/* * Copyright 2021 elven cache. All rights reserved. * License: https://github.com/bkaradzic/bgfx/blob/master/LICENSE */ /* * Implement SVGF style denoising as bgfx example. Goal is to explore various * options and parameters, not produce an optimized, efficient denoiser. * * Starts with deferred rendering scene with very basic lighting. Lighting is * masked out with a noise pattern to provide something to denoise. There are * two options for the noise pattern. One is a fixed 2x2 dither pattern to * stand-in for lighting at quarter resolution. The other is the common * shadertoy random pattern as a stand-in for some fancier lighting without * enough samples per pixel, like ray tracing. * * First a temporal denoising filter is applied. The temporal filter is only * using normals to reject previous samples. The SVGF paper also describes using * depth comparison to reject samples but that is not implemented here. * * Followed by some number of spatial filters. These are implemented like in the * SVGF paper. As an alternative to the 5x5 Edge-Avoiding A-Trous filter, can * select a 3x3 filter instead. The 3x3 filter takes fewer samples and covers a * smaller area, but takes less time to compute. From a loosely eyeballed * comparison, N 5x5 passes looks similar to N+1 3x3 passes. The wider spatial * filters take a fair chunk of time to compute. I wonder if it would be a good * idea to interleave the input texture before computing, after the first pass * which skips zero pixels. * * I have not implemetened the variance guided part. * * There's also an optional TXAA pass to be applied after. I am not happy with * its implementation yet, so it defaults to off here. */ /* * Reference(s): * * - Spatiotemporal Variance-Guided Filtering: Real-Time Reconstruction for Path-Traced Global Illumination. * https://web.archive.org/web/20170720213354/https://research.nvidia.com/sites/default/files/pubs/2017-07_Spatiotemporal-Variance-Guided-Filtering%3A/svgf_preprint.pdf * * - Streaming G-Buffer Compression for Multi-Sample Anti-Aliasing. * https://web.archive.org/web/20200807211002/https://software.intel.com/content/www/us/en/develop/articles/streaming-g-buffer-compression-for-multi-sample-anti-aliasing.html * * - Edge-Avoiding A-Trous Wavelet Transform for fast Global Illumination Filtering * https://web.archive.org/web/20130412085423/https://www.uni-ulm.de/fileadmin/website_uni_ulm/iui.inst.100/institut/Papers/atrousGIfilter.pdf * */ #include #include #include #include #include #include namespace { #define DENOISE_MAX_PASSES 6 // Gbuffer has multiple render targets #define GBUFFER_RT_COLOR 0 #define GBUFFER_RT_NORMAL 1 #define GBUFFER_RT_VELOCITY 2 #define GBUFFER_RT_DEPTH 3 #define GBUFFER_RENDER_TARGETS 4 #define MODEL_COUNT 100 static const char * s_meshPaths[] = { "meshes/column.bin", "meshes/tree.bin", "meshes/hollowcube.bin", "meshes/bunny.bin" }; static const float s_meshScale[] = { 0.05f, 0.15f, 0.25f, 0.25f }; // Vertex decl for our screen space quad (used in deferred rendering) struct PosTexCoord0Vertex { float m_x; float m_y; float m_z; float m_u; float m_v; static void init() { ms_layout .begin() .add(bgfx::Attrib::Position, 3, bgfx::AttribType::Float) .add(bgfx::Attrib::TexCoord0, 2, bgfx::AttribType::Float) .end(); } static bgfx::VertexLayout ms_layout; }; bgfx::VertexLayout PosTexCoord0Vertex::ms_layout; struct Uniforms { enum { NumVec4 = 13 }; void init() { u_params = bgfx::createUniform("u_params", bgfx::UniformType::Vec4, NumVec4); }; void submit() const { bgfx::setUniform(u_params, m_params, NumVec4); } void destroy() { bgfx::destroy(u_params); } union { struct { /* 0 */ struct { float m_cameraJitterCurr[2]; float m_cameraJitterPrev[2]; }; /* 1 */ struct { float m_feedbackMin; float m_feedbackMax; float m_unused1[2]; }; /* 2 */ struct { float m_unused2; float m_applyMitchellFilter; float m_options[2]; }; /* 