839 lines
35 KiB
C++
839 lines
35 KiB
C++
// Copyright (c) 2015-2020 The Khronos Group Inc.
|
|
// Modifications Copyright (C) 2020 Advanced Micro Devices, Inc. All rights
|
|
// reserved.
|
|
//
|
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
|
// you may not use this file except in compliance with the License.
|
|
// You may obtain a copy of the License at
|
|
//
|
|
// http://www.apache.org/licenses/LICENSE-2.0
|
|
//
|
|
// Unless required by applicable law or agreed to in writing, software
|
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
// See the License for the specific language governing permissions and
|
|
// limitations under the License.
|
|
|
|
#include "source/binary.h"
|
|
|
|
#include <algorithm>
|
|
#include <cassert>
|
|
#include <cstring>
|
|
#include <iterator>
|
|
#include <limits>
|
|
#include <string>
|
|
#include <unordered_map>
|
|
#include <vector>
|
|
|
|
#include "source/assembly_grammar.h"
|
|
#include "source/diagnostic.h"
|
|
#include "source/ext_inst.h"
|
|
#include "source/latest_version_spirv_header.h"
|
|
#include "source/opcode.h"
|
|
#include "source/operand.h"
|
|
#include "source/spirv_constant.h"
|
|
#include "source/spirv_endian.h"
|
|
|
|
spv_result_t spvBinaryHeaderGet(const spv_const_binary binary,
|
|
const spv_endianness_t endian,
|
|
spv_header_t* pHeader) {
|
|
if (!binary->code) return SPV_ERROR_INVALID_BINARY;
|
|
if (binary->wordCount < SPV_INDEX_INSTRUCTION)
|
|
return SPV_ERROR_INVALID_BINARY;
|
|
if (!pHeader) return SPV_ERROR_INVALID_POINTER;
|
|
|
|
// TODO: Validation checking?
|
|
pHeader->magic = spvFixWord(binary->code[SPV_INDEX_MAGIC_NUMBER], endian);
|
|
pHeader->version = spvFixWord(binary->code[SPV_INDEX_VERSION_NUMBER], endian);
|
|
// Per 2.3.1 version's high and low bytes are 0
|
|
if ((pHeader->version & 0x000000ff) || pHeader->version & 0xff000000)
|
|
return SPV_ERROR_INVALID_BINARY;
|
|
// Minimum version was 1.0 and max version is defined by SPV_VERSION.
|
|
if (pHeader->version < SPV_SPIRV_VERSION_WORD(1, 0) ||
|
|
pHeader->version > SPV_VERSION)
|
|
return SPV_ERROR_INVALID_BINARY;
|
|
|
|
pHeader->generator =
|
|
spvFixWord(binary->code[SPV_INDEX_GENERATOR_NUMBER], endian);
|
|
pHeader->bound = spvFixWord(binary->code[SPV_INDEX_BOUND], endian);
|
|
pHeader->schema = spvFixWord(binary->code[SPV_INDEX_SCHEMA], endian);
|
|
pHeader->instructions = &binary->code[SPV_INDEX_INSTRUCTION];
|
|
|
|
return SPV_SUCCESS;
|
|
}
|
|
|
|
namespace {
|
|
|
|
// A SPIR-V binary parser. A parser instance communicates detailed parse
|
|
// results via callbacks.
|
|
class Parser {
|
|
public:
|
|
// The user_data value is provided to the callbacks as context.
|
|
Parser(const spv_const_context context, void* user_data,
|
|
spv_parsed_header_fn_t parsed_header_fn,
|
|
spv_parsed_instruction_fn_t parsed_instruction_fn)
|
|
: grammar_(context),
|
|
consumer_(context->consumer),
|
|
user_data_(user_data),
|
|
parsed_header_fn_(parsed_header_fn),
|
|
parsed_instruction_fn_(parsed_instruction_fn) {}
|
|
|
|
// Parses the specified binary SPIR-V module, issuing callbacks on a parsed
|
|
// header and for each parsed instruction. Returns SPV_SUCCESS on success.
|
|
// Otherwise returns an error code and issues a diagnostic.
|
|
spv_result_t parse(const uint32_t* words, size_t num_words,
|
|
spv_diagnostic* diagnostic);
|
|
|
|
private:
|
|
// All remaining methods work on the current module parse state.
|
|
|
|
// Like the parse method, but works on the current module parse state.
|
|
spv_result_t parseModule();
|
|
|
|
// Parses an instruction at the current position of the binary. Assumes
|
|
// the header has been parsed, the endian has been set, and the word index is
|
|
// still in range. Advances the parsing position past the instruction, and
|
|
// updates other parsing state for the current module.
|
|
// On success, returns SPV_SUCCESS and issues the parsed-instruction callback.
|
|
// On failure, returns an error code and issues a diagnostic.
|
|
spv_result_t parseInstruction();
|
|
|
|
// Parses an instruction operand with the given type, for an instruction
|
|
// starting at inst_offset words into the SPIR-V binary.
|
|
// If the SPIR-V binary is the same endianness as the host, then the
|
|
// endian_converted_inst_words parameter is ignored. Otherwise, this method
|
|
// appends the words for this operand, converted to host native endianness,
|
|
// to the end of endian_converted_inst_words. This method also updates the
|
|
// expected_operands parameter, and the scalar members of the inst parameter.
|
|
// On success, returns SPV_SUCCESS, advances past the operand, and pushes a
|
|
// new entry on to the operands vector. Otherwise returns an error code and
|
|
// issues a diagnostic.
