bgfx/examples/common/bounds.cpp
2021-09-25 19:20:06 -07:00

2105 lines
46 KiB
C++

/*
* Copyright 2011-2021 Branimir Karadzic. All rights reserved.
* License: https://github.com/bkaradzic/bgfx#license-bsd-2-clause
*/
#include <bx/rng.h>
#include <bx/math.h>
#include "bounds.h"
using namespace bx;
Vec3 getCenter(const Aabb& _aabb)
{
return mul(add(_aabb.min, _aabb.max), 0.5f);
}
Vec3 getExtents(const Aabb& _aabb)
{
return mul(sub(_aabb.max, _aabb.min), 0.5f);
}
Vec3 getCenter(const Triangle& _triangle)
{
return mul(add(add(_triangle.v0, _triangle.v1), _triangle.v2), 1.0f/3.0f);
}
void toAabb(Aabb& _outAabb, const Vec3& _extents)
{
_outAabb.min = neg(_extents);
_outAabb.max = _extents;
}
void toAabb(Aabb& _outAabb, const Vec3& _center, const Vec3& _extents)
{
_outAabb.min = sub(_center, _extents);
_outAabb.max = add(_center, _extents);
}
void toAabb(Aabb& _outAabb, const Cylinder& _cylinder)
{
// Reference(s):
// - https://web.archive.org/web/20181113055756/http://iquilezles.org/www/articles/diskbbox/diskbbox.htm
//
const Vec3 axis = sub(_cylinder.end, _cylinder.pos);
const Vec3 asq = mul(axis, axis);
const Vec3 nsq = mul(asq, 1.0f/dot(axis, axis) );
const Vec3 tmp = sub(Vec3(1.0f), nsq);
const float inv = 1.0f/(tmp.x*tmp.y*tmp.z);
const Vec3 extent =
{
_cylinder.radius * tmp.x * bx::sqrt( (nsq.x + nsq.y * nsq.z) * inv),
_cylinder.radius * tmp.y * bx::sqrt( (nsq.y + nsq.z * nsq.x) * inv),
_cylinder.radius * tmp.z * bx::sqrt( (nsq.z + nsq.x * nsq.y) * inv),
};
const Vec3 minP = sub(_cylinder.pos, extent);
const Vec3 minE = sub(_cylinder.end, extent);
const Vec3 maxP = add(_cylinder.pos, extent);
const Vec3 maxE = add(_cylinder.end, extent);
_outAabb.min = min(minP, minE);
_outAabb.max = max(maxP, maxE);
}
void toAabb(Aabb& _outAabb, const Disk& _disk)
{
// Reference(s):
// - https://web.archive.org/web/20181113055756/http://iquilezles.org/www/articles/diskbbox/diskbbox.htm
//
const Vec3 nsq = mul(_disk.normal, _disk.normal);
const Vec3 one = { 1.0f, 1.0f, 1.0f };
const Vec3 tmp = sub(one, nsq);
const float inv = 1.0f / (tmp.x*tmp.y*tmp.z);
const Vec3 extent =
{
_disk.radius * tmp.x * bx::sqrt( (nsq.x + nsq.y * nsq.z) * inv),
_disk.radius * tmp.y * bx::sqrt( (nsq.y + nsq.z * nsq.x) * inv),
_disk.radius * tmp.z * bx::sqrt( (nsq.z + nsq.x * nsq.y) * inv),
};
_outAabb.min = sub(_disk.center, extent);
_outAabb.max = add(_disk.center, extent);
}
void toAabb(Aabb& _outAabb, const Obb& _obb)
{
Vec3 xyz = { 1.0f, 1.0f, 1.0f };
Vec3 tmp = mul(xyz, _obb.mtx);
_outAabb.min = tmp;
_outAabb.max = tmp;
for (uint32_t ii = 1; ii < 8; ++ii)
{
xyz.x = ii & 1 ? -1.0f : 1.0f;
xyz.y = ii & 2 ? -1.0f : 1.0f;
xyz.z = ii & 4 ? -1.0f : 1.0f;
tmp = mul(xyz, _obb.mtx);
_outAabb.min = min(_outAabb.min, tmp);
_outAabb.max = max(_outAabb.max, tmp);
}
}
void toAabb(Aabb& _outAabb, const Sphere& _sphere)
{
const float radius = _sphere.radius;
_outAabb.min = sub(_sphere.center, radius);
_outAabb.max = add(_sphere.center, radius);
}
void toAabb(Aabb& _outAabb, const Triangle& _triangle)
{
_outAabb.min = min(_triangle.v0, _triangle.v1, _triangle.v2);
_outAabb.max = max(_triangle.v0, _triangle.v1, _triangle.v2);
}
void aabbTransformToObb(Obb& _obb, const Aabb& _aabb, const float* _mtx)
{
toObb(_obb, _aabb);
float result[16];
mtxMul(result, _obb.mtx, _mtx);
memCopy(_obb.mtx, result, sizeof(result) );
}
void toAabb(Aabb& _outAabb, const void* _vertices, uint32_t _numVertices, uint32_t _stride)
{
Vec3 mn(init::None);
Vec3 mx(init::None);
uint8_t* vertex = (uint8_t*)_vertices;
mn = mx = load<Vec3>(vertex);
vertex += _stride;
for (uint32_t ii = 1; ii < _numVertices; ++ii)
{
const Vec3 pos = load<Vec3>(vertex);
vertex += _stride;
mn = min(pos, mn);
mx = max(pos, mx);
}
_outAabb.min = mn;
_outAabb.max = mx;
}
void toAabb(Aabb& _outAabb, const float* _mtx, const void* _vertices, uint32_t _numVertices, uint32_t _stride)
{
Vec3 mn(init::None);
Vec3 mx(init::None);
uint8_t* vertex = (uint8_t*)_vertices;
mn = mx = mul(load<Vec3>(vertex), _mtx);
vertex += _stride;
for (uint32_t ii = 1; ii < _numVertices; ++ii)
{
Vec3 pos = mul(load<Vec3>(vertex), _mtx);
vertex += _stride;
mn = min(pos, mn);
mx = max(pos, mx);
}
_outAabb.min = mn;
_outAabb.max = mx;
}
float calcAreaAabb(const Aabb& _aabb)
{
const float ww = _aabb.max.x - _aabb.min.x;
const float hh = _aabb.max.y - _aabb.min.y;
const float dd = _aabb.max.z - _aabb.min.z;
return 2.0f * (ww*hh + ww*dd + hh*dd);
}
void aabbExpand(Aabb& _outAabb, float _factor)
{
_outAabb.min.x -= _factor;
_outAabb.min.y -= _factor;
_outAabb.min.z -= _factor;
_outAabb.max.x += _factor;
_outAabb.max.y += _factor;
_outAabb.max.z += _factor;
}
void aabbExpand(Aabb& _outAabb, const Vec3& _pos)
{
_outAabb.min = min(_outAabb.min, _pos);
_outAabb.max = max(_outAabb.max, _pos);
}
void toObb(Obb& _outObb, const Aabb& _aabb)
{
memSet(_outObb.mtx, 0, sizeof(_outObb.mtx) );
_outObb.mtx[ 0] = (_aabb.max.x - _aabb.min.x) * 0.5f;
_outObb.mtx[ 5] = (_aabb.max.y - _aabb.min.y) * 0.5f;
_outObb.mtx[10] = (_aabb.max.z - _aabb.min.z) * 0.5f;
_outObb.mtx[12] = (_aabb.min.x + _aabb.max.x) * 0.5f;
_outObb.mtx[13] = (_aabb.min.y + _aabb.max.y) * 0.5f;
_outObb.mtx[14] = (_aabb.min.z + _aabb.max.z) * 0.5f;
_outObb.mtx[15] = 1.0f;
}
void calcObb(Obb& _outObb, const void* _vertices, uint32_t _numVertices, uint32_t _stride, uint32_t _steps)
{
Aabb aabb;
toAabb(aabb, _vertices, _numVertices, _stride);
float minArea = calcAreaAabb(aabb);
Obb best;
toObb(best, aabb);
float angleStep = float(kPiHalf/_steps);
float ax = 0.0f;
float mtx[16];
for (uint32_t ii = 0; ii < _steps; ++ii)
{
float ay = 0.0f;
for (uint32_t jj = 0; jj < _steps; ++jj)
{
float az = 0.0f;
for (uint32_t kk = 0; kk < _steps; ++kk)
{
