bgfx/examples/12-lod/lod.cpp
2013-07-22 21:24:20 -07:00

563 lines
13 KiB
C++

/*
* Copyright 2013 Milos Tosic. All rights reserved.
* License: http://www.opensource.org/licenses/BSD-2-Clause
*/
#include "common.h"
#include <bgfx.h>
#include <bx/timer.h>
#include <bx/readerwriter.h>
#include "entry.h"
#include "dbg.h"
#include "fpumath.h"
#include "processevents.h"
#include "imgui/imgui.h"
#include <stdio.h>
#include <string.h>
#include <string>
#include <vector>
static const char* s_shaderPath = NULL;
static bool s_flipV = false;
struct KnightPos
{
int32_t m_x;
int32_t m_y;
};
KnightPos knightTour[8*4] =
{
{0,0}, {1,2}, {3,3}, {4,1}, {5,3}, {7,2}, {6,0}, {5,2},
{7,3}, {6,1}, {4,0}, {3,2}, {2,0}, {0,1}, {1,3}, {2,1},
{0,2}, {1,0}, {2,2}, {0,3}, {1,1}, {3,0}, {4,2}, {5,0},
{7,1}, {6,3}, {5,1}, {7,0}, {6,2}, {4,3}, {3,1}, {2,3}
};
static void shaderFilePath(char* _out, const char* _name)
{
strcpy(_out, s_shaderPath);
strcat(_out, _name);
strcat(_out, ".bin");
}
long int fsize(FILE* _file)
{
long int pos = ftell(_file);
fseek(_file, 0L, SEEK_END);
long int size = ftell(_file);
fseek(_file, pos, SEEK_SET);
return size;
}
static const bgfx::Memory* load(const char* _filePath)
{
FILE* file = fopen(_filePath, "rb");
if (NULL != file)
{
uint32_t size = (uint32_t)fsize(file);
const bgfx::Memory* mem = bgfx::alloc(size+1);
size_t ignore = fread(mem->data, 1, size, file);
BX_UNUSED(ignore);
fclose(file);
mem->data[mem->size-1] = '\0';
return mem;
}
return NULL;
}
static const bgfx::Memory* loadTexture(const char* _name)
{
char filePath[512];
strcpy(filePath, "textures/");
strcat(filePath, _name);
return load(filePath);
}
static const bgfx::Memory* loadShader(const char* _name)
{
char filePath[512];
shaderFilePath(filePath, _name);
return load(filePath);
}
static bgfx::ProgramHandle loadProgram(const char* _vsName, const char* _fsName)
{
const bgfx::Memory* mem;
// Load vertex shader.
mem = loadShader(_vsName);
bgfx::VertexShaderHandle vsh = bgfx::createVertexShader(mem);
// Load fragment shader.
mem = loadShader(_fsName);
bgfx::FragmentShaderHandle fsh = bgfx::createFragmentShader(mem);
// Create program from shaders.
bgfx::ProgramHandle program = bgfx::createProgram(vsh, fsh);
// We can destroy vertex and fragment shader here since
// their reference is kept inside bgfx after calling createProgram.
// Vertex and fragment shader will be destroyed once program is
// destroyed.