|
|
spv_result_t parseOperand(size_t inst_offset, spv_parsed_instruction_t* inst,
|
|
const spv_operand_type_t type,
|
|
std::vector<uint32_t>* endian_converted_inst_words,
|
|
std::vector<spv_parsed_operand_t>* operands,
|
|
spv_operand_pattern_t* expected_operands);
|
|
|
|
// Records the numeric type for an operand according to the type information
|
|
// associated with the given non-zero type Id. This can fail if the type Id
|
|
// is not a type Id, or if the type Id does not reference a scalar numeric
|
|
// type. On success, return SPV_SUCCESS and populates the num_words,
|
|
// number_kind, and number_bit_width fields of parsed_operand.
|
|
spv_result_t setNumericTypeInfoForType(spv_parsed_operand_t* parsed_operand,
|
|
uint32_t type_id);
|
|
|
|
// Records the number type for an instruction at the given offset, if that
|
|
// instruction generates a type. For types that aren't scalar numbers,
|
|
// record something with number kind SPV_NUMBER_NONE.
|
|
void recordNumberType(size_t inst_offset,
|
|
const spv_parsed_instruction_t* inst);
|
|
|
|
// Returns a diagnostic stream object initialized with current position in
|
|
// the input stream, and for the given error code. Any data written to the
|
|
// returned object will be propagated to the current parse's diagnostic
|
|
// object.
|
|
spvtools::DiagnosticStream diagnostic(spv_result_t error) {
|
|
return spvtools::DiagnosticStream({0, 0, _.instruction_count}, consumer_,
|
|
"", error);
|
|
}
|
|
|
|
// Returns a diagnostic stream object with the default parse error code.
|
|
spvtools::DiagnosticStream diagnostic() {
|
|
// The default failure for parsing is invalid binary.
|
|
return diagnostic(SPV_ERROR_INVALID_BINARY);
|
|
}
|
|
|
|
// Issues a diagnostic describing an exhaustion of input condition when
|
|
// trying to decode an instruction operand, and returns
|
|
// SPV_ERROR_INVALID_BINARY.
|
|
spv_result_t exhaustedInputDiagnostic(size_t inst_offset, SpvOp opcode,
|
|
spv_operand_type_t type) {
|
|
return diagnostic() << "End of input reached while decoding Op"
|
|
<< spvOpcodeString(opcode) << " starting at word "
|
|
<< inst_offset
|
|
<< ((_.word_index < _.num_words) ? ": truncated "
|
|
: ": missing ")
|
|
<< spvOperandTypeStr(type) << " operand at word offset "
|
|
<< _.word_index - inst_offset << ".";
|
|
}
|
|
|
|
// Returns the endian-corrected word at the current position.
|
|
uint32_t peek() const { return peekAt(_.word_index); }
|
|
|
|
// Returns the endian-corrected word at the given position.
|
|
uint32_t peekAt(size_t index) const {
|
|
assert(index < _.num_words);
|
|
return spvFixWord(_.words[index], _.endian);
|
|
}
|
|
|
|
// Data members
|
|
|
|
const spvtools::AssemblyGrammar grammar_; // SPIR-V syntax utility.
|
|
const spvtools::MessageConsumer& consumer_; // Message consumer callback.
|
|
void* const user_data_; // Context for the callbacks
|
|
const spv_parsed_header_fn_t parsed_header_fn_; // Parsed header callback
|
|
const spv_parsed_instruction_fn_t
|
|
parsed_instruction_fn_; // Parsed instruction callback
|
|
|
|
// Describes the format of a typed literal number.
|
|
struct NumberType {
|
|
spv_number_kind_t type;
|
|
uint32_t bit_width;
|
|
};
|
|
|
|
// The state used to parse a single SPIR-V binary module.
|
|
struct State {
|
|
State(const uint32_t* words_arg, size_t num_words_arg,
|
|
spv_diagnostic* diagnostic_arg)
|
|
: words(words_arg),
|
|
num_words(num_words_arg),
|
|
diagnostic(diagnostic_arg),
|
|
word_index(0),
|
|
instruction_count(0),
|
|
endian(),
|
|
requires_endian_conversion(false) {
|
|
// Temporary storage for parser state within a single instruction.
|
|
// Most instructions require fewer than 25 words or operands.
|
|
operands.reserve(25);
|
|
endian_converted_words.reserve(25);
|
|
expected_operands.reserve(25);
|
|
}
|
|
State() : State(0, 0, nullptr) {}
|
|
const uint32_t* words; // Words in the binary SPIR-V module.
|
|
size_t num_words; // Number of words in the module.
|
|
spv_diagnostic* diagnostic; // Where diagnostics go.
|
|
size_t word_index; // The current position in words.
|
|
size_t instruction_count; // The count of processed instructions
|
|
spv_endianness_t endian; // The endianness of the binary.
|
|
// Is the SPIR-V binary in a different endiannes from the host native
|
|
// endianness?
|
|
bool requires_endian_conversion;
|
|
|
|
// Maps a result ID to its type ID. By convention:
|
|
// - a result ID that is a type definition maps to itself.
|
|
// - a result ID without a type maps to 0. (E.g. for OpLabel)
|
|
std::unordered_map<uint32_t, uint32_t> id_to_type_id;
|
|
// Maps a type ID to its number type description.
|
|
std::unordered_map<uint32_t, NumberType> type_id_to_number_type_info;
|
|
// Maps an ExtInstImport id to the extended instruction type.
