bgfx/3rdparty/spirv-cross/spirv_parser.cpp
Бранимир Караџић d7df6cf1b4 Updated spirv-cross.
2023-12-22 18:15:52 -08:00

1338 lines
35 KiB
C++

/*
* Copyright 2018-2021 Arm Limited
* SPDX-License-Identifier: Apache-2.0 OR MIT
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
/*
* At your option, you may choose to accept this material under either:
* 1. The Apache License, Version 2.0, found at <http://www.apache.org/licenses/LICENSE-2.0>, or
* 2. The MIT License, found at <http://opensource.org/licenses/MIT>.
*/
#include "spirv_parser.hpp"
#include <assert.h>
using namespace std;
using namespace spv;
namespace SPIRV_CROSS_NAMESPACE
{
Parser::Parser(vector<uint32_t> spirv)
{
ir.spirv = std::move(spirv);
}
Parser::Parser(const uint32_t *spirv_data, size_t word_count)
{
ir.spirv = vector<uint32_t>(spirv_data, spirv_data + word_count);
}
static bool decoration_is_string(Decoration decoration)
{
switch (decoration)
{
case DecorationHlslSemanticGOOGLE:
return true;
default:
return false;
}
}
static inline uint32_t swap_endian(uint32_t v)
{
return ((v >> 24) & 0x000000ffu) | ((v >> 8) & 0x0000ff00u) | ((v << 8) & 0x00ff0000u) | ((v << 24) & 0xff000000u);
}
static bool is_valid_spirv_version(uint32_t version)
{
switch (version)
{
// Allow v99 since it tends to just work.
case 99:
case 0x10000: // SPIR-V 1.0
case 0x10100: // SPIR-V 1.1
case 0x10200: // SPIR-V 1.2
case 0x10300: // SPIR-V 1.3
case 0x10400: // SPIR-V 1.4
case 0x10500: // SPIR-V 1.5
case 0x10600: // SPIR-V 1.6
return true;
default:
return false;
}
}
void Parser::parse()
{
auto &spirv = ir.spirv;
auto len = spirv.size();
if (len < 5)
SPIRV_CROSS_THROW("SPIRV file too small.");
auto s = spirv.data();
// Endian-swap if we need to.
if (s[0] == swap_endian(MagicNumber))
transform(begin(spirv), end(spirv), begin(spirv), [](uint32_t c) { return swap_endian(c); });
if (s[0] != MagicNumber || !is_valid_spirv_version(s[1]))
SPIRV_CROSS_THROW("Invalid SPIRV format.");
uint32_t bound = s[3];
const uint32_t MaximumNumberOfIDs = 0x3fffff;
if (bound > MaximumNumberOfIDs)
SPIRV_CROSS_THROW("ID bound exceeds limit of 0x3fffff.\n");
ir.set_id_bounds(bound);
uint32_t offset = 5;
SmallVector<Instruction> instructions;
while (offset < len)
{
Instruction instr = {};
instr.op = spirv[offset] & 0xffff;
instr.count = (spirv[offset] >> 16) & 0xffff;
if (instr.count == 0)
SPIRV_CROSS_THROW("SPIR-V instructions cannot consume 0 words. Invalid SPIR-V file.");
instr.offset = offset + 1;
instr.length = instr.count - 1;
offset += instr.count;
if (offset > spirv.size())
SPIRV_CROSS_THROW("SPIR-V instruction goes out of bounds.");
instructions.push_back(instr);
}
for (auto &i : instructions)
parse(i);
for (auto &fixup : forward_pointer_fixups)
{
auto &target = get<SPIRType>(fixup.first);
auto &source = get<SPIRType>(fixup.second);
target.member_types = source.member_types;
target.basetype = source.basetype;
target.self = source.self;
}
forward_pointer_fixups.clear();
if (current_function)
SPIRV_CROSS_THROW("Function was not terminated.");
if (current_block)
SPIRV_CROSS_THROW("Block was not terminated.");
if (ir.default_entry_point == 0)
SPIRV_CROSS_THROW("There is no entry point in the SPIR-V module.");
}
const uint32_t *Parser::stream(const Instruction &instr) const
{
// If we're not going to use any arguments, just return nullptr.
// We want to avoid case where we return an out of range pointer
// that trips debug assertions on some platforms.
if (!instr.length)
return nullptr;
if (instr.offset + instr.length > ir.spirv.size())
SPIRV_CROSS_THROW("Compiler::stream() out of range.");
return &ir.spirv[instr.offset];
}
static string extract_string(const vector<uint32_t> &spirv, uint32_t offset)
{
string ret;
for (uint32_t i = offset; i < spirv.size(); i++)
{
uint32_t w = spirv[i];
for (uint32_t j = 0; j < 4; j++, w >>= 8)
{
char c = w & 0xff;
if (c == '\0')
return ret;
ret += c;
}
}
SPIRV_CROSS_THROW("String was not terminated before EOF");
}
void Parser::parse(const Instruction &instruction)
{
auto *ops = stream(instruction);
auto op = static_cast<Op>(instruction.op);
uint32_t length = instruction.length;
// HACK for glslang that might emit OpEmitMeshTasksEXT followed by return / branch.
