/* * Copyright 2011-2020 Branimir Karadzic. All rights reserved. * License: https://github.com/bkaradzic/bgfx#license-bsd-2-clause */ #include "shaderc.h" BX_PRAGMA_DIAGNOSTIC_PUSH() BX_PRAGMA_DIAGNOSTIC_IGNORED_MSVC(4100) // error C4100: 'inclusionDepth' : unreferenced formal parameter BX_PRAGMA_DIAGNOSTIC_IGNORED_MSVC(4265) // error C4265: 'spv::spirvbin_t': class has virtual functions, but destructor is not virtual BX_PRAGMA_DIAGNOSTIC_IGNORED_CLANG_GCC("-Wattributes") // warning: attribute ignored BX_PRAGMA_DIAGNOSTIC_IGNORED_CLANG_GCC("-Wdeprecated-declarations") // warning: ‘MSLVertexAttr’ is deprecated BX_PRAGMA_DIAGNOSTIC_IGNORED_CLANG_GCC("-Wtype-limits") // warning: comparison of unsigned expression in ‘< 0’ is always false BX_PRAGMA_DIAGNOSTIC_IGNORED_CLANG_GCC("-Wshadow") // warning: declaration of 'userData' shadows a member of 'glslang::TShader::Includer::IncludeResult' #define ENABLE_OPT 1 #include #include #include #include #define SPIRV_CROSS_EXCEPTIONS_TO_ASSERTIONS #include #include #include BX_PRAGMA_DIAGNOSTIC_POP() namespace bgfx { struct TinyStlAllocator { static void* static_allocate(size_t _bytes); static void static_deallocate(void* _ptr, size_t /*_bytes*/); }; } // namespace bgfx #define TINYSTL_ALLOCATOR bgfx::TinyStlAllocator #include #include #include #include namespace stl = tinystl; #include "../../src/shader_spirv.h" namespace bgfx { namespace metal { const TBuiltInResource resourceLimits = { 32, // MaxLights 6, // MaxClipPlanes 32, // MaxTextureUnits 32, // MaxTextureCoords 64, // MaxVertexAttribs 4096, // MaxVertexUniformComponents 64, // MaxVaryingFloats 32, // MaxVertexTextureImageUnits 80, // MaxCombinedTextureImageUnits 32, // MaxTextureImageUnits 4096, // MaxFragmentUniformComponents 32, // MaxDrawBuffers 128, // MaxVertexUniformVectors 8, // MaxVaryingVectors 16, // MaxFragmentUniformVectors 16, // MaxVertexOutputVectors 15, // MaxFragmentInputVectors -8, // MinProgramTexelOffset 7, // MaxProgramTexelOffset 8, // MaxClipDistances 65535, // MaxComputeWorkGroupCountX 65535, // MaxComputeWorkGroupCountY 65535, // MaxComputeWorkGroupCountZ 1024, // MaxComputeWorkGroupSizeX 1024, // MaxComputeWorkGroupSizeY 64, // MaxComputeWorkGroupSizeZ 1024, // MaxComputeUniformComponents 16, // MaxComputeTextureImageUnits 8, // MaxComputeImageUniforms 8, // MaxComputeAtomicCounters 1, // MaxComputeAtomicCounterBuffers 60, // MaxVaryingComponents 64, // MaxVertexOutputComponents 64, // MaxGeometryInputComponents 128, // MaxGeometryOutputComponents 128, // MaxFragmentInputComponents 8, // MaxImageUnits 8, // MaxCombinedImageUnitsAndFragmentOutputs 8, // MaxCombinedShaderOutputResources 0, // MaxImageSamples 0, // MaxVertexImageUniforms 0, // MaxTessControlImageUniforms 0, // MaxTessEvaluationImageUniforms 0, // MaxGeometryImageUniforms 8, // MaxFragmentImageUniforms 8, // MaxCombinedImageUniforms 16, // MaxGeometryTextureImageUnits 256, // MaxGeometryOutputVertices 1024, // MaxGeometryTotalOutputComponents 1024, // MaxGeometryUniformComponents 64, // MaxGeometryVaryingComponents 128, // MaxTessControlInputComponents 128, // MaxTessControlOutputComponents 16, // MaxTessControlTextureImageUnits 1024, // MaxTessControlUniformComponents 4096, // MaxTessControlTotalOutputComponents 128, // MaxTessEvaluationInputComponents 128, // MaxTessEvaluationOutputComponents 16, // MaxTessEvaluationTextureImageUnits 