mtxRotateXYZ(mtx, ax, ay, az);
float mtxT[16];
mtxTranspose(mtxT, mtx);
toAabb(aabb, mtxT, _vertices, _numVertices, _stride);
float area = calcAreaAabb(aabb);
if (area < minArea)
{
minArea = area;
aabbTransformToObb(best, aabb, mtx);
}
az += angleStep;
}
ay += angleStep;
}
ax += angleStep;
}
memCopy(&_outObb, &best, sizeof(Obb) );
}
void calcMaxBoundingSphere(Sphere& _sphere, const void* _vertices, uint32_t _numVertices, uint32_t _stride)
{
Aabb aabb;
toAabb(aabb, _vertices, _numVertices, _stride);
Vec3 center = getCenter(aabb);
float maxDistSq = 0.0f;
uint8_t* vertex = (uint8_t*)_vertices;
for (uint32_t ii = 0; ii < _numVertices; ++ii)
{
const Vec3& pos = load<Vec3>(vertex);
vertex += _stride;
const Vec3 tmp = sub(pos, center);
const float distSq = dot(tmp, tmp);
maxDistSq = max(distSq, maxDistSq);
}
_sphere.center = center;
_sphere.radius = bx::sqrt(maxDistSq);
}
void calcMinBoundingSphere(Sphere& _sphere, const void* _vertices, uint32_t _numVertices, uint32_t _stride, float _step)
{
RngMwc rng;
uint8_t* vertex = (uint8_t*)_vertices;
Vec3 center(init::None);
float* position = (float*)&vertex[0];
center.x = position[0];
center.y = position[1];
center.z = position[2];
position = (float*)&vertex[1*_stride];
center.x += position[0];
center.y += position[1];
center.z += position[2];
center.x *= 0.5f;
center.y *= 0.5f;
center.z *= 0.5f;
float xx = position[0] - center.x;
float yy = position[1] - center.y;
float zz = position[2] - center.z;
float maxDistSq = xx*xx + yy*yy + zz*zz;
float radiusStep = _step * 0.37f;
bool done;
do
{
done = true;
for (uint32_t ii = 0, index = rng.gen()%_numVertices; ii < _numVertices; ++ii, index = (index + 1)%_numVertices)
{
position = (float*)&vertex[index*_stride];
xx = position[0] - center.x;
yy = position[1] - center.y;
zz = position[2] - center.z;
float distSq = xx*xx + yy*yy + zz*zz;
if (distSq > maxDistSq)
{
done = false;
center.x += xx * radiusStep;
center.y += yy * radiusStep;
center.z += zz * radiusStep;
maxDistSq = lerp(maxDistSq, distSq, _step);
break;
}
}
} while (!done);
_sphere.center = center;
_sphere.radius = bx::sqrt(maxDistSq);
}
void buildFrustumPlanes(Plane* _result, const float* _viewProj)
{
const float xw = _viewProj[ 3];
const float yw = _viewProj[ 7];
const float zw = _viewProj[11];
const float ww = _viewProj[15];
const float xz = _viewProj[ 2];
const float yz = _viewProj[ 6];
const float zz = _viewProj[10];
const float wz = _viewProj[14];
Plane& near = _result[0];
Plane& far = _result[1];
Plane& left = _result[2];
Plane& right = _result[3];
Plane& top = _result[4];
Plane& bottom = _result[5];
near.normal.x = xw - xz;
near.normal.y = yw - yz;
near.normal.z = zw - zz;
near.dist = ww - wz;
far.normal.x = xw + xz;
far.normal.y = yw + yz;
far.normal.z = zw + zz;
far.dist = ww + wz;
const float xx = _viewProj[ 0];
const float yx = _viewProj[ 4];
const float zx = _viewProj[ 8];
const float wx = _viewProj[12];
left.normal.x = xw - xx;
left.normal.y = yw - yx;
left.normal.z = zw - zx;
left.dist = ww - wx;
right.normal.x = xw + xx;
right.normal.y = yw + yx;
right.normal.z = zw + zx;
right.dist = ww + wx;
const float xy = _viewProj[ 1];
const float yy = _viewProj[ 5];
const float zy = _viewProj[ 9];
const float wy = _viewProj[13];
top.normal.x = xw + xy;
top.normal.y = yw + yy;
top.normal.z = zw + zy;
top.dist = ww + wy;
bottom.normal.x = xw - xy;
bottom.normal.y = yw - yy;
bottom.normal.z = zw - zy;
bottom.dist = ww - wy;
Plane* plane = _result;
for (uint32_t ii = 0; ii < 6; ++ii)
{
const float invLen = 1.0f/length(plane->normal);
plane->normal = normalize(plane->normal);
plane->dist *= invLen;
++plane;
}
}
Ray makeRay(float _x, float _y, const float* _invVp)
{
Ray ray;
const Vec3 near = { _x, _y, 0.0f };
ray.pos = mulH(near, _invVp);
const Vec3 far = { _x, _y, 1.0f };
Vec3 tmp = mulH(far, _invVp);
const Vec3 dir = sub(tmp, ray.pos);
ray.dir = normalize(dir);
return ray;
}
inline Vec3 getPointAt(const Ray& _ray, float _t)
{
return mad(_ray.dir, _t, _ray.pos);
}
bool intersect(const Ray& _ray, const Aabb& _aabb, Hit* _hit)
{
const Vec3 invDir = rcp(_ray.dir);
const Vec3 tmp0 = sub(_aabb.min, _ray.pos);
const Vec3 t0 = mul(tmp0, invDir);
const Vec3 tmp1 = sub(_aabb.max, _ray.pos);
const Vec3 t1 = mul(tmp1, invDir);
const Vec3 mn = min(t0, t1);
const Vec3 mx = max(t0, t1);
const float tmin = max(mn.x, mn.y, mn.z);
const float tmax = min(mx.x, mx.y, mx.z);
if (0.0f > tmax
|| tmin > tmax)
{
return false;
}
if (NULL != _hit)
{
_hit->plane.normal.x = float( (t1.x == tmin) - (t0.x == tmin) );
_hit->plane.normal.y = float( (t1.y == tmin) - (t0.y == tmin) );
_hit->plane.normal.z = float( (t1.z == tmin) - (t0.z == tmin) );
_hit->plane.dist = tmin;
_hit->pos = getPointAt(_ray, tmin);
}
return true;
}
static constexpr Aabb kUnitAabb =
{
{ -1.0f, -1.0f, -1.0f },
{ 1.0f, 1.0f, 1.0f },
};
bool intersect(const Ray& _ray, const Obb& _obb, Hit* _hit)
{
Aabb aabb;
toAabb(aabb, _obb);
if (!intersect(_ray, aabb) )
{
return false;
}
float mtxInv[16];
mtxInverse(mtxInv, _obb.mtx);
Ray obbRay;
obbRay.pos = mul(_ray.pos, mtxInv);
obbRay.dir = mulXyz0(_ray.dir, mtxInv);
if (intersect(obbRay, kUnitAabb, _hit) )
{
if (NULL != _hit)
{
_hit->pos = mul(_hit->pos, _obb.mtx);
const Vec3 tmp = mulXyz0(_hit->plane.normal, _obb.mtx);
_hit->plane.normal = normalize(tmp);
}
return true;
}
return false;
}
bool intersect(const Ray& _ray, const Disk& _disk, Hit* _hit)
{
Plane plane(_disk.normal, -dot(_disk.center, _disk.normal) );
Hit tmpHit;
_hit = NULL != _hit ? _hit : &tmpHit;
if (intersect(_ray, plane, _hit) )
{
const Vec3 tmp = sub(_disk.center, _hit->pos);
return dot(tmp, tmp) <= square(_disk.radius);
}
return false;
}
