/* * Copyright 2011-2018 Branimir Karadzic. All rights reserved. * License: https://github.com/bkaradzic/bgfx#license-bsd-2-clause */ #include #include #include "bounds.h" void aabbToObb(Obb& _obb, const Aabb& _aabb) { bx::memSet(_obb.m_mtx, 0, sizeof(_obb.m_mtx) ); _obb.m_mtx[ 0] = (_aabb.m_max.x - _aabb.m_min.x) * 0.5f; _obb.m_mtx[ 5] = (_aabb.m_max.y - _aabb.m_min.y) * 0.5f; _obb.m_mtx[10] = (_aabb.m_max.z - _aabb.m_min.z) * 0.5f; _obb.m_mtx[12] = (_aabb.m_min.x + _aabb.m_max.x) * 0.5f; _obb.m_mtx[13] = (_aabb.m_min.y + _aabb.m_max.y) * 0.5f; _obb.m_mtx[14] = (_aabb.m_min.z + _aabb.m_max.z) * 0.5f; _obb.m_mtx[15] = 1.0f; } void toAabb(Aabb& _aabb, const Obb& _obb) { bx::Vec3 xyz = { 1.0f, 1.0f, 1.0f }; bx::Vec3 tmp = bx::mul(xyz, _obb.m_mtx); _aabb.m_min = tmp; _aabb.m_max = tmp; for (uint32_t ii = 1; ii < 8; ++ii) { xyz.x = ii & 1 ? -1.0f : 1.0f; xyz.y = ii & 2 ? -1.0f : 1.0f; xyz.z = ii & 4 ? -1.0f : 1.0f; tmp = bx::mul(xyz, _obb.m_mtx); _aabb.m_min = bx::min(_aabb.m_min, tmp); _aabb.m_max = bx::max(_aabb.m_max, tmp); } } void toAabb(Aabb& _aabb, const Sphere& _sphere) { const float radius = _sphere.m_radius; _aabb.m_min = bx::sub(_sphere.m_center, radius); _aabb.m_max = bx::add(_sphere.m_center, radius); } void toAabb(Aabb& _aabb, const Disk& _disk) { // Reference(s): // - https://web.archive.org/web/20181113055756/http://iquilezles.org/www/articles/diskbbox/diskbbox.htm // const bx::Vec3 nsq = bx::mul(_disk.m_normal, _disk.m_normal); const bx::Vec3 one = { 1.0f, 1.0f, 1.0f }; const bx::Vec3 tmp = bx::sub(one, nsq); const float inv = 1.0f / (tmp.x*tmp.y*tmp.z); const bx::Vec3 extent = { _disk.m_radius * tmp.x * bx::sqrt((nsq.x + nsq.y * nsq.z) * inv), _disk.m_radius * tmp.y * bx::sqrt((nsq.y + nsq.z * nsq.x) * inv), _disk.m_radius * tmp.z * bx::sqrt((nsq.z + nsq.x * nsq.y) * inv), }; _aabb.m_min = bx::sub(_disk.m_center, extent); _aabb.m_max = bx::add(_disk.m_center, extent); } void toAabb(Aabb& _aabb, const Cylinder& _cylinder) { // Reference(s): // - https://web.archive.org/web/20181113055756/http://iquilezles.org/www/articles/diskbbox/diskbbox.htm // const bx::Vec3 axis = bx::sub(_cylinder.m_end, _cylinder.m_pos); const bx::Vec3 asq = bx::mul(axis, axis); const bx::Vec3 nsq = bx::mul(asq, 1.0f/bx::dot(axis, axis) ); const bx::Vec3 one = { 1.0f, 1.0f, 1.0f }; const bx::Vec3 tmp = bx::sub(one, nsq); const float inv = 1.0f / (tmp.x*tmp.y*tmp.z); const bx::Vec3 extent = { _cylinder.m_radius * tmp.x * bx::sqrt( (nsq.x + nsq.y * nsq.z) * inv), _cylinder.m_radius * tmp.y * bx::sqrt( (nsq.y + nsq.z * nsq.x) * inv), _cylinder.m_radius * tmp.z * bx::sqrt( (nsq.z + nsq.x * nsq.y) * inv), }; const bx::Vec3 minP = bx::sub(_cylinder.m_pos, extent); const bx::Vec3 minE = bx::sub(_cylinder.m_end, extent); const bx::Vec3 maxP = bx::add(_cylinder.m_pos, extent); const bx::Vec3 maxE = bx::add(_cylinder.m_end, extent); _aabb.m_min = bx::min(minP, minE); _aabb.m_max = bx::max(maxP, maxE); } void aabbTransformToObb(Obb& _obb, const Aabb& _aabb, const float* _mtx) { aabbToObb(_obb, _aabb); float result[16]; bx::mtxMul(result, _obb.m_mtx, _mtx); bx::memCopy(_obb.m_mtx, result, sizeof(result) ); } void