// Instead of failing hard, just ignore it.
if (ignore_trailing_block_opcodes)
{
ignore_trailing_block_opcodes = false;
if (op == OpReturn || op == OpBranch || op == OpUnreachable)
return;
}
switch (op)
{
case OpSourceContinued:
case OpSourceExtension:
case OpNop:
case OpModuleProcessed:
break;
case OpString:
{
set<SPIRString>(ops[0], extract_string(ir.spirv, instruction.offset + 1));
break;
}
case OpMemoryModel:
ir.addressing_model = static_cast<AddressingModel>(ops[0]);
ir.memory_model = static_cast<MemoryModel>(ops[1]);
break;
case OpSource:
{
auto lang = static_cast<SourceLanguage>(ops[0]);
switch (lang)
{
case SourceLanguageESSL:
ir.source.es = true;
ir.source.version = ops[1];
ir.source.known = true;
ir.source.hlsl = false;
break;
case SourceLanguageGLSL:
ir.source.es = false;
ir.source.version = ops[1];
ir.source.known = true;
ir.source.hlsl = false;
break;
case SourceLanguageHLSL:
// For purposes of cross-compiling, this is GLSL 450.
ir.source.es = false;
ir.source.version = 450;
ir.source.known = true;
ir.source.hlsl = true;
break;
default:
ir.source.known = false;
break;
}
break;
}
case OpUndef:
{
uint32_t result_type = ops[0];
uint32_t id = ops[1];
set<SPIRUndef>(id, result_type);
if (current_block)
current_block->ops.push_back(instruction);
break;
}
case OpCapability:
{
uint32_t cap = ops[0];
if (cap == CapabilityKernel)
SPIRV_CROSS_THROW("Kernel capability not supported.");
ir.declared_capabilities.push_back(static_cast<Capability>(ops[0]));
break;
}
case OpExtension:
{
auto ext = extract_string(ir.spirv, instruction.offset);
ir.declared_extensions.push_back(std::move(ext));
break;
}
case OpExtInstImport:
{
uint32_t id = ops[0];
SPIRExtension::Extension spirv_ext = SPIRExtension::Unsupported;
auto ext = extract_string(ir.spirv, instruction.offset + 1);
if (ext == "GLSL.std.450")
spirv_ext = SPIRExtension::GLSL;
else if (ext == "DebugInfo")
spirv_ext = SPIRExtension::SPV_debug_info;
else if (ext == "SPV_AMD_shader_ballot")
spirv_ext = SPIRExtension::SPV_AMD_shader_ballot;
else if (ext == "SPV_AMD_shader_explicit_vertex_parameter")
spirv_ext = SPIRExtension::SPV_AMD_shader_explicit_vertex_parameter;
else if (ext == "SPV_AMD_shader_trinary_minmax")
spirv_ext = SPIRExtension::SPV_AMD_shader_trinary_minmax;
else if (ext == "SPV_AMD_gcn_shader")
spirv_ext = SPIRExtension::SPV_AMD_gcn_shader;
else if (ext == "NonSemantic.DebugPrintf")
spirv_ext = SPIRExtension::NonSemanticDebugPrintf;
else if (ext == "NonSemantic.Shader.DebugInfo.100")
spirv_ext = SPIRExtension::NonSemanticShaderDebugInfo;
else if (ext.find("NonSemantic.") == 0)
spirv_ext = SPIRExtension::NonSemanticGeneric;
set<SPIRExtension>(id, spirv_ext);
// Other SPIR-V extensions which have ExtInstrs are currently not supported.
break;
}
case OpExtInst:
{
// The SPIR-V debug information extended instructions might come at global scope.
if (current_block)
{
current_block->ops.push_back(instruction);
if (length >= 2)
{
const auto *type = maybe_get<SPIRType>(ops[0]);
if (type)
ir.load_type_width.insert({ ops[1], type->width });
}
}
break;
}
case OpEntryPoint:
{
auto itr =
ir.entry_points.insert(make_pair(ops[1], SPIREntryPoint(ops[1], static_cast<ExecutionModel>(ops[0]),
extract_string(ir.spirv, instruction.offset + 2))));
auto &e = itr.first->second;
// Strings need nul-terminator and consume the whole word.
uint32_t strlen_words = uint32_t((e.name.size() + 1 + 3) >> 2);
for (uint32_t i = strlen_words + 2; i < instruction.length; i++)
e.interface_variables.push_back(ops[i]);
// Set the name of the entry point in case OpName is not provided later.
