bgfx/examples/36-sky/sky.cpp
2019-01-11 14:14:17 -08:00

665 lines
19 KiB
C++
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/*
* Copyright 2017 Stanislav Pidhorskyi. All rights reserved.
* License: https://github.com/bkaradzic/bgfx#license-bsd-2-clause
*/
/*
* This example demonstrates:
* - Usage of Perez sky model [1] to render a dynamic sky.
* - Rendering a mesh with a lightmap, shading of which is driven by the same parameters as the sky.
*
* Typically, the sky is rendered using cubemaps or other environment maps.
* This approach can provide a high-quality sky, but the downside is that the
* image is static. To achieve daytime changes in sky appearance, there is a need
* in a dynamic model.
*
* Perez "An All-Weather Model for Sky Luminance Distribution" is a simple,
* but good enough model which is, in essence, a function that
* interpolates a sky color. As input, it requires several turbidity
* coefficients, a color at zenith and direction to the sun.
* Turbidity coefficients are taken from [2], which are computed using more
* complex physically based models. Color at zenith depends on daytime and can
* vary depending on many factors.
*
* In the code below, there are two tables that contain sky and sun luminance
* which were computed using code from [3]. Luminance in those tables
* represents actual scale of light energy that comes from sun compared to
* the sky.
*
* The sky is driven by luminance of the sky, while the material of the
* landscape is driven by both, the luminance of the sky and the sun. The
* lightening model is very simple and consists of two parts: directional
* light and hemisphere light. The first is used for the sun while the second
* is used for the sky. Additionally, the second part is modulated by a
* lightmap to achieve ambient occlusion effect.
*
* References
* ==========
*
* [1] R. Perez, R. Seals, and J. Michalsky."An All-Weather Model for Sky Luminance Distribution".
* Solar Energy, Volume 50, Number 3 (March 1993), pp. 235245.
*
* [2] A. J. Preetham, Peter Shirley, and Brian Smits. "A Practical Analytic Model for Daylight",
* Proceedings of the 26th Annual Conference on Computer Graphics and Interactive Techniques,
* 1999, pp. 91100.
* https://www.cs.utah.edu/~shirley/papers/sunsky/sunsky.pdf
*
* [3] E. Lengyel, Game Engine Gems, Volume One. Jones & Bartlett Learning, 2010. pp. 219 - 234
*
*/
#include "common.h"
#include "bgfx_utils.h"
#include "imgui/imgui.h"
#include "camera.h"
#include "bounds.h"
#include <map>
namespace
{
// Represents color. Color-space depends on context.
// In the code below, used to represent color in XYZ, and RGB color-space
typedef bx::Vec3 Color;
// HDTV rec. 709 matrix.
static float M_XYZ2RGB[] =
{
3.240479f, -0.969256f, 0.055648f,
-1.53715f, 1.875991f, -0.204043f,
-0.49853f, 0.041556f, 1.057311f,
};
// Converts color repesentation from CIE XYZ to RGB color-space.
Color xyzToRgb(const Color& xyz)
{
Color rgb;
rgb.x = M_XYZ2RGB[0] * xyz.x + M_XYZ2RGB[3] * xyz.y + M_XYZ2RGB[6] * xyz.z;
rgb.y = M_XYZ2RGB[1] * xyz.x + M_XYZ2RGB[4] * xyz.y + M_XYZ2RGB[7] * xyz.z;
rgb.z = M_XYZ2RGB[2] * xyz.x + M_XYZ2RGB[5] * xyz.y + M_XYZ2RGB[8] * xyz.z;
return rgb;
};
// Precomputed luminance of sunlight in XYZ colorspace.
// Computed using code from Game Engine Gems, Volume One, chapter 15. Implementation based on Dr. Richard Bird model.