|
|
std::unordered_map<uint32_t, spv_ext_inst_type_t>
|
|
import_id_to_ext_inst_type;
|
|
|
|
// Used by parseOperand
|
|
std::vector<spv_parsed_operand_t> operands;
|
|
std::vector<uint32_t> endian_converted_words;
|
|
spv_operand_pattern_t expected_operands;
|
|
} _;
|
|
};
|
|
|
|
spv_result_t Parser::parse(const uint32_t* words, size_t num_words,
|
|
spv_diagnostic* diagnostic_arg) {
|
|
_ = State(words, num_words, diagnostic_arg);
|
|
|
|
const spv_result_t result = parseModule();
|
|
|
|
// Clear the module state. The tables might be big.
|
|
_ = State();
|
|
|
|
return result;
|
|
}
|
|
|
|
spv_result_t Parser::parseModule() {
|
|
if (!_.words) return diagnostic() << "Missing module.";
|
|
|
|
if (_.num_words < SPV_INDEX_INSTRUCTION)
|
|
return diagnostic() << "Module has incomplete header: only " << _.num_words
|
|
<< " words instead of " << SPV_INDEX_INSTRUCTION;
|
|
|
|
// Check the magic number and detect the module's endianness.
|
|
spv_const_binary_t binary{_.words, _.num_words};
|
|
if (spvBinaryEndianness(&binary, &_.endian)) {
|
|
return diagnostic() << "Invalid SPIR-V magic number '" << std::hex
|
|
<< _.words[0] << "'.";
|
|
}
|
|
_.requires_endian_conversion = !spvIsHostEndian(_.endian);
|
|
|
|
// Process the header.
|
|
spv_header_t header;
|
|
if (spvBinaryHeaderGet(&binary, _.endian, &header)) {
|
|
// It turns out there is no way to trigger this error since the only
|
|
// failure cases are already handled above, with better messages.
|
|
return diagnostic(SPV_ERROR_INTERNAL)
|
|
<< "Internal error: unhandled header parse failure";
|
|
}
|
|
if (parsed_header_fn_) {
|
|
if (auto error = parsed_header_fn_(user_data_, _.endian, header.magic,
|
|
header.version, header.generator,
|
|
header.bound, header.schema)) {
|
|
return error;
|
|
}
|
|
}
|
|
|
|
// Process the instructions.
|
|
_.word_index = SPV_INDEX_INSTRUCTION;
|
|
while (_.word_index < _.num_words)
|
|
if (auto error = parseInstruction()) return error;
|
|
|
|
// Running off the end should already have been reported earlier.
|
|
assert(_.word_index == _.num_words);
|
|
|
|
return SPV_SUCCESS;
|
|
}
|
|
|
|
spv_result_t Parser::parseInstruction() {
|
|
_.instruction_count++;
|
|
|
|
// The zero values for all members except for opcode are the
|
|
// correct initial values.
|
|
spv_parsed_instruction_t inst = {};
|
|
|
|
const uint32_t first_word = peek();
|
|
|
|
// If the module's endianness is different from the host native endianness,
|
|
// then converted_words contains the the endian-translated words in the
|
|
// instruction.
|
|
_.endian_converted_words.clear();
|
|
_.endian_converted_words.push_back(first_word);
|
|
|
|
// After a successful parse of the instruction, the inst.operands member
|
|
// will point to this vector's storage.
|
|
_.operands.clear();
|
|
|
|
assert(_.word_index < _.num_words);
|
|
// Decompose and check the first word.
|
|
uint16_t inst_word_count = 0;
|
|
spvOpcodeSplit(first_word, &inst_word_count, &inst.opcode);
|
|
if (inst_word_count < 1) {
|
|
return diagnostic() << "Invalid instruction word count: "
|
|
<< inst_word_count;
|
|
}
|
|
spv_opcode_desc opcode_desc;
|
|
if (grammar_.lookupOpcode(static_cast<SpvOp>(inst.opcode), &opcode_desc))
|
|
return diagnostic() << "Invalid opcode: " << inst.opcode;
|
|
|
|
// Advance past the opcode word. But remember the of the start
|
|
// of the instruction.
|
|
const size_t inst_offset = _.word_index;
|
|
_.word_index++;
|
|
|
|
// Maintains the ordered list of expected operand types.
|
|
// For many instructions we only need the {numTypes, operandTypes}
|
|
// entries in opcode_desc. However, sometimes we need to modify
|
|
// the list as we parse the operands. This occurs when an operand
|
|
// has its own logical operands (such as the LocalSize operand for
|
|
// ExecutionMode), or for extended instructions that may have their
|
|
// own operands depending on the selected extended instruction.
