bgfx/examples/42-bunnylod/progmesh.c
2022-04-15 07:22:43 -07:00

556 lines
14 KiB
C

/*
* Progressive Mesh type Polygon Reduction Algorithm
*
* Original version by Stan Melax (c) 1998
* C version by Cloud Wu (c) 2020
*
* The function ProgressiveMesh() takes a model in an "indexed face
* set" sort of way. i.e. Array of vertices and Array of triangles.
* The function then does the polygon reduction algorithm
* internally and reduces the model all the way down to 0
* vertices and then returns the order in which the
* vertices are collapsed and to which neighbor each vertex
* is collapsed to. More specifically the returned "permutation"
* indicates how to reorder your vertices so you can render
* an object by using the first n vertices (for the n
* vertex version). After permuting your vertices, the
* map Array indicates to which vertex each vertex is collapsed to.
*/
/*
* The MIT License (MIT)
*
* Copyright (c) 2014 Stan Melax
* Copyright (c) 2020 Cloud Wu
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#include <assert.h>
#include <math.h>
#include <stdlib.h>
#define ARRAY_SIZE 16
struct triangle {
int vertex[3]; // the 3 points (id) that make this tri
float normal[3]; // unit vector othogonal to this face
};
struct array {
int n;
int cap;
int *buffer;
int tmp[ARRAY_SIZE];
};
struct vertex {
float position[3]; // location of point in euclidean space
int id; // place of vertex in original Array
struct array neighbor; // adjacent vertices
struct array face; // adjacent triangles
float objdist; // cached cost of collapsing edge
int collapse; // candidate vertex (id) for collapse
};
struct mesh {
int n_face;
int n_vertex;
struct vertex *v;
struct triangle *t;
};
// vec3 math
static inline void
vec3_sub(const float v0[3], const float v1[3], float v[3]) {
v[0] = v0[0] - v1[0];
v[1] = v0[1] - v1[1];
v[2] = v0[2] - v1[2];
}
static inline void
vec3_cross(const float a[3], const float b[3], float v[3]) {
v[0] = a[1]*b[2] - a[2]*b[1];
v[1] = a[2]*b[0] - a[0]*b[2];
v[2] = a[0]*b[1] - a[1]*b[0];
}
static inline float
vec3_dot(const float a[3], const float b[3]) {
return a[0]*b[0] + a[1]*b[1] + a[2] * b[2];
}
static inline float
vec3_length(const float v[3]) {
return sqrtf(vec3_dot(v,v));
}
static inline void
vec3_normalize(float v[3]) {
const float invLen = 1.0f/vec3_length(v);
v[0] *= invLen;
v[1] *= invLen;
v[2] *= invLen;
}
// array
static void
array_init(struct array *a) {
a->n = 0;
a->cap = ARRAY_SIZE;
a->buffer = a->tmp;
}
static void
array_deinit(struct array *a) {
if (a->buffer != a->tmp) {
free(a->buffer);
a->buffer = a->tmp;
a->cap = ARRAY_SIZE;
a->n = 0;
}
}
static inline int
array_index(struct array *a, int idx) {
return a->buffer[idx];
}
static void
array_push(struct array *a, int v) {
if (a->n >= a->cap) {
int *old = a->buffer;
a->cap *= 2;
a->buffer = (int *)malloc(a->cap * sizeof(int));
int i;
for (i=0;i<a->n;i++) {
a->buffer[i] = old[i];
}
if (old != a->tmp)
free(old);
}
a->buffer[a->n++] = v;
}
static inline void
array_remove_index(struct array *a, int idx) {
a->buffer[idx] = a->buffer[--a->n];
}
static void
array_remove(struct array *a, int v) {
int i;
for (i=0; i<a->n; i++) {
if (a->buffer[i] == v) {
array_remove_index(a, i);
return;
}
}
}