// This table is used for piecewise linear interpolation. Transitions from and to 0.0 at sunset and sunrise are highly inaccurate
static std::map<float, Color> sunLuminanceXYZTable = {
{ 5.0f, { 0.000000f, 0.000000f, 0.000000f } },
{ 7.0f, { 12.703322f, 12.989393f, 9.100411f } },
{ 8.0f, { 13.202644f, 13.597814f, 11.524929f } },
{ 9.0f, { 13.192974f, 13.597458f, 12.264488f } },
{ 10.0f, { 13.132943f, 13.535914f, 12.560032f } },
{ 11.0f, { 13.088722f, 13.489535f, 12.692996f } },
{ 12.0f, { 13.067827f, 13.467483f, 12.745179f } },
{ 13.0f, { 13.069653f, 13.469413f, 12.740822f } },
{ 14.0f, { 13.094319f, 13.495428f, 12.678066f } },
{ 15.0f, { 13.142133f, 13.545483f, 12.526785f } },
{ 16.0f, { 13.201734f, 13.606017f, 12.188001f } },
{ 17.0f, { 13.182774f, 13.572725f, 11.311157f } },
{ 18.0f, { 12.448635f, 12.672520f, 8.267771f } },
{ 20.0f, { 0.000000f, 0.000000f, 0.000000f } },
};
// Precomputed luminance of sky in the zenith point in XYZ colorspace.
// Computed using code from Game Engine Gems, Volume One, chapter 15. Implementation based on Dr. Richard Bird model.
// This table is used for piecewise linear interpolation. Day/night transitions are highly inaccurate.
// The scale of luminance change in Day/night transitions is not preserved.
// Luminance at night was increased to eliminate need the of HDR render.
static std::map<float, Color> skyLuminanceXYZTable = {
{ 0.0f, { 0.308f, 0.308f, 0.411f } },
{ 1.0f, { 0.308f, 0.308f, 0.410f } },
{ 2.0f, { 0.301f, 0.301f, 0.402f } },
{ 3.0f, { 0.287f, 0.287f, 0.382f } },
{ 4.0f, { 0.258f, 0.258f, 0.344f } },
{ 5.0f, { 0.258f, 0.258f, 0.344f } },
{ 7.0f, { 0.962851f, 1.000000f, 1.747835f } },
{ 8.0f, { 0.967787f, 1.000000f, 1.776762f } },
{ 9.0f, { 0.970173f, 1.000000f, 1.788413f } },
{ 10.0f, { 0.971431f, 1.000000f, 1.794102f } },
{ 11.0f, { 0.972099f, 1.000000f, 1.797096f } },
{ 12.0f, { 0.972385f, 1.000000f, 1.798389f } },
{ 13.0f, { 0.972361f, 1.000000f, 1.798278f } },
{ 14.0f, { 0.972020f, 1.000000f, 1.796740f } },
{ 15.0f, { 0.971275f, 1.000000f, 1.793407f } },
{ 16.0f, { 0.969885f, 1.000000f, 1.787078f } },
{ 17.0f, { 0.967216f, 1.000000f, 1.773758f } },
{ 18.0f, { 0.961668f, 1.000000f, 1.739891f } },
{ 20.0f, { 0.264f, 0.264f, 0.352f } },
{ 21.0f, { 0.264f, 0.264f, 0.352f } },
{ 22.0f, { 0.290f, 0.290f, 0.386f } },
{ 23.0f, { 0.303f, 0.303f, 0.404f } },
};
// Turbidity tables. Taken from:
// A. J. Preetham, P. Shirley, and B. Smits. A Practical Analytic Model for Daylight. SIGGRAPH 99
// Coefficients correspond to xyY colorspace.
static Color ABCDE[] =
{
{ -0.2592f, -0.2608f, -1.4630f },
{ 0.0008f, 0.0092f, 0.4275f },
{ 0.2125f, 0.2102f, 5.3251f },
{ -0.8989f, -1.6537f, -2.5771f },
{ 0.0452f, 0.0529f, 0.3703f },
};
static Color ABCDE_t[] =
{
{ -0.0193f, -0.0167f, 0.1787f },
{ -0.0665f, -0.0950f, -0.3554f },
{ -0.0004f, -0.0079f, -0.0227f },
{ -0.0641f, -0.0441f, 0.1206f },
{ -0.0033f, -0.0109f, -0.0670f },
};
// Performs piecewise linear interpolation of a Color parameter.