1024, // MaxTessEvaluationUniformComponents 120, // MaxTessPatchComponents 32, // MaxPatchVertices 64, // MaxTessGenLevel 16, // MaxViewports 0, // MaxVertexAtomicCounters 0, // MaxTessControlAtomicCounters 0, // MaxTessEvaluationAtomicCounters 0, // MaxGeometryAtomicCounters 8, // MaxFragmentAtomicCounters 8, // MaxCombinedAtomicCounters 1, // MaxAtomicCounterBindings 0, // MaxVertexAtomicCounterBuffers 0, // MaxTessControlAtomicCounterBuffers 0, // MaxTessEvaluationAtomicCounterBuffers 0, // MaxGeometryAtomicCounterBuffers 1, // MaxFragmentAtomicCounterBuffers 1, // MaxCombinedAtomicCounterBuffers 16384, // MaxAtomicCounterBufferSize 4, // MaxTransformFeedbackBuffers 64, // MaxTransformFeedbackInterleavedComponents 8, // MaxCullDistances 8, // MaxCombinedClipAndCullDistances 4, // MaxSamples 0, // maxMeshOutputVerticesNV 0, // maxMeshOutputPrimitivesNV 0, // maxMeshWorkGroupSizeX_NV 0, // maxMeshWorkGroupSizeY_NV 0, // maxMeshWorkGroupSizeZ_NV 0, // maxTaskWorkGroupSizeX_NV 0, // maxTaskWorkGroupSizeY_NV 0, // maxTaskWorkGroupSizeZ_NV 0, // maxMeshViewCountNV 0, // maxDualSourceDrawBuffersEXT { // limits true, // nonInductiveForLoops true, // whileLoops true, // doWhileLoops true, // generalUniformIndexing true, // generalAttributeMatrixVectorIndexing true, // generalVaryingIndexing true, // generalSamplerIndexing true, // generalVariableIndexing true, // generalConstantMatrixVectorIndexing }, }; bool printAsm(uint32_t _offset, const SpvInstruction& _instruction, void* _userData) { BX_UNUSED(_userData); char temp[512]; toString(temp, sizeof(temp), _instruction); BX_TRACE("%5d: %s", _offset, temp); return true; } struct SpvReflection { struct TypeId { enum Enum { Void, Bool, Int32, Int64, Uint32, Uint64, Float, Double, Vector, Matrix, Count }; TypeId() : baseType(Enum::Count) , type(Enum::Count) , numComponents(0) { } Enum baseType; Enum type; uint32_t numComponents; stl::string toString() { stl::string result; switch (type) { case Float: result.append("float"); break; case Vector: bx::stringPrintf(result, "vec%d" , numComponents ); break; case Matrix: bx::stringPrintf(result, "mat%d" , numComponents ); default: break; } return result; } }; struct Id { struct Variable { Variable() : decoration(SpvDecoration::Count) , builtin(SpvBuiltin::Count) , storageClass(SpvStorageClass::Count) , location(UINT32_MAX) , offset(UINT32_MAX) , type(UINT32_MAX) { } stl::string name; SpvDecoration::Enum decoration; SpvBuiltin::Enum builtin; SpvStorageClass::Enum storageClass; uint32_t location; uint32_t offset; uint32_t type; }; typedef stl::vector MemberArray; Variable var; MemberArray members; }; typedef stl::unordered_map TypeIdMap; typedef stl::unordered_map IdMap; TypeIdMap typeIdMap; IdMap idMap; stl::string getTypeName(uint32_t _typeId) { return getTypeId(_typeId).toString(); } Id& getId(uint32_t _id) { IdMap::iterator it = idMap.find(_id); if (it == idMap.end() ) { Id id; stl::pair result = idMap.insert(stl::make_pair(_id, id) ); it = result.first; } return it->second; } Id::Variable& get(uint32_t _id, uint32_t _idx) { Id& id = getId(_id); id.members.resize(bx::uint32_max(_idx+1, uint32_t(id.members.size() ) ) ); return id.members[_idx]; } TypeId& getTypeId(uint32_t _id) { TypeIdMap::iterator it = typeIdMap.find(_id); if (it == typeIdMap.end() ) { TypeId id; stl::pair result = typeIdMap.insert(stl::make_pair(_id, id) ); it = result.first; } return