static bool intersect(const Ray& _ray, const Cylinder& _cylinder, bool _capsule, Hit* _hit)
{
Vec3 axis = sub(_cylinder.end, _cylinder.pos);
const Vec3 rc = sub(_ray.pos, _cylinder.pos);
const Vec3 dxa = cross(_ray.dir, axis);
const float len = length(dxa);
const Vec3 normal = normalize(dxa);
const float dist = bx::abs(dot(rc, normal) );
if (dist > _cylinder.radius)
{
return false;
}
Vec3 vo = cross(rc, axis);
const float t0 = -dot(vo, normal) / len;
vo = normalize(cross(normal, axis) );
const float rsq = square(_cylinder.radius);
const float ddoto = dot(_ray.dir, vo);
const float ss = t0 - bx::abs(bx::sqrt(rsq - square(dist) ) / ddoto);
if (0.0f > ss)
{
return false;
}
const Vec3 point = getPointAt(_ray, ss);
const float axisLen = length(axis);
axis = normalize(axis);
const float pdota = dot(_cylinder.pos, axis);
const float height = dot(point, axis) - pdota;
if (0.0f < height
&& axisLen > height)
{
if (NULL != _hit)
{
const float t1 = height / axisLen;
const Vec3 pointOnAxis = lerp(_cylinder.pos, _cylinder.end, t1);
_hit->pos = point;
const Vec3 tmp = sub(point, pointOnAxis);
_hit->plane.normal = normalize(tmp);
_hit->plane.dist = ss;
}
return true;
}
if (_capsule)
{
const float rdota = dot(_ray.pos, axis);
const float pp = rdota - pdota;
const float t1 = pp / axisLen;
const Vec3 pointOnAxis = lerp(_cylinder.pos, _cylinder.end, t1);
const Vec3 axisToRay = sub(_ray.pos, pointOnAxis);
if (_cylinder.radius < length(axisToRay)
&& 0.0f > ss)
{
return false;
}
Sphere sphere;
sphere.radius = _cylinder.radius;
sphere.center = 0.0f >= height
? _cylinder.pos
: _cylinder.end
;
return intersect(_ray, sphere, _hit);
}
Plane plane(init::None);
Vec3 pos(init::None);
if (0.0f >= height)
{
plane.normal = neg(axis);
pos = _cylinder.pos;
}
else
{
plane.normal = axis;
pos = _cylinder.end;
}
plane.dist = -dot(pos, plane.normal);
Hit tmpHit;
_hit = NULL != _hit ? _hit : &tmpHit;
if (intersect(_ray, plane, _hit) )
{
const Vec3 tmp = sub(pos, _hit->pos);
return dot(tmp, tmp) <= rsq;
}
return false;
}
bool intersect(const Ray& _ray, const Cylinder& _cylinder, Hit* _hit)
{
return intersect(_ray, _cylinder, false, _hit);
}
bool intersect(const Ray& _ray, const Capsule& _capsule, Hit* _hit)
{
BX_STATIC_ASSERT(sizeof(Capsule) == sizeof(Cylinder) );
return intersect(_ray, *( (const Cylinder*)&_capsule), true, _hit);
}
bool intersect(const Ray& _ray, const Cone& _cone, Hit* _hit)
{
const Vec3 axis = sub(_cone.pos, _cone.end);
const float len = length(axis);
const Vec3 normal = normalize(axis);
Disk disk;
disk.center = _cone.pos;
disk.normal = normal;
disk.radius = _cone.radius;
Hit tmpInt;
Hit* out = NULL != _hit ? _hit : &tmpInt;
bool hit = intersect(_ray, disk, out);
const Vec3 ro = sub(_ray.pos, _cone.end);
const float hyp = bx::sqrt(square(_cone.radius) + square(len) );
const float cosaSq = square(len/hyp);
const float ndoto = dot(normal, ro);
const float ndotd = dot(normal, _ray.dir);
const float aa = square(ndotd) - cosaSq;
const float bb = 2.0f * (ndotd*ndoto - dot(_ray.dir, ro)*cosaSq);
const float cc = square(ndoto) - dot(ro, ro)*cosaSq;
float det = bb*bb - 4.0f*aa*cc;
if (0.0f > det)
{
return hit;
}
det = bx::sqrt(det);
const float invA2 = 1.0f / (2.0f*aa);
const float t1 = (-bb - det) * invA2;
const float t2 = (-bb + det) * invA2;
float tt = t1;
if (0.0f > t1
|| (0.0f < t2 && t2 < t1) )
{
tt = t2;
}
if (0.0f > tt)
{
return hit;
}
const Vec3 hitPos = getPointAt(_ray, tt);
const Vec3 point = sub(hitPos, _cone.end);
const float hh = dot(normal, point);
if (0.0f > hh
|| len < hh)
{
return hit;
}
if (NULL != _hit)
{
if (!hit
|| tt < _hit->plane.dist)
{
_hit->plane.dist = tt;
_hit->pos = hitPos;
const float scale = hh / dot(point, point);
const Vec3 pointScaled = mul(point, scale);
const Vec3 tmp = sub(pointScaled, normal);
_hit->plane.normal = normalize(tmp);
}
}
return true;
}
bool intersect(const Ray& _ray, const Plane& _plane, Hit* _hit)
{
const float dist = distance(_plane, _ray.pos);
if (0.0f > dist)
{
return false;
}
const float ndotd = dot(_ray.dir, _plane.normal);
if (0.0f < ndotd)
{
return false;
}
if (NULL != _hit)
{
_hit->plane.normal = _plane.normal;
float tt = -dist/ndotd;
_hit->plane.dist = tt;
_hit->pos = getPointAt(_ray, tt);
}
return true;
}
bool intersect(const Ray& _ray, const Sphere& _sphere, Hit* _hit)
{
const Vec3 rs = sub(_ray.pos, _sphere.center);
const float bb = dot(rs, _ray.dir);
if (0.0f < bb)
{
return false;
}
const float aa = dot(_ray.dir, _ray.dir);
const float cc = dot(rs, rs) - square(_sphere.radius);
const float discriminant = bb*bb - aa*cc;
if (0.0f >= discriminant)
{
return false;
}
const float sqrtDiscriminant = bx::sqrt(discriminant);
const float invA = 1.0f / aa;
const float tt = -(bb + sqrtDiscriminant)*invA;
if (0.0f >= tt)
{
return false;
}
if (NULL != _hit)
{
_hit->plane.dist = tt;
const Vec3 point = getPointAt(_ray, tt);
_hit->pos = point;
const Vec3 tmp = sub(point, _sphere.center);
_hit->plane.normal = normalize(tmp);
}
return true;
}
bool intersect(const Ray& _ray, const Triangle& _triangle, Hit* _hit)
{
const Vec3 edge10 = sub(_triangle.v1, _triangle.v0);
const Vec3 edge02 = sub(_triangle.v0, _triangle.v2);
const Vec3 normal = cross(edge02, edge10);
const Vec3 vo = sub(_triangle.v0, _ray.pos);
const Vec3 dxo = cross(_ray.dir, vo);
const float det = dot(normal, _ray.dir);
if (0.0f < det)
{
return false;
}
const float invDet = 1.0f/det;
const float bz = dot(dxo, edge02) * invDet;
const float by = dot(dxo, edge10) * invDet;
const float bx = 1.0f - by - bz;
if (0.0f > bx
|| 0.0f > by
|| 0.0f > bz)
{
return false;
}
if (NULL != _hit)
{
_hit->plane.normal = normalize(normal);
const float tt = dot(normal, vo) * invDet;
_hit->plane.dist = tt;
_hit->pos = getPointAt(_ray, tt);