class DynamicValueController
{
typedef Color ValueType;
typedef std::map<float, ValueType> KeyMap;
public:
DynamicValueController()
{
}
~DynamicValueController()
{
}
void SetMap(const KeyMap& keymap)
{
m_keyMap = keymap;
}
ValueType GetValue(float time) const
{
typename KeyMap::const_iterator itUpper = m_keyMap.upper_bound(time + 1e-6f);
typename KeyMap::const_iterator itLower = itUpper;
--itLower;
if (itLower == m_keyMap.end())
{
return itUpper->second;
}
if (itUpper == m_keyMap.end())
{
return itLower->second;
}
float lowerTime = itLower->first;
const ValueType& lowerVal = itLower->second;
float upperTime = itUpper->first;
const ValueType& upperVal = itUpper->second;
if (lowerTime == upperTime)
{
return lowerVal;
}
return interpolate(lowerTime, lowerVal, upperTime, upperVal, time);
};
void Clear()
{
m_keyMap.clear();
};
private:
ValueType interpolate(float lowerTime, const ValueType& lowerVal, float upperTime, const ValueType& upperVal, float time) const
{
const float tt = (time - lowerTime) / (upperTime - lowerTime);
const ValueType result = bx::lerp(lowerVal, upperVal, tt);
return result;
};
KeyMap m_keyMap;
};
// Controls sun position according to time, month, and observer's latitude.
// Sun position computation based on Earth's orbital elements: https://nssdc.gsfc.nasa.gov/planetary/factsheet/earthfact.html
class SunController
{
public:
enum Month : int
{
January = 0,
February,
March,
April,
May,
June,
July,
August,
September,
October,
November,
December
};
SunController()
: m_latitude(50.0f)
, m_month(June)
, m_eclipticObliquity(bx::toRad(23.4f) )
, m_delta(0.0f)
{
m_northDir = { 1.0f, 0.0f, 0.0f };
m_sunDir = { 0.0f, -1.0f, 0.0f };
m_upDir = { 0.0f, 1.0f, 0.0f };
}
void Update(float _time)
{
CalculateSunOrbit();
UpdateSunPosition(_time - 12.0f);
}
bx::Vec3 m_northDir;
bx::Vec3 m_sunDir;
bx::Vec3 m_upDir;
float m_latitude;
Month m_month;
private:
void CalculateSunOrbit()
{
float day = 30.0f * m_month + 15.0f;
float lambda = 280.46f + 0.9856474f * day;
lambda = bx::toRad(lambda);
m_delta = bx::asin(bx::sin(m_eclipticObliquity) * bx::sin(lambda) );
}
void UpdateSunPosition(float _hour)
{
const float latitude = bx::toRad(m_latitude);
const float hh = _hour * bx::kPi / 12.0f;
const float azimuth = bx::atan2(
bx::sin(hh)
, bx::cos(hh) * bx::sin(latitude) - bx::tan(m_delta) * bx::cos(latitude)
);
const float altitude = bx::asin(
bx::sin(latitude) * bx::sin(m_delta) + bx::cos(latitude) * bx::cos(m_delta) * bx::cos(hh)
);
const bx::Quaternion rot0 = bx::rotateAxis(m_upDir, -azimuth);
const bx::Vec3 dir = bx::mul(m_northDir, rot0);
const bx::Vec3 uxd = bx::cross(m_upDir, dir);
const bx::Quaternion rot1 = bx::rotateAxis(uxd, altitude);
m_sunDir = bx::mul(dir, rot1);
}
float m_eclipticObliquity;
float m_delta;
};
struct ScreenPosVertex
{
float m_x;
float m_y;
static void init()
{
ms_decl
.begin()
.add(bgfx::Attrib::Position, 2, bgfx::AttribType::Float)
.end();
}
static bgfx::VertexDecl ms_decl;
};
bgfx::VertexDecl ScreenPosVertex::ms_decl;
// Renders a screen-space grid of triangles.
