385 lines
16 KiB
C++
385 lines
16 KiB
C++
// Copyright (c) 2019 Google LLC
|
|
//
|
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
|
// you may not use this file except in compliance with the License.
|
|
// You may obtain a copy of the License at
|
|
//
|
|
// http://www.apache.org/licenses/LICENSE-2.0
|
|
//
|
|
// Unless required by applicable law or agreed to in writing, software
|
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
// See the License for the specific language governing permissions and
|
|
// limitations under the License.
|
|
|
|
#include "source/fuzz/fuzzer_util.h"
|
|
|
|
namespace spvtools {
|
|
namespace fuzz {
|
|
|
|
namespace fuzzerutil {
|
|
|
|
bool IsFreshId(opt::IRContext* context, uint32_t id) {
|
|
return !context->get_def_use_mgr()->GetDef(id);
|
|
}
|
|
|
|
void UpdateModuleIdBound(opt::IRContext* context, uint32_t id) {
|
|
// TODO(https://github.com/KhronosGroup/SPIRV-Tools/issues/2541) consider the
|
|
// case where the maximum id bound is reached.
|
|
context->module()->SetIdBound(
|
|
std::max(context->module()->id_bound(), id + 1));
|
|
}
|
|
|
|
opt::BasicBlock* MaybeFindBlock(opt::IRContext* context,
|
|
uint32_t maybe_block_id) {
|
|
auto inst = context->get_def_use_mgr()->GetDef(maybe_block_id);
|
|
if (inst == nullptr) {
|
|
// No instruction defining this id was found.
|
|
return nullptr;
|
|
}
|
|
if (inst->opcode() != SpvOpLabel) {
|
|
// The instruction defining the id is not a label, so it cannot be a block
|
|
// id.
|
|
return nullptr;
|
|
}
|
|
return context->cfg()->block(maybe_block_id);
|
|
}
|
|
|
|
bool PhiIdsOkForNewEdge(
|
|
opt::IRContext* context, opt::BasicBlock* bb_from, opt::BasicBlock* bb_to,
|
|
const google::protobuf::RepeatedField<google::protobuf::uint32>& phi_ids) {
|
|
if (bb_from->IsSuccessor(bb_to)) {
|
|
// There is already an edge from |from_block| to |to_block|, so there is
|
|
// no need to extend OpPhi instructions. Do not allow phi ids to be
|
|
// present. This might turn out to be too strict; perhaps it would be OK
|
|
// just to ignore the ids in this case.
|
|
return phi_ids.empty();
|
|
}
|
|
// The edge would add a previously non-existent edge from |from_block| to
|
|
// |to_block|, so we go through the given phi ids and check that they exactly
|
|
// match the OpPhi instructions in |to_block|.
|
|
uint32_t phi_index = 0;
|
|
// An explicit loop, rather than applying a lambda to each OpPhi in |bb_to|,
|
|
// makes sense here because we need to increment |phi_index| for each OpPhi
|
|
// instruction.
|
|
for (auto& inst : *bb_to) {
|
|
if (inst.opcode() != SpvOpPhi) {
|
|
// The OpPhi instructions all occur at the start of the block; if we find
|
|
// a non-OpPhi then we have seen them all.
|
|
break;
|
|
}
|
|
if (phi_index == static_cast<uint32_t>(phi_ids.size())) {
|
|
// Not enough phi ids have been provided to account for the OpPhi
|
|
// instructions.
|
|
return false;
|
|
}
|
|
// Look for an instruction defining the next phi id.
|
|
opt::Instruction* phi_extension =
|
|
context->get_def_use_mgr()->GetDef(phi_ids[phi_index]);
|
|
if (!phi_extension) {
|
|
// The id given to extend this OpPhi does not exist.
|
|
return false;
|
|
}
|
|
if (phi_extension->type_id() != inst.type_id()) {
|
|
// The instruction given to extend this OpPhi either does not have a type
|
|
// or its type does not match that of the OpPhi.
|
|
return false;
|
|
}
|
|
|
|
if (context->get_instr_block(phi_extension)) {
|
|
// The instruction defining the phi id has an associated block (i.e., it
|
|
// is not a global value). Check whether its definition dominates the
|
|
// exit of |from_block|.
|
|
auto dominator_analysis =
|
|
context->GetDominatorAnalysis(bb_from->GetParent());
|
|
if (!dominator_analysis->Dominates(phi_extension,
|
|
bb_from->terminator())) {
|
|
// The given id is no good as its definition does not dominate the exit
|
|
// of |from_block|
|
|
return false;
|
|
}
|
|
}
|
|
phi_index++;
|
|
}
|
|
// Return false if not all of the ids for extending OpPhi instructions are
|
|
// needed. This might turn out to be stricter than necessary; perhaps it would
|
|
// be OK just to not use the ids in this case.