3-6 */ struct { float m_worldToViewPrev[16]; }; /* 7-10 */ struct { float m_viewToProjPrev[16]; }; /* 11 */ struct { float m_frameOffsetForNoise; float m_noiseType; float m_unused11[2]; }; /* 12 */ struct { float m_denoiseStep; float m_sigmaDepth; float m_sigmaNormal; float m_unused12; }; }; float m_params[NumVec4 * 4]; }; bgfx::UniformHandle u_params; }; struct RenderTarget { void init(uint32_t _width, uint32_t _height, bgfx::TextureFormat::Enum _format, uint64_t _flags) { m_texture = bgfx::createTexture2D(uint16_t(_width), uint16_t(_height), false, 1, _format, _flags); const bool destroyTextures = true; m_buffer = bgfx::createFrameBuffer(1, &m_texture, destroyTextures); } void destroy() { // also responsible for destroying texture bgfx::destroy(m_buffer); } bgfx::TextureHandle m_texture; bgfx::FrameBufferHandle m_buffer; }; void screenSpaceQuad(float _textureWidth, float _textureHeight, float _texelHalf, bool _originBottomLeft, float _width = 1.0f, float _height = 1.0f) { if (3 == bgfx::getAvailTransientVertexBuffer(3, PosTexCoord0Vertex::ms_layout) ) { bgfx::TransientVertexBuffer vb; bgfx::allocTransientVertexBuffer(&vb, 3, PosTexCoord0Vertex::ms_layout); PosTexCoord0Vertex* vertex = (PosTexCoord0Vertex*)vb.data; const float minx = -_width; const float maxx = _width; const float miny = 0.0f; const float maxy = _height * 2.0f; const float texelHalfW = _texelHalf / _textureWidth; const float texelHalfH = _texelHalf / _textureHeight; const float minu = -1.0f + texelHalfW; const float maxu = 1.0f + texelHalfW; const float zz = 0.0f; float minv = texelHalfH; float maxv = 2.0f + texelHalfH; if (_originBottomLeft) { float temp = minv; minv = maxv; maxv = temp; minv -= 1.0f; maxv -= 1.0f; } vertex[0].m_x = minx; vertex[0].m_y = miny; vertex[0].m_z = zz; vertex[0].m_u = minu; vertex[0].m_v = minv; vertex[1].m_x = maxx; vertex[1].m_y = miny; vertex[1].m_z = zz; vertex[1].m_u = maxu; vertex[1].m_v = minv; vertex[2].m_x = maxx; vertex[2].m_y = maxy; vertex[2].m_z = zz; vertex[2].m_u = maxu; vertex[2].m_v = maxv; bgfx::setVertexBuffer(0, &vb); } } void vec2Set(float* _v, float _x, float _y) { _v[0] = _x; _v[1] = _y; } void mat4Set(float * _m, const float * _src) { const uint32_t MAT4_FLOATS = 16; for (uint32_t ii = 0; ii < MAT4_FLOATS; ++ii) { _m[ii] = _src[ii]; } } class ExampleDenoise : public entry::AppI { public: ExampleDenoise(const char* _name, const char* _description) : entry::AppI(_name, _description) , m_currFrame(UINT32_MAX) , m_texelHalf(0.0f) { } void init(int32_t _argc, const char* const* _argv, uint32_t _width, uint32_t _height) override { Args args(_argc, _argv); m_width = _width; m_height = _height; m_debug = BGFX_DEBUG_NONE; m_reset = BGFX_RESET_VSYNC; bgfx::Init init; init.type = args.m_type; init.vendorId = args.m_pciId; init.resolution.width = m_width; init.resolution.height = m_height; init.resolution.reset = m_reset; bgfx::init(init); // Enable debug text. bgfx::setDebug(m_debug); // Create uniforms m_uniforms.init(); // Create texture sampler uniforms (used when we bind textures) s_albedo = bgfx::createUniform("s_albedo", bgfx::UniformType::Sampler); // Model's source albedo s_color = bgfx::createUniform("s_color", bgfx::UniformType::Sampler); // Color (albedo) gbuffer, default color input s_normal = bgfx::createUniform("s_normal", bgfx::UniformType::Sampler); // Normal gbuffer, Model's source normal s_velocity = bgfx::createUniform("s_velocity", bgfx::UniformType::Sampler); // Velocity gbuffer s_depth = bgfx::createUniform("s_depth", bgfx::UniformType::Sampler); // Depth gbuffer s_previousColor = bgfx::createUniform("s_previousColor", bgfx::UniformType::Sampler); // Previous frame's result s_previousNormal = bgfx::createUniform("s_previousNormal", bgfx::UniformType::Sampler); // Previous frame's gbuffer normal // Create program from shaders. m_gbufferProgram = loadProgram("vs_denoise_gbuffer", "fs_denoise_gbuffer"); // Fill gbuffer m_combineProgram = loadProgram("vs_denoise_screenquad", "fs_denoise_deferred_combine"); // Compute lighting from gbuffer m_copyProgram = loadProgram("vs_denoise_screenquad", "fs_denoise_copy"); m_denoiseTemporalProgram = loadProgram("vs_denoise_screenquad", "fs_denoise_temporal"); m_denoiseSpatialProgram3x3 = loadProgram("vs_denoise_screenquad", "fs_denoise_spatial_3x3"); m_denoiseSpatialProgram5x5 = loadProgram("vs_denoise_screenquad", "fs_denoise_spatial_5x5"); m_denoiseApplyLighting = loadProgram("vs_denoise_screenquad", "fs_denoise_apply_lighting"); m_txaaProgram = loadProgram("vs_denoise_screenquad", "fs_denoise_txaa"); // Load some meshes for (uint32_t ii = 0; ii < BX_COUNTOF(s_meshPaths); ++ii) { m_meshes[ii] = meshLoad(s_meshPaths[ii]); } // Randomly create some models bx::RngMwc mwc; for (uint32_t ii = 0; ii < BX_COUNTOF(m_models); ++ii) { Model& model = m_models[ii]; model.mesh = mwc.gen() % BX_COUNTOF(s_meshPaths); model.position[0] = ( ( (mwc.gen() % 256) ) - 128.0f) / 20.0f; model.position[1] = 0; model.position[2] = ( ( (mwc.gen() % 256) ) - 128.0f) / 20.0f; } // Load ground, just use the cube m_ground = meshLoad("meshes/cube.bin"); m_groundTexture = loadTexture("textures/fieldstone-rgba.dds"); m_normalTexture = loadTexture("textures/fieldstone-n.dds"); m_recreateFrameBuffers = false; createFramebuffers(); // Vertex decl PosTexCoord0Vertex::init(); // Init camera cameraCreate(); cameraSetPosition({ 0.0f, 1.5f, 0.0f }); cameraSetVerticalAngle(-0.3f); m_fovY = 60.0f; // Init "prev" matrices, will be same for first frame cameraGetViewMtx(m_view); bx::mtxProj(m_proj, m_fovY, float(m_size[0]) / float(m_size[1]), 0.01f, 100.0f, bgfx::getCaps()->homogeneousDepth); mat4Set(m_worldToViewPrev, m_view); mat4Set(m_viewToProjPrev, m_proj); // Track whether previous results are valid m_havePrevious = false; // Get renderer capabilities info. const bgfx::RendererType::Enum renderer = bgfx::getRendererType(); m_texelHalf = bgfx::RendererType::Direct3D9 == renderer ? 0.5f : 0.0f; imguiCreate(); } int32_t shutdown() override { for (uint32_t ii = 0; ii < BX_COUNTOF(s_meshPaths); ++ii) { meshUnload(m_meshes[ii]); } meshUnload(m_ground); bgfx::destroy(m_normalTexture); bgfx::destroy(m_groundTexture); bgfx::destroy(m_gbufferProgram); bgfx::destroy(m_combineProgram); bgfx::destroy(m_copyProgram); bgfx::destroy(m_denoiseTemporalProgram); bgfx::destroy(m_denoiseSpatialProgram3x3); bgfx::destroy(m_denoiseSpatialProgram5x5); bgfx::destroy(m_denoiseApplyLighting); bgfx::destroy(m_txaaProgram); m_uniforms.destroy(); bgfx::destroy(s_albedo); bgfx::destroy(s_color); bgfx::destroy(s_normal); bgfx::destroy(s_velocity); bgfx::destroy(s_depth); bgfx::destroy(s_previousColor); bgfx::destroy(s_previousNormal); destroyFramebuffers(); cameraDestroy(); imguiDestroy(); bgfx::shutdown(); return 0; } bool update() override { if (!entry::processEvents(m_width, m_height, m_debug, m_reset, &m_mouseState) ) { // skip processing when minimized, otherwise crashing if (0 == m_width || 0 == m_height) { return true; } // Update frame timer int64_t now = bx::getHPCounter(); static int64_t last = now; const int64_t frameTime = now - last; last = now; const double freq = double(bx::getHPFrequency() ); const float deltaTime = float(frameTime / freq); const bgfx::Caps* caps = bgfx::getCaps(); if (m_size[0] != (int32_t)m_width || m_size[1] != (int32_t)m_height || m_recreateFrameBuffers) { destroyFramebuffers(); createFramebuffers(); m_recreateFrameBuffers = false; } // Update camera cameraUpdate(deltaTime*0.15f, m_mouseState, ImGui::MouseOverArea() ); // Set up matrices for gbuffer cameraGetViewMtx(m_view); updateUniforms(); bx::mtxProj(m_proj, m_fovY, float(m_size[0]) / float(m_size[1]), 0.01f, 100.0f, caps->homogeneousDepth); bx::mtxProj(m_proj2, m_fovY, float(m_size[0]) / float(m_size[1]), 0.01f, 