// Because of performance reasons, and because sky color is smooth, sky color is computed in vertex shader.
// 32x32 is a reasonable size for the grid to have smooth enough colors.
struct ProceduralSky
{
void init(int verticalCount, int horizontalCount)
{
// Create vertex stream declaration.
ScreenPosVertex::init();
m_skyProgram = loadProgram("vs_sky", "fs_sky");
m_skyProgram_colorBandingFix = loadProgram("vs_sky", "fs_sky_color_banding_fix");
m_preventBanding = true;
bx::AllocatorI* allocator = entry::getAllocator();
ScreenPosVertex* vertices = (ScreenPosVertex*)BX_ALLOC(allocator
, verticalCount * horizontalCount * sizeof(ScreenPosVertex)
);
for (int i = 0; i < verticalCount; i++)
{
for (int j = 0; j < horizontalCount; j++)
{
ScreenPosVertex& v = vertices[i * verticalCount + j];
v.m_x = float(j) / (horizontalCount - 1) * 2.0f - 1.0f;
v.m_y = float(i) / (verticalCount - 1) * 2.0f - 1.0f;
}
}
uint16_t* indices = (uint16_t*)BX_ALLOC(allocator
, (verticalCount - 1) * (horizontalCount - 1) * 6 * sizeof(uint16_t)
);
int k = 0;
for (int i = 0; i < verticalCount - 1; i++)
{
for (int j = 0; j < horizontalCount - 1; j++)
{
indices[k++] = (uint16_t)(j + 0 + horizontalCount * (i + 0));
indices[k++] = (uint16_t)(j + 1 + horizontalCount * (i + 0));
indices[k++] = (uint16_t)(j + 0 + horizontalCount * (i + 1));
indices[k++] = (uint16_t)(j + 1 + horizontalCount * (i + 0));
indices[k++] = (uint16_t)(j + 1 + horizontalCount * (i + 1));
indices[k++] = (uint16_t)(j + 0 + horizontalCount * (i + 1));
}
}
m_vbh = bgfx::createVertexBuffer(bgfx::copy(vertices, sizeof(ScreenPosVertex) * verticalCount * horizontalCount), ScreenPosVertex::ms_decl);
m_ibh = bgfx::createIndexBuffer(bgfx::copy(indices, sizeof(uint16_t) * k));
BX_FREE(allocator, indices);
BX_FREE(allocator, vertices);
}
void shutdown()
{
bgfx::destroy(m_ibh);
bgfx::destroy(m_vbh);
bgfx::destroy(m_skyProgram);
bgfx::destroy(m_skyProgram_colorBandingFix);
}
void draw()
{
bgfx::setState(BGFX_STATE_WRITE_RGB | BGFX_STATE_DEPTH_TEST_EQUAL);
bgfx::setIndexBuffer(m_ibh);
bgfx::setVertexBuffer(0, m_vbh);
bgfx::submit(0, m_preventBanding ? m_skyProgram_colorBandingFix : m_skyProgram);
}
bgfx::VertexBufferHandle m_vbh;
bgfx::IndexBufferHandle m_ibh;
bgfx::ProgramHandle m_skyProgram;
bgfx::ProgramHandle m_skyProgram_colorBandingFix;
bool m_preventBanding;
};
class ExampleProceduralSky : public entry::AppI
{
public:
ExampleProceduralSky(const char* _name, const char* _description)
: entry::AppI(_name, _description)
{
}
void init(int32_t _argc, const char* const* _argv, uint32_t _width, uint32_t _height) override
{
Args args(_argc, _argv);
m_width = _width;
m_height = _height;
m_debug = BGFX_DEBUG_NONE;
m_reset = BGFX_RESET_VSYNC;
bgfx::Init init;
init.type = args.m_type;
init.vendorId = args.m_pciId;
init.resolution.width = m_width;
init.resolution.height = m_height;
init.resolution.reset = m_reset;
bgfx::init(init);
// Enable m_debug text.
bgfx::setDebug(m_debug);
// Set view 0 clear state.