ir.set_name(ops[1], e.name);
// If we don't have an entry, make the first one our "default".
if (!ir.default_entry_point)
ir.default_entry_point = ops[1];
break;
}
case OpExecutionMode:
{
auto &execution = ir.entry_points[ops[0]];
auto mode = static_cast<ExecutionMode>(ops[1]);
execution.flags.set(mode);
switch (mode)
{
case ExecutionModeInvocations:
execution.invocations = ops[2];
break;
case ExecutionModeLocalSize:
execution.workgroup_size.x = ops[2];
execution.workgroup_size.y = ops[3];
execution.workgroup_size.z = ops[4];
break;
case ExecutionModeOutputVertices:
execution.output_vertices = ops[2];
break;
case ExecutionModeOutputPrimitivesEXT:
execution.output_primitives = ops[2];
break;
default:
break;
}
break;
}
case OpExecutionModeId:
{
auto &execution = ir.entry_points[ops[0]];
auto mode = static_cast<ExecutionMode>(ops[1]);
execution.flags.set(mode);
if (mode == ExecutionModeLocalSizeId)
{
execution.workgroup_size.id_x = ops[2];
execution.workgroup_size.id_y = ops[3];
execution.workgroup_size.id_z = ops[4];
}
break;
}
case OpName:
{
uint32_t id = ops[0];
ir.set_name(id, extract_string(ir.spirv, instruction.offset + 1));
break;
}
case OpMemberName:
{
uint32_t id = ops[0];
uint32_t member = ops[1];
ir.set_member_name(id, member, extract_string(ir.spirv, instruction.offset + 2));
break;
}
case OpDecorationGroup:
{
// Noop, this simply means an ID should be a collector of decorations.
// The meta array is already a flat array of decorations which will contain the relevant decorations.
break;
}
case OpGroupDecorate:
{
uint32_t group_id = ops[0];
auto &decorations = ir.meta[group_id].decoration;
auto &flags = decorations.decoration_flags;
// Copies decorations from one ID to another. Only copy decorations which are set in the group,
// i.e., we cannot just copy the meta structure directly.
for (uint32_t i = 1; i < length; i++)
{
uint32_t target = ops[i];
flags.for_each_bit([&](uint32_t bit) {
auto decoration = static_cast<Decoration>(bit);
if (decoration_is_string(decoration))
{
ir.set_decoration_string(target, decoration, ir.get_decoration_string(group_id, decoration));
}
else
{
ir.meta[target].decoration_word_offset[decoration] =
ir.meta[group_id].decoration_word_offset[decoration];
ir.set_decoration(target, decoration, ir.get_decoration(group_id, decoration));
}
});
}
break;
}
case OpGroupMemberDecorate:
{
uint32_t group_id = ops[0];
auto &flags = ir.meta[group_id].decoration.decoration_flags;
// Copies decorations from one ID to another. Only copy decorations which are set in the group,
// i.e., we cannot just copy the meta structure directly.
for (uint32_t i = 1; i + 1 < length; i += 2)
{
uint32_t target = ops[i + 0];
uint32_t index = ops[i + 1];
flags.for_each_bit([&](uint32_t bit) {
auto decoration = static_cast<Decoration>(bit);
if (decoration_is_string(decoration))
ir.set_member_decoration_string(target, index, decoration,
ir.get_decoration_string(group_id, decoration));
else
ir.set_member_decoration(target, index, decoration, ir.get_decoration(group_id, decoration));
});
}
break;
}
case OpDecorate:
case OpDecorateId:
{
// OpDecorateId technically supports an array of arguments, but our only supported decorations are single uint,
// so merge decorate and decorate-id here.
uint32_t id = ops[0];
auto decoration = static_cast<Decoration>(ops[1]);
if (length >= 3)
{
ir.meta[id].decoration_word_offset[decoration] = uint32_t(&ops[2] - ir.spirv.data());
ir.set_decoration(id, decoration, ops[2]);
}
else
ir.set_decoration(id, decoration);
break;
}
case OpDecorateStringGOOGLE:
{
uint32_t id = ops[0];
auto decoration = static_cast<Decoration>(ops[1]);
ir.set_decoration_string(id, decoration, extract_string(ir.spirv, instruction.offset + 2));
break;
}
case OpMemberDecorate:
{
uint32_t id = ops[0];
uint32_t member = ops[1];
auto decoration = static_cast<Decoration>(ops[2]);
if (length >= 4)
ir.set_member_decoration(id, member, decoration, ops[3]);
else
ir.set_member_decoration(id, member, decoration);
break;
}
case OpMemberDecorateStringGOOGLE:
{
uint32_t id = ops[0];
uint32_t member = ops[1];
auto decoration = static_cast<Decoration>(ops[2]);
ir.set_member_decoration_string(id, member, decoration, extract_string(ir.spirv, instruction.offset + 3));
break;
}
// Build up basic types.