100.0f, false); if (m_enableTxaa) { m_proj[2*4+0] += m_jitter[0] * (2.0f / m_size[0]); m_proj[2*4+1] -= m_jitter[1] * (2.0f / m_size[1]); } bgfx::ViewId view = 0; // Draw everything into gbuffer { bgfx::setViewName(view, "GBuffer"); bgfx::setViewClear(view , BGFX_CLEAR_COLOR | BGFX_CLEAR_DEPTH , 0 , 1.0f , 0 ); bgfx::setViewRect(view, 0, 0, uint16_t(m_size[0]), uint16_t(m_size[1]) ); bgfx::setViewTransform(view, m_view, m_proj); // Make sure when we draw it goes into gbuffer and not backbuffer bgfx::setViewFrameBuffer(view, m_gbuffer); bgfx::setState(0 | BGFX_STATE_WRITE_RGB | BGFX_STATE_WRITE_A | BGFX_STATE_WRITE_Z | BGFX_STATE_DEPTH_TEST_LESS ); drawAllModels(view, m_gbufferProgram, m_uniforms); ++view; } float orthoProj[16]; bx::mtxOrtho(orthoProj, 0.0f, 1.0f, 1.0f, 0.0f, 0.0f, 1.0f, 0.0f, caps->homogeneousDepth); // Shade gbuffer { bgfx::setViewName(view, "Combine"); // for some reason, previous draws texture lingering in transform stack // need to clear out, otherwise this copy is garbled. this used to work // and broke after updating, but i last updated like 2 years ago. float identity[16]; bx::mtxIdentity(identity); bgfx::setTransform(identity); bgfx::setViewRect(view, 0, 0, uint16_t(m_width), uint16_t(m_height) ); bgfx::setViewTransform(view, NULL, orthoProj); bgfx::setViewFrameBuffer(view, m_currentColor.m_buffer); bgfx::setState(0 | BGFX_STATE_WRITE_RGB | BGFX_STATE_WRITE_A | BGFX_STATE_DEPTH_TEST_ALWAYS ); bgfx::setTexture(0, s_color, m_gbufferTex[GBUFFER_RT_COLOR]); bgfx::setTexture(1, s_normal, m_gbufferTex[GBUFFER_RT_NORMAL]); m_uniforms.submit(); screenSpaceQuad(float(m_width), float(m_height), m_texelHalf, caps->originBottomLeft); bgfx::submit(view, m_combineProgram); ++view; } // update last texture written, to chain passes together bgfx::TextureHandle lastTex = m_currentColor.m_texture; // denoise temporal pass if (m_useTemporalPass && m_havePrevious) { bgfx::setViewName(view, "Denoise Temporal"); bgfx::setViewRect(view, 0, 0, uint16_t(m_width), uint16_t(m_height) ); bgfx::setViewTransform(view, NULL, orthoProj); bgfx::setViewFrameBuffer(view, m_temporaryColor.m_buffer); bgfx::setState(BGFX_STATE_WRITE_RGB | BGFX_STATE_WRITE_A | BGFX_STATE_DEPTH_TEST_ALWAYS); // want color, prevColor // normal, prevNormal // depth, prevDepth to reject previous samples from accumulating - skipping depth for now bgfx::setTexture(0, s_color, lastTex); bgfx::setTexture(1, s_normal, m_gbufferTex[GBUFFER_RT_NORMAL]); bgfx::setTexture(2, s_velocity, m_gbufferTex[GBUFFER_RT_VELOCITY]); bgfx::setTexture(3, s_previousColor, m_previousDenoise.m_texture); bgfx::setTexture(4, s_previousNormal, m_previousNormal.m_texture); m_uniforms.submit(); screenSpaceQuad(float(m_width), float(m_height), m_texelHalf, caps->originBottomLeft); bgfx::submit(view, m_denoiseTemporalProgram); ++view; lastTex = m_temporaryColor.m_texture; } // denoise spatial passes if (0 < m_denoisePasses) { // variable number of passes for denoise, alternate between two textures/buffers bgfx::FrameBufferHandle destBuffer[] = { m_previousDenoise.m_buffer, m_currentColor.m_buffer, m_temporaryColor.m_buffer, m_currentColor.m_buffer, m_temporaryColor.m_buffer, m_currentColor.m_buffer, }; BX_STATIC_ASSERT(BX_COUNTOF(destBuffer) == DENOISE_MAX_PASSES); const uint32_t denoisePasses = bx::min(DENOISE_MAX_PASSES, m_denoisePasses); for (uint32_t ii = 0; ii < denoisePasses; ++ii) { char name[64]; bx::snprintf(name, BX_COUNTOF(name), "Denoise %d/%d", ii, denoisePasses-1); bgfx::setViewName(view, name); bgfx::setViewRect(view, 0, 0, uint16_t(m_width), uint16_t(m_height) ); bgfx::setViewTransform(view, NULL, orthoProj); bgfx::setViewFrameBuffer(view, destBuffer[ii]); bgfx::setState(BGFX_STATE_WRITE_RGB | BGFX_STATE_WRITE_A | BGFX_STATE_DEPTH_TEST_ALWAYS); bgfx::setTexture(0, s_color, lastTex); bgfx::setTexture(1, s_normal, m_gbufferTex[GBUFFER_RT_NORMAL]); bgfx::setTexture(2, s_depth, m_gbufferTex[GBUFFER_RT_DEPTH]); // need