}
return true;
}
Vec3 barycentric(const Triangle& _triangle, const Vec3& _pos)
{
const Vec3 v0 = sub(_triangle.v1, _triangle.v0);
const Vec3 v1 = sub(_triangle.v2, _triangle.v0);
const Vec3 v2 = sub(_pos, _triangle.v0);
const float dot00 = dot(v0, v0);
const float dot01 = dot(v0, v1);
const float dot02 = dot(v0, v2);
const float dot11 = dot(v1, v1);
const float dot12 = dot(v1, v2);
const float invDenom = 1.0f/(dot00*dot11 - square(dot01) );
const float vv = (dot11*dot02 - dot01*dot12)*invDenom;
const float ww = (dot00*dot12 - dot01*dot02)*invDenom;
const float uu = 1.0f - vv - ww;
return { uu, vv, ww };
}
Vec3 cartesian(const Triangle& _triangle, const Vec3& _uvw)
{
const Vec3 b0 = mul(_triangle.v0, _uvw.x);
const Vec3 b1 = mul(_triangle.v1, _uvw.y);
const Vec3 b2 = mul(_triangle.v2, _uvw.z);
return add(add(b0, b1), b2);
}
void calcPlane(Plane& _outPlane, const Disk& _disk)
{
calcPlane(_outPlane, _disk.normal, _disk.center);
}
void calcPlane(Plane& _outPlane, const Triangle& _triangle)
{
calcPlane(_outPlane, _triangle.v0, _triangle.v1, _triangle.v2);
}
struct Interval
{
Interval(float _val)
: start(_val)
, end(_val)
{
}
Interval(float _start, float _end)
: start(_start)
, end(_end)
{
}
void set(float _val)
{
start = _val;
end = _val;
}
void expand(float _val)
{
start = min(_val, start);
end = max(_val, end);
}
float start;
float end;
};
bool overlap(const Interval& _a, const Interval& _b)
{
return _a.end > _b.start
&& _b.end > _a.start
;
}
float projectToAxis(const Vec3& _axis, const Vec3& _point)
{
return dot(_axis, _point);
}
Interval projectToAxis(const Vec3& _axis, const Vec3* _points, uint32_t _num)
{
Interval interval(projectToAxis(_axis, _points[0]) );
for (uint32_t ii = 1; ii < _num; ++ii)
{
interval.expand(projectToAxis(_axis, _points[ii]) );
}
return interval;
}
Interval projectToAxis(const Vec3& _axis, const Aabb& _aabb)
{
const float extent = bx::abs(projectToAxis(abs(_axis), getExtents(_aabb) ) );
const float center = projectToAxis( _axis , getCenter (_aabb) );
return
{
center - extent,
center + extent,
};
}
Interval projectToAxis(const Vec3& _axis, const Triangle& _triangle)
{
const float a0 = projectToAxis(_axis, _triangle.v0);
const float a1 = projectToAxis(_axis, _triangle.v1);
const float a2 = projectToAxis(_axis, _triangle.v2);
return
{
min(a0, a1, a2),
max(a0, a1, a2),
};
}
struct Srt
{
Quaternion rotation = init::Identity;
Vec3 translation = init::Zero;
Vec3 scale = init::Zero;
};
Srt toSrt(const Aabb& _aabb)
{
return { init::Identity, getCenter(_aabb), getExtents(_aabb) };
}
Srt toSrt(const void* _mtx)
{
Srt result;
const float* mtx = (const float*)_mtx;
result.translation = { mtx[12], mtx[13], mtx[14] };
float xx = mtx[ 0];
float xy = mtx[ 1];
float xz = mtx[ 2];
float yx = mtx[ 4];
float yy = mtx[ 5];
float yz = mtx[ 6];
float zx = mtx[ 8];
float zy = mtx[ 9];
float zz = mtx[10];
result.scale =
{
bx::sqrt(xx*xx + xy*xy + xz*xz),
bx::sqrt(yx*yx + yy*yy + yz*yz),
bx::sqrt(zx*zx + zy*zy + zz*zz),
};
const Vec3 invScale = rcp(result.scale);
xx *= invScale.x;
xy *= invScale.x;
xz *= invScale.x;
yx *= invScale.y;
yy *= invScale.y;
yz *= invScale.y;
zx *= invScale.z;
zy *= invScale.z;
zz *= invScale.z;
const float trace = xx + yy + zz;
if (0.0f < trace)
{
const float invS = 0.5f * rsqrt(trace + 1.0f);
result.rotation =
{
(yz - zy) * invS,
(zx - xz) * invS,
(xy - yx) * invS,
0.25f / invS,
};
}
else
{
if (xx > yy
&& xx > zz)
{
const float invS = 0.5f * bx::sqrt(max(1.0f + xx - yy - zz, 1e-8f) );
result.rotation =
{
0.25f / invS,
(xy + yx) * invS,
(xz + zx) * invS,
(yz - zy) * invS,
};
}
else if (yy > zz)
{
const float invS = 0.5f * bx::sqrt(max(1.0f + yy - xx - zz, 1e-8f) );
result.rotation =
{
(xy + yx) * invS,
0.25f / invS,
(yz + zy) * invS,
(zx - xz) * invS,
};
}
else
{
const float invS = 0.5f * bx::sqrt(max(1.0f + zz - xx - yy, 1e-8f) );
result.rotation =
{
(xz + zx) * invS,
(yz + zy) * invS,
0.25f / invS,
(xy - yx) * invS,
};
}
}
return result;
}
void mtxFromSrt(float* _outMtx, const Srt& _srt)
{
mtxQuat(_outMtx, _srt.rotation);
store<Vec3>(&_outMtx[0], mul(load<Vec3>(&_outMtx[0]), _srt.scale.x) );
store<Vec3>(&_outMtx[4], mul(load<Vec3>(&_outMtx[4]), _srt.scale.y) );
store<Vec3>(&_outMtx[8], mul(load<Vec3>(&_outMtx[8]), _srt.scale.z) );
store<Vec3>(&_outMtx[12], _srt.translation);
}
bool isNearZero(float _v)
{
return equal(_v, 0.0f, 0.00001f);
}
bool isNearZero(const Vec3& _v)
{
return isNearZero(dot(_v, _v) );
}
struct Line
{
Vec3 pos = init::None;
Vec3 dir = init::None;
};
inline Vec3 getPointAt(const Line& _line, float _t)
{
return mad(_line.dir, _t, _line.pos);
}
bool intersect(Line& _outLine, const Plane& _planeA, const Plane& _planeB)
{
const Vec3 axb = cross(_planeA.normal, _planeB.normal);
const float denom = dot(axb, axb);
if (isNearZero(denom) )
{
return false;
}
const Vec3 bxaxb = cross(_planeB.normal, axb);
const Vec3 axbxa = cross(axb, _planeA.normal);
const Vec3 tmp0 = mul(bxaxb, _planeA.dist);
const Vec3 tmp1 = mul(axbxa, _planeB.dist);
const Vec3 tmp2 = add(tmp0, tmp1);
_outLine.pos = mul(tmp2, -1.0f/denom);
_outLine.dir = normalize(axb);
return true;
}
Vec3 intersectPlanes(const Plane& _pa, const Plane& _pb, const Plane& _pc)
{
const Vec3 axb = cross(_pa.normal, _pb.normal);
const Vec3 bxc = cross(_pb.normal, _pc.normal);
const Vec3 cxa = cross(_pc.normal, _pa.normal);
const Vec3 tmp0 = mul(bxc, _pa.dist);
const Vec3 tmp1 = mul(cxa, _pb.dist);
const Vec3 tmp2 = mul(axb, _pc.dist);
const Vec3 tmp3 = add(tmp0, tmp1);
const Vec3 tmp4 = add(tmp3, tmp2);
const float denom = dot(_pa.normal, bxc);
const Vec3 result = mul(tmp4, -1.0f/denom);
return result;
}
struct LineSegment
{
Vec3 pos;
Vec3 end;
};