bgfx::setViewClear(0
, BGFX_CLEAR_COLOR | BGFX_CLEAR_DEPTH
, 0x000000ff
, 1.0f
, 0
);
m_sunLuminanceXYZ.SetMap(sunLuminanceXYZTable);
m_skyLuminanceXYZ.SetMap(skyLuminanceXYZTable);
m_mesh = meshLoad("meshes/test_scene.bin");
m_lightmapTexture = loadTexture("textures/lightmap.ktx");
// Imgui.
imguiCreate();
m_timeOffset = bx::getHPCounter();
m_time = 0.0f;
m_timeScale = 1.0f;
s_texLightmap = bgfx::createUniform("s_texLightmap", bgfx::UniformType::Sampler);
u_sunLuminance = bgfx::createUniform("u_sunLuminance", bgfx::UniformType::Vec4);
u_skyLuminanceXYZ = bgfx::createUniform("u_skyLuminanceXYZ", bgfx::UniformType::Vec4);
u_skyLuminance = bgfx::createUniform("u_skyLuminance", bgfx::UniformType::Vec4);
u_sunDirection = bgfx::createUniform("u_sunDirection", bgfx::UniformType::Vec4);
u_parameters = bgfx::createUniform("u_parameters", bgfx::UniformType::Vec4);
u_perezCoeff = bgfx::createUniform("u_perezCoeff", bgfx::UniformType::Vec4, 5);
m_landscapeProgram = loadProgram("vs_sky_landscape", "fs_sky_landscape");
m_sky.init(32, 32);
m_sun.Update(0);
cameraCreate();
cameraSetPosition({ 5.0f, 3.0, 0.0f });
cameraSetVerticalAngle(bx::kPi / 8.0f);
cameraSetHorizontalAngle(-bx::kPi / 3.0f);
m_turbidity = 2.15f;
}
virtual int shutdown() override
{
// Cleanup.
cameraDestroy();
imguiDestroy();
meshUnload(m_mesh);
m_sky.shutdown();
bgfx::destroy(s_texLightmap);
bgfx::destroy(u_sunLuminance);
bgfx::destroy(u_skyLuminanceXYZ);
bgfx::destroy(u_skyLuminance);
bgfx::destroy(u_sunDirection);
bgfx::destroy(u_parameters);
bgfx::destroy(u_perezCoeff);
bgfx::destroy(m_lightmapTexture);
bgfx::destroy(m_landscapeProgram);
bgfx::frame();
// Shutdown bgfx.
bgfx::shutdown();
return 0;
}
void imgui(float _width)
{
ImGui::Begin("ProceduralSky");
ImGui::SetWindowSize(ImVec2(_width, 200.0f) );
ImGui::SliderFloat("Time scale", &m_timeScale, 0.0f, 1.0f);
ImGui::SliderFloat("Time", &m_time, 0.0f, 24.0f);
ImGui::SliderFloat("Latitude", &m_sun.m_latitude, -90.0f, 90.0f);
ImGui::SliderFloat("Turbidity", &m_turbidity, 1.9f, 10.0f);
ImGui::Checkbox("Prevent color banding", &m_sky.m_preventBanding);
const char* items[] =
{
"January",
"February",
"March",
"April",
"May",
"June",
"July",
"August",
"September",
"October",
"November",
"December"
};
ImGui::Combo("Month", (int*)&m_sun.m_month, items, 12);
ImGui::End();
}
bool update() override
{
if (!entry::processEvents(m_width, m_height, m_debug, m_reset, &m_mouseState))
{
int64_t now = bx::getHPCounter();
static int64_t last = now;
const int64_t frameTime = now - last;
last = now;
const double freq = double(bx::getHPFrequency());
const float deltaTime = float(frameTime / freq);
m_time += m_timeScale * deltaTime;
m_time = bx::mod(m_time, 24.0f);
m_sun.Update(m_time);
imguiBeginFrame(m_mouseState.m_mx
, m_mouseState.m_my
, (m_mouseState.m_buttons[entry::MouseButton::Left] ? IMGUI_MBUT_LEFT : 0)
| (m_mouseState.m_buttons[entry::MouseButton::Right] ? IMGUI_MBUT_RIGHT : 0)
| (m_mouseState.m_buttons[entry::MouseButton::Middle] ? IMGUI_MBUT_MIDDLE : 0)
, m_mouseState.m_mz
, uint16_t(m_width)
, uint16_t(m_height)
);
showExampleDialog(this);
ImGui::SetNextWindowPos(
ImVec2(m_width - m_width / 5.0f - 10.0f, 10.0f)
, ImGuiCond_FirstUseEver
);
imgui(m_width / 5.0f - 10.0f);
imguiEndFrame();
if (!ImGui::MouseOverArea())
{
// Update camera.