it->second; } void update(uint32_t _id, const stl::string& _name) { getId(_id).var.name = _name; } BX_NO_INLINE void update(Id::Variable& _variable, SpvDecoration::Enum _decoration, uint32_t _literal) { _variable.decoration = _decoration; switch (_decoration) { case SpvDecoration::Location: _variable.location = _literal; break; case SpvDecoration::Offset: _variable.offset = _literal; break; case SpvDecoration::BuiltIn: _variable.builtin = SpvBuiltin::Enum(_literal); break; default: break; } } BX_NO_INLINE void update(Id::Variable& _variable, uint32_t _type, SpvStorageClass::Enum _storageClass) { _variable.type = _type; _variable.storageClass = _storageClass; } void update(uint32_t _id, SpvDecoration::Enum _decoration, uint32_t _literal) { update(getId(_id).var, _decoration, _literal); } void update(uint32_t _id, uint32_t _type, SpvStorageClass::Enum _storageClass) { update(getId(_id).var, _type, _storageClass); } void update(uint32_t _id, uint32_t _idx, const stl::string& _name) { Id::Variable& var = get(_id, _idx); var.name = _name; } BX_NO_INLINE void update(uint32_t _id, uint32_t _idx, SpvDecoration::Enum _decoration, uint32_t _literal) { update(get(_id, _idx), _decoration, _literal); } void update(uint32_t _id, TypeId::Enum _type) { TypeId& type = getTypeId(_id); type.type = _type; } void update(uint32_t _id, TypeId::Enum _type, uint32_t _baseTypeId, uint32_t _numComonents) { TypeId& type = getTypeId(_id); type.type = _type; type.baseType = getTypeId(_baseTypeId).type; type.numComponents = _numComonents; } }; bool spvParse(uint32_t _offset, const SpvInstruction& _instruction, void* _userData) { BX_UNUSED(_offset); SpvReflection* spv = (SpvReflection*)_userData; switch (_instruction.opcode) { case SpvOpcode::Name: spv->update(_instruction.result , _instruction.operand[0].literalString ); break; case SpvOpcode::Decorate: spv->update(_instruction.operand[0].data , SpvDecoration::Enum(_instruction.operand[1].data) , _instruction.operand[2].data ); break; case SpvOpcode::MemberName: spv->update(_instruction.result , _instruction.operand[0].data , _instruction.operand[1].literalString ); break; case SpvOpcode::MemberDecorate: spv->update(_instruction.operand[0].data , _instruction.operand[1].data , SpvDecoration::Enum(_instruction.operand[2].data) , _instruction.operand[3].data ); break; case SpvOpcode::Variable: spv->update(_instruction.result , _instruction.type , SpvStorageClass::Enum(_instruction.operand[0].data) ); break; case SpvOpcode::TypeVoid: spv->update(_instruction.result, SpvReflection::TypeId::Void); break; case SpvOpcode::TypeBool: spv->update(_instruction.result, SpvReflection::TypeId::Bool); break; case SpvOpcode::TypeInt: spv->update(_instruction.result , 32 == _instruction.operand[0].data ? 0 == _instruction.operand[1].data ? SpvReflection::TypeId::Uint32 : SpvReflection::TypeId::Int32 : 0 == _instruction.operand[1].data ? SpvReflection::TypeId::Uint64 : SpvReflection::TypeId::Int64 ); break; case SpvOpcode::TypeFloat: spv->update(_instruction.result , 32 == _instruction.operand[0].data ? SpvReflection::TypeId::Float : SpvReflection::TypeId::Double ); break; case SpvOpcode::TypeVector: spv->update(_instruction.result , SpvReflection::TypeId::Vector , _instruction.operand[0].data , _instruction.operand[1].data ); break; case SpvOpcode::TypeMatrix: spv->update(_instruction.result , SpvReflection::TypeId::Matrix , _instruction.operand[0].data , _instruction.operand[1].data ); break; case SpvOpcode::TypeImage: case SpvOpcode::TypeSampler: case SpvOpcode::TypeSampledImage: break; case SpvOpcode::TypeStruct: for (uint32_t ii = 0, num = _instruction.numOperands; ii < num; ++ii) { SpvReflection::Id::Variable& var = spv->get(_instruction.result, ii); var.type = _instruction.operand[ii].data; } break; default: break; } return true; } #define DBG(...) // bx::debugPrintf(__VA_ARGS__) void disassemble(bx::WriterI* _writer, bx::ReaderSeekerI* _reader, bx::Error* _err) { BX_UNUSED(_writer); uint32_t magic; bx::peek(_reader, magic); SpvReflection spvx; if (magic == SPV_CHUNK_HEADER) { SpirV spirv; read(_reader, spirv, _err); parse(spirv.shader, spvParse, &spvx, _err); for (SpvReflection::IdMap::const_iterator it = spvx.idMap.begin(), itEnd = spvx.idMap.end(); it != itEnd; ++it) { const SpvReflection::Id& id = it->second; uint32_t num = uint32_t(id.members.size() ); if (0 < num && 0 != bx::strCmp(id.var.name.c_str(), "gl_PerVertex") ) { DBG("%3d: %s %d %s\n" , it->first , id.var.name.c_str() , id.var.location , getName(id.var.storageClass) ); DBG("{\n"); for (uint32_t ii = 0; ii < num; ++ii) { const SpvReflection::Id::Variable& var = id.members[ii]; DBG("\t\t%s %s %d %s\n" , spvx.getTypeName(var.type).c_str() , var.name.c_str() , var.offset , getName(var.storageClass) ); BX_UNUSED(var); } DBG("}\n"); } } } } static EShLanguage getLang(char _p) { switch (_p) { case 'c': return EShLangCompute; case 'f': return EShLangFragment; case 'v': return EShLangVertex; default: return EShLangCount; } } static const char* s_attribName[] = { "a_position", "a_normal", "a_tangent", "a_bitangent", "a_color0", "a_color1", "a_color2", "a_color3", "a_indices", "a_weight", "a_texcoord0", "a_texcoord1", "a_texcoord2", "a_texcoord3", "a_texcoord4", "a_texcoord5", "a_texcoord6", "a_texcoord7", }; BX_STATIC_ASSERT(bgfx::Attrib::Count == BX_COUNTOF(s_attribName) ); bgfx::Attrib::Enum toAttribEnum(const bx::StringView& _name) { for (uint8_t ii = 0; ii < Attrib::Count; ++ii) { if (0 == bx::strCmp(s_attribName[ii], _name) ) { return bgfx::Attrib::Enum(ii); } } return bgfx::Attrib::Count; } static const char* s_samplerTypes[] = { "BgfxSampler2D", "BgfxISampler2D", "BgfxUSampler2D", "BgfxSampler2DArray", "BgfxSampler2DShadow", "BgfxSampler2DArrayShadow", "BgfxSampler3D", "BgfxISampler3D", "BgfxUSampler3D", "BgfxSamplerCube", "BgfxSamplerCubeShadow", "BgfxSampler2DMS", }; static uint16_t writeUniformArray(bx::WriterI* _writer, const UniformArray& uniforms, bool isFragmentShader) { uint16_t size = 0; uint16_t count = static_cast(uniforms.size() ); bx::write(_writer, count); uint32_t fragmentBit = isFragmentShader ? kUniformFragmentBit : 0; for (uint16_t ii = 0; ii < count; ++ii) { const Uniform& un = uniforms[ii]; size += un.regCount*16; uint8_t nameSize = (uint8_t)un.name.size(); bx::write(_writer, nameSize); bx::write(_writer, un.name.c_str(), nameSize); bx::write(_writer, uint8_t(un.type | fragmentBit) ); bx::write(_writer, un.num); bx::write(_writer, un.regIndex); bx::write(_writer, un.regCount); bx::write(_writer, un.texComponent); bx::write(_writer, un.texDimension); BX_TRACE("%s, %s, %d, %d, %d" , un.name.c_str() , getUniformTypeName(un.type) , un.num , un.regIndex , un.regCount ); } return size; } static bool compile(const Options& _options, uint32_t _version, const std::string& _code, bx::WriterI* _writer, bool _firstPass) { BX_UNUSED(_version); glslang::InitializeProcess(); glslang::TProgram* program = new glslang::TProgram; EShLanguage stage = getLang(_options.shaderType); if (EShLangCount == stage) { bx::printf("Error: Unknown shader type '%c'.