inline Vec3 getPointAt(const LineSegment& _line, float _t)
{
return lerp(_line.pos, _line.end, _t);
}
bool intersect(float& _outTa, float& _outTb, const LineSegment& _a, const LineSegment& _b)
{
// Reference(s):
//
// - The shortest line between two lines in 3D
// https://web.archive.org/web/20120309093234/http://paulbourke.net/geometry/lineline3d/
const Vec3 bd = sub(_b.end, _b.pos);
if (isNearZero(bd) )
{
return false;
}
const Vec3 ad = sub(_a.end, _a.pos);
if (isNearZero(ad) )
{
return false;
}
const Vec3 ab = sub(_a.pos, _b.pos);
const float d0 = projectToAxis(ab, bd);
const float d1 = projectToAxis(ad, bd);
const float d2 = projectToAxis(ab, ad);
const float d3 = projectToAxis(bd, bd);
const float d4 = projectToAxis(ad, ad);
const float denom = d4*d3 - square(d1);
float ta = 0.0f;
if (!isNearZero(denom) )
{
ta = (d0*d1 - d2*d3)/denom;
}
_outTa = ta;
_outTb = (d0+d1*ta)/d3;
return true;
}
bool intersect(const LineSegment& _a, const LineSegment& _b)
{
float ta, tb;
if (!intersect(ta, tb, _a, _b) )
{
return false;
}
return 0.0f >= ta
&& 1.0f <= ta
&& 0.0f >= tb
&& 1.0f <= tb
;
}
bool intersect(const LineSegment& _line, const Plane& _plane, Hit* _hit)
{
const float dist = distance(_plane, _line.pos);
const float flip = sign(dist);
const Vec3 dir = normalize(sub(_line.end, _line.pos) );
const float ndotd = dot(dir, _plane.normal);
const float tt = -dist/ndotd;
const float len = length(sub(_line.end, _line.pos) );
if (tt < 0.0f || tt > len)
{
return false;
}
if (NULL != _hit)
{
_hit->pos = mad(dir, tt, _line.pos);
_hit->plane.normal = mul(_plane.normal, flip);
_hit->plane.dist = -dot(_hit->plane.normal, _hit->pos);
}
return true;
}
float distance(const Plane& _plane, const LineSegment& _line)
{
const float pd = distance(_plane, _line.pos);
const float ed = distance(_plane, _line.end);
return min(max(pd*ed, 0.0f), bx::abs(pd), bx::abs(ed) );
}
Vec3 closestPoint(const Line& _line, const Vec3& _point)
{
const float tt = projectToAxis(_line.dir, sub(_point, _line.pos) );
return getPointAt(_line, tt);
}
Vec3 closestPoint(const LineSegment& _line, const Vec3& _point, float& _outT)
{
const Vec3 axis = sub(_line.end, _line.pos);
const float lengthSq = dot(axis, axis);
const float tt = clamp(projectToAxis(axis, sub(_point, _line.pos) ) / lengthSq, 0.0f, 1.0f);
_outT = tt;
return mad(axis, tt, _line.pos);
}
Vec3 closestPoint(const LineSegment& _line, const Vec3& _point)
{
float ignored;
return closestPoint(_line, _point, ignored);
}
Vec3 closestPoint(const Plane& _plane, const Vec3& _point)
{
const float dist = distance(_plane, _point);
return sub(_point, mul(_plane.normal, dist) );
}
Vec3 closestPoint(const Aabb& _aabb, const Vec3& _point)
{
return clamp(_point, _aabb.min, _aabb.max);
}
Vec3 closestPoint(const Obb& _obb, const Vec3& _point)
{
const Srt srt = toSrt(_obb.mtx);
Aabb aabb;
toAabb(aabb, srt.scale);
const Quaternion invRotation = invert(srt.rotation);
const Vec3 obbSpacePos = mul(sub(_point, srt.translation), srt.rotation);
const Vec3 pos = closestPoint(aabb, obbSpacePos);
return add(mul(pos, invRotation), srt.translation);
}
Vec3 closestPoint(const Triangle& _triangle, const Vec3& _point)
{
Plane plane(init::None);
calcPlane(plane, _triangle);
const Vec3 pos = closestPoint(plane, _point);
const Vec3 uvw = barycentric(_triangle, pos);
return cartesian(_triangle, clamp<Vec3>(uvw, Vec3(0.0f), Vec3(1.0f) ) );
}
bool overlap(const Aabb& _aabb, const Vec3& _pos)
{
const Vec3 ac = getCenter(_aabb);
const Vec3 ae = getExtents(_aabb);
const Vec3 abc = bx::abs(sub(ac, _pos) );
return abc.x <= ae.x
&& abc.y <= ae.y
&& abc.z <= ae.z
;
}
bool overlap(const Aabb& _aabbA, const Aabb& _aabbB)
{
return true
&& overlap(Interval{_aabbA.min.x, _aabbA.max.x}, Interval{_aabbB.min.x, _aabbB.max.x})
&& overlap(Interval{_aabbA.min.y, _aabbA.max.y}, Interval{_aabbB.min.y, _aabbB.max.y})
&& overlap(Interval{_aabbA.min.z, _aabbA.max.z}, Interval{_aabbB.min.z, _aabbB.max.z})
;
}
bool overlap(const Aabb& _aabb, const Plane& _plane)
{
const Vec3 center = getCenter(_aabb);
const float dist = distance(_plane, center);
const Vec3 extents = getExtents(_aabb);
const Vec3 normal = bx::abs(_plane.normal);
const float radius = dot(extents, normal);
return bx::abs(dist) <= radius;
}
static constexpr Vec3 kAxis[] =
{
{ 1.0f, 0.0f, 0.0f },
{ 0.0f, 1.0f, 0.0f },
{ 0.0f, 0.0f, 1.0f },
};
bool overlap(const Aabb& _aabb, const Triangle& _triangle)
{
Aabb triAabb;
toAabb(triAabb, _triangle);
if (!overlap(_aabb, triAabb) )
{
return false;
}
Plane plane(init::None);
calcPlane(plane, _triangle);
if (!overlap(_aabb, plane) )
{
return false;
}
const Vec3 center = getCenter(_aabb);
const Vec3 v0 = sub(_triangle.v0, center);
const Vec3 v1 = sub(_triangle.v1, center);
const Vec3 v2 = sub(_triangle.v2, center);
const Vec3 edge[] =
{
sub(v1, v0),
sub(v2, v1),
sub(v0, v2),
};
for (uint32_t ii = 0; ii < 3; ++ii)
{
for (uint32_t jj = 0; jj < 3; ++jj)
{
const Vec3 axis = cross(kAxis[ii], edge[jj]);
const Interval aabbR = projectToAxis(axis, _aabb);
const Interval triR = projectToAxis(axis, _triangle);
if (!overlap(aabbR, triR) )
{
return false;
}
}
}
return true;
}
bool overlap(const Aabb& _aabb, const Capsule& _capsule)
{
const Vec3 pos = closestPoint(LineSegment{_capsule.pos, _capsule.end}, getCenter(_aabb) );
return overlap(_aabb, Sphere{pos, _capsule.radius});
}
bool overlap(const Aabb& _aabb, const Cone& _cone)
{
float tt;
const Vec3 pos = closestPoint(LineSegment{_cone.pos, _cone.end}, getCenter(_aabb), tt);
return overlap(_aabb, Sphere{pos, lerp(_cone.radius, 0.0f, tt)});
}
bool overlap(const Aabb& _aabb, const Disk& _disk)
{
if (!overlap(_aabb, Sphere{_disk.center, _disk.radius}) )
{
return false;
}