bgfx::destroyVertexShader(vsh);
bgfx::destroyFragmentShader(fsh);
return program;
}
struct Aabb
{
float m_min[3];
float m_max[3];
};
struct Obb
{
float m_mtx[16];
};
struct Sphere
{
float m_center[3];
float m_radius;
};
struct Primitive
{
uint32_t m_startIndex;
uint32_t m_numIndices;
uint32_t m_startVertex;
uint32_t m_numVertices;
Sphere m_sphere;
Aabb m_aabb;
Obb m_obb;
};
typedef std::vector<Primitive> PrimitiveArray;
struct Group
{
Group()
{
reset();
}
void reset()
{
m_vbh.idx = bgfx::invalidHandle;
m_ibh.idx = bgfx::invalidHandle;
m_prims.clear();
}
bgfx::VertexBufferHandle m_vbh;
bgfx::IndexBufferHandle m_ibh;
Sphere m_sphere;
Aabb m_aabb;
Obb m_obb;
PrimitiveArray m_prims;
};
struct Mesh
{
void load(const char* _filePath)
{
#define BGFX_CHUNK_MAGIC_VB BX_MAKEFOURCC('V', 'B', ' ', 0x0)
#define BGFX_CHUNK_MAGIC_IB BX_MAKEFOURCC('I', 'B', ' ', 0x0)
#define BGFX_CHUNK_MAGIC_PRI BX_MAKEFOURCC('P', 'R', 'I', 0x0)
bx::CrtFileReader reader;
reader.open(_filePath);
Group group;
uint32_t chunk;
while (4 == bx::read(&reader, chunk) )
{
switch (chunk)
{
case BGFX_CHUNK_MAGIC_VB:
{
bx::read(&reader, group.m_sphere);
bx::read(&reader, group.m_aabb);
bx::read(&reader, group.m_obb);
bx::read(&reader, m_decl);
uint16_t stride = m_decl.getStride();
uint16_t numVertices;
bx::read(&reader, numVertices);
const bgfx::Memory* mem = bgfx::alloc(numVertices*stride);
bx::read(&reader, mem->data, mem->size);
group.m_vbh = bgfx::createVertexBuffer(mem, m_decl);
}
break;
case BGFX_CHUNK_MAGIC_IB:
{
uint32_t numIndices;
bx::read(&reader, numIndices);
const bgfx::Memory* mem = bgfx::alloc(numIndices*2);
bx::read(&reader, mem->data, mem->size);
group.m_ibh = bgfx::createIndexBuffer(mem);
}
break;
case BGFX_CHUNK_MAGIC_PRI:
{
uint16_t len;
bx::read(&reader, len);
std::string material;
material.resize(len);
bx::read(&reader, const_cast<char*>(material.c_str() ), len);
uint16_t num;
bx::read(&reader, num);
for (uint32_t ii = 0; ii < num; ++ii)
{
bx::read(&reader, len);
std::string name;
name.resize(len);
bx::read(&reader, const_cast<char*>(name.c_str() ), len);
Primitive prim;
bx::read(&reader, prim.m_startIndex);
bx::read(&reader, prim.m_numIndices);
bx::read(&reader, prim.m_startVertex);
bx::read(&reader, prim.m_numVertices);
bx::read(&reader, prim.m_sphere);
bx::read(&reader, prim.m_aabb);
bx::read(&reader, prim.m_obb);
group.m_prims.push_back(prim);
}
m_groups.push_back(group);
group.reset();
}
break;
default:
DBG("%08x at %d", chunk, reader.seek() );
break;
}
}
reader.close();
}
void unload()
{
for (GroupArray::const_iterator it = m_groups.begin(), itEnd = m_groups.end(); it != itEnd; ++it)
{
const Group& group = *it;
bgfx::destroyVertexBuffer(group.m_vbh);
if (bgfx::invalidHandle != group.m_ibh.idx)
{
bgfx::destroyIndexBuffer(group.m_ibh);
}
}
m_groups.clear();
}
void submit(bgfx::ProgramHandle _program, float* _mtx, bool _blend)
{
for (GroupArray::const_iterator it = m_groups.begin(), itEnd = m_groups.end(); it != itEnd; ++it)
{
const Group& group = *it;
// Set model matrix for rendering.
bgfx::setTransform(_mtx);
bgfx::setProgram(_program);
bgfx::setIndexBuffer(group.m_ibh);
bgfx::setVertexBuffer(group.m_vbh);
// Set render states.
bgfx::setState(0
|BGFX_STATE_RGB_WRITE
|BGFX_STATE_ALPHA_WRITE
|(_blend?0:BGFX_STATE_DEPTH_WRITE)
|BGFX_STATE_DEPTH_TEST_LESS
|BGFX_STATE_CULL_CCW
|BGFX_STATE_MSAA
|(_blend?BGFX_STATE_BLEND_FUNC(BGFX_STATE_BLEND_SRC_ALPHA, BGFX_STATE_BLEND_INV_SRC_ALPHA):0)
);
// Submit primitive for rendering to view 0.
bgfx::submit(0);
}
}
bgfx::VertexDecl m_decl;
typedef std::vector<Group> GroupArray;
GroupArray m_groups;
};
int _main_(int /*_argc*/, char** /*_argv*/)
{
uint32_t width = 1280;
uint32_t height = 720;
uint32_t debug = BGFX_DEBUG_TEXT;
uint32_t reset = BGFX_RESET_VSYNC;
bgfx::init();
bgfx::reset(width, height, reset);
// Enable debug text.