|
|
return phi_index == static_cast<uint32_t>(phi_ids.size());
|
|
}
|
|
|
|
void AddUnreachableEdgeAndUpdateOpPhis(
|
|
opt::IRContext* context, opt::BasicBlock* bb_from, opt::BasicBlock* bb_to,
|
|
bool condition_value,
|
|
const google::protobuf::RepeatedField<google::protobuf::uint32>& phi_ids) {
|
|
assert(PhiIdsOkForNewEdge(context, bb_from, bb_to, phi_ids) &&
|
|
"Precondition on phi_ids is not satisfied");
|
|
assert(bb_from->terminator()->opcode() == SpvOpBranch &&
|
|
"Precondition on terminator of bb_from is not satisfied");
|
|
|
|
// Get the id of the boolean constant to be used as the condition.
|
|
opt::analysis::Bool bool_type;
|
|
opt::analysis::BoolConstant bool_constant(
|
|
context->get_type_mgr()->GetRegisteredType(&bool_type)->AsBool(),
|
|
condition_value);
|
|
uint32_t bool_id = context->get_constant_mgr()->FindDeclaredConstant(
|
|
&bool_constant, context->get_type_mgr()->GetId(&bool_type));
|
|
|
|
const bool from_to_edge_already_exists = bb_from->IsSuccessor(bb_to);
|
|
auto successor = bb_from->terminator()->GetSingleWordInOperand(0);
|
|
|
|
// Add the dead branch, by turning OpBranch into OpBranchConditional, and
|
|
// ordering the targets depending on whether the given boolean corresponds to
|
|
// true or false.
|
|
bb_from->terminator()->SetOpcode(SpvOpBranchConditional);
|
|
bb_from->terminator()->SetInOperands(
|
|
{{SPV_OPERAND_TYPE_ID, {bool_id}},
|
|
{SPV_OPERAND_TYPE_ID, {condition_value ? successor : bb_to->id()}},
|
|
{SPV_OPERAND_TYPE_ID, {condition_value ? bb_to->id() : successor}}});
|
|
|
|
// Update OpPhi instructions in the target block if this branch adds a
|
|
// previously non-existent edge from source to target.
|
|
if (!from_to_edge_already_exists) {
|
|
uint32_t phi_index = 0;
|
|
for (auto& inst : *bb_to) {
|
|
if (inst.opcode() != SpvOpPhi) {
|
|
break;
|
|
}
|
|
assert(phi_index < static_cast<uint32_t>(phi_ids.size()) &&
|
|
"There should be exactly one phi id per OpPhi instruction.");
|
|
inst.AddOperand({SPV_OPERAND_TYPE_ID, {phi_ids[phi_index]}});
|
|
inst.AddOperand({SPV_OPERAND_TYPE_ID, {bb_from->id()}});
|
|
phi_index++;
|
|
}
|
|
assert(phi_index == static_cast<uint32_t>(phi_ids.size()) &&
|
|
"There should be exactly one phi id per OpPhi instruction.");
|
|
}
|
|
}
|
|
|
|
bool BlockIsInLoopContinueConstruct(opt::IRContext* context, uint32_t block_id,
|
|
uint32_t maybe_loop_header_id) {
|
|
// We deem a block to be part of a loop's continue construct if the loop's
|
|
// continue target dominates the block.
|
|
auto containing_construct_block = context->cfg()->block(maybe_loop_header_id);
|
|
if (containing_construct_block->IsLoopHeader()) {
|
|
auto continue_target = containing_construct_block->ContinueBlockId();
|
|
if (context->GetDominatorAnalysis(containing_construct_block->GetParent())
|
|
->Dominates(continue_target, block_id)) {
|
|
return true;
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
opt::BasicBlock::iterator GetIteratorForInstruction(
|
|
opt::BasicBlock* block, const opt::Instruction* inst) {
|
|
for (auto inst_it = block->begin(); inst_it != block->end(); ++inst_it) {
|
|
if (inst == &*inst_it) {
|
|
return inst_it;
|
|
}
|
|
}
|
|
return block->end();
|
|
}
|
|
|
|
bool NewEdgeRespectsUseDefDominance(opt::IRContext* context,
|
|
opt::BasicBlock* bb_from,
|
|
opt::BasicBlock* bb_to) {
|
|
assert(bb_from->terminator()->opcode() == SpvOpBranch);
|
|
|
|
// If there is *already* an edge from |bb_from| to |bb_to|, then adding
|
|
// another edge is fine from a dominance point of view.