case OpTypeVoid:
{
uint32_t id = ops[0];
auto &type = set<SPIRType>(id, op);
type.basetype = SPIRType::Void;
break;
}
case OpTypeBool:
{
uint32_t id = ops[0];
auto &type = set<SPIRType>(id, op);
type.basetype = SPIRType::Boolean;
type.width = 1;
break;
}
case OpTypeFloat:
{
uint32_t id = ops[0];
uint32_t width = ops[1];
auto &type = set<SPIRType>(id, op);
if (width == 64)
type.basetype = SPIRType::Double;
else if (width == 32)
type.basetype = SPIRType::Float;
else if (width == 16)
type.basetype = SPIRType::Half;
else
SPIRV_CROSS_THROW("Unrecognized bit-width of floating point type.");
type.width = width;
break;
}
case OpTypeInt:
{
uint32_t id = ops[0];
uint32_t width = ops[1];
bool signedness = ops[2] != 0;
auto &type = set<SPIRType>(id, op);
type.basetype = signedness ? to_signed_basetype(width) : to_unsigned_basetype(width);
type.width = width;
break;
}
// Build composite types by "inheriting".
// NOTE: The self member is also copied! For pointers and array modifiers this is a good thing
// since we can refer to decorations on pointee classes which is needed for UBO/SSBO, I/O blocks in geometry/tess etc.
case OpTypeVector:
{
uint32_t id = ops[0];
uint32_t vecsize = ops[2];
auto &base = get<SPIRType>(ops[1]);
auto &vecbase = set<SPIRType>(id, base);
vecbase.op = op;
vecbase.vecsize = vecsize;
vecbase.self = id;
vecbase.parent_type = ops[1];
break;
}
case OpTypeMatrix:
{
uint32_t id = ops[0];
uint32_t colcount = ops[2];
auto &base = get<SPIRType>(ops[1]);
auto &matrixbase = set<SPIRType>(id, base);
matrixbase.op = op;
matrixbase.columns = colcount;
matrixbase.self = id;
matrixbase.parent_type = ops[1];
break;
}
case OpTypeArray:
{
uint32_t id = ops[0];
uint32_t tid = ops[1];
auto &base = get<SPIRType>(tid);
auto &arraybase = set<SPIRType>(id, base);
arraybase.op = op;
arraybase.parent_type = tid;
uint32_t cid = ops[2];
ir.mark_used_as_array_length(cid);
auto *c = maybe_get<SPIRConstant>(cid);
bool literal = c && !c->specialization;
// We're copying type information into Array types, so we'll need a fixup for any physical pointer
// references.
if (base.forward_pointer)
forward_pointer_fixups.push_back({ id, tid });
arraybase.array_size_literal.push_back(literal);
arraybase.array.push_back(literal ? c->scalar() : cid);
// .self resolves down to non-array/non-pointer type.
arraybase.self = base.self;
break;
}
case OpTypeRuntimeArray:
{
uint32_t id = ops[0];
auto &base = get<SPIRType>(ops[1]);
auto &arraybase = set<SPIRType>(id, base);
// We're copying type information into Array types, so we'll need a fixup for any physical pointer
// references.
if (base.forward_pointer)
forward_pointer_fixups.push_back({ id, ops[1] });
arraybase.op = op;
arraybase.array.push_back(0);
arraybase.array_size_literal.push_back(true);
arraybase.parent_type = ops[1];
// .self resolves down to non-array/non-pointer type.
arraybase.self = base.self;
break;
}
case OpTypeImage:
{
uint32_t id = ops[0];
auto &type = set<SPIRType>(id, op);
type.basetype = SPIRType::Image;
type.image.type = ops[1];
type.image.dim = static_cast<Dim>(ops[2]);
type.image.depth = ops[3] == 1;
type.image.arrayed = ops[4] != 0;
type.image.ms = ops[5] != 0;
type.image.sampled = ops[6];
type.image.format = static_cast<ImageFormat>(ops[7]);
type.image.access = (length >= 9) ? static_cast<AccessQualifier>(ops[8]) : AccessQualifierMax;
break;
}
case OpTypeSampledImage:
{
uint32_t id = ops[0];
uint32_t imagetype = ops[1];
auto &type = set<SPIRType>(id, op);
type = get<SPIRType>(imagetype);
type.basetype = SPIRType::SampledImage;
type.self = id;
break;
}
case OpTypeSampler:
{
uint32_t id = ops[0];
auto &type = set<SPIRType>(id, op);
type.basetype = SPIRType::Sampler;
break;
}
case OpTypePointer:
{
uint32_t id = ops[0];
// Very rarely, we might receive a FunctionPrototype here.
// We won't be able to compile it, but we shouldn't crash when parsing.