\n", _options.shaderType); return false; } glslang::TShader* shader = new glslang::TShader(stage); EShMessages messages = EShMessages(0 | EShMsgDefault | EShMsgReadHlsl | EShMsgVulkanRules | EShMsgSpvRules ); shader->setEntryPoint("main"); shader->setAutoMapBindings(true); const int textureBindingOffset = 16; shader->setShiftBinding(glslang::EResTexture, textureBindingOffset); shader->setShiftBinding(glslang::EResSampler, textureBindingOffset); shader->setShiftBinding(glslang::EResImage, textureBindingOffset); const char* shaderStrings[] = { _code.c_str() }; shader->setStrings( shaderStrings , BX_COUNTOF(shaderStrings) ); bool compiled = shader->parse(&resourceLimits , 110 , false , messages ); bool linked = false; bool validated = true; if (!compiled) { const char* log = shader->getInfoLog(); if (NULL != log) { int32_t source = 0; int32_t line = 0; int32_t column = 0; int32_t start = 0; int32_t end = INT32_MAX; bx::StringView err = bx::strFind(log, "ERROR:"); bool found = false; if (!err.isEmpty() ) { found = 2 == sscanf(err.getPtr(), "ERROR: %u:%u: '", &source, &line); if (found) { ++line; } } if (found) { start = bx::uint32_imax(1, line-10); end = start + 20; } printCode(_code.c_str(), line, start, end, column); bx::printf("%s\n", log); } } else { program->addShader(shader); linked = true && program->link(messages) && program->mapIO() ; if (!linked) { const char* log = program->getInfoLog(); if (NULL != log) { bx::printf("%s\n", log); } } else { program->buildReflection(); if (_firstPass) { // first time through, we just find unused uniforms and get rid of them std::string output; bx::Error err; bx::LineReader reader(_code.c_str() ); while (!reader.isDone() ) { bx::StringView strLine = reader.next(); bx::StringView str = strFind(strLine, "uniform "); if (!str.isEmpty() ) { // If the line declares a uniform, merge all next // lines until we encounter a semicolon. bx::StringView lineEnd = strFind(strLine, ";"); while (lineEnd.isEmpty() && !reader.isDone()) { bx::StringView nextLine = reader.next(); strLine.set(strLine.getPtr(), nextLine.getTerm()); lineEnd = strFind(nextLine, ";"); } bool found = false; for (uint32_t ii = 0; ii < BX_COUNTOF(s_samplerTypes); ++ii) { if (!bx::findIdentifierMatch(strLine, s_samplerTypes[ii]).isEmpty() ) { found = true; break; } } if (!found) { for (int32_t ii = 0, num = program->getNumLiveUniformVariables(); ii < num; ++ii) { // matching lines like: uniform u_name; // we want to replace "uniform" with "static" so that it's no longer // included in the uniform blob that the application must upload // we can't just remove them, because unused functions might still reference // them and cause a compile error when they're gone if (!bx::findIdentifierMatch(strLine, program->getUniformName(ii) ).isEmpty() ) { found = true; break; } } } if (!found) { output.append(strLine.getPtr(), str.getPtr() ); output += "static "; output.append(str.getTerm(), strLine.getTerm() ); output += "\n"; } else { output.append(strLine.getPtr(), strLine.getTerm() ); output += "\n"; } } else { output.append(strLine.getPtr(), strLine.getTerm() ); output += "\n"; } } // recompile