|
|
if (bb_from->terminator()->GetSingleWordInOperand(0) == bb_to->id()) {
|
|
return true;
|
|
}
|
|
|
|
// TODO(https://github.com/KhronosGroup/SPIRV-Tools/issues/2919): the
|
|
// solution below to determining whether a new edge respects dominance
|
|
// rules is incomplete. Test
|
|
// TransformationAddDeadContinueTest::DISABLED_Miscellaneous6 exposes the
|
|
// problem. In practice, this limitation does not bite too often, and the
|
|
// worst it does is leads to SPIR-V that spirv-val rejects.
|
|
|
|
// Let us assume that the module being manipulated is valid according to the
|
|
// rules of the SPIR-V language.
|
|
//
|
|
// Suppose that some block Y is dominated by |bb_to| (which includes the case
|
|
// where Y = |bb_to|).
|
|
//
|
|
// Suppose that Y uses an id i that is defined in some other block X.
|
|
//
|
|
// Because the module is valid, X must dominate Y. We are concerned about
|
|
// whether an edge from |bb_from| to |bb_to| could *stop* X from dominating
|
|
// Y.
|
|
//
|
|
// Because |bb_to| dominates Y, a new edge from |bb_from| to |bb_to| can
|
|
// only affect whether X dominates Y if X dominates |bb_to|.
|
|
//
|
|
// So let us assume that X does dominate |bb_to|, so that we have:
|
|
//
|
|
// (X defines i) dominates |bb_to| dominates (Y uses i)
|
|
//
|
|
// The new edge from |bb_from| to |bb_to| will stop the definition of i in X
|
|
// from dominating the use of i in Y exactly when the new edge will stop X
|
|
// from dominating |bb_to|.
|
|
//
|
|
// Now, the block X that we are worried about cannot dominate |bb_from|,
|
|
// because in that case X would still dominate |bb_to| after we add an edge
|
|
// from |bb_from| to |bb_to|.
|
|
//
|
|
// Also, it cannot be that X = |bb_to|, because nothing can stop a block
|
|
// from dominating itself.
|
|
//
|
|
// So we are looking for a block X such that:
|
|
//
|
|
// - X strictly dominates |bb_to|
|
|
// - X does not dominate |bb_from|
|
|
// - X defines an id i
|
|
// - i is used in some block Y
|
|
// - |bb_to| dominates Y
|
|
|
|
// Walk the dominator tree backwards, starting from the immediate dominator
|
|
// of |bb_to|. We can stop when we find a block that also dominates
|
|
// |bb_from|.
|
|
auto dominator_analysis = context->GetDominatorAnalysis(bb_from->GetParent());
|
|
for (auto dominator = dominator_analysis->ImmediateDominator(bb_to);
|
|
dominator != nullptr &&
|
|
!dominator_analysis->Dominates(dominator, bb_from);
|
|
dominator = dominator_analysis->ImmediateDominator(dominator)) {
|
|
// |dominator| is a candidate for block X in the above description.
|
|
// We now look through the instructions for a candidate instruction i.
|
|
for (auto& inst : *dominator) {
|
|
// Consider all the uses of this instruction.
|
|
if (!context->get_def_use_mgr()->WhileEachUse(
|
|
&inst,
|
|
[bb_to, context, dominator_analysis](
|
|
opt::Instruction* user, uint32_t operand_index) -> bool {
|
|
// If this use is in an OpPhi, we need to check that dominance
|
|
// of the relevant *parent* block is not spoiled. Otherwise we
|
|
// need to check that dominance of the block containing the use
|
|
// is not spoiled.
|
|
opt::BasicBlock* use_block_or_phi_parent =
|
|
user->opcode() == SpvOpPhi
|
|
? context->cfg()->block(
|
|
user->GetSingleWordOperand(operand_index + 1))
|
|
: context->get_instr_block(user);
|
|
|
|
// There might not be any relevant block, e.g. if the use is in
|
|
// a decoration; in this case the new edge is unproblematic.
|
|
if (use_block_or_phi_parent == nullptr) {
|
|
return true;
|
|
}
|
|
|
|
// With reference to the above discussion,
|
|
// |use_block_or_phi_parent| is a candidate for the block Y.
|
|
// If |bb_to| dominates this block, the new edge would be
|
|
// problematic.