// We should be able to reflect.
auto *base = maybe_get<SPIRType>(ops[2]);
auto &ptrbase = set<SPIRType>(id, op);
if (base)
{
ptrbase = *base;
ptrbase.op = op;
}
ptrbase.pointer = true;
ptrbase.pointer_depth++;
ptrbase.storage = static_cast<StorageClass>(ops[1]);
if (ptrbase.storage == StorageClassAtomicCounter)
ptrbase.basetype = SPIRType::AtomicCounter;
if (base && base->forward_pointer)
forward_pointer_fixups.push_back({ id, ops[2] });
ptrbase.parent_type = ops[2];
// Do NOT set ptrbase.self!
break;
}
case OpTypeForwardPointer:
{
uint32_t id = ops[0];
auto &ptrbase = set<SPIRType>(id, op);
ptrbase.pointer = true;
ptrbase.pointer_depth++;
ptrbase.storage = static_cast<StorageClass>(ops[1]);
ptrbase.forward_pointer = true;
if (ptrbase.storage == StorageClassAtomicCounter)
ptrbase.basetype = SPIRType::AtomicCounter;
break;
}
case OpTypeStruct:
{
uint32_t id = ops[0];
auto &type = set<SPIRType>(id, op);
type.basetype = SPIRType::Struct;
for (uint32_t i = 1; i < length; i++)
type.member_types.push_back(ops[i]);
// Check if we have seen this struct type before, with just different
// decorations.
//
// Add workaround for issue #17 as well by looking at OpName for the struct
// types, which we shouldn't normally do.
// We should not normally have to consider type aliases like this to begin with
// however ... glslang issues #304, #307 cover this.
// For stripped names, never consider struct type aliasing.
// We risk declaring the same struct multiple times, but type-punning is not allowed
// so this is safe.
bool consider_aliasing = !ir.get_name(type.self).empty();
if (consider_aliasing)
{
for (auto &other : global_struct_cache)
{
if (ir.get_name(type.self) == ir.get_name(other) &&
types_are_logically_equivalent(type, get<SPIRType>(other)))
{
type.type_alias = other;
break;
}
}
if (type.type_alias == TypeID(0))
global_struct_cache.push_back(id);
}
break;
}
case OpTypeFunction:
{
uint32_t id = ops[0];
uint32_t ret = ops[1];
auto &func = set<SPIRFunctionPrototype>(id, ret);
for (uint32_t i = 2; i < length; i++)
func.parameter_types.push_back(ops[i]);
break;
}
case OpTypeAccelerationStructureKHR:
{
uint32_t id = ops[0];
auto &type = set<SPIRType>(id, op);
type.basetype = SPIRType::AccelerationStructure;
break;
}
case OpTypeRayQueryKHR:
{
uint32_t id = ops[0];
auto &type = set<SPIRType>(id, op);
type.basetype = SPIRType::RayQuery;
break;
}
// Variable declaration
// All variables are essentially pointers with a storage qualifier.
case OpVariable:
{
uint32_t type = ops[0];
uint32_t id = ops[1];
auto storage = static_cast<StorageClass>(ops[2]);
uint32_t initializer = length == 4 ? ops[3] : 0;
if (storage == StorageClassFunction)
{
if (!current_function)
SPIRV_CROSS_THROW("No function currently in scope");
current_function->add_local_variable(id);
}
set<SPIRVariable>(id, type, storage, initializer);
break;
}
// OpPhi
// OpPhi is a fairly magical opcode.
// It selects temporary variables based on which parent block we *came from*.
// In high-level languages we can "de-SSA" by creating a function local, and flush out temporaries to this function-local
// variable to emulate SSA Phi.
case OpPhi:
{
if (!current_function)
SPIRV_CROSS_THROW("No function currently in scope");
if (!current_block)
SPIRV_CROSS_THROW("No block currently in scope");
uint32_t result_type = ops[0];
uint32_t id = ops[1];
// Instead of a temporary, create a new function-wide temporary with this ID instead.
auto &var = set<SPIRVariable>(id, result_type, spv::StorageClassFunction);
var.phi_variable = true;
current_function->add_local_variable(id);
for (uint32_t i = 2; i + 2 <= length; i += 2)
current_block->phi_variables.push_back({ ops[i], ops[i + 1], id });
break;
}
// Constants
case OpSpecConstant:
case OpConstant:
{
uint32_t id = ops[1];
auto &type = get<SPIRType>(ops[0]);
if (type.width > 32)
set<SPIRConstant>(id, ops[0], ops[2] | (uint64_t(ops[3]) << 32), op == OpSpecConstant);
else
set<SPIRConstant>(id, ops[0], ops[2], op == OpSpecConstant);
break;
}
case OpSpecConstantFalse:
case OpConstantFalse:
{
uint32_t id = ops[1];
set<SPIRConstant>(id, ops[0], uint32_t(0), op == OpSpecConstantFalse);
break;
}
case OpSpecConstantTrue:
case OpConstantTrue:
{
uint32_t id = ops[1];
set<SPIRConstant>(id, ops[0], uint32_t(1), op == OpSpecConstantTrue);
break;
}
case OpConstantNull:
{
uint32_t id = ops[1];
uint32_t type = ops[0];
ir.make_constant_null(id, type, true);
break;
}
case OpSpecConstantComposite:
case OpConstantComposite:
{
uint32_t id = ops[1];
uint32_t type = ops[0];
auto &ctype = get<SPIRType>(type);
// We can have constants which are structs and arrays.