static inline struct vertex *
Vertex(struct mesh *M, int id) {
return &M->v[id];
}
static inline struct triangle *
Triangle(struct mesh *M, int id) {
return &M->t[id];
}
static inline struct triangle *
Face(struct mesh *M, struct vertex *v, int idx) {
return Triangle(M, array_index(&v->face, idx));
}
static void
AddVertex(struct mesh *M, const float v[3]) {
int id = M->n_vertex++;
struct vertex * tmp = Vertex(M, id);
tmp->position[0] = v[0];
tmp->position[1] = v[1];
tmp->position[2] = v[2];
tmp->id = id;
array_init(&tmp->neighbor);
array_init(&tmp->face);
tmp->objdist = 0;
tmp->collapse = -1;
}
static void
RemoveVertex(struct mesh *M, int id) {
struct vertex * v = Vertex(M, id);
assert(v->id == id);
assert(v->face.n == 0);
int i;
for (i=0;i<v->face.n;i++) {
struct vertex * nv = Vertex(M, array_index(&v->face, i));
array_remove(&nv->neighbor, id);
}
v->id = -1; // invalid vertex id
array_deinit(&v->neighbor);
array_deinit(&v->face);
}
static void
ComputeNormal(struct mesh *M, struct triangle *t) {
struct vertex * v0 = Vertex(M, t->vertex[0]);
struct vertex * v1 = Vertex(M, t->vertex[1]);
struct vertex * v2 = Vertex(M, t->vertex[2]);
float a[3], b[3];
vec3_sub(v1->position, v0->position, a);
vec3_sub(v2->position, v1->position, b);
vec3_cross(a,b, t->normal);
vec3_normalize(t->normal);
}
static void
AddNeighbor(struct mesh *M, int vid, int id) {
struct vertex *v = Vertex(M, vid);
int i;
for (i=0;i<v->neighbor.n;i++) {
if (array_index(&v->neighbor,i) == id)
return;
}
array_push(&v->neighbor, id);
}
#include <stdio.h>
static void
AddTriangle(struct mesh *M, const int v[3]) {
int v0 = v[0];
int v1 = v[1];
int v2 = v[2];
if (v0 == v1 || v0 == v2 || v1 == v2)
return;
assert(v0 < M->n_vertex);
assert(v1 < M->n_vertex);
assert(v2 < M->n_vertex);
int id = M->n_face++;
struct triangle * tmp = Triangle(M, id);
tmp->vertex[0] = v0;
tmp->vertex[1] = v1;
tmp->vertex[2] = v2;
ComputeNormal(M, tmp);
int i;
for(i=0;i<3;i++) {
struct vertex *obj = Vertex(M, v[i]);
array_push(&obj->face, id);
}
AddNeighbor(M, v0, v1);
AddNeighbor(M, v0, v2);
AddNeighbor(M, v1, v0);
AddNeighbor(M, v1, v2);
AddNeighbor(M, v2, v0);
AddNeighbor(M, v2, v1);
}
static int
HasVertex(struct triangle * t, int vid) {
return (t->vertex[0] == vid || t->vertex[1] == vid || t->vertex[2] == vid);
}
static void
RemoveIfNonNeighbor_(struct mesh *M, struct vertex *v, int id) {
int i,j;
for (i=0;i<v->neighbor.n;i++) {
if (array_index(&v->neighbor, i) == id) {
for (j=0;j<v->face.n;j++) {
if (HasVertex(Face(M, v, j), id))
return;
}
// remove from neighbors
array_remove_index(&v->neighbor, i);
return;
}
}
}
static void
RemoveIfNonNeighbor(struct mesh *M, struct vertex *v0, struct vertex *v1) {
if (v0 == NULL || v1 == NULL)
return;
RemoveIfNonNeighbor_(M, v0, v1->id);
RemoveIfNonNeighbor_(M, v1, v0->id);
}
static void
RemoveTriangle(struct mesh *M, int id) {
struct triangle * face = Triangle(M, id);
struct vertex * v[3];
int i;
for (i=0;i<3;i++) {
v[i] = Vertex(M, face->vertex[i]);
if (v[i]->id < 0)
v[i] = NULL;
else {
array_remove(&v[i]->face, id);
}
}
RemoveIfNonNeighbor(M, v[0], v[1]);
RemoveIfNonNeighbor(M, v[1], v[2]);
RemoveIfNonNeighbor(M, v[2], v[0]);
}
static void
ReplaceVertex(struct mesh *M, int faceid, int oldid, int newid) {