|
|
return !dominator_analysis->Dominates(bb_to,
|
|
use_block_or_phi_parent);
|
|
})) {
|
|
return false;
|
|
}
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
|
|
bool BlockIsReachableInItsFunction(opt::IRContext* context,
|
|
opt::BasicBlock* bb) {
|
|
auto enclosing_function = bb->GetParent();
|
|
return context->GetDominatorAnalysis(enclosing_function)
|
|
->Dominates(enclosing_function->entry().get(), bb);
|
|
}
|
|
|
|
bool CanInsertOpcodeBeforeInstruction(
|
|
SpvOp opcode, const opt::BasicBlock::iterator& instruction_in_block) {
|
|
if (instruction_in_block->PreviousNode() &&
|
|
(instruction_in_block->PreviousNode()->opcode() == SpvOpLoopMerge ||
|
|
instruction_in_block->PreviousNode()->opcode() == SpvOpSelectionMerge)) {
|
|
// We cannot insert directly after a merge instruction.
|
|
return false;
|
|
}
|
|
if (opcode != SpvOpVariable &&
|
|
instruction_in_block->opcode() == SpvOpVariable) {
|
|
// We cannot insert a non-OpVariable instruction directly before a
|
|
// variable; variables in a function must be contiguous in the entry block.
|
|
return false;
|
|
}
|
|
// We cannot insert a non-OpPhi instruction directly before an OpPhi, because
|
|
// OpPhi instructions need to be contiguous at the start of a block.
|
|
return opcode == SpvOpPhi || instruction_in_block->opcode() != SpvOpPhi;
|
|
}
|
|
|
|
bool CanMakeSynonymOf(opt::IRContext* ir_context, opt::Instruction* inst) {
|
|
if (!inst->HasResultId()) {
|
|
// We can only make a synonym of an instruction that generates an id.
|
|
return false;
|
|
}
|
|
if (!inst->type_id()) {
|
|
// We can only make a synonym of an instruction that has a type.
|
|
return false;
|
|
}
|
|
// We do not make synonyms of objects that have decorations: if the synonym is
|
|
// not decorated analogously, using the original object vs. its synonymous
|
|
// form may not be equivalent.
|
|
return ir_context->get_decoration_mgr()
|
|
->GetDecorationsFor(inst->result_id(), true)
|
|
.empty();
|
|
}
|
|
|
|
bool IsCompositeType(const opt::analysis::Type* type) {
|
|
return type && (type->AsArray() || type->AsMatrix() || type->AsStruct() ||
|
|
type->AsVector());
|
|
}
|
|
|
|
uint32_t WalkCompositeTypeIndices(
|
|
opt::IRContext* context, uint32_t base_object_type_id,
|
|
const google::protobuf::RepeatedField<google::protobuf::uint32>& indices) {
|
|
uint32_t sub_object_type_id = base_object_type_id;
|
|
for (auto index : indices) {
|
|
auto should_be_composite_type =
|
|
context->get_def_use_mgr()->GetDef(sub_object_type_id);
|
|
assert(should_be_composite_type && "The type should exist.");
|
|
if (SpvOpTypeStruct == should_be_composite_type->opcode()) {
|
|
if (index >= should_be_composite_type->NumInOperands()) {
|
|
return 0;
|
|
}
|
|
sub_object_type_id =
|
|
should_be_composite_type->GetSingleWordInOperand(index);
|
|
} else if (SpvOpTypeArray == should_be_composite_type->opcode()) {
|
|
auto array_length_constant =
|
|
context->get_constant_mgr()
|
|
->GetConstantFromInst(context->get_def_use_mgr()->GetDef(
|
|
should_be_composite_type->GetSingleWordInOperand(1)))
|
|
->AsIntConstant();
|
|
if (array_length_constant->words().size() != 1) {
|
|
return 0;
|
|
}
|
|
auto array_length = array_length_constant->GetU32();
|
|
if (index >= array_length) {
|
|
return 0;
|
|
}
|
|
sub_object_type_id = should_be_composite_type->GetSingleWordInOperand(0);
|
|
} else if (SpvOpTypeVector == should_be_composite_type->opcode()) {
|
|
auto vector_length = should_be_composite_type->GetSingleWordInOperand(1);
|
|
if (index >= vector_length) {
|
|
return 0;
|
|
}
|
|
sub_object_type_id = should_be_composite_type->GetSingleWordInOperand(0);
|
|
} else if (SpvOpTypeMatrix == should_be_composite_type->opcode()) {
|
|
auto matrix_column_count =
|
|
should_be_composite_type->GetSingleWordInOperand(1);
|
|
if (index >= matrix_column_count) {
|
|
return 0;
|
|
}
|
|
sub_object_type_id = should_be_composite_type->GetSingleWordInOperand(0);
|
|
} else {
|
|
return 0;
|
|
}
|
|
}
|
|
return sub_object_type_id;
|
|
}
|
|
|
|
} // namespace fuzzerutil
|
|
|
|
} // namespace fuzz
|
|
} // namespace spvtools
|