVertices;
totalNoofIndices += prop.m_noofIndices;
}
// CPU data to fill the master buffers
m_allPropVerticesDataCPU = new PosVertex[totalNoofVertices];
m_allPropIndicesDataCPU = new uint16_t[totalNoofIndices];
m_indirectBufferDataCPU = new uint32_t[m_noofProps * 3];
// Copy data over to the master buffers
PosVertex* propVerticesData = m_allPropVerticesDataCPU;
uint16_t* propIndicesData = m_allPropIndicesDataCPU;
uint16_t vertexBufferOffset = 0;
uint16_t indexBufferOffset = 0;
for (uint16_t i = 0; i < m_noofProps; i++)
{
Prop& prop = m_props[i];
memcpy(propVerticesData, prop.m_vertices, prop.m_noofVertices * sizeof(PosVertex));
memcpy(propIndicesData, prop.m_indices, prop.m_noofIndices * sizeof(uint16_t));
propVerticesData += prop.m_noofVertices;
propIndicesData += prop.m_noofIndices;
m_indirectBufferDataCPU[ i * 3 ] = prop.m_noofIndices;
m_indirectBufferDataCPU[ i * 3 + 1] = indexBufferOffset;
m_indirectBufferDataCPU[ i * 3 + 2] = vertexBufferOffset;
indexBufferOffset += prop.m_noofIndices;
vertexBufferOffset += prop.m_noofVertices;
}
// Create master vertex buffer
m_allPropsVertexbufferHandle = bgfx::createVertexBuffer(
bgfx::makeRef(m_allPropVerticesDataCPU, totalNoofVertices * PosVertex::ms_decl.getStride())
, PosVertex::ms_decl
);
// Create master index buffer.
m_allPropsIndexbufferHandle = bgfx::createIndexBuffer(
bgfx::makeRef(m_allPropIndicesDataCPU, totalNoofIndices * sizeof(uint16_t) )
);
// Create buffer with const drawcall data which will be copied to the indirect buffer later.
m_indirectBufferData = bgfx::createIndexBuffer(
bgfx::makeRef(m_indirectBufferDataCPU, m_noofProps * 3 * sizeof(uint32_t)),
BGFX_BUFFER_COMPUTE_READ | BGFX_BUFFER_INDEX32
);
//create samplers
s_texOcclusionDepthIn = bgfx::createUniform("s_texOcclusionDepthIn", bgfx::UniformType::Int1);
m_timeOffset = bx::getHPCounter();
m_useIndirect = true;
imguiCreate();
}
int shutdown() override
{
imguiDestroy();
// Cleanup.
bgfx::destroy(m_programMainPass);
bgfx::destroy(m_programOcclusionPass);
bgfx::destroy(m_programDownscaleHiZ);
bgfx::destroy(m_programOccludeProps);
bgfx::destroy(m_programStreamCompaction);
for (uint16_t i = 0; i < m_noofProps; i++)
{
Prop& prop = m_props[i];
bgfx::destroy(prop.m_indexbufferHandle);
bgfx::destroy(prop.m_vertexbufferHandle);
delete[] prop.m_indices;
delete[] prop.m_vertices;
delete[] prop.m_instances;
}
delete[] m_props;
bgfx::destroy(m_hiZDepthBuffer);
bgfx::destroy(m_hiZBuffer);
bgfx::destroy(m_indirectBuffer);
bgfx::destroy(m_indirectBufferData);
bgfx::destroy(m_instanceBoundingBoxes);
bgfx::destroy(m_drawcallInstanceCounts);
bgfx::destroy(m_instancePredicates);
bgfx::destroy(m_instanceBuffer);
bgfx::destroy(m_culledInstanceBuffer);
bgfx::destroy(m_allPropsVertexbufferHandle);
bgfx::destroy(m_allPropsIndexbufferHandle);
bgfx::destroy(s_texOcclusionDepthIn);
bgfx::destroy(u_inputRTSize);
bgfx::destroy(u_cullingConfig);
bgfx::destroy(u_colour);
delete[] m_allPropVerticesDataCPU;
delete[] m_allPropIndicesDataCPU;
delete[] m_indirectBufferDataCPU;
// Shutdown bgfx.