// In this case, our SPIRConstant will be a list of other SPIRConstant ids which we
// can refer to.
if (ctype.basetype == SPIRType::Struct || !ctype.array.empty())
{
set<SPIRConstant>(id, type, ops + 2, length - 2, op == OpSpecConstantComposite);
}
else
{
uint32_t elements = length - 2;
if (elements > 4)
SPIRV_CROSS_THROW("OpConstantComposite only supports 1, 2, 3 and 4 elements.");
SPIRConstant remapped_constant_ops[4];
const SPIRConstant *c[4];
for (uint32_t i = 0; i < elements; i++)
{
// Specialization constants operations can also be part of this.
// We do not know their value, so any attempt to query SPIRConstant later
// will fail. We can only propagate the ID of the expression and use to_expression on it.
auto *constant_op = maybe_get<SPIRConstantOp>(ops[2 + i]);
auto *undef_op = maybe_get<SPIRUndef>(ops[2 + i]);
if (constant_op)
{
if (op == OpConstantComposite)
SPIRV_CROSS_THROW("Specialization constant operation used in OpConstantComposite.");
remapped_constant_ops[i].make_null(get<SPIRType>(constant_op->basetype));
remapped_constant_ops[i].self = constant_op->self;
remapped_constant_ops[i].constant_type = constant_op->basetype;
remapped_constant_ops[i].specialization = true;
c[i] = &remapped_constant_ops[i];
}
else if (undef_op)
{
// Undefined, just pick 0.
remapped_constant_ops[i].make_null(get<SPIRType>(undef_op->basetype));
remapped_constant_ops[i].constant_type = undef_op->basetype;
c[i] = &remapped_constant_ops[i];
}
else
c[i] = &get<SPIRConstant>(ops[2 + i]);
}
set<SPIRConstant>(id, type, c, elements, op == OpSpecConstantComposite);
}
break;
}
// Functions
case OpFunction:
{
uint32_t res = ops[0];
uint32_t id = ops[1];
// Control
uint32_t type = ops[3];
if (current_function)
SPIRV_CROSS_THROW("Must end a function before starting a new one!");
current_function = &set<SPIRFunction>(id, res, type);
break;
}
case OpFunctionParameter:
{
uint32_t type = ops[0];
uint32_t id = ops[1];
if (!current_function)
SPIRV_CROSS_THROW("Must be in a function!");
current_function->add_parameter(type, id);
set<SPIRVariable>(id, type, StorageClassFunction);
break;
}
case OpFunctionEnd:
{
if (current_block)
{
// Very specific error message, but seems to come up quite often.
SPIRV_CROSS_THROW(
"Cannot end a function before ending the current block.\n"
"Likely cause: If this SPIR-V was created from glslang HLSL, make sure the entry point is valid.");
}
current_function = nullptr;
break;
}
// Blocks
case OpLabel:
{
// OpLabel always starts a block.
if (!current_function)
SPIRV_CROSS_THROW("Blocks cannot exist outside functions!");
uint32_t id = ops[0];
current_function->blocks.push_back(id);
if (!current_function->entry_block)
current_function->entry_block = id;
if (current_block)
SPIRV_CROSS_THROW("Cannot start a block before ending the current block.");
current_block = &set<SPIRBlock>(id);
break;
}
// Branch instructions end blocks.
case OpBranch:
{
if (!current_block)
SPIRV_CROSS_THROW("Trying to end a non-existing block.");
uint32_t target = ops[0];
current_block->terminator = SPIRBlock::Direct;
current_block->next_block = target;
current_block = nullptr;
break;
}
case OpBranchConditional:
{
if (!current_block)
SPIRV_CROSS_THROW("Trying to end a non-existing block.");
current_block->condition = ops[0];
current_block->true_block = ops[1];
current_block->false_block = ops[2];
current_block->terminator = SPIRBlock::Select;
if (current_block->true_block == current_block->false_block)
{
// Bogus conditional, translate to a direct branch.
// Avoids some ugly edge cases later when analyzing CFGs.
// There are some super jank cases where the merge block is different from the true/false,
// and later branches can "break" out of the selection construct this way.
// This is complete nonsense, but CTS hits this case.
// In this scenario, we should see the selection construct as more of a Switch with one default case.