|
|
_.expected_operands.clear();
|
|
for (auto i = 0; i < opcode_desc->numTypes; i++)
|
|
_.expected_operands.push_back(
|
|
opcode_desc->operandTypes[opcode_desc->numTypes - i - 1]);
|
|
|
|
while (_.word_index < inst_offset + inst_word_count) {
|
|
const uint16_t inst_word_index = uint16_t(_.word_index - inst_offset);
|
|
if (_.expected_operands.empty()) {
|
|
return diagnostic() << "Invalid instruction Op" << opcode_desc->name
|
|
<< " starting at word " << inst_offset
|
|
<< ": expected no more operands after "
|
|
<< inst_word_index
|
|
<< " words, but stated word count is "
|
|
<< inst_word_count << ".";
|
|
}
|
|
|
|
spv_operand_type_t type =
|
|
spvTakeFirstMatchableOperand(&_.expected_operands);
|
|
|
|
if (auto error =
|
|
parseOperand(inst_offset, &inst, type, &_.endian_converted_words,
|
|
&_.operands, &_.expected_operands)) {
|
|
return error;
|
|
}
|
|
}
|
|
|
|
if (!_.expected_operands.empty() &&
|
|
!spvOperandIsOptional(_.expected_operands.back())) {
|
|
return diagnostic() << "End of input reached while decoding Op"
|
|
<< opcode_desc->name << " starting at word "
|
|
<< inst_offset << ": expected more operands after "
|
|
<< inst_word_count << " words.";
|
|
}
|
|
|
|
if ((inst_offset + inst_word_count) != _.word_index) {
|
|
return diagnostic() << "Invalid word count: Op" << opcode_desc->name
|
|
<< " starting at word " << inst_offset
|
|
<< " says it has " << inst_word_count
|
|
<< " words, but found " << _.word_index - inst_offset
|
|
<< " words instead.";
|
|
}
|
|
|
|
// Check the computed length of the endian-converted words vector against
|
|
// the declared number of words in the instruction. If endian conversion
|
|
// is required, then they should match. If no endian conversion was
|
|
// performed, then the vector only contains the initial opcode/word-count
|
|
// word.
|
|
assert(!_.requires_endian_conversion ||
|
|
(inst_word_count == _.endian_converted_words.size()));
|
|
assert(_.requires_endian_conversion ||
|
|
(_.endian_converted_words.size() == 1));
|
|
|
|
recordNumberType(inst_offset, &inst);
|
|
|
|
if (_.requires_endian_conversion) {
|
|
// We must wait until here to set this pointer, because the vector might
|
|
// have been be resized while we accumulated its elements.
|
|
inst.words = _.endian_converted_words.data();
|
|
} else {
|
|
// If no conversion is required, then just point to the underlying binary.
|
|
// This saves time and space.
|
|
inst.words = _.words + inst_offset;
|
|
}
|
|
inst.num_words = inst_word_count;
|
|
|
|
// We must wait until here to set this pointer, because the vector might
|
|
// have been be resized while we accumulated its elements.
|
|
inst.operands = _.operands.data();
|
|
inst.num_operands = uint16_t(_.operands.size());
|
|
|
|
// Issue the callback. The callee should know that all the storage in inst
|
|
// is transient, and will disappear immediately afterward.
|
|
if (parsed_instruction_fn_) {
|
|
if (auto error = parsed_instruction_fn_(user_data_, &inst)) return error;
|
|
}
|
|
|
|
return SPV_SUCCESS;
|
|
}
|
|
|
|
spv_result_t Parser::parseOperand(size_t inst_offset,
|
|
spv_parsed_instruction_t* inst,
|
|
const spv_operand_type_t type,
|
|
std::vector<uint32_t>* words,
|
|
std::vector<spv_parsed_operand_t>* operands,
|
|
spv_operand_pattern_t* expected_operands) {
|
|
const SpvOp opcode = static_cast<SpvOp>(inst->opcode);
|
|
// We'll fill in this result as we go along.
|
|
spv_parsed_operand_t parsed_operand;
|
|
parsed_operand.offset = uint16_t(_.word_index - inst_offset);
|
|
// Most operands occupy one word. This might be be adjusted later.
|
|
parsed_operand.num_words = 1;
|
|
// The type argument is the one used by the grammar to parse the instruction.
|
|
// But it can exposes internal parser details such as whether an operand is
|
|
// optional or actually represents a variable-length sequence of operands.
|
|
// The resulting type should be adjusted to avoid those internal details.
|
|
// In most cases, the resulting operand type is the same as the grammar type.
|
|
parsed_operand.type = type;
|
|
|
|
// Assume non-numeric values. This will be updated for literal numbers.
|
|
parsed_operand.number_kind = SPV_NUMBER_NONE;
|
|
parsed_operand.number_bit_width = 0;
|
|
|
|
if (_.word_index >= _.num_words)
|
|
return exhaustedInputDiagnostic(inst_offset, opcode, type);
|
|
|
|
const uint32_t word = peek();
|
|
|
|
// Do the words in this operand have to be converted to native endianness?
|
|
// True for all but literal strings.
|
|
bool convert_operand_endianness = true;
|
|
|
|
switch (type) {
|
|
case SPV_OPERAND_TYPE_TYPE_ID:
|
|
if (!word)
|
|
return diagnostic(SPV_ERROR_INVALID_ID) << "Error: Type Id is 0";
|
|
inst->type_id = word;
|
|
break;
|
|
|
|
case SPV_OPERAND_TYPE_RESULT_ID:
|
|
if (!word)
|
|
return diagnostic(SPV_ERROR_INVALID_ID) << "Error: Result Id is 0";
|
|
inst->result_id = word;
|
|
// Save the result ID to type ID mapping.
|
|
// In the grammar, type ID always appears before result ID.
|
|
if (_.id_to_type_id.find(inst->result_id) != _.id_to_type_id.end())
|
|
return diagnostic(SPV_ERROR_INVALID_ID)
|
|
<< "Id " << inst->result_id << " is defined more than once";
|
|
// Record it.
|
|
// A regular value maps to its type. Some instructions (e.g. OpLabel)
|
|
// have no type Id, and will map to 0. The result Id for a
|
|
// type-generating instruction (e.g. OpTypeInt) maps to itself.