bgfx::shutdown();
return 0;
}
//renders the occluders to a depth buffer
void renderOcclusionBufferPass()
{
// Setup the occlusion pass projection
bx::mtxProj(m_occlusionProj, 60.0f, float(m_hiZwidth) / float(m_hiZheight), 0.1f, 500.0f, bgfx::getCaps()->homogeneousDepth);
bgfx::setViewTransform(RENDER_PASS_HIZ_ID, m_mainView, m_occlusionProj);
bgfx::setViewFrameBuffer(RENDER_PASS_HIZ_ID, m_hiZDepthBuffer);
bgfx::setViewRect(RENDER_PASS_HIZ_ID, 0, 0, uint16_t(m_hiZwidth), uint16_t(m_hiZheight));
const uint16_t instanceStride = sizeof(InstanceData);
// render all instances of the occluder meshes
for (uint16_t i = 0; i < m_noofProps; i++)
{
Prop& prop = m_props[i];
if (prop.m_renderPass & RenderPass::Occlusion)
{
const uint32_t numInstances = prop.m_noofInstances;
// render instances to the occlusion buffer
if (numInstances == bgfx::getAvailInstanceDataBuffer(numInstances, instanceStride))
{
bgfx::InstanceDataBuffer instanceBuffer;
bgfx::allocInstanceDataBuffer(&instanceBuffer, numInstances, instanceStride);
InstanceData *data = (InstanceData *) instanceBuffer.data;
for (uint32_t j = 0; j < numInstances; j++)
{
//we only need the world matrix for the occlusion pass
memcpy(data->m_world, prop.m_instances[j].m_world, sizeof(data->m_world));
data++;
}
// Set vertex and index buffer.
bgfx::setVertexBuffer(0, prop.m_vertexbufferHandle);
bgfx::setIndexBuffer(prop.m_indexbufferHandle);
// Set instance data buffer.
bgfx::setInstanceDataBuffer(&instanceBuffer);
// Set render states.
bgfx::setState(BGFX_STATE_DEFAULT);
// Submit primitive for rendering to view.
bgfx::submit(RENDER_PASS_HIZ_ID, m_programOcclusionPass);
}
}
}
}
// downscale the occluder depth buffer to create a mipmap chain
void renderDownscalePass()
{
uint32_t width = m_hiZwidth;
uint32_t height = m_hiZheight;
for (uint8_t i = 0; i < m_noofHiZMips; i++)
{
float coordinateScale = i > 0 ? 2.0f : 1.0f;
float inputRendertargetSize[4] = { (float)width, (float)height, coordinateScale, coordinateScale };
bgfx::setUniform(u_inputRTSize, inputRendertargetSize);
if (i > 0)
{
// down scale mip 1 onwards
width /= 2;
height /= 2;
bgfx::setImage(0, getTexture(m_hiZBuffer, 0), i - 1, bgfx::Access::Read);
bgfx::setImage(1, getTexture(m_hiZBuffer, 0), i, bgfx::Access::Write);
}
else
{
// copy mip zero over to the hi Z buffer.
