/* * Copyright 2011-2024 Branimir Karadzic. All rights reserved. * License: https://github.com/bkaradzic/bgfx/blob/master/LICENSE */ #ifndef __SHADERLIB_SH__ #define __SHADERLIB_SH__ vec4 encodeRE8(float _r) { float exponent = ceil(log2(_r) ); return vec4(_r / exp2(exponent) , 0.0 , 0.0 , (exponent + 128.0) / 255.0 ); } float decodeRE8(vec4 _re8) { float exponent = _re8.w * 255.0 - 128.0; return _re8.x * exp2(exponent); } vec4 encodeRGBE8(vec3 _rgb) { vec4 rgbe8; float maxComponent = max(max(_rgb.x, _rgb.y), _rgb.z); float exponent = ceil(log2(maxComponent) ); rgbe8.xyz = _rgb / exp2(exponent); rgbe8.w = (exponent + 128.0) / 255.0; return rgbe8; } vec3 decodeRGBE8(vec4 _rgbe8) { float exponent = _rgbe8.w * 255.0 - 128.0; vec3 rgb = _rgbe8.xyz * exp2(exponent); return rgb; } vec3 encodeNormalUint(vec3 _normal) { return _normal * 0.5 + 0.5; } vec3 decodeNormalUint(vec3 _encodedNormal) { return _encodedNormal * 2.0 - 1.0; } vec2 encodeNormalSphereMap(vec3 _normal) { return normalize(_normal.xy) * sqrt(_normal.z * 0.5 + 0.5); } vec3 decodeNormalSphereMap(vec2 _encodedNormal) { float zz = dot(_encodedNormal, _encodedNormal) * 2.0 - 1.0; return vec3(normalize(_encodedNormal.xy) * sqrt(1.0 - zz*zz), zz); } vec2 octahedronWrap(vec2 _val) { // Reference(s): // - Octahedron normal vector encoding // https://web.archive.org/web/20191027010600/https://knarkowicz.wordpress.com/2014/04/16/octahedron-normal-vector-encoding/comment-page-1/ return (1.0 - abs(_val.yx) ) * mix(vec2_splat(-1.0), vec2_splat(1.0), vec2(greaterThanEqual(_val.xy, vec2_splat(0.0) ) ) ); } vec2 encodeNormalOctahedron(vec3 _normal) { _normal /= abs(_normal.x) + abs(_normal.y) + abs(_normal.z); _normal.xy = _normal.z >= 0.0 ? _normal.xy : octahedronWrap(_normal.xy); _normal.xy = _normal.xy * 0.5 + 0.5; return _normal.xy; } vec3 decodeNormalOctahedron(vec2 _encodedNormal) { _encodedNormal = _encodedNormal * 2.0 - 1.0; vec3 normal; normal.z = 1.0 - abs(_encodedNormal.x) - abs(_encodedNormal.y); normal.xy = normal.z >= 0.0 ? _encodedNormal.xy : octahedronWrap(_encodedNormal.xy); return normalize(normal); } vec3 convertRGB2XYZ(vec3 _rgb) { // Reference(s): // - RGB/XYZ Matrices // https://web.archive.org/web/20191027010220/http://www.brucelindbloom.com/index.html?Eqn_RGB_XYZ_Matrix.html vec3 xyz; xyz.x = dot(vec3(0.4124564, 0.3575761, 0.1804375), _rgb); xyz.y = dot(vec3(0.2126729, 0.7151522, 0.0721750), _rgb); xyz.z = dot(vec3(0.0193339, 0.1191920, 0.9503041), _rgb); return xyz; } vec3 convertXYZ2RGB(vec3 _xyz) { vec3 rgb; rgb.x = dot(vec3( 3.2404542, -1.5371385, -0.4985314), _xyz); rgb.y = dot(vec3(-0.9692660, 1.8760108, 0.0415560), _xyz); rgb.z = dot(vec3( 0.0556434, -0.2040259, 1.0572252), _xyz); return rgb; } vec3 convertXYZ2Yxy(vec3 _xyz) { // Reference(s): // - XYZ to xyY // https://web.archive.org/web/20191027010144/http://www.brucelindbloom.com/index.html?Eqn_XYZ_to_xyY.html float inv = 1.0/dot(_xyz, vec3(1.0, 1.0, 1.0) ); return vec3(_xyz.y, _xyz.x*inv, _xyz.y*inv); } vec3 convertYxy2XYZ(vec3 _Yxy) { // Reference(s): // - xyY to XYZ // https://web.archive.org/web/20191027010036/http://www.brucelindbloom.com/index.html?Eqn_xyY_to_XYZ.html vec3 xyz; xyz.x = _Yxy.x*_Yxy.y/_Yxy.z; xyz.y = _Yxy.x; xyz.z = _Yxy.x*(1.0 - _Yxy.y - _Yxy.z)/_Yxy.z; return