struct triangle * face = Triangle(M, faceid);
assert(oldid >=0 && newid >= 0);
assert(HasVertex(face, oldid));
assert(!HasVertex(face, newid));
if(oldid==face->vertex[0]){
face->vertex[0]=newid;
} else if(oldid==face->vertex[1]){
face->vertex[1]=newid;
} else {
face->vertex[2]=newid;
}
struct vertex *vold = Vertex(M, oldid);
struct vertex *vnew = Vertex(M, newid);
array_remove(&vold->face, faceid);
array_push(&vnew->face, faceid);
int i;
for (i = 0; i<3; i++) {
struct vertex *v = Vertex(M, face->vertex[i]);
RemoveIfNonNeighbor(M, vold, v);
}
AddNeighbor(M, face->vertex[0], face->vertex[1]);
AddNeighbor(M, face->vertex[0], face->vertex[2]);
AddNeighbor(M, face->vertex[1], face->vertex[0]);
AddNeighbor(M, face->vertex[1], face->vertex[2]);
AddNeighbor(M, face->vertex[2], face->vertex[0]);
AddNeighbor(M, face->vertex[2], face->vertex[1]);
ComputeNormal(M, face);
}
static void
mesh_init(struct mesh *M, int vert_n, int tri_n) {
M->n_face = 0;
M->n_vertex = 0;
M->v = (struct vertex *)malloc(vert_n * sizeof(struct vertex));
M->t = (struct triangle *)malloc(tri_n * sizeof(struct triangle));
}
static void
mesh_deinit(struct mesh *M) {
free(M->v);
free(M->t);
}
static float
ComputeEdgeCollapseCost(struct mesh *M, struct vertex *u, int vid) {
// if we collapse edge uv by moving u to v then how
// much different will the model change, i.e. how much "error".
// Texture, vertex normal, and border vertex code was removed
// to keep this demo as simple as possible.
// The method of determining cost was designed in order
// to exploit small and coplanar regions for
// effective polygon reduction.
// Is is possible to add some checks here to see if "folds"
// would be generated. i.e. normal of a remaining face gets
// flipped. I never seemed to run into this problem and
// therefore never added code to detect this case.
struct vertex *v = Vertex(M, vid);
float tmp[3];
vec3_sub(v->position, u->position, tmp);
float edgelength = vec3_length(tmp);
float curvature=0;
// find the "sides" triangles that are on the edge uv
struct array sides;
array_init(&sides);
int i,j;
for (i = 0; i<u->face.n; i++) {
if (HasVertex(Face(M, u, i), vid)) {
array_push(&sides, array_index(&u->face, i));
}
}
// use the triangle facing most away from the sides
// to determine our curvature term
for (i = 0; i<u->face.n; i++) {
float mincurv=1; // curve for face i and closer side to it
for (j = 0; j<sides.n; j++) {
float dotprod = vec3_dot(Triangle(M, array_index(&u->face, i))->normal,
Triangle(M, array_index(&sides,j))->normal); // use dot product of face normals.
float t = (1-dotprod)/2.0f;
if (t < mincurv) {
mincurv = t;
}
}
if (mincurv > curvature)
curvature = mincurv;
}
array_deinit(&sides);
// the more coplanar the lower the curvature term
return edgelength * curvature;
}
static void
ComputeEdgeCostAtVertex(struct mesh *M, struct vertex *v) {
// compute the edge collapse cost for all edges that start
// from vertex v. Since we are only interested in reducing
// the object by selecting the min cost edge at each step, we
// only cache the cost of the least cost edge at this vertex
// (in member variable collapse) as well as the value of the
// cost (in member variable objdist).