// We can't currently use blit as it requires same format and CopyResource is not exposed.
bgfx::setImage(0, getTexture(m_hiZDepthBuffer, 0), 0, bgfx::Access::Read);
bgfx::setImage(1, getTexture(m_hiZBuffer, 0), 0, bgfx::Access::Write);
}
bgfx::dispatch(RENDER_PASS_HIZ_DOWNSCALE_ID, m_programDownscaleHiZ, width/16, height/16);
}
}
// perform the occlusion using the mip chain
void renderOccludePropsPass()
{
// run the computer shader to determine visibility of each instance
bgfx::setTexture(0, s_texOcclusionDepthIn, bgfx::getTexture(m_hiZBuffer));
bgfx::setBuffer(1, m_instanceBoundingBoxes, bgfx::Access::Read);
bgfx::setBuffer(2, m_drawcallInstanceCounts, bgfx::Access::ReadWrite);
bgfx::setBuffer(3, m_instancePredicates, bgfx::Access::Write);
float inputRendertargetSize[4] = { (float)m_hiZwidth, (float)m_hiZheight, 1.0f/ m_hiZwidth, 1.0f/ m_hiZheight };
bgfx::setUniform(u_inputRTSize, inputRendertargetSize);
// store a rounded-up, power of two instance count for the stream compaction step
float noofInstancesPowOf2 = bx::pow(2.0f, bx::floor(bx::log(m_totalInstancesCount) / bx::log(2.0f) ) + 1.0f);
float cullingConfig[4] = { (float)m_totalInstancesCount, noofInstancesPowOf2 , (float)m_noofHiZMips, (float)m_noofProps };
bgfx::setUniform(u_cullingConfig, cullingConfig);
//set the view/projection transforms so that the compute shader can receive the viewProjection matrix automagically
bgfx::setViewTransform(RENDER_PASS_OCCLUDE_PROPS_ID, m_mainView, m_occlusionProj);
uint16_t groupX = bx::uint16_max(m_totalInstancesCount / 64 + 1, 1);
bgfx::dispatch(RENDER_PASS_OCCLUDE_PROPS_ID, m_programOccludeProps, groupX, 1, 1);
// perform stream compaction to remove occluded instances
// the per drawcall data that is constant (noof indices/vertices and offsets to vertex/index buffers)
bgfx::setBuffer(0, m_indirectBufferData, bgfx::Access::Read);
// instance data for all instances (pre culling)
bgfx::setBuffer(1, m_instanceBuffer, bgfx::Access::Read);
// per instance visibility (output of culling pass)
bgfx::setBuffer(2, m_instancePredicates, bgfx::Access::Read);
// how many instances per drawcall
bgfx::setBuffer(3, m_drawcallInstanceCounts, bgfx::Access::ReadWrite);
// drawcall data that will drive drawIndirect
bgfx::setBuffer(4, m_indirectBuffer, bgfx::Access::ReadWrite);
// culled instance data
bgfx::setBuffer(5, m_culledInstanceBuffer, bgfx::Access::Write);
bgfx::setUniform(u_cullingConfig, cullingConfig);
bgfx::dispatch(RENDER_PASS_COMPACT_STREAM_ID, m_programStreamCompaction, 1, 1, 1);
}
// render the unoccluded props to the screen
void renderMainPass()
{
// Set view and projection matrix for view 0.
const bgfx::HMD* hmd = bgfx::getHMD();
if (NULL != hmd && 0 != (hmd->flags & BGFX_HMD_RENDERING))
{
bgfx::setViewTransform(RENDER_PASS_MAIN_ID, m_mainView, hmd->eye[0].projection, BGFX_VIEW_STEREO, hmd->eye[1].projection);
// Set view 0 default viewport.
//
// Use HMD's width/height since HMD's internal frame buffer size
// might be much larger than window size.
bgfx::setViewRect(RENDER_PASS_MAIN_ID, 0, 0, hmd->width, hmd->height);
}
else
{
bgfx::setViewTransform(RENDER_PASS_MAIN_ID, m_mainView, m_mainProj);
// Set view 0 default viewport.
bgfx::setViewRect(RENDER_PASS_MAIN_ID, 0, 0, uint16_t(m_width), uint16_t(m_height));
}
// Set render states.