|
|
_.id_to_type_id[inst->result_id] =
|
|
spvOpcodeGeneratesType(opcode) ? inst->result_id : inst->type_id;
|
|
break;
|
|
|
|
case SPV_OPERAND_TYPE_ID:
|
|
case SPV_OPERAND_TYPE_OPTIONAL_ID:
|
|
if (!word) return diagnostic(SPV_ERROR_INVALID_ID) << "Id is 0";
|
|
parsed_operand.type = SPV_OPERAND_TYPE_ID;
|
|
|
|
if (opcode == SpvOpExtInst && parsed_operand.offset == 3) {
|
|
// The current word is the extended instruction set Id.
|
|
// Set the extended instruction set type for the current instruction.
|
|
auto ext_inst_type_iter = _.import_id_to_ext_inst_type.find(word);
|
|
if (ext_inst_type_iter == _.import_id_to_ext_inst_type.end()) {
|
|
return diagnostic(SPV_ERROR_INVALID_ID)
|
|
<< "OpExtInst set Id " << word
|
|
<< " does not reference an OpExtInstImport result Id";
|
|
}
|
|
inst->ext_inst_type = ext_inst_type_iter->second;
|
|
}
|
|
break;
|
|
|
|
case SPV_OPERAND_TYPE_SCOPE_ID:
|
|
case SPV_OPERAND_TYPE_MEMORY_SEMANTICS_ID:
|
|
// Check for trivially invalid values. The operand descriptions already
|
|
// have the word "ID" in them.
|
|
if (!word) return diagnostic() << spvOperandTypeStr(type) << " is 0";
|
|
break;
|
|
|
|
case SPV_OPERAND_TYPE_EXTENSION_INSTRUCTION_NUMBER: {
|
|
assert(SpvOpExtInst == opcode);
|
|
assert(inst->ext_inst_type != SPV_EXT_INST_TYPE_NONE);
|
|
spv_ext_inst_desc ext_inst;
|
|
if (grammar_.lookupExtInst(inst->ext_inst_type, word, &ext_inst) ==
|
|
SPV_SUCCESS) {
|
|
// if we know about this ext inst, push the expected operands
|
|
spvPushOperandTypes(ext_inst->operandTypes, expected_operands);
|
|
} else {
|
|
// if we don't know this extended instruction and the set isn't
|
|
// non-semantic, we cannot process further
|
|
if (!spvExtInstIsNonSemantic(inst->ext_inst_type)) {
|
|
return diagnostic()
|
|
<< "Invalid extended instruction number: " << word;
|
|
} else {
|
|
// for non-semantic instruction sets, we know the form of all such
|
|
// extended instructions contains a series of IDs as parameters
|
|
expected_operands->push_back(SPV_OPERAND_TYPE_VARIABLE_ID);
|
|
}
|
|
}
|
|
} break;
|
|
|
|
case SPV_OPERAND_TYPE_SPEC_CONSTANT_OP_NUMBER: {
|
|
assert(SpvOpSpecConstantOp == opcode);
|
|
if (word > static_cast<uint32_t>(SpvOp::SpvOpMax) ||
|
|
grammar_.lookupSpecConstantOpcode(SpvOp(word))) {
|
|
return diagnostic()
|
|
<< "Invalid " << spvOperandTypeStr(type) << ": " << word;
|
|
}
|
|
spv_opcode_desc opcode_entry = nullptr;
|
|
if (grammar_.lookupOpcode(SpvOp(word), &opcode_entry)) {
|
|
return diagnostic(SPV_ERROR_INTERNAL)
|
|
<< "OpSpecConstant opcode table out of sync";
|
|
}
|
|
// OpSpecConstant opcodes must have a type and result. We've already
|
|
// processed them, so skip them when preparing to parse the other
|
|
// operants for the opcode.
|
|
assert(opcode_entry->hasType);
|
|
assert(opcode_entry->hasResult);
|
|
assert(opcode_entry->numTypes >= 2);
|
|
spvPushOperandTypes(opcode_entry->operandTypes + 2, expected_operands);
|
|
} break;
|
|
|
|
case SPV_OPERAND_TYPE_LITERAL_INTEGER:
|
|
case SPV_OPERAND_TYPE_OPTIONAL_LITERAL_INTEGER:
|
|
// These are regular single-word literal integer operands.
|
|
// Post-parsing validation should check the range of the parsed value.
|
|
parsed_operand.type = SPV_OPERAND_TYPE_LITERAL_INTEGER;
|
|
// It turns out they are always unsigned integers!
|
|
parsed_operand.number_kind = SPV_NUMBER_UNSIGNED_INT;
|
|
parsed_operand.number_bit_width = 32;
|
|
break;
|
|
|
|
case SPV_OPERAND_TYPE_TYPED_LITERAL_NUMBER:
|
|
case SPV_OPERAND_TYPE_OPTIONAL_TYPED_LITERAL_INTEGER:
|
|
parsed_operand.type = SPV_OPERAND_TYPE_TYPED_LITERAL_NUMBER;
|
|
if (opcode == SpvOpSwitch) {
|
|
// The literal operands have the same type as the value
|
|
// referenced by the selector Id.
|
|
const uint32_t selector_id = peekAt(inst_offset + 1);
|
|
const auto type_id_iter = _.id_to_type_id.find(selector_id);
|
|
if (type_id_iter == _.id_to_type_id.end() ||
|
|
type_id_iter->second == 0) {
|
|
return diagnostic() << "Invalid OpSwitch: selector id " << selector_id
|
|
<< " has no type";
|
|
}
|
|
uint32_t type_id = type_id_iter->second;
|
|
|
|
if (selector_id == type_id) {
|
|
// Recall that by convention, a result ID that is a type definition
|
|
// maps to itself.