to update some denoise uniforms per draw const float denoiseStepScale = bx::pow(2.0f, float(ii) ); m_uniforms.m_denoiseStep = denoiseStepScale; m_uniforms.submit(); screenSpaceQuad(float(m_width), float(m_height), m_texelHalf, caps->originBottomLeft); const bgfx::ProgramHandle spatialProgram = (0 == m_spatialSampleType) ? m_denoiseSpatialProgram3x3 : m_denoiseSpatialProgram5x5 ; bgfx::submit(view, spatialProgram); ++view; if (m_previousDenoise.m_buffer.idx == destBuffer[ii].idx) { lastTex = m_previousDenoise.m_texture; } else if (m_temporaryColor.m_buffer.idx == destBuffer[ii].idx) { lastTex = m_temporaryColor.m_texture; } else { lastTex = m_currentColor.m_texture; } } } else { // need color result for temporal denoise if not supplied by spatial pass // (per SVGF paper, reuse previous frame's first spatial pass output as previous color bgfx::setViewName(view, "Copy Color for Temporal Denoise"); bgfx::setViewRect(view, 0, 0, uint16_t(m_width), uint16_t(m_height) ); bgfx::setViewTransform(view, NULL, orthoProj); bgfx::setViewFrameBuffer(view, m_previousDenoise.m_buffer); bgfx::setState(BGFX_STATE_WRITE_RGB | BGFX_STATE_WRITE_A | BGFX_STATE_DEPTH_TEST_ALWAYS); bgfx::setTexture(0, s_color, lastTex); screenSpaceQuad(float(m_width), float(m_height), m_texelHalf, caps->originBottomLeft); bgfx::submit(view, m_copyProgram); ++view; } // apply lighting { bgfx::setViewName(view, "Apply Lighting"); bgfx::setViewRect(view, 0, 0, uint16_t(m_width), uint16_t(m_height) ); bgfx::setViewTransform(view, NULL, orthoProj); bgfx::FrameBufferHandle destBuffer = (lastTex.idx == m_currentColor.m_texture.idx) ? m_temporaryColor.m_buffer : m_currentColor.m_buffer ; bgfx::setViewFrameBuffer(view, destBuffer); bgfx::setState(0 | BGFX_STATE_WRITE_RGB | BGFX_STATE_WRITE_A | BGFX_STATE_DEPTH_TEST_ALWAYS ); bgfx::setTexture(0, s_color, lastTex); bgfx::setTexture(1, s_albedo, m_gbufferTex[GBUFFER_RT_COLOR]); m_uniforms.submit(); screenSpaceQuad(float(m_width), float(m_height), m_texelHalf, caps->originBottomLeft); bgfx::submit(view, m_denoiseApplyLighting); ++view; lastTex = (m_temporaryColor.m_buffer.idx == destBuffer.idx) ? m_temporaryColor.m_texture : m_currentColor.m_texture ; } if (m_enableTxaa) { // Draw txaa to txaa buffer { bgfx::setViewName(view, "Temporal AA"); bgfx::setViewRect(view, 0, 0, uint16_t(m_width), uint16_t(m_height) ); bgfx::setViewTransform(view, NULL, orthoProj); bgfx::setViewFrameBuffer(view, m_txaaColor.m_buffer); bgfx::setState(0 | BGFX_STATE_WRITE_RGB | BGFX_STATE_WRITE_A | BGFX_STATE_DEPTH_TEST_ALWAYS ); bgfx::setTexture(0, s_color, lastTex); bgfx::setTexture(1, s_previousColor, m_previousColor.m_texture); bgfx::setTexture(2, s_velocity, m_gbufferTex[GBUFFER_RT_VELOCITY]); bgfx::setTexture(3, s_depth, m_gbufferTex[GBUFFER_RT_DEPTH]); m_uniforms.submit(); screenSpaceQuad(float(m_width), float(m_height), m_texelHalf, caps->originBottomLeft); bgfx::submit(view, m_txaaProgram); ++view; } // Copy txaa result to previous { bgfx::setViewName(view, "Copy to Previous"); bgfx::setViewRect(view, 0, 0, uint16_t(m_width), uint16_t(m_height) ); bgfx::setViewTransform(view, NULL, orthoProj); bgfx::setViewFrameBuffer(view, m_previousColor.m_buffer); bgfx::setState(0 | BGFX_STATE_WRITE_RGB | BGFX_STATE_WRITE_A | BGFX_STATE_DEPTH_TEST_ALWAYS ); bgfx::setTexture(0, s_color, m_txaaColor.m_texture); screenSpaceQuad(float(m_width), float(m_height), m_texelHalf, caps->originBottomLeft); bgfx::submit(view, m_copyProgram); ++view; } // Copy txaa result to swap chain { bgfx::setViewName(view, "Display"); bgfx::setViewRect(view, 0, 0, uint16_t(m_width), uint16_t(m_height) ); bgfx::setViewTransform(view, NULL, orthoProj); bgfx::setViewFrameBuffer(view, BGFX_INVALID_HANDLE); bgfx::setState(0 | BGFX_STATE_WRITE_RGB | BGFX_STATE_WRITE_A | BGFX_STATE_DEPTH_TEST_ALWAYS ); bgfx::setTexture(0, s_color, m_txaaColor.m_texture); screenSpaceQuad(float(m_width), float(m_height), m_texelHalf, caps->originBottomLeft); bgfx::submit(view, m_copyProgram); ++view; } } else { // Copy color result to swap chain { bgfx::setViewName(view, "Display"); bgfx::setViewClear(view , BGFX_CLEAR_NONE , 0 , 1.0f , 0 ); bgfx::setViewRect(view, 0, 0, uint16_t(m_width), uint16_t(m_height) ); bgfx::setViewTransform(view, NULL, orthoProj); bgfx::setViewFrameBuffer(view, BGFX_INVALID_HANDLE); bgfx::setState(0 | BGFX_STATE_WRITE_RGB | BGFX_STATE_WRITE_A ); bgfx::setTexture(0, s_color, lastTex); screenSpaceQuad(float(m_width), float(m_height), m_texelHalf, caps->originBottomLeft); bgfx::submit(view, m_copyProgram); ++view; } } // copy the normal buffer for next time { bgfx::setViewName(view, "Copy Normals"); bgfx::setViewRect(view, 0, 0, uint16_t(m_width), uint16_t(m_height) ); bgfx::setViewTransform(view, NULL, orthoProj); bgfx::setViewFrameBuffer(view, m_previousNormal.m_buffer); bgfx::setState(BGFX_STATE_WRITE_RGB | BGFX_STATE_WRITE_A | BGFX_STATE_DEPTH_TEST_ALWAYS); bgfx::setTexture(0, s_color, m_gbufferTex[GBUFFER_RT_NORMAL]); screenSpaceQuad(float(m_width), float(m_height), m_texelHalf, caps->originBottomLeft); bgfx::submit(view, m_copyProgram); ++view; // update previous status m_havePrevious = true; } // Copy matrices for next time mat4Set(m_worldToViewPrev, m_view); mat4Set(m_viewToProjPrev, m_proj); // Draw UI imguiBeginFrame(m_mouseState.m_mx , m_mouseState.m_my , (m_mouseState.m_buttons[entry::MouseButton::Left] ? IMGUI_MBUT_LEFT : 0) | (m_mouseState.m_buttons[entry::MouseButton::Right] ? IMGUI_MBUT_RIGHT : 0) | (m_mouseState.m_buttons[entry::MouseButton::Middle] ? IMGUI_MBUT_MIDDLE : 0) , m_mouseState.m_mz , uint16_t(m_width) , uint16_t(m_height) ); showExampleDialog(this); ImGui::SetNextWindowPos( ImVec2(m_width - m_width / 4.0f - 10.0f, 10.0f) , ImGuiCond_FirstUseEver ); ImGui::SetNextWindowSize( ImVec2(m_width / 4.0f, m_height / 1.24f) , ImGuiCond_FirstUseEver ); ImGui::Begin("Settings" , NULL , 0 ); ImGui::PushItemWidth(ImGui::GetWindowWidth() * 0.5f); { ImGui::TextWrapped( "In this demo, noise is added to results of deferred lighting. Then denoise is applied " "before multiplying the lit result with gbuffer albedo. Optionally, temporal antialiasing " "can be applied after that. (off by default, implementation blurry)"); ImGui::Separator(); ImGui::Text("noise controls:"); ImGui::Combo("pattern", &m_noiseType, "none\0dither\0random\0\0"); if (ImGui::IsItemHovered() ) { ImGui::BeginTooltip(); ImGui::Text("none"); ImGui::BulletText("compare denoised results to this"); ImGui::BulletText("brighter than noisy images, not losing any pixel's energy"); ImGui::Text("dither"); ImGui::BulletText("reject 3 out of 4 pixels in 2x2 pattern"); ImGui::BulletText("could represent lower resolution signal"); ImGui::Text("random"); ImGui::BulletText("reject about half pixels, using common shader random"); ImGui::BulletText("could represent monte carlo something or other"); ImGui::EndTooltip(); } ImGui::Checkbox("dynamic noise", &m_dynamicNoise); if (ImGui::IsItemHovered() ) { ImGui::SetTooltip("update noise pattern each frame"); } ImGui::Separator(); } { ImGui::Text("temporal denoise pass controls:"); ImGui::Checkbox("use temporal pass", &m_useTemporalPass); ImGui::Separator(); } { ImGui::Text("spatial denoise pass controls:"); ImGui::SliderInt("spatial passes", &m_denoisePasses, 0, DENOISE_MAX_PASSES); if (ImGui::IsItemHovered() ) { ImGui::SetTooltip("set passes to 0 to turn off spatial denoise"); } ImGui::Combo("spatial sample extent", &m_spatialSampleType, "three\0five\0\0"); if (ImGui::IsItemHovered() ) { ImGui::SetTooltip("select 3x3 or 5x5 filter kernal"); } ImGui::SliderFloat("sigma z", &m_sigmaDepth, 0.0f, 0.1f, "%.5f"); if (ImGui::IsItemHovered() ) { ImGui::SetTooltip("lower sigma z, pickier blending across depth