bgfx::setState(BGFX_STATE_DEFAULT);
const uint16_t instanceStride = sizeof(InstanceData);
// Set "material" data (currently a colour only)
bgfx::setUniform(u_colour, &m_materials[0].m_colour, m_noofMaterials);
if (m_useIndirect)
{
// Set vertex and index buffer.
bgfx::setVertexBuffer(0, m_allPropsVertexbufferHandle);
bgfx::setIndexBuffer( m_allPropsIndexbufferHandle);
// Set instance data buffer.
bgfx::setInstanceDataBuffer(m_culledInstanceBuffer, 0, m_totalInstancesCount );
bgfx::submit(RENDER_PASS_MAIN_ID, m_programMainPass, m_indirectBuffer, 0, m_noofProps);
}
else
{
// render all props using regular instancing
for (uint16_t i = 0; i < m_noofProps; i++)
{
Prop& prop = m_props[i];
if (prop.m_renderPass & RenderPass::MainPass)
{
const uint32_t numInstances = prop.m_noofInstances;
if (numInstances == bgfx::getAvailInstanceDataBuffer(numInstances, instanceStride))
{
bgfx::InstanceDataBuffer instanceBuffer;
bgfx::allocInstanceDataBuffer(&instanceBuffer, numInstances, instanceStride);
InstanceData *data = (InstanceData *)instanceBuffer.data;
for (uint32_t j = 0; j < numInstances; j++)
{
//copy world matrix
memcpy(data->m_world, prop.m_instances[j].m_world, sizeof(data->m_world));
//pack the material ID into the world transform
data->m_world[3] = prop.m_materialID;
data++;
}
// Set vertex and index buffer.
bgfx::setVertexBuffer(0, prop.m_vertexbufferHandle);
bgfx::setIndexBuffer(prop.m_indexbufferHandle);
// Set instance data buffer.
bgfx::setInstanceDataBuffer(&instanceBuffer);
bgfx::submit(RENDER_PASS_MAIN_ID, m_programMainPass);
}
}
}
}
}
bool update() override
{
if (!entry::processEvents(m_width, m_height, m_debug, m_reset, &m_mouseState) )
{
imguiBeginFrame(m_mouseState.m_mx
, m_mouseState.m_my
, (m_mouseState.m_buttons[entry::MouseButton::Left ] ? IMGUI_MBUT_LEFT : 0)
| (m_mouseState.m_buttons[entry::MouseButton::Right ] ? IMGUI_MBUT_RIGHT : 0)
| (m_mouseState.m_buttons[entry::MouseButton::Middle] ? IMGUI_MBUT_MIDDLE : 0)
, m_mouseState.m_mz
, uint16_t(m_width)
, uint16_t(m_height)
);
showExampleDialog(this);
ImGui::SetNextWindowPos(
ImVec2(m_width - m_width / 5.0f - 10.0f, 10.0f)
, ImGuiCond_FirstUseEver
);
ImGui::SetNextWindowSize(
ImVec2(m_width / 5.0f, m_height / 6.0f)
, ImGuiCond_FirstUseEver
);
ImGui::Begin("Settings"
, NULL
, 0
);
ImGui::Checkbox("Use Draw Indirect", &m_useIndirect);
ImGui::End();
imguiEndFrame();
// This dummy draw call is here to make sure that view 0 is cleared
// if no other draw calls are submitted to view 0.
bgfx::touch(0);
int64_t now = bx::getHPCounter();
static int64_t last = now;
const int64_t frameTime = now - last;
last = now;
const double freq = double(bx::getHPFrequency());
const float deltaTimeSec = float(double(frameTime) / freq);
// Camera.
const bool mouseOverGui = ImGui::MouseOverArea();
m_mouse.update(float(m_mouseState.m_mx), float(m_mouseState.m_my), m_mouseState.m_mz, m_width, m_height);
if (!mouseOverGui)
{
if (m_mouseState.m_buttons[entry::MouseButton::Left])
{
m_camera.orbit(m_mouse.m_dx, m_mouse.m_dy);
}
else if (m_mouseState.m_buttons[entry::MouseButton::Right])
{
m_camera.dolly(m_mouse.m_dx + m_mouse.m_dy);
}
else if (0 != m_mouse.m_scroll)
{
m_camera.dolly(float(m_mouse.m_scroll)*0.05f);
}
}
m_camera.update(deltaTimeSec);
// Get renderer capabilities info.