cameraUpdate(deltaTime, m_mouseState);
}
// Set view 0 default viewport.
bgfx::setViewRect(0, 0, 0, uint16_t(m_width), uint16_t(m_height));
float view[16];
cameraGetViewMtx(view);
float proj[16];
bx::mtxProj(proj, 60.0f, float(m_width) / float(m_height), 0.1f, 2000.0f, bgfx::getCaps()->homogeneousDepth);
bgfx::setViewTransform(0, view, proj);
Color sunLuminanceXYZ = m_sunLuminanceXYZ.GetValue(m_time);
Color sunLuminanceRGB = xyzToRgb(sunLuminanceXYZ);
Color skyLuminanceXYZ = m_skyLuminanceXYZ.GetValue(m_time);
Color skyLuminanceRGB = xyzToRgb(skyLuminanceXYZ);
bgfx::setUniform(u_sunLuminance, &sunLuminanceRGB.x);
bgfx::setUniform(u_skyLuminanceXYZ, &skyLuminanceXYZ.x);
bgfx::setUniform(u_skyLuminance, &skyLuminanceRGB.x);
bgfx::setUniform(u_sunDirection, &m_sun.m_sunDir.x);
float exposition[4] = { 0.02f, 3.0f, 0.1f, m_time };
bgfx::setUniform(u_parameters, exposition);
float perezCoeff[4 * 5];
computePerezCoeff(m_turbidity, perezCoeff);
bgfx::setUniform(u_perezCoeff, perezCoeff, 5);
bgfx::setTexture(0, s_texLightmap, m_lightmapTexture);
meshSubmit(m_mesh, 0, m_landscapeProgram, NULL);
m_sky.draw();
bgfx::frame();
return true;
}
return false;
}
void computePerezCoeff(float _turbidity, float* _outPerezCoeff)
{
const bx::Vec3 turbidity = { _turbidity, _turbidity, _turbidity };
for (uint32_t ii = 0; ii < 5; ++ii)
{
const bx::Vec3 tmp = bx::mad(ABCDE_t[ii], turbidity, ABCDE[ii]);
float* out = _outPerezCoeff + 4 * ii;
bx::store(out, tmp);
out[3] = 0.0f;
}
}
bgfx::ProgramHandle m_landscapeProgram;
bgfx::UniformHandle s_texLightmap;
bgfx::TextureHandle m_lightmapTexture;
bgfx::UniformHandle u_sunLuminance;
bgfx::UniformHandle u_skyLuminanceXYZ;
bgfx::UniformHandle u_skyLuminance;
bgfx::UniformHandle u_sunDirection;
bgfx::UniformHandle u_parameters;
bgfx::UniformHandle u_perezCoeff;
ProceduralSky m_sky;
SunController m_sun;
DynamicValueController m_sunLuminanceXYZ;
DynamicValueController m_skyLuminanceXYZ;
uint32_t m_width;
uint32_t m_height;
uint32_t m_debug;
uint32_t m_reset;
Mesh* m_mesh;
entry::MouseState m_mouseState;
float m_time;
float m_timeScale;
int64_t m_timeOffset;
float m_turbidity;
};
} // namespace
ENTRY_IMPLEMENT_MAIN(ExampleProceduralSky, "36-sky", "Perez dynamic sky model.");