edges"); } ImGui::SliderFloat("sigma n", &m_sigmaNormal, 1.0f, 256.0f); if (ImGui::IsItemHovered() ) { ImGui::SetTooltip("higher sigma n, pickier blending across normal edges"); } ImGui::Separator(); } if (ImGui::CollapsingHeader("TXAA options") ) { ImGui::Checkbox("use TXAA", &m_enableTxaa); ImGui::Checkbox("apply extra blur to current color", &m_applyMitchellFilter); if (ImGui::IsItemHovered() ) { ImGui::SetTooltip("reduces flicker/crawl on thin features, maybe too much!"); } ImGui::SliderFloat("feedback min", &m_feedbackMin, 0.0f, 1.0f); if (ImGui::IsItemHovered() ) { ImGui::SetTooltip("minimum amount of previous frame to blend in"); } ImGui::SliderFloat("feedback max", &m_feedbackMax, 0.0f, 1.0f); if (ImGui::IsItemHovered() ) { ImGui::SetTooltip("maximum amount of previous frame to blend in"); } ImGui::Checkbox("debug TXAA with slow frame rate", &m_useTxaaSlow); if (ImGui::IsItemHovered() ) { ImGui::BeginTooltip(); ImGui::Text("sleep 100ms per frame to highlight temporal artifacts"); ImGui::Text("high framerate compensates for flickering, masking issues"); ImGui::EndTooltip(); } ImGui::Separator(); } ImGui::End(); imguiEndFrame(); // Advance to next frame. Rendering thread will be kicked to // process submitted rendering primitives. m_currFrame = bgfx::frame(); // add artificial wait to emphasize txaa behavior if (m_useTxaaSlow) { bx::sleep(100); } return true; } return false; } void drawAllModels(bgfx::ViewId _pass, bgfx::ProgramHandle _program, const Uniforms & _uniforms) { for (uint32_t ii = 0; ii < BX_COUNTOF(m_models); ++ii) { const Model& model = m_models[ii]; // Set up transform matrix for each model const float scale = s_meshScale[model.mesh]; float mtx[16]; bx::mtxSRT(mtx , scale , scale , scale , 0.0f , 0.0f , 0.0f , model.position[0] , model.position[1] , model.position[2] ); // Submit mesh to gbuffer bgfx::setTexture(0, s_albedo, m_groundTexture); bgfx::setTexture(1, s_normal, m_normalTexture); _uniforms.submit(); meshSubmit(m_meshes[model.mesh], _pass, _program, mtx); } // Draw ground float mtxScale[16]; const float scale = 10.0f; bx::mtxScale(mtxScale, scale, scale, scale); float mtxTranslate[16]; bx::mtxTranslate(mtxTranslate , 0.0f , -10.0f , 0.0f ); float mtx[16]; bx::mtxMul(mtx, mtxScale, mtxTranslate); bgfx::setTexture(0, s_albedo, m_groundTexture); bgfx::setTexture(1, s_normal, m_normalTexture); _uniforms.submit(); meshSubmit(m_ground, _pass, _program, mtx); } void createFramebuffers() { m_size[0] = m_width; m_size[1] = m_height; const uint64_t bilinearFlags = 0 | BGFX_TEXTURE_RT | BGFX_SAMPLER_U_CLAMP | BGFX_SAMPLER_V_CLAMP ; const uint64_t pointSampleFlags = bilinearFlags | BGFX_SAMPLER_MIN_POINT | BGFX_SAMPLER_MAG_POINT | BGFX_SAMPLER_MIP_POINT ; m_gbufferTex[GBUFFER_RT_COLOR] = bgfx::createTexture2D(uint16_t(m_size[0]), uint16_t(m_size[1]), false, 1, bgfx::TextureFormat::BGRA8, pointSampleFlags); m_gbufferTex[GBUFFER_RT_NORMAL] = bgfx::createTexture2D(uint16_t(m_size[0]), uint16_t(m_size[1]), false, 1, bgfx::TextureFormat::BGRA8, pointSampleFlags); m_gbufferTex[GBUFFER_RT_VELOCITY] = bgfx::createTexture2D(uint16_t(m_size[0]), uint16_t(m_size[1]), false, 1, bgfx::TextureFormat::RG16F, pointSampleFlags); m_gbufferTex[GBUFFER_RT_DEPTH] = bgfx::createTexture2D(uint16_t(m_size[0]), uint16_t(m_size[1]), false, 1, bgfx::TextureFormat::D32F , pointSampleFlags); m_gbuffer = bgfx::createFrameBuffer(BX_COUNTOF(m_gbufferTex), m_gbufferTex, true); bgfx::TextureFormat::Enum format = bgfx::TextureFormat::RG11B10F; if (!bgfx::isTextureValid(1, false, 1, format, bilinearFlags)) { format = bgfx::TextureFormat::RGBA16F; } m_currentColor .init(m_size[0], m_size[1], format, bilinearFlags); m_previousColor .init(m_size[0], m_size[1], format, bilinearFlags); m_txaaColor .init(m_size[0], m_size[1], format, bilinearFlags); m_temporaryColor .init(m_size[0], m_size[1], format, bilinearFlags); m_previousNormal .init(m_size[0], m_size[1], format, pointSampleFlags); m_previousDenoise.init(m_size[0], m_size[1], format, bilinearFlags); } // all buffers set to destroy their textures void destroyFramebuffers() { bgfx::destroy(m_gbuffer); m_currentColor.destroy(); m_previousColor.destroy(); m_txaaColor.destroy(); m_temporaryColor.destroy(); m_previousNormal.destroy(); m_previousDenoise.destroy(); } void updateUniforms() { { uint32_t idx = m_currFrame % 8; const float offsets[] = { (1.0f/ 2.0f), (1.0f/3.0f), (1.0f/ 4.0f), (2.0f/3.0f), (3.0f/ 4.0f), (1.0f/9.0f), (1.0f/ 8.0f), (4.0f/9.0f), (5.0f/ 8.0f), (7.0f/9.0f), (3.0f/ 8.0f), (2.0f/9.0f), (7.0f/ 8.0f), (5.0f/9.0f), (1.0f/16.0f), (8.0f/9.0f), }; // Strange constant for jitterX is because 8 values from halton2 // sequence above do not average out to 0.5, 1/16 skews it to the // left. Subtracting a smaller value to center the range of jitter // around 0. Not necessary for jitterY. Not confident this makes sense... const float jitterX = 1.0f * (offsets[2*idx] - (7.125f/16.0f) ); const float jitterY = 1.0f * (offsets[2*idx+1] - 0.5f); vec2Set(m_uniforms.m_cameraJitterCurr, jitterX, jitterY); vec2Set(m_uniforms.m_cameraJitterPrev, m_jitter[0], m_jitter[1]); m_jitter[0] = jitterX; m_jitter[1] = jitterY; } m_uniforms.m_feedbackMin = m_feedbackMin; m_uniforms.m_feedbackMax = m_feedbackMax; m_uniforms.m_applyMitchellFilter = m_applyMitchellFilter ? 1.0f : 0.0f; mat4Set(m_uniforms.m_worldToViewPrev, m_worldToViewPrev); mat4Set(m_uniforms.m_viewToProjPrev, m_viewToProjPrev); m_uniforms.m_frameOffsetForNoise = m_dynamicNoise ? float(m_currFrame % 8) : 0.0f ; m_uniforms.m_noiseType = float(m_noiseType); m_uniforms.m_sigmaDepth = m_sigmaDepth; m_uniforms.m_sigmaNormal = m_sigmaNormal; } uint32_t m_width; uint32_t m_height; uint32_t m_debug; uint32_t m_reset; entry::MouseState m_mouseState; // Resource handles bgfx::ProgramHandle m_gbufferProgram; bgfx::ProgramHandle m_combineProgram; bgfx::ProgramHandle m_copyProgram; bgfx::ProgramHandle m_denoiseTemporalProgram; bgfx::ProgramHandle m_denoiseSpatialProgram3x3; bgfx::ProgramHandle m_denoiseSpatialProgram5x5; bgfx::ProgramHandle m_denoiseApplyLighting; bgfx::ProgramHandle m_txaaProgram; // Shader uniforms Uniforms m_uniforms; // Uniforms to indentify texture samplers bgfx::UniformHandle s_albedo; bgfx::UniformHandle s_color; bgfx::UniformHandle s_normal; bgfx::UniformHandle s_velocity; bgfx::UniformHandle s_depth; bgfx::UniformHandle s_previousColor; bgfx::UniformHandle s_previousNormal; bgfx::FrameBufferHandle m_gbuffer; bgfx::TextureHandle m_gbufferTex[GBUFFER_RENDER_TARGETS]; RenderTarget m_currentColor; RenderTarget m_previousColor; RenderTarget m_txaaColor; RenderTarget m_temporaryColor; // need another buffer to ping-pong results RenderTarget m_previousNormal; RenderTarget m_previousDenoise; // color output by first spatial denoise pass, input to next frame as previous color struct Model { uint32_t mesh; // Index of mesh in m_meshes float position[3]; }; Model m_models[MODEL_COUNT]; Mesh* m_meshes[BX_COUNTOF(s_meshPaths)]; Mesh* m_ground; bgfx::TextureHandle m_groundTexture; bgfx::TextureHandle m_normalTexture; uint32_t m_currFrame; float m_texelHalf = 0.0f; float m_fovY = 60.0f; bool m_recreateFrameBuffers = false; bool m_havePrevious = false; float m_view[16]; float m_proj[16]; float m_proj2[16]; float m_viewToProjPrev[16]; float m_worldToViewPrev[16]; float m_jitter[2]; int32_t m_size[2]; // UI parameters int32_t m_noiseType = 2; int32_t m_spatialSampleType = 1; int32_t m_denoisePasses = 5; float m_sigmaDepth = 0.05f; float m_sigmaNormal = 128.0f; float m_feedbackMin = 0.8f; float m_feedbackMax = 0.95f; bool m_dynamicNoise = true; bool m_useTemporalPass = true; bool m_enableTxaa = false; bool m_applyMitchellFilter = true; bool m_useTxaaSlow = false; }; } // namespace ENTRY_IMPLEMENT_MAIN(ExampleDenoise, "43-denoise", "Denoise.");