// The problem here is that this breaks any attempt to break out of outer switch statements,
// but it's theoretically solvable if this ever comes up using the ladder breaking system ...
if (current_block->true_block != current_block->next_block &&
current_block->merge == SPIRBlock::MergeSelection)
{
uint32_t ids = ir.increase_bound_by(2);
auto &type = set<SPIRType>(ids, OpTypeInt);
type.basetype = SPIRType::Int;
type.width = 32;
auto &c = set<SPIRConstant>(ids + 1, ids);
current_block->condition = c.self;
current_block->default_block = current_block->true_block;
current_block->terminator = SPIRBlock::MultiSelect;
ir.block_meta[current_block->next_block] &= ~ParsedIR::BLOCK_META_SELECTION_MERGE_BIT;
ir.block_meta[current_block->next_block] |= ParsedIR::BLOCK_META_MULTISELECT_MERGE_BIT;
}
else
{
// Collapse loops if we have to.
bool collapsed_loop = current_block->true_block == current_block->merge_block &&
current_block->merge == SPIRBlock::MergeLoop;
if (collapsed_loop)
{
ir.block_meta[current_block->merge_block] &= ~ParsedIR::BLOCK_META_LOOP_MERGE_BIT;
ir.block_meta[current_block->continue_block] &= ~ParsedIR::BLOCK_META_CONTINUE_BIT;
}
current_block->next_block = current_block->true_block;
current_block->condition = 0;
current_block->true_block = 0;
current_block->false_block = 0;
current_block->merge_block = 0;
current_block->merge = SPIRBlock::MergeNone;
current_block->terminator = SPIRBlock::Direct;
}
}
current_block = nullptr;
break;
}
case OpSwitch:
{
if (!current_block)
SPIRV_CROSS_THROW("Trying to end a non-existing block.");
current_block->terminator = SPIRBlock::MultiSelect;
current_block->condition = ops[0];
current_block->default_block = ops[1];
uint32_t remaining_ops = length - 2;
if ((remaining_ops % 2) == 0)
{
for (uint32_t i = 2; i + 2 <= length; i += 2)
current_block->cases_32bit.push_back({ ops[i], ops[i + 1] });
}
if ((remaining_ops % 3) == 0)
{
for (uint32_t i = 2; i + 3 <= length; i += 3)
{
uint64_t value = (static_cast<uint64_t>(ops[i + 1]) << 32) | ops[i];
current_block->cases_64bit.push_back({ value, ops[i + 2] });
}
}
// If we jump to next block, make it break instead since we're inside a switch case block at that point.
ir.block_meta[current_block->next_block] |= ParsedIR::BLOCK_META_MULTISELECT_MERGE_BIT;
current_block = nullptr;
break;
}
case OpKill:
case OpTerminateInvocation:
{
if (!current_block)
SPIRV_CROSS_THROW("Trying to end a non-existing block.");
current_block->terminator = SPIRBlock::Kill;
current_block = nullptr;
break;
}
case OpTerminateRayKHR:
// NV variant is not a terminator.
if (!current_block)
SPIRV_CROSS_THROW("Trying to end a non-existing block.");
current_block->terminator = SPIRBlock::TerminateRay;
current_block = nullptr;
break;
case OpIgnoreIntersectionKHR:
// NV variant is not a terminator.
if (!current_block)
SPIRV_CROSS_THROW("Trying to end a non-existing block.");
current_block->terminator = SPIRBlock::IgnoreIntersection;
current_block = nullptr;
break;
case OpEmitMeshTasksEXT:
if (!current_block)
SPIRV_CROSS_THROW("Trying to end a non-existing block.");
current_block->terminator = SPIRBlock::EmitMeshTasks;
for (uint32_t i = 0; i < 3; i++)
current_block->mesh.groups[i] = ops[i];
current_block->mesh.payload = length >= 4 ? ops[3] : 0;
current_block = nullptr;
// Currently glslang is bugged and does not treat EmitMeshTasksEXT as a terminator.