with the unused uniforms converted to statics return compile(_options, _version, output.c_str(), _writer, false); } UniformArray uniforms; { uint16_t count = (uint16_t)program->getNumLiveUniformVariables(); for (uint16_t ii = 0; ii < count; ++ii) { Uniform un; un.name = program->getUniformName(ii); un.num = uint8_t(program->getUniformArraySize(ii) ); const uint32_t offset = program->getUniformBufferOffset(ii); un.regIndex = uint16_t(offset); un.regCount = un.num; switch (program->getUniformType(ii) ) { case 0x1404: // GL_INT: un.type = UniformType::Sampler; break; case 0x8B52: // GL_FLOAT_VEC4: un.type = UniformType::Vec4; break; case 0x8B5B: // GL_FLOAT_MAT3: un.type = UniformType::Mat3; un.regCount *= 3; break; case 0x8B5C: // GL_FLOAT_MAT4: un.type = UniformType::Mat4; un.regCount *= 4; break; default: un.type = UniformType::End; break; } uniforms.push_back(un); } } if (g_verbose) { program->dumpReflection(); } BX_UNUSED(spv::MemorySemanticsAllMemory); glslang::TIntermediate* intermediate = program->getIntermediate(stage); std::vector spirv; glslang::SpvOptions options; options.disableOptimizer = false; glslang::GlslangToSpv(*intermediate, spirv, &options); spvtools::Optimizer opt(SPV_ENV_VULKAN_1_0); auto print_msg_to_stderr = []( spv_message_level_t , const char* , const spv_position_t& , const char* m ) { bx::printf("Error: %s\n", m); }; opt.SetMessageConsumer(print_msg_to_stderr); opt.RegisterLegalizationPasses(); spvtools::ValidatorOptions validatorOptions; validatorOptions.SetBeforeHlslLegalization(true); if (!opt.Run( spirv.data() , spirv.size() , &spirv , validatorOptions , false ) ) { compiled = false; } else { bx::Error err; bx::WriterI* writer = bx::getDebugOut(); bx::MemoryReader reader(spirv.data(), uint32_t(spirv.size()*4) ); disassemble(writer, &reader, &err); spirv_cross::CompilerReflection refl(spirv); spirv_cross::ShaderResources resourcesrefl = refl.get_shader_resources(); // Loop through the separate_images, and extract the uniform names: for (auto &resource : resourcesrefl.separate_images) { std::string name = refl.get_name(resource.id); if (name.size() > 7 && 0 == bx::strCmp(name.c_str() + name.length() - 7, "Texture") ) { auto uniform_name = name.substr(0, name.length() - 7); Uniform un; un.name = uniform_name; un.type = UniformType::Sampler; un.num = 0; // needed? un.regIndex = 0; // needed? un.regCount = 0; // needed? uniforms.push_back(un); } } uint16_t size = writeUniformArray( _writer, uniforms, _options.shaderType == 'f'); if (_version == BX_MAKEFOURCC('M', 'T', 'L', 0) ) { if (g_verbose) { glslang::SpirvToolsDisassemble(std::cout, spirv, SPV_ENV_VULKAN_1_0); } spirv_cross::CompilerMSL msl(std::move(spirv) ); auto executionModel = msl.get_execution_model(); spirv_cross::MSLResourceBinding newBinding; newBinding.stage = executionModel; spirv_cross::ShaderResources resources = msl.get_shader_resources(); spirv_cross::SmallVector entryPoints = msl.get_entry_points_and_stages(); if (!entryPoints.empty() ) msl.rename_entry_point(entryPoints[0].name, "xlatMtlMain", entryPoints[0].execution_model); for (auto &resource : resources.uniform_buffers) { unsigned set = msl.get_decoration( resource.id, spv::DecorationDescriptorSet ); unsigned binding = msl.get_decoration( resource.id, spv::DecorationBinding ); newBinding.desc_set = set; newBinding.binding = binding; newBinding.msl_buffer = 0; msl.add_msl_resource_binding( newBinding ); msl.set_name(resource.id, "_mtl_u"); } for (auto &resource : resources.storage_buffers) { unsigned set = msl.get_decoration( resource.id, spv::DecorationDescriptorSet ); unsigned binding = msl.get_decoration( resource.id, spv::DecorationBinding ); newBinding.desc_set = set; newBinding.binding = binding; newBinding.msl_buffer = binding + 1; msl.add_msl_resource_binding( newBinding ); } for (auto &resource : resources.separate_samplers) { unsigned set = msl.get_decoration( resource.id, spv::DecorationDescriptorSet ); unsigned binding = msl.get_decoration( resource.id, spv::DecorationBinding ); newBinding.desc_set = set; newBinding.binding = binding; newBinding.msl_texture = binding - textureBindingOffset; newBinding.msl_sampler = binding - textureBindingOffset; msl.add_msl_resource_binding( newBinding ); } for (auto &resource : resources.separate_images) { std::string name = msl.get_name(resource.id); if (name.size() > 7 && 0 == bx::strCmp(name.c_str() + name.length() - 7, "Texture") ) { msl.set_name(resource.id, name.substr(0, name.length() - 7) ); } unsigned set = msl.get_decoration( resource.id, spv::DecorationDescriptorSet ); unsigned binding = msl.get_decoration( resource.id, spv::DecorationBinding ); newBinding.desc_set = set; newBinding.binding = binding; newBinding.msl_texture = binding - textureBindingOffset; newBinding.msl_sampler = binding - textureBindingOffset; msl.add_msl_resource_binding( newBinding ); } for (auto &resource : resources.storage_images) { std::string name = msl.get_name(resource.id); if (name.size() > 7 && 0 == bx::strCmp(name.c_str() + name.length() - 7, "Texture") ) { msl.set_name(resource.id, name.substr(0, name.length() - 7) ); } unsigned set = msl.get_decoration( resource.id, spv::DecorationDescriptorSet ); unsigned binding = msl.get_decoration( resource.id, spv::DecorationBinding ); newBinding.desc_set = set; newBinding.binding = binding; newBinding.msl_texture = binding - textureBindingOffset; newBinding.msl_sampler = binding - textureBindingOffset; msl.add_msl_resource_binding( newBinding ); } std::string source = msl.compile(); if ('c' == _options.shaderType) { for (int i = 0; i < 3; ++i) { uint16_t dim = (uint16_t)msl.get_execution_mode_argument(spv::ExecutionMode::ExecutionModeLocalSize, i); bx::write(_writer, dim); } } uint32_t shaderSize = (uint32_t)source.size(); bx::write(_writer, shaderSize); bx::write(_writer, source.c_str(), shaderSize); uint8_t nul = 0; bx::write(_writer, nul); } else { uint32_t shaderSize = (uint32_t)spirv.size() * sizeof(uint32_t); bx::write(_writer, shaderSize); bx::write(_writer, spirv.data(), shaderSize); uint8_t nul = 0; bx::write(_writer, nul); } // const uint8_t numAttr = (uint8_t)program->getNumLiveAttributes(); bx::write(_writer, numAttr); for (uint8_t ii = 0; ii < numAttr; ++ii) { bgfx::Attrib::Enum attr = toAttribEnum(program->getAttributeName(ii) ); if (bgfx::Attrib::Count != attr) { bx::write(_writer, bgfx::attribToId(attr) ); } else { bx::write(_writer, uint16_t(UINT16_MAX) ); } } bx::write(_writer, size); } } } delete program; delete shader; glslang::FinalizeProcess(); return compiled && linked && validated; } } // namespace metal bool compileMetalShader(const Options& _options, uint32_t _version, const std::string& _code, bx::WriterI* _writer) { return metal::compile(_options, _version, _code, _writer, true); } } // namespace bgfx