bgfx::setDebug(debug);
// Set view 0 clear state.
bgfx::setViewClear(0
, BGFX_CLEAR_COLOR_BIT|BGFX_CLEAR_DEPTH_BIT
, 0x303030ff
, 1.0f
, 0
);
// Setup root path for binary shaders. Shader binaries are different
// for each renderer.
switch (bgfx::getRendererType() )
{
default:
case bgfx::RendererType::Direct3D9:
s_shaderPath = "shaders/dx9/";
break;
case bgfx::RendererType::Direct3D11:
s_shaderPath = "shaders/dx11/";
break;
case bgfx::RendererType::OpenGL:
s_shaderPath = "shaders/glsl/";
s_flipV = true;
break;
case bgfx::RendererType::OpenGLES2:
case bgfx::RendererType::OpenGLES3:
s_shaderPath = "shaders/gles/";
s_flipV = true;
break;
}
bgfx::UniformHandle u_texColor = bgfx::createUniform("u_texColor", bgfx::UniformType::Uniform1iv);
bgfx::UniformHandle u_stipple = bgfx::createUniform("u_stipple", bgfx::UniformType::Uniform3fv);
bgfx::UniformHandle u_texStipple = bgfx::createUniform("u_texStipple", bgfx::UniformType::Uniform1iv);
bgfx::ProgramHandle program = loadProgram("vs_tree", "fs_tree");
const bgfx::Memory* mem;
mem = loadTexture("leafs1.dds");
bgfx::TextureHandle textureLeafs = bgfx::createTexture(mem);
mem = loadTexture("bark1.dds");
bgfx::TextureHandle textureBark = bgfx::createTexture(mem);
bgfx::TextureHandle textureStipple;
const bgfx::Memory* stipple = bgfx::alloc(8*4);
memset(stipple->data, 0, stipple->size);
for (uint32_t ii = 0; ii < 32; ++ii)
{
stipple->data[knightTour[ii].m_y * 8 + knightTour[ii].m_x] = ii*4;
}
textureStipple = bgfx::createTexture2D(8, 4, 1, bgfx::TextureFormat::L8, BGFX_TEXTURE_MAG_POINT|BGFX_TEXTURE_MIN_POINT, stipple);
Mesh mesh_top[3];
mesh_top[0].load("meshes/tree1b_lod0_1.bin");
mesh_top[1].load("meshes/tree1b_lod1_1.bin");
mesh_top[2].load("meshes/tree1b_lod2_1.bin");
Mesh mesh_trunk[3];
mesh_trunk[0].load("meshes/tree1b_lod0_2.bin");
mesh_trunk[1].load("meshes/tree1b_lod1_2.bin");
mesh_trunk[2].load("meshes/tree1b_lod2_2.bin");
FILE* file = fopen("font/droidsans.ttf", "rb");
uint32_t size = (uint32_t)fsize(file);
void* data = malloc(size);
size_t ignore = fread(data, 1, size, file);
BX_UNUSED(ignore);
fclose(file);
imguiCreate(data, size);
free(data);
int32_t scrollArea = 0;
bool transitions = true;
int transitionFrame = 0;
int currLOD = 0;
int targetLOD = 0;
float at[3] = { 0.0f, 1.0f, 0.0f };
float eye[3] = { 0.0f, 1.0f, -2.0f };
MouseState mouseState;
while (!processEvents(width, height, debug, reset, &mouseState) )
{
imguiBeginFrame(mouseState.m_mx
, mouseState.m_my
, (mouseState.m_buttons[entry::MouseButton::Left ] ? IMGUI_MBUT_LEFT : 0)
| (mouseState.m_buttons[entry::MouseButton::Right ] ? IMGUI_MBUT_RIGHT : 0)
, 0
, width
, height
);
imguiBeginScrollArea("Toggle transitions", width - width / 5 - 10, 10, width / 5, height / 7, &scrollArea);
imguiSeparatorLine();
if (imguiButton(transitions ? "ON" : "OFF") )
{
transitions = !transitions;
}
static float distance = 2.0f;
imguiSlider("Distance", &distance, 2.0f, 6.0f, .01f);
imguiEndScrollArea();
imguiEndFrame();
// Set view 0 default viewport.