if (v->neighbor.n == 0) {
// v doesn't have neighbors so it costs nothing to collapse
v->collapse=-1;
v->objdist=-0.01f;
return;
}
v->objdist = 1000000;
v->collapse=-1;
// search all neighboring edges for "least cost" edge
int i;
for (i = 0; i<v->neighbor.n; i++) {
float dist;
dist = ComputeEdgeCollapseCost(M, v, array_index(&v->neighbor, i));
if(dist<v->objdist) {
v->collapse=array_index(&v->neighbor, i); // candidate for edge collapse
v->objdist=dist; // cost of the collapse
}
}
}
static void
ComputeAllEdgeCollapseCosts(struct mesh *M) {
// For all the edges, compute the difference it would make
// to the model if it was collapsed. The least of these
// per vertex is cached in each vertex object.
int i;
for (i = 0; i<M->n_vertex; i++) {
ComputeEdgeCostAtVertex(M, Vertex(M, i));
}
}
static void
Collapse(struct mesh *M, int uid, int vid) {
// Collapse the edge uv by moving vertex u onto v
// Actually remove tris on uv, then update tris that
// have u to have v, and then remove u.
struct vertex *u = Vertex(M, uid);
if(vid < 0) {
// u is a vertex all by itself so just delete it
RemoveVertex(M, uid);
return;
}
struct array tmp;
array_init(&tmp);
int i;
// make tmp a Array of all the neighbors of u
for (i = 0; i<u->neighbor.n; i++) {
array_push(&tmp, array_index(&u->neighbor, i));
}
// delete triangles on edge uv:
{
i = u->face.n;
while (i--) {
if (HasVertex(Face(M, u, i), vid)) {
RemoveTriangle(M, array_index(&u->face, i));
}
}
}
// update remaining triangles to have v instead of u
{
i = u->face.n;
while (i--) {
ReplaceVertex(M, array_index(&u->face, i), uid, vid);
}
}
RemoveVertex(M, uid);
// recompute the edge collapse costs for neighboring vertices
for (i = 0; i<tmp.n; i++) {
ComputeEdgeCostAtVertex(M, Vertex(M, array_index(&tmp, i)));
}
array_deinit(&tmp);
}
static struct vertex *
MinimumCostEdge(struct mesh *M) {
// Find the edge that when collapsed will affect model the least.
// This function actually returns a Vertex, the second vertex
// of the edge (collapse candidate) is stored in the vertex data.
// Serious optimization opportunity here: this function currently
// does a sequential search through an unsorted Array :-(
// Our algorithm could be O(n*lg(n)) instead of O(n*n)
int i;
struct vertex *mn = NULL;
for (i = 0; i<M->n_vertex; i++) {
struct vertex *v = Vertex(M, i);
if (v->id >=0) {
if (mn == NULL || v->objdist < mn->objdist) {
mn = v;
}
}
}
return mn;
}
void
ProgressiveMesh(int vert_n, int vert_stride, const float *v, int tri_n, const int *tri, int *map, int *permutation) {
struct mesh M;
mesh_init(&M, vert_n, tri_n);
// put input data into our data structures M
int i;
const char * tmp = (const char *)v;
for (i=0;i<vert_n;i++) {
AddVertex(&M, (const float *) tmp);
tmp += vert_stride;
}
for (i=0;i<tri_n;i++) {
AddTriangle(&M, &tri[i*3]);
}
ComputeAllEdgeCollapseCosts(&M); // cache all edge collapse costs
for (i = vert_n-1; i>=0; i--) {
// get the next vertex to collapse
struct vertex *mn = MinimumCostEdge(&M);
// keep track of this vertex, i.e. the collapse ordering
permutation[mn->id] = i;
// keep track of vertex to which we collapse to
map[i] = mn->collapse;
// Collapse this edge
Collapse(&M, mn->id, mn->collapse);
}
// reorder the map Array based on the collapse ordering
for (i = 0; i<vert_n; i++) {
map[i] = (map[i]==-1)?0:permutation[map[i]];
}
// The caller of this function should reorder their vertices
// according to the returned "permutation".
mesh_deinit(&M);
}