|
|
return diagnostic() << "Invalid OpSwitch: selector id " << selector_id
|
|
<< " is a type, not a value";
|
|
}
|
|
if (auto error = setNumericTypeInfoForType(&parsed_operand, type_id))
|
|
return error;
|
|
if (parsed_operand.number_kind != SPV_NUMBER_UNSIGNED_INT &&
|
|
parsed_operand.number_kind != SPV_NUMBER_SIGNED_INT) {
|
|
return diagnostic() << "Invalid OpSwitch: selector id " << selector_id
|
|
<< " is not a scalar integer";
|
|
}
|
|
} else {
|
|
assert(opcode == SpvOpConstant || opcode == SpvOpSpecConstant);
|
|
// The literal number type is determined by the type Id for the
|
|
// constant.
|
|
assert(inst->type_id);
|
|
if (auto error =
|
|
setNumericTypeInfoForType(&parsed_operand, inst->type_id))
|
|
return error;
|
|
}
|
|
break;
|
|
|
|
case SPV_OPERAND_TYPE_LITERAL_STRING:
|
|
case SPV_OPERAND_TYPE_OPTIONAL_LITERAL_STRING: {
|
|
convert_operand_endianness = false;
|
|
const char* string =
|
|
reinterpret_cast<const char*>(_.words + _.word_index);
|
|
// Compute the length of the string, but make sure we don't run off the
|
|
// end of the input.
|
|
const size_t remaining_input_bytes =
|
|
sizeof(uint32_t) * (_.num_words - _.word_index);
|
|
const size_t string_num_content_bytes =
|
|
spv_strnlen_s(string, remaining_input_bytes);
|
|
// If there was no terminating null byte, then that's an end-of-input
|
|
// error.
|
|
if (string_num_content_bytes == remaining_input_bytes)
|
|
return exhaustedInputDiagnostic(inst_offset, opcode, type);
|
|
// Account for null in the word length, so add 1 for null, then add 3 to
|
|
// make sure we round up. The following is equivalent to:
|
|
// (string_num_content_bytes + 1 + 3) / 4
|
|
const size_t string_num_words = string_num_content_bytes / 4 + 1;
|
|
// Make sure we can record the word count without overflow.
|
|
//
|
|
// This error can't currently be triggered because of validity
|
|
// checks elsewhere.
|
|
if (string_num_words > std::numeric_limits<uint16_t>::max()) {
|
|
return diagnostic() << "Literal string is longer than "
|
|
<< std::numeric_limits<uint16_t>::max()
|
|
<< " words: " << string_num_words << " words long";
|
|
}
|
|
parsed_operand.num_words = uint16_t(string_num_words);
|
|
parsed_operand.type = SPV_OPERAND_TYPE_LITERAL_STRING;
|
|
|
|
if (SpvOpExtInstImport == opcode) {
|
|
// Record the extended instruction type for the ID for this import.
|
|
// There is only one string literal argument to OpExtInstImport,
|
|
// so it's sufficient to guard this just on the opcode.
|
|
const spv_ext_inst_type_t ext_inst_type =
|
|
spvExtInstImportTypeGet(string);
|
|
if (SPV_EXT_INST_TYPE_NONE == ext_inst_type) {
|
|
return diagnostic()
|
|
<< "Invalid extended instruction import '" << string << "'";
|
|
}
|
|
// We must have parsed a valid result ID. It's a condition
|
|
// of the grammar, and we only accept non-zero result Ids.
|
|
assert(inst->result_id);
|
|
_.import_id_to_ext_inst_type[inst->result_id] = ext_inst_type;
|
|
}
|
|
} break;
|
|
|
|
case SPV_OPERAND_TYPE_CAPABILITY:
|
|
case SPV_OPERAND_TYPE_SOURCE_LANGUAGE:
|
|
case SPV_OPERAND_TYPE_EXECUTION_MODEL:
|
|
case SPV_OPERAND_TYPE_ADDRESSING_MODEL:
|
|
case SPV_OPERAND_TYPE_MEMORY_MODEL:
|
|
case SPV_OPERAND_TYPE_EXECUTION_MODE:
|
|
case SPV_OPERAND_TYPE_STORAGE_CLASS:
|
|
case SPV_OPERAND_TYPE_DIMENSIONALITY:
|
|
case SPV_OPERAND_TYPE_SAMPLER_ADDRESSING_MODE:
|
|
case SPV_OPERAND_TYPE_SAMPLER_FILTER_MODE:
|
|
case SPV_OPERAND_TYPE_SAMPLER_IMAGE_FORMAT:
|
|
case SPV_OPERAND_TYPE_FP_ROUNDING_MODE:
|
|
case SPV_OPERAND_TYPE_LINKAGE_TYPE:
|
|
case SPV_OPERAND_TYPE_ACCESS_QUALIFIER:
|
|
case SPV_OPERAND_TYPE_OPTIONAL_ACCESS_QUALIFIER:
|
|