bgfx::setViewRect(0, 0, 0, width, height);
// This dummy draw call is here to make sure that view 0 is cleared
// if no other draw calls are submitted to view 0.
bgfx::submit(0);
int64_t now = bx::getHPCounter();
static int64_t last = now;
const int64_t frameTime = now - last;
last = now;
const double freq = double(bx::getHPFrequency() );
const double toMs = 1000.0/freq;
// Use debug font to print information about this example.
bgfx::dbgTextClear();
bgfx::dbgTextPrintf(0, 1, 0x4f, "bgfx/examples/12-lod");
bgfx::dbgTextPrintf(0, 2, 0x6f, "Description: Mesh LOD transitions.");
bgfx::dbgTextPrintf(0, 3, 0x0f, "Frame: % 7.3f[ms]", double(frameTime)*toMs);
bgfx::dbgTextPrintf(0, 4, transitions ? 0x2f : 0x1f, transitions ? "Transitions on" : "Transitions off");
eye[2] = -distance;
float view[16];
float proj[16];
mtxLookAt(view, eye, at);
mtxProj(proj, 60.0f, float(width)/float(height), 0.1f, 100.0f);
// Set view and projection matrix for view 0.
bgfx::setViewTransform(0, view, proj);
float mtx[16];
mtxIdentity(mtx);
float stipple[3];
float stippleInv[3];
const int currentLODframe = transitions ? 32-transitionFrame : 32;
const int mainLOD = transitions ? currLOD : targetLOD;
stipple[0] = 0.0f;
stipple[1] = -1.0f;
stipple[2] = (float(currentLODframe)*4.0f/255.0f) - (1.0f/255.0f);
stippleInv[0] = (float(31)*4.0f/255.0f);
stippleInv[1] = 1.0f;
stippleInv[2] = (float(transitionFrame)*4.0f/255.0f) - (1.0f/255.0f);
bgfx::setTexture(0, u_texColor, textureBark);
bgfx::setTexture(1, u_texStipple, textureStipple);
bgfx::setUniform(u_stipple, stipple);
mesh_trunk[mainLOD].submit(program, mtx, false);
bgfx::setTexture(0, u_texColor, textureLeafs);
bgfx::setTexture(1, u_texStipple, textureStipple);
bgfx::setUniform(u_stipple, stipple);
mesh_top[mainLOD].submit(program, mtx, true);
if (transitions
&& (transitionFrame != 0) )
{
bgfx::setTexture(0, u_texColor, textureBark);
bgfx::setTexture(1, u_texStipple, textureStipple);
bgfx::setUniform(u_stipple, stippleInv);
mesh_trunk[targetLOD].submit(program, mtx, false);
bgfx::setTexture(0, u_texColor, textureLeafs);
bgfx::setTexture(1, u_texStipple, textureStipple);
bgfx::setUniform(u_stipple, stippleInv);
mesh_top[targetLOD].submit(program, mtx, true);
}
int lod = 0;
if (eye[2] < -2.5f)
{
lod = 1;
}
if (eye[2] < -5.0f)
{
lod = 2;
}
if (targetLOD!=lod)
{
if (targetLOD==currLOD)
{
targetLOD = lod;
}
}
if (currLOD != targetLOD)
{
transitionFrame++;
}
if (transitionFrame>32)
{
currLOD = targetLOD;
transitionFrame = 0;
}
// Advance to next frame. Rendering thread will be kicked to
// process submitted rendering primitives.
bgfx::frame();
}
for (uint32_t ii = 0; ii < 3; ++ii)
{
mesh_top[ii].unload();
mesh_trunk[ii].unload();
}
// Cleanup.
bgfx::destroyProgram(program);
bgfx::destroyUniform(u_texColor);
bgfx::destroyUniform(u_stipple);
bgfx::destroyUniform(u_texStipple);
bgfx::destroyTexture(textureStipple);
bgfx::destroyTexture(textureLeafs);
bgfx::destroyTexture(textureBark);
// Shutdown bgfx.
bgfx::shutdown();
return 0;
}