Plane plane(init::None);
calcPlane(plane, _disk.normal, _disk.center);
return overlap(_aabb, plane);
}
static void calcObbVertices(
bx::Vec3* _outVertices
, const bx::Vec3& _axisX
, const bx::Vec3& _axisY
, const bx::Vec3& _axisZ
, const bx::Vec3& _pos
, const bx::Vec3& _scale
)
{
const Vec3 ax = mul(_axisX, _scale.x);
const Vec3 ay = mul(_axisY, _scale.y);
const Vec3 az = mul(_axisZ, _scale.z);
const Vec3 ppx = add(_pos, ax);
const Vec3 pmx = sub(_pos, ax);
const Vec3 ypz = add(ay, az);
const Vec3 ymz = sub(ay, az);
_outVertices[0] = sub(pmx, ymz);
_outVertices[1] = sub(ppx, ymz);
_outVertices[2] = add(ppx, ymz);
_outVertices[3] = add(pmx, ymz);
_outVertices[4] = sub(pmx, ypz);
_outVertices[5] = sub(ppx, ypz);
_outVertices[6] = add(ppx, ypz);
_outVertices[7] = add(pmx, ypz);
}
static bool overlaps(const Vec3& _axis, const Vec3* _vertsA, const Vec3* _vertsB)
{
Interval ia = projectToAxis(_axis, _vertsA, 8);
Interval ib = projectToAxis(_axis, _vertsB, 8);
return overlap(ia, ib);
}
static bool overlap(const Srt& _srtA, const Srt& _srtB)
{
const Vec3 ax = toXAxis(_srtA.rotation);
const Vec3 ay = toYAxis(_srtA.rotation);
const Vec3 az = toZAxis(_srtA.rotation);
const Vec3 bx = toXAxis(_srtB.rotation);
const Vec3 by = toYAxis(_srtB.rotation);
const Vec3 bz = toZAxis(_srtB.rotation);
Vec3 vertsA[8] = { init::None, init::None, init::None, init::None, init::None, init::None, init::None, init::None };
calcObbVertices(vertsA, ax, ay, az, init::Zero, _srtA.scale);
Vec3 vertsB[8] = { init::None, init::None, init::None, init::None, init::None, init::None, init::None, init::None };
calcObbVertices(vertsB, bx, by, bz, sub(_srtB.translation, _srtA.translation), _srtB.scale);
return overlaps(ax, vertsA, vertsB)
&& overlaps(ay, vertsA, vertsB)
&& overlaps(az, vertsA, vertsB)
&& overlaps(bx, vertsA, vertsB)
&& overlaps(by, vertsA, vertsB)
&& overlaps(bz, vertsA, vertsB)
&& overlaps(cross(ax, bx), vertsA, vertsB)
&& overlaps(cross(ax, by), vertsA, vertsB)
&& overlaps(cross(ax, bz), vertsA, vertsB)
&& overlaps(cross(ay, bx), vertsA, vertsB)
&& overlaps(cross(ay, by), vertsA, vertsB)
&& overlaps(cross(ay, bz), vertsA, vertsB)
&& overlaps(cross(az, bx), vertsA, vertsB)
&& overlaps(cross(az, by), vertsA, vertsB)
&& overlaps(cross(az, bz), vertsA, vertsB)
;
}
bool overlap(const Aabb& _aabb, const Obb& _obb)
{
const Srt srtA = toSrt(_aabb);
const Srt srtB = toSrt(_obb.mtx);
return overlap(srtA, srtB);
}
bool overlap(const Capsule& _capsule, const Vec3& _pos)
{
const Vec3 pos = closestPoint(LineSegment{_capsule.pos, _capsule.end}, _pos);
return overlap(Sphere{pos, _capsule.radius}, _pos);
}
bool overlap(const Capsule& _capsule, const Plane& _plane)
{
return distance(_plane, LineSegment{_capsule.pos, _capsule.end}) <= _capsule.radius;
}
bool overlap(const Capsule& _capsuleA, const Capsule& _capsuleB)
{
float ta, tb;
if (!intersect(ta, tb, {_capsuleA.pos, _capsuleA.end}, {_capsuleB.pos, _capsuleB.end}) )
{
return false;
}
if (0.0f <= ta
&& 1.0f >= ta
&& 0.0f <= tb
&& 1.0f >= tb)
{
const Vec3 ad = sub(_capsuleA.end, _capsuleA.pos);
const Vec3 bd = sub(_capsuleB.end, _capsuleB.pos);
return overlap(
Sphere{mad(ad, ta, _capsuleA.pos), _capsuleA.radius}
, Sphere{mad(bd, tb, _capsuleB.pos), _capsuleB.radius}
);
}
if (0.0f <= ta
&& 1.0f >= ta)
{
return overlap(_capsuleA, Sphere{0.0f >= tb ? _capsuleB.pos : _capsuleB.end, _capsuleB.radius});
}
if (0.0f <= tb
&& 1.0f >= tb)
{
return overlap(_capsuleB, Sphere{0.0f >= ta ? _capsuleA.pos : _capsuleA.end, _capsuleA.radius});
}
const Vec3 pa = 0.0f > ta ? _capsuleA.pos : _capsuleA.end;
const Vec3 pb = 0.0f > tb ? _capsuleB.pos : _capsuleB.end;
const Vec3 closestA = closestPoint(LineSegment{_capsuleA.pos, _capsuleA.end}, pb);
const Vec3 closestB = closestPoint(LineSegment{_capsuleB.pos, _capsuleB.end}, pa);
if (dot(closestA, pb) <= dot(closestB, pa) )
{
return overlap(_capsuleA, Sphere{closestB, _capsuleB.radius});
}
return overlap(_capsuleB, Sphere{closestA, _capsuleA.radius});
}
bool overlap(const Cone& _cone, const Vec3& _pos)
{
float tt;
const Vec3 pos = closestPoint(LineSegment{_cone.pos, _cone.end}, _pos, tt);
return overlap(Disk{pos, normalize(sub(_cone.end, _cone.pos) ), lerp(_cone.radius, 0.0f, tt)}, _pos);
}
bool overlap(const Cone& _cone, const Cylinder& _cylinder)
{
BX_UNUSED(_cone, _cylinder);
return false;
}
bool overlap(const Cone& _cone, const Capsule& _capsule)
{
BX_UNUSED(_cone, _capsule);
return false;
}
bool overlap(const Cone& _coneA, const Cone& _coneB)
{
BX_UNUSED(_coneA, _coneB);
return false;
}
bool overlap(const Cone& _cone, const Disk& _disk)
{
BX_UNUSED(_cone, _disk);
return false;
}
bool overlap(const Cone& _cone, const Obb& _obb)
{
BX_UNUSED(_cone, _obb);
return false;
}
bool overlap(const Cylinder& _cylinder, const Vec3& _pos)
{
const Vec3 pos = closestPoint(LineSegment{_cylinder.pos, _cylinder.end}, _pos);
return overlap(Disk{pos, normalize(sub(_cylinder.end, _cylinder.pos) ), _cylinder.radius}, _pos);
}
bool overlap(const Cylinder& _cylinder, const Sphere& _sphere)
{
const Vec3 pos = closestPoint(LineSegment{_cylinder.pos, _cylinder.end}, _sphere.center);
return overlap(Disk{pos, normalize(sub(_cylinder.end, _cylinder.pos) ), _cylinder.radius}, _sphere);
}
bool overlap(const Cylinder& _cylinder, const Aabb& _aabb)
{
const Vec3 pos = closestPoint(LineSegment{_cylinder.pos, _cylinder.end}, getCenter(_aabb) );
return overlap(Disk{pos, normalize(sub(_cylinder.end, _cylinder.pos) ), _cylinder.radius}, _aabb);
}
bool overlap(const Cylinder& _cylinder, const Plane& _plane)
{
BX_UNUSED(_cylinder, _plane);
return false;
}
bool overlap(const Cylinder& _cylinderA, const Cylinder& _cylinderB)
{
BX_UNUSED(_cylinderA, _cylinderB);