const bgfx::Caps* caps = bgfx::getCaps();
// Check if instancing is supported.
if (0 == (BGFX_CAPS_INSTANCING & caps->supported) )
{
// When instancing is not supported by GPU, implement alternative
// code path that doesn't use instancing.
float time = (float)((bx::getHPCounter() - m_timeOffset) / double(bx::getHPFrequency()));
bool blink = uint32_t(time*3.0f)&1;
bgfx::dbgTextPrintf(0, 0, blink ? 0x1f : 0x01, " Instancing is not supported by GPU. ");
}
else
{
// calculate main view and project matrices as they are typically reused between passes.
m_camera.mtxLookAt(m_mainView);
bx::mtxProj(m_mainProj, 60.0f, float(m_width) / float(m_height), 0.1f, 500.0f, bgfx::getCaps()->homogeneousDepth);
//submit drawcalls for all passes
renderOcclusionBufferPass();
renderDownscalePass();
renderOccludePropsPass();
renderMainPass();
}
// Advance to next frame. Rendering thread will be kicked to
// process submitted rendering primitives.
bgfx::frame();
return true;
}
return false;
}
entry::MouseState m_mouseState;
uint32_t m_width;
uint32_t m_height;
uint32_t m_hiZwidth;
uint32_t m_hiZheight;
uint32_t m_debug;
uint32_t m_reset;
float m_mainView[16];
float m_mainProj[16];
float m_occlusionProj[16];
bgfx::ProgramHandle m_programMainPass;
bgfx::ProgramHandle m_programOcclusionPass;
bgfx::ProgramHandle m_programDownscaleHiZ;
bgfx::ProgramHandle m_programOccludeProps;
bgfx::ProgramHandle m_programStreamCompaction;
bgfx::FrameBufferHandle m_hiZDepthBuffer;
bgfx::FrameBufferHandle m_hiZBuffer;
bgfx::IndirectBufferHandle m_indirectBuffer;
bgfx::VertexBufferHandle m_allPropsVertexbufferHandle;
bgfx::IndexBufferHandle m_allPropsIndexbufferHandle;
bgfx::IndexBufferHandle m_indirectBufferData;
PosVertex* m_allPropVerticesDataCPU;
uint16_t* m_allPropIndicesDataCPU;
uint32_t* m_indirectBufferDataCPU;
bgfx::DynamicVertexBufferHandle m_instanceBoundingBoxes;
bgfx::DynamicIndexBufferHandle m_drawcallInstanceCounts;
bgfx::DynamicIndexBufferHandle m_instancePredicates;
bgfx::VertexBufferHandle m_instanceBuffer;
bgfx::DynamicVertexBufferHandle m_culledInstanceBuffer;
bgfx::UniformHandle s_texOcclusionDepthIn;
bgfx::UniformHandle u_inputRTSize;
bgfx::UniformHandle u_cullingConfig;
bgfx::UniformHandle u_colour;
Prop* m_props;
Material* m_materials;
uint16_t m_noofProps;
uint16_t m_noofMaterials;
uint16_t m_totalInstancesCount;
static const uint16_t s_maxNoofProps = 10;
static const uint16_t s_maxNoofInstances = 2048;
int64_t m_timeOffset;
uint8_t m_noofHiZMips;
bool m_useIndirect;
Camera m_camera;
Mouse m_mouse;
};
} // namespace
ENTRY_IMPLEMENT_MAIN(GPUDrivenRendering, "37-gpudrivenrendering", "GPU-Driven Rendering.");