case SPV_OPERAND_TYPE_FUNCTION_PARAMETER_ATTRIBUTE:
|
|
case SPV_OPERAND_TYPE_DECORATION:
|
|
case SPV_OPERAND_TYPE_BUILT_IN:
|
|
case SPV_OPERAND_TYPE_GROUP_OPERATION:
|
|
case SPV_OPERAND_TYPE_KERNEL_ENQ_FLAGS:
|
|
case SPV_OPERAND_TYPE_KERNEL_PROFILING_INFO:
|
|
case SPV_OPERAND_TYPE_RAY_FLAGS:
|
|
case SPV_OPERAND_TYPE_RAY_QUERY_INTERSECTION:
|
|
case SPV_OPERAND_TYPE_RAY_QUERY_COMMITTED_INTERSECTION_TYPE:
|
|
case SPV_OPERAND_TYPE_RAY_QUERY_CANDIDATE_INTERSECTION_TYPE:
|
|
case SPV_OPERAND_TYPE_DEBUG_BASE_TYPE_ATTRIBUTE_ENCODING:
|
|
case SPV_OPERAND_TYPE_DEBUG_COMPOSITE_TYPE:
|
|
case SPV_OPERAND_TYPE_DEBUG_TYPE_QUALIFIER:
|
|
case SPV_OPERAND_TYPE_DEBUG_OPERATION:
|
|
case SPV_OPERAND_TYPE_CLDEBUG100_DEBUG_BASE_TYPE_ATTRIBUTE_ENCODING:
|
|
case SPV_OPERAND_TYPE_CLDEBUG100_DEBUG_COMPOSITE_TYPE:
|
|
case SPV_OPERAND_TYPE_CLDEBUG100_DEBUG_TYPE_QUALIFIER:
|
|
case SPV_OPERAND_TYPE_CLDEBUG100_DEBUG_OPERATION:
|
|
case SPV_OPERAND_TYPE_CLDEBUG100_DEBUG_IMPORTED_ENTITY:
|
|
case SPV_OPERAND_TYPE_FPDENORM_MODE:
|
|
case SPV_OPERAND_TYPE_FPOPERATION_MODE:
|
|
case SPV_OPERAND_TYPE_QUANTIZATION_MODES:
|
|
case SPV_OPERAND_TYPE_OVERFLOW_MODES:
|
|
case SPV_OPERAND_TYPE_PACKED_VECTOR_FORMAT:
|
|
case SPV_OPERAND_TYPE_OPTIONAL_PACKED_VECTOR_FORMAT: {
|
|
// A single word that is a plain enum value.
|
|
|
|
// Map an optional operand type to its corresponding concrete type.
|
|
if (type == SPV_OPERAND_TYPE_OPTIONAL_ACCESS_QUALIFIER)
|
|
parsed_operand.type = SPV_OPERAND_TYPE_ACCESS_QUALIFIER;
|
|
if (type == SPV_OPERAND_TYPE_OPTIONAL_PACKED_VECTOR_FORMAT)
|
|
parsed_operand.type = SPV_OPERAND_TYPE_PACKED_VECTOR_FORMAT;
|
|
|
|
spv_operand_desc entry;
|
|
if (grammar_.lookupOperand(type, word, &entry)) {
|
|
return diagnostic()
|
|
<< "Invalid " << spvOperandTypeStr(parsed_operand.type)
|
|
<< " operand: " << word;
|
|
}
|
|
// Prepare to accept operands to this operand, if needed.
|
|
spvPushOperandTypes(entry->operandTypes, expected_operands);
|
|
} break;
|
|
|
|
case SPV_OPERAND_TYPE_FP_FAST_MATH_MODE:
|
|
case SPV_OPERAND_TYPE_FUNCTION_CONTROL:
|
|
case SPV_OPERAND_TYPE_LOOP_CONTROL:
|
|
case SPV_OPERAND_TYPE_IMAGE:
|
|
case SPV_OPERAND_TYPE_OPTIONAL_IMAGE:
|
|
case SPV_OPERAND_TYPE_OPTIONAL_MEMORY_ACCESS:
|
|
case SPV_OPERAND_TYPE_SELECTION_CONTROL:
|
|
case SPV_OPERAND_TYPE_CLDEBUG100_DEBUG_INFO_FLAGS:
|
|
case SPV_OPERAND_TYPE_DEBUG_INFO_FLAGS: {
|
|
// This operand is a mask.
|
|
|
|
// Map an optional operand type to its corresponding concrete type.
|
|
if (type == SPV_OPERAND_TYPE_OPTIONAL_IMAGE)
|
|
parsed_operand.type = SPV_OPERAND_TYPE_IMAGE;
|
|
else if (type == SPV_OPERAND_TYPE_OPTIONAL_MEMORY_ACCESS)
|
|
parsed_operand.type = SPV_OPERAND_TYPE_MEMORY_ACCESS;
|
|
|
|
// Check validity of set mask bits. Also prepare for operands for those
|
|
// masks if they have any. To get operand order correct, scan from
|
|
// MSB to LSB since we can only prepend operands to a pattern.
|
|
// The only case in the grammar where you have more than one mask bit
|
|
// having an operand is for image operands. See SPIR-V 3.14 Image
|
|
// Operands.
|
|
uint32_t remaining_word = word;
|
|
for (uint32_t mask = (1u << 31); remaining_word; mask >>= 1) {
|
|
if (remaining_word & mask) {
|
|
spv_operand_desc entry;
|
|
if (grammar_.lookupOperand(type, mask, &entry)) {
|
|
return diagnostic()
|
|
<< "Invalid " << spvOperandTypeStr(parsed_operand.type)
|
|
<< " operand: " << word << " has invalid mask component "
|
|
<< mask;
|
|
}
|
|
remaining_word ^= mask;
|
|
spvPushOperandTypes(entry->operandTypes, expected_operands);
|
|
}
|
|
}
|
|
if (word == 0) {
|
|
// An all-zeroes mask *might* also be valid.