return false;
}
bool overlap(const Cylinder& _cylinder, const Capsule& _capsule)
{
BX_UNUSED(_cylinder, _capsule);
return false;
}
bool overlap(const Cylinder& _cylinder, const Disk& _disk)
{
BX_UNUSED(_cylinder, _disk);
return false;
}
bool overlap(const Cylinder& _cylinder, const Obb& _obb)
{
BX_UNUSED(_cylinder, _obb);
return false;
}
bool overlap(const Disk& _disk, const Vec3& _pos)
{
Plane plane(init::None);
calcPlane(plane, _disk.normal, _disk.center);
if (!isNearZero(distance(plane, _pos) ) )
{
return false;
}
return distanceSq(_disk.center, _pos) <= square(_disk.radius);
}
bool overlap(const Disk& _disk, const Plane& _plane)
{
Plane plane(init::None);
calcPlane(plane, _disk.normal, _disk.center);
if (!overlap(plane, _plane) )
{
return false;
}
return overlap(_plane, Sphere{_disk.center, _disk.radius});
}
bool overlap(const Disk& _disk, const Capsule& _capsule)
{
if (!overlap(_capsule, Sphere{_disk.center, _disk.radius}) )
{
return false;
}
Plane plane(init::None);
calcPlane(plane, _disk.normal, _disk.center);
return overlap(_capsule, plane);
}
bool overlap(const Disk& _diskA, const Disk& _diskB)
{
Plane planeA(init::None);
calcPlane(planeA, _diskA.normal, _diskA.center);
Plane planeB(init::None);
calcPlane(planeB, _diskB);
Line line;
if (!intersect(line, planeA, planeB) )
{
return false;
}
const Vec3 pa = closestPoint(line, _diskA.center);
const Vec3 pb = closestPoint(line, _diskB.center);
const float lenA = distance(pa, _diskA.center);
const float lenB = distance(pb, _diskB.center);
return bx::sqrt(square(_diskA.radius) - square(lenA) )
+ bx::sqrt(square(_diskB.radius) - square(lenB) )
>= distance(pa, pb)
;
}
bool overlap(const Disk& _disk, const Obb& _obb)
{
if (!overlap(_obb, Sphere{_disk.center, _disk.radius}) )
{
return false;
}
Plane plane(init::None);
calcPlane(plane, _disk.normal, _disk.center);
return overlap(_obb, plane);
}
bool overlap(const Obb& _obb, const Vec3& _pos)
{
Srt srt = toSrt(_obb.mtx);
Aabb aabb;
toAabb(aabb, srt.scale);
const Quaternion invRotation = invert(srt.rotation);
const Vec3 pos = mul(sub(_pos, srt.translation), invRotation);
return overlap(aabb, pos);
}
bool overlap(const Obb& _obb, const Plane& _plane)
{
Srt srt = toSrt(_obb.mtx);
const Quaternion invRotation = invert(srt.rotation);
const Vec3 axis =
{
projectToAxis(_plane.normal, mul(Vec3{1.0f, 0.0f, 0.0f}, invRotation) ),
projectToAxis(_plane.normal, mul(Vec3{0.0f, 1.0f, 0.0f}, invRotation) ),
projectToAxis(_plane.normal, mul(Vec3{0.0f, 0.0f, 1.0f}, invRotation) ),
};
const float dist = bx::abs(distance(_plane, srt.translation) );
const float radius = dot(srt.scale, bx::abs(axis) );
return dist <= radius;
}
bool overlap(const Obb& _obb, const Capsule& _capsule)
{
Srt srt = toSrt(_obb.mtx);
Aabb aabb;
toAabb(aabb, srt.scale);
const Quaternion invRotation = invert(srt.rotation);
const Capsule capsule =
{
mul(sub(_capsule.pos, srt.translation), invRotation),
mul(sub(_capsule.end, srt.translation), invRotation),
_capsule.radius,
};
return overlap(aabb, capsule);
}
bool overlap(const Obb& _obbA, const Obb& _obbB)
{
const Srt srtA = toSrt(_obbA.mtx);
const Srt srtB = toSrt(_obbB.mtx);
return overlap(srtA, srtB);
}
bool overlap(const Plane& _plane, const LineSegment& _line)
{
return isNearZero(distance(_plane, _line) );
}
bool overlap(const Plane& _plane, const Vec3& _pos)
{
return isNearZero(distance(_plane, _pos) );
}
bool overlap(const Plane& _planeA, const Plane& _planeB)
{
const Vec3 dir = cross(_planeA.normal, _planeB.normal);
const float len = length(dir);
return !isNearZero(len);
}
bool overlap(const Plane& _plane, const Cone& _cone)
{
const Vec3 axis = sub(_cone.pos, _cone.end);
const float len = length(axis);
const Vec3 dir = normalize(axis);
const Vec3 v1 = cross(_plane.normal, dir);
const Vec3 v2 = cross(v1, dir);
const float bb = len;
const float aa = _cone.radius;
const float cc = bx::sqrt(square(aa) + square(bb) );
const Vec3 pos = add(add(_cone.end
, mul(dir, len * bb/cc) )
, mul(v2, len * aa/cc)
);
return overlap(_plane, LineSegment{pos, _cone.end});
}
bool overlap(const Sphere& _sphere, const Vec3& _pos)
{
const float distSq = distanceSq(_sphere.center, _pos);
const float radiusSq = square(_sphere.radius);
return distSq <= radiusSq;
}
bool overlap(const Sphere& _sphereA, const Sphere& _sphereB)
{
const float distSq = distanceSq(_sphereA.center, _sphereB.center);
const float radiusSq = square(_sphereA.radius + _sphereB.radius);
return distSq <= radiusSq;
}
bool overlap(const Sphere& _sphere, const Aabb& _aabb)
{
const Vec3 pos = closestPoint(_aabb, _sphere.center);
return overlap(_sphere, pos);
}
bool overlap(const Sphere& _sphere, const Plane& _plane)
{
return bx::abs(distance(_plane, _sphere.center) ) <= _sphere.radius;
}
bool overlap(const Sphere& _sphere, const Triangle& _triangle)
{
Plane plane(init::None);
calcPlane(plane, _triangle);
if (!overlap(_sphere, plane) )
{
return false;
}
const Vec3 pos = closestPoint(plane, _sphere.center);
const Vec3 uvw = barycentric(_triangle, pos);
const float nr = -_sphere.radius;
return uvw.x >= nr
&& uvw.y >= nr
&& uvw.z >= nr
;
}
bool overlap(const Sphere& _sphere, const Capsule& _capsule)
{
const Vec3 pos = closestPoint(LineSegment{_capsule.pos, _capsule.end}, _sphere.center);
return overlap(_sphere, Sphere{pos, _capsule.radius});
}
bool overlap(const Sphere& _sphere, const Cone& _cone)
{
float tt;
const Vec3 pos = closestPoint(LineSegment{_cone.pos, _cone.end}, _sphere.center, tt);
return overlap(_sphere, Sphere{pos, lerp(_cone.radius, 0.0f, tt)});
}
bool overlap(const Sphere& _sphere, const Disk& _disk)
{
if (!overlap(_sphere, Sphere{_disk.center, _disk.radius}) )
{
return false;
}