xyz; } vec3 convertRGB2Yxy(vec3 _rgb) { return convertXYZ2Yxy(convertRGB2XYZ(_rgb) ); } vec3 convertYxy2RGB(vec3 _Yxy) { return convertXYZ2RGB(convertYxy2XYZ(_Yxy) ); } vec3 convertRGB2Yuv(vec3 _rgb) { vec3 yuv; yuv.x = dot(_rgb, vec3(0.299, 0.587, 0.114) ); yuv.y = (_rgb.x - yuv.x)*0.713 + 0.5; yuv.z = (_rgb.z - yuv.x)*0.564 + 0.5; return yuv; } vec3 convertYuv2RGB(vec3 _yuv) { vec3 rgb; rgb.x = _yuv.x + 1.403*(_yuv.y-0.5); rgb.y = _yuv.x - 0.344*(_yuv.y-0.5) - 0.714*(_yuv.z-0.5); rgb.z = _yuv.x + 1.773*(_yuv.z-0.5); return rgb; } vec3 convertRGB2YIQ(vec3 _rgb) { vec3 yiq; yiq.x = dot(vec3(0.299, 0.587, 0.114 ), _rgb); yiq.y = dot(vec3(0.595716, -0.274453, -0.321263), _rgb); yiq.z = dot(vec3(0.211456, -0.522591, 0.311135), _rgb); return yiq; } vec3 convertYIQ2RGB(vec3 _yiq) { vec3 rgb; rgb.x = dot(vec3(1.0, 0.9563, 0.6210), _yiq); rgb.y = dot(vec3(1.0, -0.2721, -0.6474), _yiq); rgb.z = dot(vec3(1.0, -1.1070, 1.7046), _yiq); return rgb; } vec3 toLinear(vec3 _rgb) { return pow(abs(_rgb), vec3_splat(2.2) ); } vec4 toLinear(vec4 _rgba) { return vec4(toLinear(_rgba.xyz), _rgba.w); } vec3 toLinearAccurate(vec3 _rgb) { vec3 lo = _rgb / 12.92; vec3 hi = pow( (_rgb + 0.055) / 1.055, vec3_splat(2.4) ); vec3 rgb = mix(hi, lo, vec3(lessThanEqual(_rgb, vec3_splat(0.04045) ) ) ); return rgb; } vec4 toLinearAccurate(vec4 _rgba) { return vec4(toLinearAccurate(_rgba.xyz), _rgba.w); } float toGamma(float _r) { return pow(abs(_r), 1.0/2.2); } vec3 toGamma(vec3 _rgb) { return pow(abs(_rgb), vec3_splat(1.0/2.2) ); } vec4 toGamma(vec4 _rgba) { return vec4(toGamma(_rgba.xyz), _rgba.w); } vec3 toGammaAccurate(vec3 _rgb) { vec3 lo = _rgb * 12.92; vec3 hi = pow(abs(_rgb), vec3_splat(1.0/2.4) ) * 1.055 - 0.055; vec3 rgb = mix(hi, lo, vec3(lessThanEqual(_rgb, vec3_splat(0.0031308) ) ) ); return rgb; } vec4 toGammaAccurate(vec4 _rgba) { return vec4(toGammaAccurate(_rgba.xyz), _rgba.w); } vec3 toReinhard(vec3 _rgb) { return toGamma(_rgb/(_rgb+vec3_splat(1.0) ) ); } vec4 toReinhard(vec4 _rgba) { return vec4(toReinhard(_rgba.xyz), _rgba.w); } vec3 toFilmic(vec3 _rgb) { _rgb = max(vec3_splat(0.0), _rgb - 0.004); _rgb = (_rgb*(6.2*_rgb + 0.5) ) / (_rgb*(6.2*_rgb + 1.7) + 0.06); return _rgb; } vec4 toFilmic(vec4 _rgba) { return vec4(toFilmic(_rgba.xyz), _rgba.w); } vec3 toAcesFilmic(vec3 _rgb) { // Reference(s): // - ACES Filmic Tone Mapping Curve // https://web.archive.org/web/20191027010704/https://knarkowicz.wordpress.com/2016/01/06/aces-filmic-tone-mapping-curve/ float aa = 2.51f; float bb = 0.03f; float cc = 2.43f; float dd = 0.59f; float ee = 0.14f; return saturate( (_rgb*(aa*_rgb + bb) )/(_rgb*(cc*_rgb + dd) + ee) ); } vec4 toAcesFilmic(vec4 _rgba) { return vec4(toAcesFilmic(_rgba.xyz), _rgba.w); } vec3 luma(vec3 _rgb) { float yy = dot(vec3(0.2126729, 0.7151522, 0.0721750), _rgb); return vec3_splat(yy); } vec4 luma(vec4 _rgba) { return vec4(luma(_rgba.xyz), _rgba.w); } vec3 conSatBri(vec3 _rgb, vec3 _csb) { vec3 rgb = _rgb * _csb.z; rgb = mix(luma(rgb), rgb, _csb.y); rgb = mix(vec3_splat(0.5), rgb, _csb.x); return rgb; } vec4 conSatBri(vec4 _rgba, vec3 _csb) { return vec4(conSatBri(_rgba.xyz, _csb), _rgba.w); } vec3 posterize(vec3 _rgb, float _numColors) { return floor(_rgb*_numColors) / _numColors; } vec4 posterize(vec4 _rgba, float _numColors) { return vec4(posterize(_rgba.xyz, _numColors), _rgba.w); } vec3 sepia(vec3 _rgb) { vec3 color; color.x = dot(_rgb, vec3(0.393, 0.769, 0.189) ); color.y = dot(_rgb, vec3(0.349, 0.686, 0.168) ); color.z = dot(_rgb, vec3(0.272, 0.534, 0.131) ); return color; } vec4 sepia(vec4 _rgba) { return vec4(sepia(_rgba.xyz), _rgba.w); } vec3 blendOverlay(vec3 _base, vec3 _blend) { vec3 lt = 2.0 * _base * _blend; vec3 gte = 1.0 - 2.0 * (1.0 - _base) * (1.0 - _blend); return mix(lt, gte, step(vec3_splat(0.5), _base) ); } vec4 blendOverlay(vec4 _base, vec4 _blend) { return vec4(blendOverlay(_base.xyz, _blend.xyz), _base.w); } vec3 adjustHue(vec3 _rgb, float _hue) { vec3 yiq = convertRGB2YIQ(_rgb); float angle = _hue + atan2(yiq.z, yiq.y); float len = length(yiq.yz); return convertYIQ2RGB(vec3(yiq.x, len*cos(angle), len*sin(angle) ) ); } vec4 packFloatToRgba(float _value) { const vec4 shift = vec4(256 * 256 * 256, 256 * 256, 256, 1.0); const vec4 mask = vec4(0, 1.0 / 256.0, 1.0 / 256.0, 1.0 / 256.0); vec4 comp = fract(_value * shift); comp -= comp.xxyz * mask; return comp; } float unpackRgbaToFloat(vec4 _rgba) { const vec4 shift = vec4(1.0 / (256.0 * 256.0 * 256.0), 1.0 / (256.0 * 256.0), 1.0 / 256.0, 1.0); return dot(_rgba, shift); } vec2 packHalfFloat(float _value) { const vec2 shift = vec2(256, 1.0); const vec2 mask = vec2(0, 1.0 / 256.0); vec2 comp = fract(_value * shift); comp -= comp.xx * mask; return comp; } float unpackHalfFloat(vec2 _rg) { const vec2 shift = vec2(1.0 / 256.0, 1.0); return dot(_rg, shift); } float random(vec2 _uv) { return fract(sin(dot(_uv.xy, vec2(12.9898, 78.233) ) ) * 43758.5453); } vec3 fixCubeLookup(vec3 _v, float _lod, float _topLevelCubeSize) { // Reference(s): // - Seamless cube-map filtering // https://web.archive.org/web/20190411181934/http://the-witness.net/news/2012/02/seamless-cube-map-filtering/ float ax = abs(_v.x); float ay = abs(_v.y); float az = abs(_v.z); float vmax = max(max(ax, ay), az); float scale = 1.0 - exp2(_lod) / _topLevelCubeSize; if (ax != vmax) { _v.x *= scale; } if (ay != vmax) { _v.y *= scale; } if (az != vmax) { _v.z *= scale; } return _v; } vec2 texture2DBc5(sampler2D _sampler, vec2 _uv) { #if BGFX_SHADER_LANGUAGE_HLSL && BGFX_SHADER_LANGUAGE_HLSL <= 300 return texture2D(_sampler, _uv).yx; #else return texture2D(_sampler, _uv).xy; #endif } mat3 cofactor(mat4 _m) { // Reference: // Cofactor of matrix. Use to transform normals. The code assumes the last column of _m is [0,0,0,1]. // https://www.shadertoy.com/view/3s33zj // https://github.com/graphitemaster/normals_revisited return mat3( _m[1][1]*_m[2][2]-_m[1][2]*_m[2][1], _m[1][2]*_m[2][0]-_m[1][0]*_m[2][2], _m[1][0]*_m[2][1]-_m[1][1]*_m[2][0], _m[0][2]*_m[2][1]-_m[0][1]*_m[2][2], _m[0][0]*_m[2][2]-_m[0][2]*_m[2][0], _m[0][1]*_m[2][0]-_m[0][0]*_m[2][1], _m[0][1]*_m[1][2]-_m[0][2]*_m[1][1], _m[0][2]*_m[1][0]-_m[0][0]*_m[1][2], _m[0][0]*_m[1][1]-_m[0][1]*_m[1][0] ); } float toClipSpaceDepth(float _depthTextureZ) { #if BGFX_SHADER_LANGUAGE_GLSL return _depthTextureZ * 2.0 - 1.0; #else return _depthTextureZ; #endif // BGFX_SHADER_LANGUAGE_GLSL } vec3 clipToWorld(mat4 _invViewProj, vec3 _clipPos) { vec4 wpos = mul(_invViewProj, vec4(_clipPos, 1.0) ); return wpos.xyz / wpos.w; } #endif // __SHADERLIB_SH__