toAabb(Aabb& _aabb, const void* _vertices, uint32_t _numVertices, uint32_t _stride) { bx::Vec3 min, max; uint8_t* vertex = (uint8_t*)_vertices; float* position = (float*)vertex; min.x = max.x = position[0]; min.y = max.y = position[1]; min.z = max.z = position[2]; vertex += _stride; for (uint32_t ii = 1; ii < _numVertices; ++ii) { position = (float*)vertex; vertex += _stride; bx::Vec3 pos = { position[0], position[1], position[2], }; min = bx::min(pos, min); max = bx::max(pos, max); } _aabb.m_min = min; _aabb.m_max = max; } void toAabb(Aabb& _aabb, const float* _mtx, const void* _vertices, uint32_t _numVertices, uint32_t _stride) { bx::Vec3 min, max; uint8_t* vertex = (uint8_t*)_vertices; float position[3]; bx::vec3MulMtx(position, (float*)vertex, _mtx); min.x = max.x = position[0]; min.y = max.y = position[1]; min.z = max.z = position[2]; vertex += _stride; for (uint32_t ii = 1; ii < _numVertices; ++ii) { bx::vec3MulMtx(position, (float*)vertex, _mtx); vertex += _stride; bx::Vec3 pos = { position[0], position[1], position[2], }; min = bx::min(pos, min); max = bx::max(pos, max); } _aabb.m_min = min; _aabb.m_max = max; } float calcAreaAabb(const Aabb& _aabb) { const float ww = _aabb.m_max.x - _aabb.m_min.x; const float hh = _aabb.m_max.y - _aabb.m_min.y; const float dd = _aabb.m_max.z - _aabb.m_min.z; return 2.0f * (ww*hh + ww*dd + hh*dd); } void aabbExpand(Aabb& _aabb, float _factor) { _aabb.m_min.x -= _factor; _aabb.m_min.y -= _factor; _aabb.m_min.z -= _factor; _aabb.m_max.x += _factor; _aabb.m_max.y += _factor; _aabb.m_max.z += _factor; } void aabbExpand(Aabb& _aabb, const float* _pos) { const bx::Vec3 pos = { _pos[0], _pos[1], _pos[2] }; _aabb.m_min = bx::min(_aabb.m_min, pos); _aabb.m_max = bx::max(_aabb.m_max, pos); } uint32_t aabbOverlapTest(const Aabb& _aabb0, const Aabb& _aabb1) { const uint32_t ltMinX = _aabb0.m_max.x < _aabb1.m_min.x; const uint32_t gtMaxX = _aabb0.m_min.x > _aabb1.m_max.x; const uint32_t ltMinY = _aabb0.m_max.y < _aabb1.m_min.y; const uint32_t gtMaxY = _aabb0.m_min.y > _aabb1.m_max.y; const uint32_t ltMinZ = _aabb0.m_max.z < _aabb1.m_min.z; const uint32_t gtMaxZ = _aabb0.m_min.z > _aabb1.m_max.z; return 0 | (ltMinX<<0) | (gtMaxX<<1) | (ltMinY<<2) | (gtMaxY<<3) | (ltMinZ<<4) | (gtMaxZ<<5) ; } void calcObb(Obb& _obb, const void* _vertices, uint32_t _numVertices, uint32_t _stride, uint32_t _steps) { Aabb aabb; toAabb(aabb, _vertices, _numVertices, _stride); float minArea = calcAreaAabb(aabb); Obb best; aabbToObb(best, aabb); float angleStep = float(bx::kPiHalf/_steps); float ax = 0.0f; float mtx[16]; for (uint32_t ii = 0; ii < _steps; ++ii) { float ay = 0.0f; for (uint32_t jj = 0; jj < _steps; ++jj) { float az = 0.0f; for (uint32_t kk = 0; kk < _steps; ++kk) { bx::mtxRotateXYZ(mtx, ax, ay, az); float mtxT[16]; bx::mtxTranspose(mtxT, mtx); toAabb(aabb, mtxT, _vertices, _numVertices, _stride); float area = calcAreaAabb(aabb); if (area < minArea) { minArea = area; aabbTransformToObb(best, aabb, mtx); } az += angleStep; } ay += angleStep; } ax += angleStep; } bx::memCopy(&_obb, &best, sizeof(Obb) ); } void calcMaxBoundingSphere(Sphere& _sphere, const void* _vertices, uint32_t _numVertices, uint32_t _stride) { Aabb aabb; toAabb(aabb, _vertices, _numVertices, _stride); bx::Vec3 center = { (aabb.m_min.x + aabb.m_max.x) * 0.5f, (aabb.m_min.y + aabb.m_max.y) * 0.5f, (aabb.m_min.z + aabb.m_max.z) * 0.5f, }; float maxDistSq = 0.0f; uint8_t* vertex = (uint8_t*)_vertices; for (uint32_t ii = 0; ii < _numVertices; ++ii) { float* position = (float*)vertex; vertex += _stride; const float xx = position[0] - center.x; const float yy = position[1] - center.y; const float zz = position[2] - center.z; const float distSq = xx*xx + yy*yy + zz*zz; maxDistSq = bx::max(distSq, maxDistSq); } _sphere.m_center = center; _sphere.m_radius = bx::sqrt(maxDistSq); } void calcMinBoundingSphere(Sphere& _sphere, const void* _vertices, uint32_t _numVertices, uint32_t _stride, float _step) { bx::RngMwc rng; uint8_t* vertex = (uint8_t*)_vertices; bx::Vec3 center; float* position = (float*)&vertex[0]; center.x = position[0]; center.y = position[1]; center.z = position[2]; position = (float*)&vertex[1*_stride]; center.x += position[0]; center.y += position[1]; center.z += position[2]; center.x *= 0.5f; center.y *= 0.5f; center.z *= 0.5f; float xx = position[0] - center.x; float yy = position[1] - center.y; float zz = position[2] - center.z; float maxDistSq = xx*xx + yy*yy + zz*zz; float radiusStep = _step * 0.37f; bool done; do { done = true; for (uint32_t ii = 0, index = rng.gen()%_numVertices; ii < _numVertices; ++ii, index = (index + 1)%_numVertices) { position = (float*)&vertex[index*_stride]; xx = position[0] - center.x; yy = position[1] - center.y; zz = position[2] - center.z; float distSq = xx*xx + yy*yy + zz*zz; if (distSq > maxDistSq) { done = false; center.x += xx * radiusStep; center.y += yy * radiusStep; center.z += zz * radiusStep; maxDistSq = bx::lerp(maxDistSq, distSq, _step); break; } } } while (!done); _sphere.m_center = center; _sphere.m_radius = bx::sqrt(maxDistSq); } void calcPlaneUv(const Plane& _plane, bx::Vec3& _udir, bx::Vec3& _vdir) { bx::calcTangentFrame(_udir, _vdir, _plane.m_normal); } void buildFrustumPlanes(Plane* _result, const float* _viewProj) { const float xw = _viewProj[ 3]; const float yw = _viewProj[ 7]; const float zw = _viewProj[11]; const float ww = _viewProj[15]; const float xz = _viewProj[ 2]; const float yz = _viewProj[ 6]; const float zz = _viewProj[10]; const float wz = _viewProj[14]; Plane& near = _result[0]; Plane& far = _result[1]; Plane& left = _result[2]; Plane& right = _result[3]; Plane& top = _result[4]; Plane& bottom = _result[5]; near.m_normal.x = xw - xz; near.m_normal.y = yw - yz; near.m_normal.z = zw - zz; near.m_dist = ww - wz; far.m_normal.x = xw + xz; far.m_normal.y = yw + yz; far.m_normal.z = zw + zz; far.m_dist = ww + wz; const float xx = _viewProj[ 0]; const float yx = _viewProj[ 4]; const float zx = _viewProj[ 8]; const float wx = _viewProj[12]; left.m_normal.x = xw - xx; left.m_normal.y = yw - yx; left.m_normal.z = zw - zx; left.m_dist = ww - wx; right.m_normal.x = xw + xx; right.m_normal.y = yw + yx; right.m_normal.z = zw + zx; right.m_dist = ww + wx; const float xy = _viewProj[ 1]; const float yy = _viewProj[ 5]; const float zy = _viewProj[ 9]; const float wy = _viewProj[13]; top.m_normal.x = xw + xy; top.m_normal.y = yw + yy; top.m_normal.z = zw + zy; top.m_dist = ww + wy; bottom.m_normal.x = xw - xy; bottom.m_normal.y = yw - yy; bottom.m_normal.z = zw - zy; bottom.m_dist = ww - wy; Plane* plane = _result; for (uint32_t ii = 0; ii < 6; ++ii) { const float len = bx::length(plane->m_normal); plane->m_normal = bx::normalize(plane->m_normal); float invLen = 1.0f / len; plane->m_dist *= invLen; ++plane; } } bx::Vec3 intersectPlanes(const Plane& _pa, const Plane& _pb, const Plane& _pc) { const bx::Vec3 axb = bx::cross(_pa.m_normal, _pb.m_normal); const bx::Vec3 bxc = bx::cross(_pb.m_normal, _pc.m_normal); const bx::Vec3 cxa = bx::cross(_pc.m_normal, _pa.m_normal); const bx::Vec3 tmp0 = bx::mul(bxc, _pa.m_dist); const bx::Vec3 tmp1 = bx::mul(cxa, _pb.m_dist); const bx::Vec3 tmp2 = bx::mul(axb, _pc.m_dist); const bx::Vec3 tmp3 = bx::add(tmp0, tmp1); const bx::Vec3 tmp4 = bx::add(tmp3, tmp2); const float denom = bx::dot(_pa.m_normal, bxc); const bx::Vec3 result = bx::mul(tmp4, -1.0f/denom); return result; } Ray makeRay(float _x, float _y, const float* _invVp) { Ray ray; const bx::Vec3 near = { _x, _y, 0.0f }; ray.m_pos = bx::mulH(near, _invVp); const bx::Vec3 far = { _x, _y, 1.0f }; bx::Vec3 tmp = bx::mulH(far, _invVp); const bx::Vec3 dir = bx::sub(tmp, ray.m_pos); ray.m_dir = bx::normalize(dir); return ray; } inline bx::Vec3 getPointAt(const Ray& _ray, float _t) { return bx::add(bx::mul(_ray.m_dir, _t), _ray.m_pos); } bool intersect(const Ray& _ray, const Aabb& _aabb, Hit* _hit) { const bx::Vec3 invDir = bx::rcp(_ray.m_dir); const bx::Vec3 tmp0 = bx::sub(_aabb.m_min, _ray.m_pos); const bx::Vec3 t0 = bx::mul(tmp0, invDir); const bx::Vec3 tmp1 = bx::sub(_aabb.m_max, _ray.m_pos); const bx::Vec3 t1 = bx::mul(tmp1, invDir); const bx::Vec3 min = bx::min(t0, t1); const bx::Vec3 max = bx::max(t0, t1); const float tmin = bx::max(min.x, min.y, min.z); const float tmax = bx::min(max.x, max.y, max.z); if (tmax < 0.0f || tmin > tmax) { return false; } if (NULL != _hit) { _hit->m_normal.x = float( (t1.x == tmin) - (t0.x == tmin) ); _hit->m_normal.y = float( (t1.y == tmin) - (t0.y == tmin) ); _hit->m_normal.z = float( (t1.z == tmin) - (t0.z == tmin) ); _hit->m_dist = tmin; _hit->m_pos = getPointAt(_ray, tmin); } return true; } static const Aabb s_kUnitAabb = { { -1.0f, -1.0f, -1.0f }, { 1.0f, 1.0f, 1.0f }, }; bool intersect(const Ray& _ray, const Obb& _obb, Hit* _hit) { Aabb aabb; toAabb(aabb, _obb); if (!intersect(_ray, aabb) ) { return false; } float mtxInv[16]; bx::mtxInverse(mtxInv, _obb.m_mtx); Ray obbRay; obbRay.m_pos = bx::mul(_ray.m_pos, mtxInv); obbRay.m_dir = bx::mulXyz0(_ray.m_dir, mtxInv); if (intersect(obbRay, s_kUnitAabb, _hit) ) { if (NULL != _hit) { _hit->m_pos = bx::mul(_hit->m_pos, _obb.m_mtx); const bx::Vec3 tmp = bx::mulXyz0(_hit->m_normal, _obb.m_mtx); _hit->m_normal = bx::normalize(tmp); } return true; } return false; } bool intersect(const Ray& _ray, const Disk& _disk, Hit* _hit) { Plane plane; plane.m_normal = _disk.m_normal; plane.m_dist = -bx::dot(_disk.m_center, _disk.m_normal); Hit tmpHit; _hit = NULL != _hit ? _hit : &tmpHit; if (intersect(_ray, plane, _hit) ) { const bx::Vec3 tmp = bx::sub(_disk.m_center, _hit->m_pos); return bx::dot(tmp, tmp) <= bx::square(_disk.m_radius); } return false; } static bool intersect(const Ray& _ray, const Cylinder& _cylinder, bool _capsule, Hit* _hit) { bx::Vec3 axis = bx::sub(_cylinder.m_end, _cylinder.m_pos); const bx::Vec3 rc = bx::sub(_ray.m_pos, _cylinder.m_pos); const bx::Vec3 dxa = bx::cross(_ray.m_dir, axis); const float len = bx::length(dxa); const bx::Vec3 normal = bx::normalize(dxa); const float dist = bx::abs(bx::dot(rc, normal) ); if (dist > _cylinder.m_radius) { return false; } bx::Vec3 vo = bx::cross(rc, axis); const float t0 = -bx::dot(vo, normal) / len; vo = bx::normalize(bx::cross(normal, axis) ); const float rsq = bx::square(_cylinder.m_radius); const float ddoto = bx::dot(_ray.m_dir, vo); const float ss = t0 - bx::abs(bx::sqrt(rsq - bx::square(dist) ) / ddoto); if (0.0f > ss) { return false; } const bx::Vec3 point = getPointAt(_ray, ss); const float axisLen = bx::length(axis); axis = bx::normalize(axis); const float pdota = bx::dot(_cylinder.m_pos, axis); const float height = bx::dot(point, axis) - pdota; if (height > 0.0f && height < axisLen) { if (NULL != _hit) { const float t1 = height / axisLen; const bx::Vec3 pointOnAxis = bx::lerp(_cylinder.m_pos, _cylinder.m_end, t1); _hit->m_pos = point; const bx::Vec3 tmp = bx::sub(point, pointOnAxis); _hit->m_normal = bx::normalize(tmp); _hit->m_dist = ss; } return true; } if (_capsule) { const float rdota = bx::dot(_ray.m_pos, axis); const float pp = rdota - pdota; const float t1 = pp / axisLen; const bx::Vec3 pointOnAxis = bx::lerp(_cylinder.m_pos, _cylinder.m_end, t1); const bx::Vec3 axisToRay = bx::sub(_ray.m_pos, pointOnAxis); if (_cylinder.m_radius < bx::length(axisToRay) && 0.0f > ss) { return false; } Sphere sphere; sphere.m_radius = _cylinder.m_radius; sphere.m_center = 0.0f >= height ? _cylinder.m_pos : _cylinder.m_end ; return intersect(_ray, sphere, _hit); } Plane plane; bx::Vec3 pos; if (0.0f >= height) { plane.m_normal = bx::neg(axis); pos = _cylinder.m_pos; } else { plane.m_normal = axis; pos = _cylinder.m_end; } plane.m_dist = -bx::dot(pos, plane.m_normal); Hit tmpHit; _hit = NULL != _hit ? _hit : &tmpHit; if (intersect(_ray, plane, _hit) ) { const bx::Vec3 tmp = bx::sub(pos, _hit->m_pos); return bx::dot(tmp, tmp) <= rsq; } return false; } bool intersect(const Ray& _ray, const Cylinder& _cylinder, Hit* _hit) { return intersect(_ray, _cylinder, false, _hit); } bool intersect(const Ray& _ray, const Capsule& _capsule, Hit* _hit) { BX_STATIC_ASSERT(sizeof(Capsule) == sizeof(Cylinder) ); return intersect(_ray, *( (const Cylinder*)&_capsule), true, _hit); } bool intersect(const Ray& _ray, const Cone& _cone, Hit* _hit) { const bx::Vec3 axis = bx::sub(_cone.m_pos, _cone.m_end); const float len = bx::length(axis); const bx::Vec3 normal = bx::normalize(axis); Disk disk; disk.m_center = _cone.m_pos; disk.m_normal = normal; disk.m_radius = _cone.m_radius; Hit tmpInt; Hit* out = NULL != _hit ? _hit : &tmpInt; bool hit = intersect(_ray, disk, out); const bx::Vec3 ro = bx::sub(_ray.m_pos, _cone.m_end); const float hyp = bx::sqrt(bx::square(_cone.m_radius) + bx::square(len) ); const float cosaSq = bx::square(len/hyp); const float ndoto = bx::dot(normal, ro); const float ndotd = bx::dot(normal, _ray.m_dir); const float aa = bx::square(ndotd) - cosaSq; const float bb = 2.0f * (ndotd*ndoto - bx::dot(_ray.m_dir, ro)*cosaSq); const float cc = bx::square(ndoto) - bx::dot(ro, ro)*cosaSq; float det = bb*bb - 4.0f*aa*cc; if (0.0f > det) { return hit; } det = bx::sqrt(det); const float invA2 = 1.0f / (2.0f*aa); const float t1 = (-bb - det) * invA2; const float t2 = (-bb + det) * invA2; float tt = t1; if (0.0f > t1 || (0.0f < t2 && t2 < t1) ) { tt = t2; } if (0.0f > tt) { return hit; } const bx::Vec3 hitPos = getPointAt(_ray, tt); const bx::Vec3 point = bx::sub(hitPos, _cone.m_end); const float hh = bx::dot(normal, point); if (0.0f > hh || len < hh) { return hit; } if (NULL != _hit) { if (!hit || tt < _hit->m_dist) { _hit->m_dist = tt; _hit->m_pos = hitPos; const float scale = hh / bx::dot(point, point); const bx::Vec3 pointScaled = bx::mul(point, scale); const bx::Vec3 tmp = bx::sub(pointScaled, normal); _hit->m_normal = bx::normalize(tmp); } } return true; } bool intersect(const Ray& _ray, const Plane& _plane, Hit* _hit) { float equation = bx::dot(_ray.m_pos, _plane.m_normal) + _plane.m_dist; if (0.0f > equation) { return false; } float ndotd = bx::dot(_ray.m_dir, _plane.m_normal); if (0.0f < ndotd) { return false; } if (NULL != _hit) { _hit->m_normal = _plane.m_normal; float tt = -equation/ndotd; _hit->m_dist = tt; _hit->m_pos = getPointAt(_ray, tt); } return true; } bool intersect(const Ray& _ray, const Sphere& _sphere, Hit* _hit) { const bx::Vec3 rs = bx::sub(_ray.m_pos, _sphere.m_center); const float bb = bx::dot(rs, _ray.m_dir); if (0.0f < bb) { return false; } const float aa = bx::dot(_ray.m_dir, _ray.m_dir); const float cc = bx::dot(rs, rs) - bx::square(_sphere.m_radius); const float discriminant = bb*bb - aa*cc; if (0.0f >= discriminant) { return false; } const float sqrtDiscriminant = bx::sqrt(discriminant); const float invA = 1.0f / aa; const float tt = -(bb + sqrtDiscriminant)*invA; if (0.0f >= tt) { return false; } if (NULL != _hit) { _hit->m_dist = tt; const bx::Vec3 point = getPointAt(_ray, tt); _hit->m_pos = point; const bx::Vec3 tmp = bx::sub(point, _sphere.m_center); _hit->m_normal = bx::normalize(tmp); } return true; } bool intersect(const Ray& _ray, const Tris& _triangle, Hit* _hit) { const bx::Vec3 edge10 = bx::sub(_triangle.m_v1, _triangle.m_v0); const bx::Vec3 edge02 = bx::sub(_triangle.m_v0, _triangle.m_v2); const bx::Vec3 normal = bx::cross(edge02, edge10); const bx::Vec3 vo = bx::sub(_triangle.m_v0, _ray.m_pos); const bx::Vec3 dxo = bx::cross(_ray.m_dir, vo); const float det = bx::dot(normal, _ray.m_dir); if (det > 0.0f) { return false; } const float invDet = 1.0f/det; const float bz = bx::dot(dxo, edge02) * invDet; const float by = bx::dot(dxo, edge10) * invDet; const float bx = 1.0f - by - bz; if (bx < 0.0f || by < 0.0f || bz < 0.0f) { return false; } if (NULL != _hit) { _hit->m_normal = bx::normalize(normal); const float tt = bx::dot(normal, vo) * invDet; _hit->m_dist = tt; _hit->m_pos = getPointAt(_ray, tt); } return true; }