ignore_trailing_block_opcodes = true;
break;
case OpReturn:
{
if (!current_block)
SPIRV_CROSS_THROW("Trying to end a non-existing block.");
current_block->terminator = SPIRBlock::Return;
current_block = nullptr;
break;
}
case OpReturnValue:
{
if (!current_block)
SPIRV_CROSS_THROW("Trying to end a non-existing block.");
current_block->terminator = SPIRBlock::Return;
current_block->return_value = ops[0];
current_block = nullptr;
break;
}
case OpUnreachable:
{
if (!current_block)
SPIRV_CROSS_THROW("Trying to end a non-existing block.");
current_block->terminator = SPIRBlock::Unreachable;
current_block = nullptr;
break;
}
case OpSelectionMerge:
{
if (!current_block)
SPIRV_CROSS_THROW("Trying to modify a non-existing block.");
current_block->next_block = ops[0];
current_block->merge = SPIRBlock::MergeSelection;
ir.block_meta[current_block->next_block] |= ParsedIR::BLOCK_META_SELECTION_MERGE_BIT;
if (length >= 2)
{
if (ops[1] & SelectionControlFlattenMask)
current_block->hint = SPIRBlock::HintFlatten;
else if (ops[1] & SelectionControlDontFlattenMask)
current_block->hint = SPIRBlock::HintDontFlatten;
}
break;
}
case OpLoopMerge:
{
if (!current_block)
SPIRV_CROSS_THROW("Trying to modify a non-existing block.");
current_block->merge_block = ops[0];
current_block->continue_block = ops[1];
current_block->merge = SPIRBlock::MergeLoop;
ir.block_meta[current_block->self] |= ParsedIR::BLOCK_META_LOOP_HEADER_BIT;
ir.block_meta[current_block->merge_block] |= ParsedIR::BLOCK_META_LOOP_MERGE_BIT;
ir.continue_block_to_loop_header[current_block->continue_block] = BlockID(current_block->self);
// Don't add loop headers to continue blocks,
// which would make it impossible branch into the loop header since
// they are treated as continues.
if (current_block->continue_block != BlockID(current_block->self))
ir.block_meta[current_block->continue_block] |= ParsedIR::BLOCK_META_CONTINUE_BIT;
if (length >= 3)
{
if (ops[2] & LoopControlUnrollMask)
current_block->hint = SPIRBlock::HintUnroll;
else if (ops[2] & LoopControlDontUnrollMask)
current_block->hint = SPIRBlock::HintDontUnroll;
}
break;
}
case OpSpecConstantOp:
{
if (length < 3)
SPIRV_CROSS_THROW("OpSpecConstantOp not enough arguments.");
uint32_t result_type = ops[0];
uint32_t id = ops[1];
auto spec_op = static_cast<Op>(ops[2]);
set<SPIRConstantOp>(id, result_type, spec_op, ops + 3, length - 3);
break;
}
case OpLine:
{
// OpLine might come at global scope, but we don't care about those since they will not be declared in any
// meaningful correct order.
// Ignore all OpLine directives which live outside a function.
if (current_block)
current_block->ops.push_back(instruction);
// Line directives may arrive before first OpLabel.
// Treat this as the line of the function declaration,
// so warnings for arguments can propagate properly.
if (current_function)
{
// Store the first one we find and emit it before creating the function prototype.
if (current_function->entry_line.file_id == 0)
{
current_function->entry_line.file_id = ops[0];
current_function->entry_line.line_literal = ops[1];
}
}
break;
}
case OpNoLine:
{
// OpNoLine might come at global scope.
if (current_block)
current_block->ops.push_back(instruction);
break;
}
// Actual opcodes.
default:
{
if (length >= 2)
{
const auto *type = maybe_get<SPIRType>(ops[0]);
if (type)
ir.load_type_width.insert({ ops[1], type->width });
}
if (!current_block)
SPIRV_CROSS_THROW("Currently no block to insert opcode.");
current_block->ops.push_back(instruction);
break;
}
}
}
bool Parser::types_are_logically_equivalent(const SPIRType &a, const SPIRType &b) const
{
if (a.basetype != b.basetype)
return false;
if (a.width != b.width)
return false;
if (a.vecsize != b.vecsize)
return false;
if (a.columns != b.columns)
return false;
if (a.array.size() != b.array.size())
return false;
size_t array_count = a.array.size();
if (array_count && memcmp(a.array.data(), b.array.data(), array_count * sizeof(uint32_t)) != 0)
return false;
if (a.basetype == SPIRType::Image || a.basetype == SPIRType::SampledImage)
{
if (memcmp(&a.image, &b.image, sizeof(SPIRType::Image)) != 0)
return false;
}
if (a.member_types.size() != b.member_types.size())
return false;
size_t member_types = a.member_types.size();
for (size_t i = 0; i < member_types; i++)
{
if (!types_are_logically_equivalent(get<SPIRType>(a.member_types[i]), get<SPIRType>(b.member_types[i])))
return false;
}
return true;
}
bool Parser::variable_storage_is_aliased(const SPIRVariable &v) const
{
auto &type = get<SPIRType>(v.basetype);
auto *type_meta = ir.find_meta(type.self);
bool ssbo = v.storage == StorageClassStorageBuffer ||
(type_meta && type_meta->decoration.decoration_flags.get(DecorationBufferBlock));
bool image = type.basetype == SPIRType::Image;
bool counter = type.basetype == SPIRType::AtomicCounter;
bool is_restrict;
if (ssbo)
is_restrict = ir.get_buffer_block_flags(v).get(DecorationRestrict);
else
is_restrict = ir.has_decoration(v.self, DecorationRestrict);
return !is_restrict && (ssbo || image || counter);
}
} // namespace SPIRV_CROSS_NAMESPACE