|
|
spv_operand_desc entry;
|
|
if (SPV_SUCCESS == grammar_.lookupOperand(type, 0, &entry)) {
|
|
// Prepare for its operands, if any.
|
|
spvPushOperandTypes(entry->operandTypes, expected_operands);
|
|
}
|
|
}
|
|
} break;
|
|
default:
|
|
return diagnostic() << "Internal error: Unhandled operand type: " << type;
|
|
}
|
|
|
|
assert(spvOperandIsConcrete(parsed_operand.type));
|
|
|
|
operands->push_back(parsed_operand);
|
|
|
|
const size_t index_after_operand = _.word_index + parsed_operand.num_words;
|
|
|
|
// Avoid buffer overrun for the cases where the operand has more than one
|
|
// word, and where it isn't a string. (Those other cases have already been
|
|
// handled earlier.) For example, this error can occur for a multi-word
|
|
// argument to OpConstant, or a multi-word case literal operand for OpSwitch.
|
|
if (_.num_words < index_after_operand)
|
|
return exhaustedInputDiagnostic(inst_offset, opcode, type);
|
|
|
|
if (_.requires_endian_conversion) {
|
|
// Copy instruction words. Translate to native endianness as needed.
|
|
if (convert_operand_endianness) {
|
|
const spv_endianness_t endianness = _.endian;
|
|
std::transform(_.words + _.word_index, _.words + index_after_operand,
|
|
std::back_inserter(*words),
|
|
[endianness](const uint32_t raw_word) {
|
|
return spvFixWord(raw_word, endianness);
|
|
});
|
|
} else {
|
|
words->insert(words->end(), _.words + _.word_index,
|
|
_.words + index_after_operand);
|
|
}
|
|
}
|
|
|
|
// Advance past the operand.
|
|
_.word_index = index_after_operand;
|
|
|
|
return SPV_SUCCESS;
|
|
}
|
|
|
|
spv_result_t Parser::setNumericTypeInfoForType(
|
|
spv_parsed_operand_t* parsed_operand, uint32_t type_id) {
|
|
assert(type_id != 0);
|
|
auto type_info_iter = _.type_id_to_number_type_info.find(type_id);
|
|
if (type_info_iter == _.type_id_to_number_type_info.end()) {
|
|
return diagnostic() << "Type Id " << type_id << " is not a type";
|
|
}
|
|
const NumberType& info = type_info_iter->second;
|
|
if (info.type == SPV_NUMBER_NONE) {
|
|
// This is a valid type, but for something other than a scalar number.
|
|
return diagnostic() << "Type Id " << type_id
|
|
<< " is not a scalar numeric type";
|
|
}
|
|
|
|
parsed_operand->number_kind = info.type;
|
|
parsed_operand->number_bit_width = info.bit_width;
|
|
// Round up the word count.
|
|
parsed_operand->num_words = static_cast<uint16_t>((info.bit_width + 31) / 32);
|
|
return SPV_SUCCESS;
|
|
}
|
|
|
|
void Parser::recordNumberType(size_t inst_offset,
|
|
const spv_parsed_instruction_t* inst) {
|
|
const SpvOp opcode = static_cast<SpvOp>(inst->opcode);
|
|
if (spvOpcodeGeneratesType(opcode)) {
|
|
NumberType info = {SPV_NUMBER_NONE, 0};
|
|
if (SpvOpTypeInt == opcode) {
|
|
const bool is_signed = peekAt(inst_offset + 3) != 0;
|
|
info.type = is_signed ? SPV_NUMBER_SIGNED_INT : SPV_NUMBER_UNSIGNED_INT;
|
|
info.bit_width = peekAt(inst_offset + 2);
|
|
} else if (SpvOpTypeFloat == opcode) {
|
|
info.type = SPV_NUMBER_FLOATING;
|
|
info.bit_width = peekAt(inst_offset + 2);
|
|
}
|
|
// The *result* Id of a type generating instruction is the type Id.
|
|
_.type_id_to_number_type_info[inst->result_id] = info;
|
|
}
|
|
}
|
|
|
|
} // anonymous namespace
|
|
|
|
spv_result_t spvBinaryParse(const spv_const_context context, void* user_data,
|
|
const uint32_t* code, const size_t num_words,
|
|
spv_parsed_header_fn_t parsed_header,
|
|
spv_parsed_instruction_fn_t parsed_instruction,
|
|
spv_diagnostic* diagnostic) {
|
|
spv_context_t hijack_context = *context;
|
|
if (diagnostic) {
|
|
*diagnostic = nullptr;
|
|
spvtools::UseDiagnosticAsMessageConsumer(&hijack_context, diagnostic);
|
|
}
|
|
Parser parser(&hijack_context, user_data, parsed_header, parsed_instruction);
|
|
return parser.parse(code, num_words, diagnostic);
|
|
}
|
|
|
|
// TODO(dneto): This probably belongs in text.cpp since that's the only place
|
|
// that a spv_binary_t value is created.
|
|
void spvBinaryDestroy(spv_binary binary) {
|
|
if (binary) {
|
|
if (binary->code) delete[] binary->code;
|
|
delete binary;
|
|
}
|
|
}
|
|
|
|
size_t spv_strnlen_s(const char* str, size_t strsz) {
|
|
if (!str) return 0;
|
|
for (size_t i = 0; i < strsz; i++) {
|
|
if (!str[i]) return i;
|
|
}
|
|
return strsz;
|
|
}
|