Plane plane(init::None);
calcPlane(plane, _disk.normal, _disk.center);
return overlap(_sphere, plane);
}
bool overlap(const Sphere& _sphere, const Obb& _obb)
{
const Vec3 pos = closestPoint(_obb, _sphere.center);
return overlap(_sphere, pos);
}
bool overlap(const Triangle& _triangle, const Vec3& _pos)
{
const Vec3 uvw = barycentric(_triangle, _pos);
return uvw.x >= 0.0f
&& uvw.y >= 0.0f
&& uvw.z >= 0.0f
;
}
bool overlap(const Triangle& _triangle, const Plane& _plane)
{
const float dist0 = distance(_plane, _triangle.v0);
const float dist1 = distance(_plane, _triangle.v1);
const float dist2 = distance(_plane, _triangle.v2);
const float minDist = min(dist0, dist1, dist2);
const float maxDist = max(dist0, dist1, dist2);
return 0.0f > minDist
&& 0.0f < maxDist
;
}
inline bool overlap(const Triangle& _triangleA, const Triangle& _triangleB, const Vec3& _axis)
{
const Interval ia = projectToAxis(_axis, _triangleA);
const Interval ib = projectToAxis(_axis, _triangleB);
return overlap(ia, ib);
}
bool overlap(const Triangle& _triangleA, const Triangle& _triangleB)
{
const Vec3 baA = sub(_triangleA.v1, _triangleA.v0);
const Vec3 cbA = sub(_triangleA.v2, _triangleA.v1);
const Vec3 acA = sub(_triangleA.v0, _triangleA.v2);
const Vec3 baB = sub(_triangleB.v1, _triangleB.v0);
const Vec3 cbB = sub(_triangleB.v2, _triangleB.v1);
const Vec3 acB = sub(_triangleB.v0, _triangleB.v2);
return overlap(_triangleA, _triangleB, cross(baA, cbA) )
&& overlap(_triangleA, _triangleB, cross(baB, cbB) )
&& overlap(_triangleA, _triangleB, cross(baB, baA) )
&& overlap(_triangleA, _triangleB, cross(baB, cbA) )
&& overlap(_triangleA, _triangleB, cross(baB, acA) )
&& overlap(_triangleA, _triangleB, cross(cbB, baA) )
&& overlap(_triangleA, _triangleB, cross(cbB, cbA) )
&& overlap(_triangleA, _triangleB, cross(cbB, acA) )
&& overlap(_triangleA, _triangleB, cross(acB, baA) )
&& overlap(_triangleA, _triangleB, cross(acB, cbA) )
&& overlap(_triangleA, _triangleB, cross(acB, acA) )
;
}
template<typename Ty>
bool overlap(const Triangle& _triangle, const Ty& _ty)
{
Plane plane(init::None);
calcPlane(plane, _triangle);
plane.normal = neg(plane.normal);
plane.dist = -plane.dist;
const LineSegment line =
{
_ty.pos,
_ty.end,
};
Hit hit;
if (intersect(line, plane, &hit) )
{
return true;
}
const Vec3 pos = closestPoint(plane, hit.pos);
const Vec3 uvw = barycentric(_triangle, pos);
const float nr = -_ty.radius;
if (uvw.x >= nr
&& uvw.y >= nr
&& uvw.z >= nr)
{
return true;
}
const LineSegment ab = LineSegment{_triangle.v0, _triangle.v1};
const LineSegment bc = LineSegment{_triangle.v1, _triangle.v2};
const LineSegment ca = LineSegment{_triangle.v2, _triangle.v0};
float ta0 = 0.0f, tb0 = 0.0f;
const bool i0 = intersect(ta0, tb0, ab, line);
float ta1, tb1;
const bool i1 = intersect(ta1, tb1, bc, line);
float ta2, tb2;
const bool i2 = intersect(ta2, tb2, ca, line);
if (!i0
|| !i1
|| !i2)
{
return false;
}
ta0 = clamp(ta0, 0.0f, 1.0f);
ta1 = clamp(ta1, 0.0f, 1.0f);
ta2 = clamp(ta2, 0.0f, 1.0f);
tb0 = clamp(tb0, 0.0f, 1.0f);
tb1 = clamp(tb1, 0.0f, 1.0f);
tb2 = clamp(tb2, 0.0f, 1.0f);
const Vec3 pa0 = getPointAt(ab, ta0);
const Vec3 pa1 = getPointAt(bc, ta1);
const Vec3 pa2 = getPointAt(ca, ta2);
const Vec3 pb0 = getPointAt(line, tb0);
const Vec3 pb1 = getPointAt(line, tb1);
const Vec3 pb2 = getPointAt(line, tb2);
const float d0 = distanceSq(pa0, pb0);
const float d1 = distanceSq(pa1, pb1);
const float d2 = distanceSq(pa2, pb2);
if (d0 <= d1
&& d0 <= d2)
{
return overlap(_ty, pa0);
}
else if (d1 <= d2)
{
return overlap(_ty, pa1);
}
return overlap(_ty, pa2);
}
bool overlap(const Triangle& _triangle, const Cylinder& _cylinder)
{
return overlap<Cylinder>(_triangle, _cylinder);
}
bool overlap(const Triangle& _triangle, const Capsule& _capsule)
{
return overlap<Capsule>(_triangle, _capsule);
}
bool overlap(const Triangle& _triangle, const Cone& _cone)
{
const LineSegment ab = LineSegment{_triangle.v0, _triangle.v1};
const LineSegment bc = LineSegment{_triangle.v1, _triangle.v2};
const LineSegment ca = LineSegment{_triangle.v2, _triangle.v0};
const LineSegment line =
{
_cone.pos,
_cone.end,
};
float ta0 = 0.0f, tb0 = 0.0f;
const bool i0 = intersect(ta0, tb0, ab, line);
float ta1, tb1;
const bool i1 = intersect(ta1, tb1, bc, line);
float ta2, tb2;
const bool i2 = intersect(ta2, tb2, ca, line);
if (!i0
|| !i1
|| !i2)
{
return false;
}
ta0 = clamp(ta0, 0.0f, 1.0f);
ta1 = clamp(ta1, 0.0f, 1.0f);
ta2 = clamp(ta2, 0.0f, 1.0f);
tb0 = clamp(tb0, 0.0f, 1.0f);
tb1 = clamp(tb1, 0.0f, 1.0f);
tb2 = clamp(tb2, 0.0f, 1.0f);
const Vec3 pa0 = getPointAt(ab, ta0);
const Vec3 pa1 = getPointAt(bc, ta1);
const Vec3 pa2 = getPointAt(ca, ta2);
const Vec3 pb0 = getPointAt(line, tb0);
const Vec3 pb1 = getPointAt(line, tb1);
const Vec3 pb2 = getPointAt(line, tb2);
const float d0 = distanceSq(pa0, pb0);
const float d1 = distanceSq(pa1, pb1);
const float d2 = distanceSq(pa2, pb2);
if (d0 <= d1
&& d0 <= d2)
{
return overlap(_cone, pa0);
}
else if (d1 <= d2)
{
return overlap(_cone, pa1);
}
return overlap(_cone, pa2);
}
bool overlap(const Triangle& _triangle, const Disk& _disk)
{
if (!overlap(_triangle, Sphere{_disk.center, _disk.radius}) )
{
return false;
}
Plane plane(init::None);
calcPlane(plane, _disk.normal, _disk.center);
return overlap(_triangle, plane);
}
bool overlap(const Triangle& _triangle, const Obb& _obb)
{
Srt srt = toSrt(_obb.mtx);
Aabb aabb;
toAabb(aabb, srt.scale);
const Quaternion invRotation = invert(srt.rotation);
const Triangle triangle =
{
mul(sub(_triangle.v0, srt.translation), invRotation),
mul(sub(_triangle.v1, srt.translation), invRotation),
mul(sub(_triangle.v2, srt.translation), invRotation),
};
return overlap(triangle, aabb);
}