/* * Copyright 2018-2019 Arm Limited * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "spirv_parser.hpp" #include using namespace std; using namespace spv; namespace SPIRV_CROSS_NAMESPACE { Parser::Parser(vector spirv) { ir.spirv = move(spirv); } Parser::Parser(const uint32_t *spirv_data, size_t word_count) { ir.spirv = vector(spirv_data, spirv_data + word_count); } static bool decoration_is_string(Decoration decoration) { switch (decoration) { case DecorationHlslSemanticGOOGLE: return true; default: return false; } } static inline uint32_t swap_endian(uint32_t v) { return ((v >> 24) & 0x000000ffu) | ((v >> 8) & 0x0000ff00u) | ((v << 8) & 0x00ff0000u) | ((v << 24) & 0xff000000u); } static bool is_valid_spirv_version(uint32_t version) { switch (version) { // Allow v99 since it tends to just work. case 99: case 0x10000: // SPIR-V 1.0 case 0x10100: // SPIR-V 1.1 case 0x10200: // SPIR-V 1.2 case 0x10300: // SPIR-V 1.3 return true; default: return false; } } void Parser::parse() { auto &spirv = ir.spirv; auto len = spirv.size(); if (len < 5) SPIRV_CROSS_THROW("SPIRV file too small."); auto s = spirv.data(); // Endian-swap if we need to. if (s[0] == swap_endian(MagicNumber)) transform(begin(spirv), end(spirv), begin(spirv), [](uint32_t c) { return swap_endian(c); }); if (s[0] != MagicNumber || !is_valid_spirv_version(s[1])) SPIRV_CROSS_THROW("Invalid SPIRV format."); uint32_t bound = s[3]; ir.set_id_bounds(bound); uint32_t offset = 5; SmallVector instructions; while (offset < len) { Instruction instr = {}; instr.op = spirv[offset] & 0xffff; instr.count = (spirv[offset] >> 16) & 0xffff; if (instr.count == 0) SPIRV_CROSS_THROW("SPIR-V instructions cannot consume 0 words. Invalid SPIR-V file."); instr.offset = offset + 1; instr.length = instr.count - 1; offset += instr.count; if (offset > spirv.size()) SPIRV_CROSS_THROW("SPIR-V instruction goes out of bounds."); instructions.push_back(instr); } for (auto &i : instructions) parse(i); if (current_function) SPIRV_CROSS_THROW("Function was not terminated."); if (current_block) SPIRV_CROSS_THROW("Block was not terminated."); } const uint32_t *Parser::stream(const Instruction &instr) const { // If we're not going to use any arguments, just return nullptr. // We want to avoid case where we return an out of range pointer // that trips debug assertions on some platforms. if (!instr.length) return nullptr; if (instr.offset + instr.length > ir.spirv.size()) SPIRV_CROSS_THROW("Compiler::stream() out of range."); return &ir.spirv[instr.offset]; } static string extract_string(const vector &spirv, uint32_t offset) { string ret; for (uint32_t i = offset; i < spirv.size(); i++) { uint32_t w = spirv[i]; for (uint32_t j = 0; j < 4; j++, w >>= 8) { char c = w & 0xff; if (c == '\0') return ret; ret += c; } } SPIRV_CROSS_THROW("String was not terminated before EOF"); } void Parser::parse(const Instruction &instruction) { auto *ops = stream(instruction); auto op = static_cast(instruction.op); uint32_t length = instruction.length; switch (op) { case OpSourceContinued: case OpSourceExtension: case OpNop: case OpLine: case OpNoLine: case OpString: case OpModuleProcessed: break; case OpMemoryModel: ir.addressing_model = static_cast(ops[0]); ir.memory_model = static_cast(ops[1]); break; case OpSource: { auto lang = static_cast(ops[0]); switch (lang) { case SourceLanguageESSL: ir.source.es = true; ir.source.version = ops[1]; ir.source.known = true; ir.source.hlsl = false; break; case SourceLanguageGLSL: ir.source.es = false; ir.source.version = ops[1]; ir.source.known = true; ir.source.hlsl = false; break; case SourceLanguageHLSL: // For purposes of cross-compiling, this is GLSL 450. ir.source.es = false; ir.source.version = 450; ir.source.known = true; ir.source.hlsl = true; break; default: ir.source.known = false; break; } break; } case OpUndef: { uint32_t result_type = ops[0]; uint32_t id = ops[1]; set(id, result_type); if (current_block) current_block->ops.push_back(instruction); break; } case OpCapability: { uint32_t cap = ops[0]; if (cap == CapabilityKernel) SPIRV_CROSS_THROW("Kernel capability not supported."); ir.declared_capabilities.push_back(static_cast(ops[0])); break; } case OpExtension: { auto ext = extract_string(ir.spirv, instruction.offset); ir.declared_extensions.push_back(move(ext)); break; } case OpExtInstImport: { uint32_t id = ops[0]; auto ext = extract_string(ir.spirv, instruction.offset + 1); if (ext == "GLSL.std.450") set(id, SPIRExtension::GLSL); else if (ext == "SPV_AMD_shader_ballot") set(id, SPIRExtension::SPV_AMD_shader_ballot); else if (ext == "SPV_AMD_shader_explicit_vertex_parameter") set(id, SPIRExtension::SPV_AMD_shader_explicit_vertex_parameter); else if (ext == "SPV_AMD_shader_trinary_minmax") set(id, SPIRExtension::SPV_AMD_shader_trinary_minmax); else if (ext == "SPV_AMD_gcn_shader") set(id, SPIRExtension::SPV_AMD_gcn_shader); else set(id, SPIRExtension::Unsupported); // Other SPIR-V extensions which have ExtInstrs are currently not supported. break; } case OpEntryPoint: { auto itr = ir.entry_points.insert(make_pair(ops[1], SPIREntryPoint(ops[1], static_cast(ops[0]), extract_string(ir.spirv, instruction.offset + 2)))); auto &e = itr.first->second; // Strings need nul-terminator and consume the whole word. uint32_t strlen_words = uint32_t((e.name.size() + 1 + 3) >> 2); e.interface_variables.insert(end(e.interface_variables), ops + strlen_words + 2, ops + instruction.length); // Set the name of the entry point in case OpName is not provided later. ir.set_name(ops[1], e.name); // If we don't have an entry, make the first one our "default". if (!ir.default_entry_point) ir.default_entry_point = ops[1]; break; } case OpExecutionMode: { auto &execution = ir.entry_points[ops[0]]; auto mode = static_cast(ops[1]); execution.flags.set(mode); switch (mode) { case ExecutionModeInvocations: execution.invocations = ops[2]; break; case ExecutionModeLocalSize: execution.workgroup_size.x = ops[2]; execution.workgroup_size.y = ops[3]; execution.workgroup_size.z = ops[4]; break; case ExecutionModeOutputVertices: execution.output_vertices = ops[2]; break; default: break; } break; } case OpName: { uint32_t id = ops[0]; ir.set_name(id, extract_string(ir.spirv, instruction.offset + 1)); break; } case OpMemberName: { uint32_t id = ops[0]; uint32_t member = ops[1]; ir.set_member_name(id, member, extract_string(ir.spirv, instruction.offset + 2)); break; } case OpDecorationGroup: { // Noop, this simply means an ID should be a collector of decorations. // The meta array is already a flat array of decorations which will contain the relevant decorations. break; } case OpGroupDecorate: { uint32_t group_id = ops[0]; auto &decorations = ir.meta[group_id].decoration; auto &flags = decorations.decoration_flags; // Copies decorations from one ID to another. Only copy decorations which are set in the group, // i.e., we cannot just copy the meta structure directly. for (uint32_t i = 1; i < length; i++) { uint32_t target = ops[i]; flags.for_each_bit([&](uint32_t bit) { auto decoration = static_cast(bit); if (decoration_is_string(decoration)) { ir.set_decoration_string(target, decoration, ir.get_decoration_string(group_id, decoration)); } else { ir.meta[target].decoration_word_offset[decoration] = ir.meta[group_id].decoration_word_offset[decoration]; ir.set_decoration(target, decoration, ir.get_decoration(group_id, decoration)); } }); } break; } case OpGroupMemberDecorate: { uint32_t group_id = ops[0]; auto &flags = ir.meta[group_id].decoration.decoration_flags; // Copies decorations from one ID to another. Only copy decorations which are set in the group, // i.e., we cannot just copy the meta structure directly. for (uint32_t i = 1; i + 1 < length; i += 2) { uint32_t target = ops[i + 0]; uint32_t index = ops[i + 1]; flags.for_each_bit([&](uint32_t bit) { auto decoration = static_cast(bit); if (decoration_is_string(decoration)) ir.set_member_decoration_string(target, index, decoration, ir.get_decoration_string(group_id, decoration)); else ir.set_member_decoration(target, index, decoration, ir.get_decoration(group_id, decoration)); }); } break; } case OpDecorate: case OpDecorateId: { // OpDecorateId technically supports an array of arguments, but our only supported decorations are single uint, // so merge decorate and decorate-id here. uint32_t id = ops[0]; auto decoration = static_cast(ops[1]); if (length >= 3) { ir.meta[id].decoration_word_offset[decoration] = uint32_t(&ops[2] - ir.spirv.data()); ir.set_decoration(id, decoration, ops[2]); } else ir.set_decoration(id, decoration); break; } case OpDecorateStringGOOGLE: { uint32_t id = ops[0]; auto decoration = static_cast(ops[1]); ir.set_decoration_string(id, decoration, extract_string(ir.spirv, instruction.offset + 2)); break; } case OpMemberDecorate: { uint32_t id = ops[0]; uint32_t member = ops[1]; auto decoration = static_cast(ops[2]); if (length >= 4) ir.set_member_decoration(id, member, decoration, ops[3]); else ir.set_member_decoration(id, member, decoration); break; } case OpMemberDecorateStringGOOGLE: { uint32_t id = ops[0]; uint32_t member = ops[1]; auto decoration = static_cast(ops[2]); ir.set_member_decoration_string(id, member, decoration, extract_string(ir.spirv, instruction.offset + 3)); break; } // Build up basic types. case OpTypeVoid: { uint32_t id = ops[0]; auto &type = set(id); type.basetype = SPIRType::Void; break; } case OpTypeBool: { uint32_t id = ops[0]; auto &type = set(id); type.basetype = SPIRType::Boolean; type.width = 1; break; } case OpTypeFloat: { uint32_t id = ops[0]; uint32_t width = ops[1]; auto &type = set(id); if (width == 64) type.basetype = SPIRType::Double; else if (width == 32) type.basetype = SPIRType::Float; else if (width == 16) type.basetype = SPIRType::Half; else SPIRV_CROSS_THROW("Unrecognized bit-width of floating point type."); type.width = width; break; } case OpTypeInt: { uint32_t id = ops[0]; uint32_t width = ops[1]; bool signedness = ops[2] != 0; auto &type = set(id); type.basetype = signedness ? to_signed_basetype(width) : to_unsigned_basetype(width); type.width = width; break; } // Build composite types by "inheriting". // NOTE: The self member is also copied! For pointers and array modifiers this is a good thing // since we can refer to decorations on pointee classes which is needed for UBO/SSBO, I/O blocks in geometry/tess etc. case OpTypeVector: { uint32_t id = ops[0]; uint32_t vecsize = ops[2]; auto &base = get(ops[1]); auto &vecbase = set(id); vecbase = base; vecbase.vecsize = vecsize; vecbase.self = id; vecbase.parent_type = ops[1]; break; } case OpTypeMatrix: { uint32_t id = ops[0]; uint32_t colcount = ops[2]; auto &base = get(ops[1]); auto &matrixbase = set(id); matrixbase = base; matrixbase.columns = colcount; matrixbase.self = id; matrixbase.parent_type = ops[1]; break; } case OpTypeArray: { uint32_t id = ops[0]; auto &arraybase = set(id); uint32_t tid = ops[1]; auto &base = get(tid); arraybase = base; arraybase.parent_type = tid; uint32_t cid = ops[2]; ir.mark_used_as_array_length(cid); auto *c = maybe_get(cid); bool literal = c && !c->specialization; arraybase.array_size_literal.push_back(literal); arraybase.array.push_back(literal ? c->scalar() : cid); // Do NOT set arraybase.self! break; } case OpTypeRuntimeArray: { uint32_t id = ops[0]; auto &base = get(ops[1]); auto &arraybase = set(id); arraybase = base; arraybase.array.push_back(0); arraybase.array_size_literal.push_back(true); arraybase.parent_type = ops[1]; // Do NOT set arraybase.self! break; } case OpTypeImage: { uint32_t id = ops[0]; auto &type = set(id); type.basetype = SPIRType::Image; type.image.type = ops[1]; type.image.dim = static_cast(ops[2]); type.image.depth = ops[3] == 1; type.image.arrayed = ops[4] != 0; type.image.ms = ops[5] != 0; type.image.sampled = ops[6]; type.image.format = static_cast(ops[7]); type.image.access = (length >= 9) ? static_cast(ops[8]) : AccessQualifierMax; if (type.image.sampled == 0) SPIRV_CROSS_THROW("OpTypeImage Sampled parameter must not be zero."); break; } case OpTypeSampledImage: { uint32_t id = ops[0]; uint32_t imagetype = ops[1]; auto &type = set(id); type = get(imagetype); type.basetype = SPIRType::SampledImage; type.self = id; break; } case OpTypeSampler: { uint32_t id = ops[0]; auto &type = set(id); type.basetype = SPIRType::Sampler; break; } case OpTypePointer: { uint32_t id = ops[0]; auto &base = get(ops[2]); auto &ptrbase = set(id); ptrbase = base; ptrbase.pointer = true; ptrbase.pointer_depth++; ptrbase.storage = static_cast(ops[1]); if (ptrbase.storage == StorageClassAtomicCounter) ptrbase.basetype = SPIRType::AtomicCounter; ptrbase.parent_type = ops[2]; // Do NOT set ptrbase.self! break; } case OpTypeForwardPointer: { uint32_t id = ops[0]; auto &ptrbase = set(id); ptrbase.pointer = true; ptrbase.pointer_depth++; ptrbase.storage = static_cast(ops[1]); if (ptrbase.storage == StorageClassAtomicCounter) ptrbase.basetype = SPIRType::AtomicCounter; break; } case OpTypeStruct: { uint32_t id = ops[0]; auto &type = set(id); type.basetype = SPIRType::Struct; for (uint32_t i = 1; i < length; i++) type.member_types.push_back(ops[i]); // Check if we have seen this struct type before, with just different // decorations. // // Add workaround for issue #17 as well by looking at OpName for the struct // types, which we shouldn't normally do. // We should not normally have to consider type aliases like this to begin with // however ... glslang issues #304, #307 cover this. // For stripped names, never consider struct type aliasing. // We risk declaring the same struct multiple times, but type-punning is not allowed // so this is safe. bool consider_aliasing = !ir.get_name(type.self).empty(); if (consider_aliasing) { for (auto &other : global_struct_cache) { if (ir.get_name(type.self) == ir.get_name(other) && types_are_logically_equivalent(type, get(other))) { type.type_alias = other; break; } } if (type.type_alias == 0) global_struct_cache.push_back(id); } break; } case OpTypeFunction: { uint32_t id = ops[0]; uint32_t ret = ops[1]; auto &func = set(id, ret); for (uint32_t i = 2; i < length; i++) func.parameter_types.push_back(ops[i]); break; } case OpTypeAccelerationStructureNV: { uint32_t id = ops[0]; auto &type = set(id); type.basetype = SPIRType::AccelerationStructureNV; break; } // Variable declaration // All variables are essentially pointers with a storage qualifier. case OpVariable: { uint32_t type = ops[0]; uint32_t id = ops[1]; auto storage = static_cast(ops[2]); uint32_t initializer = length == 4 ? ops[3] : 0; if (storage == StorageClassFunction) { if (!current_function) SPIRV_CROSS_THROW("No function currently in scope"); current_function->add_local_variable(id); } set(id, type, storage, initializer); // hlsl based shaders don't have those decorations. force them and then reset when reading/writing images auto &ttype = get(type); if (ttype.basetype == SPIRType::BaseType::Image) { ir.set_decoration(id, DecorationNonWritable); ir.set_decoration(id, DecorationNonReadable); } break; } // OpPhi // OpPhi is a fairly magical opcode. // It selects temporary variables based on which parent block we *came from*. // In high-level languages we can "de-SSA" by creating a function local, and flush out temporaries to this function-local // variable to emulate SSA Phi. case OpPhi: { if (!current_function) SPIRV_CROSS_THROW("No function currently in scope"); if (!current_block) SPIRV_CROSS_THROW("No block currently in scope"); uint32_t result_type = ops[0]; uint32_t id = ops[1]; // Instead of a temporary, create a new function-wide temporary with this ID instead. auto &var = set(id, result_type, spv::StorageClassFunction); var.phi_variable = true; current_function->add_local_variable(id); for (uint32_t i = 2; i + 2 <= length; i += 2) current_block->phi_variables.push_back({ ops[i], ops[i + 1], id }); break; } // Constants case OpSpecConstant: case OpConstant: { uint32_t id = ops[1]; auto &type = get(ops[0]); if (type.width > 32) set(id, ops[0], ops[2] | (uint64_t(ops[3]) << 32), op == OpSpecConstant); else set(id, ops[0], ops[2], op == OpSpecConstant); break; } case OpSpecConstantFalse: case OpConstantFalse: { uint32_t id = ops[1]; set(id, ops[0], uint32_t(0), op == OpSpecConstantFalse); break; } case OpSpecConstantTrue: case OpConstantTrue: { uint32_t id = ops[1]; set(id, ops[0], uint32_t(1), op == OpSpecConstantTrue); break; } case OpConstantNull: { uint32_t id = ops[1]; uint32_t type = ops[0]; make_constant_null(id, type); break; } case OpSpecConstantComposite: case OpConstantComposite: { uint32_t id = ops[1]; uint32_t type = ops[0]; auto &ctype = get(type); // We can have constants which are structs and arrays. // In this case, our SPIRConstant will be a list of other SPIRConstant ids which we // can refer to. if (ctype.basetype == SPIRType::Struct || !ctype.array.empty()) { set(id, type, ops + 2, length - 2, op == OpSpecConstantComposite); } else { uint32_t elements = length - 2; if (elements > 4) SPIRV_CROSS_THROW("OpConstantComposite only supports 1, 2, 3 and 4 elements."); SPIRConstant remapped_constant_ops[4]; const SPIRConstant *c[4]; for (uint32_t i = 0; i < elements; i++) { // Specialization constants operations can also be part of this. // We do not know their value, so any attempt to query SPIRConstant later // will fail. We can only propagate the ID of the expression and use to_expression on it. auto *constant_op = maybe_get(ops[2 + i]); auto *undef_op = maybe_get(ops[2 + i]); if (constant_op) { if (op == OpConstantComposite) SPIRV_CROSS_THROW("Specialization constant operation used in OpConstantComposite."); remapped_constant_ops[i].make_null(get(constant_op->basetype)); remapped_constant_ops[i].self = constant_op->self; remapped_constant_ops[i].constant_type = constant_op->basetype; remapped_constant_ops[i].specialization = true; c[i] = &remapped_constant_ops[i]; } else if (undef_op) { // Undefined, just pick 0. remapped_constant_ops[i].make_null(get(undef_op->basetype)); remapped_constant_ops[i].constant_type = undef_op->basetype; c[i] = &remapped_constant_ops[i]; } else c[i] = &get(ops[2 + i]); } set(id, type, c, elements, op == OpSpecConstantComposite); } break; } // Functions case OpFunction: { uint32_t res = ops[0]; uint32_t id = ops[1]; // Control uint32_t type = ops[3]; if (current_function) SPIRV_CROSS_THROW("Must end a function before starting a new one!"); current_function = &set(id, res, type); break; } case OpFunctionParameter: { uint32_t type = ops[0]; uint32_t id = ops[1]; if (!current_function) SPIRV_CROSS_THROW("Must be in a function!"); current_function->add_parameter(type, id); set(id, type, StorageClassFunction); break; } case OpFunctionEnd: { if (current_block) { // Very specific error message, but seems to come up quite often. SPIRV_CROSS_THROW( "Cannot end a function before ending the current block.\n" "Likely cause: If this SPIR-V was created from glslang HLSL, make sure the entry point is valid."); } current_function = nullptr; break; } // Blocks case OpLabel: { // OpLabel always starts a block. if (!current_function) SPIRV_CROSS_THROW("Blocks cannot exist outside functions!"); uint32_t id = ops[0]; current_function->blocks.push_back(id); if (!current_function->entry_block) current_function->entry_block = id; if (current_block) SPIRV_CROSS_THROW("Cannot start a block before ending the current block."); current_block = &set(id); break; } // Branch instructions end blocks. case OpBranch: { if (!current_block) SPIRV_CROSS_THROW("Trying to end a non-existing block."); uint32_t target = ops[0]; current_block->terminator = SPIRBlock::Direct; current_block->next_block = target; current_block = nullptr; break; } case OpBranchConditional: { if (!current_block) SPIRV_CROSS_THROW("Trying to end a non-existing block."); current_block->condition = ops[0]; current_block->true_block = ops[1]; current_block->false_block = ops[2]; current_block->terminator = SPIRBlock::Select; current_block = nullptr; break; } case OpSwitch: { if (!current_block) SPIRV_CROSS_THROW("Trying to end a non-existing block."); current_block->terminator = SPIRBlock::MultiSelect; current_block->condition = ops[0]; current_block->default_block = ops[1]; for (uint32_t i = 2; i + 2 <= length; i += 2) current_block->cases.push_back({ ops[i], ops[i + 1] }); // If we jump to next block, make it break instead since we're inside a switch case block at that point. ir.block_meta[current_block->next_block] |= ParsedIR::BLOCK_META_MULTISELECT_MERGE_BIT; current_block = nullptr; break; } case OpKill: { if (!current_block) SPIRV_CROSS_THROW("Trying to end a non-existing block."); current_block->terminator = SPIRBlock::Kill; current_block = nullptr; break; } case OpReturn: { if (!current_block) SPIRV_CROSS_THROW("Trying to end a non-existing block."); current_block->terminator = SPIRBlock::Return; current_block = nullptr; break; } case OpReturnValue: { if (!current_block) SPIRV_CROSS_THROW("Trying to end a non-existing block."); current_block->terminator = SPIRBlock::Return; current_block->return_value = ops[0]; current_block = nullptr; break; } case OpUnreachable: { if (!current_block) SPIRV_CROSS_THROW("Trying to end a non-existing block."); current_block->terminator = SPIRBlock::Unreachable; current_block = nullptr; break; } case OpSelectionMerge: { if (!current_block) SPIRV_CROSS_THROW("Trying to modify a non-existing block."); current_block->next_block = ops[0]; current_block->merge = SPIRBlock::MergeSelection; ir.block_meta[current_block->next_block] |= ParsedIR::BLOCK_META_SELECTION_MERGE_BIT; if (length >= 2) { if (ops[1] & SelectionControlFlattenMask) current_block->hint = SPIRBlock::HintFlatten; else if (ops[1] & SelectionControlDontFlattenMask) current_block->hint = SPIRBlock::HintDontFlatten; } break; } case OpLoopMerge: { if (!current_block) SPIRV_CROSS_THROW("Trying to modify a non-existing block."); current_block->merge_block = ops[0]; current_block->continue_block = ops[1]; current_block->merge = SPIRBlock::MergeLoop; ir.block_meta[current_block->self] |= ParsedIR::BLOCK_META_LOOP_HEADER_BIT; ir.block_meta[current_block->merge_block] |= ParsedIR::BLOCK_META_LOOP_MERGE_BIT; ir.continue_block_to_loop_header[current_block->continue_block] = current_block->self; // Don't add loop headers to continue blocks, // which would make it impossible branch into the loop header since // they are treated as continues. if (current_block->continue_block != current_block->self) ir.block_meta[current_block->continue_block] |= ParsedIR::BLOCK_META_CONTINUE_BIT; if (length >= 3) { if (ops[2] & LoopControlUnrollMask) current_block->hint = SPIRBlock::HintUnroll; else if (ops[2] & LoopControlDontUnrollMask) current_block->hint = SPIRBlock::HintDontUnroll; } break; } case OpSpecConstantOp: { if (length < 3) SPIRV_CROSS_THROW("OpSpecConstantOp not enough arguments."); uint32_t result_type = ops[0]; uint32_t id = ops[1]; auto spec_op = static_cast(ops[2]); set(id, result_type, spec_op, ops + 3, length - 3); break; } // Actual opcodes. default: { if (!current_block) SPIRV_CROSS_THROW("Currently no block to insert opcode."); current_block->ops.push_back(instruction); break; } } } bool Parser::types_are_logically_equivalent(const SPIRType &a, const SPIRType &b) const { if (a.basetype != b.basetype) return false; if (a.width != b.width) return false; if (a.vecsize != b.vecsize) return false; if (a.columns != b.columns) return false; if (a.array.size() != b.array.size()) return false; size_t array_count = a.array.size(); if (array_count && memcmp(a.array.data(), b.array.data(), array_count * sizeof(uint32_t)) != 0) return false; if (a.basetype == SPIRType::Image || a.basetype == SPIRType::SampledImage) { if (memcmp(&a.image, &b.image, sizeof(SPIRType::Image)) != 0) return false; } if (a.member_types.size() != b.member_types.size()) return false; size_t member_types = a.member_types.size(); for (size_t i = 0; i < member_types; i++) { if (!types_are_logically_equivalent(get(a.member_types[i]), get(b.member_types[i]))) return false; } return true; } bool Parser::variable_storage_is_aliased(const SPIRVariable &v) const { auto &type = get(v.basetype); auto *type_meta = ir.find_meta(type.self); bool ssbo = v.storage == StorageClassStorageBuffer || (type_meta && type_meta->decoration.decoration_flags.get(DecorationBufferBlock)); bool image = type.basetype == SPIRType::Image; bool counter = type.basetype == SPIRType::AtomicCounter; bool is_restrict; if (ssbo) is_restrict = ir.get_buffer_block_flags(v).get(DecorationRestrict); else is_restrict = ir.has_decoration(v.self, DecorationRestrict); return !is_restrict && (ssbo || image || counter); } void Parser::make_constant_null(uint32_t id, uint32_t type) { auto &constant_type = get(type); if (constant_type.pointer) { auto &constant = set(id, type); constant.make_null(constant_type); } else if (!constant_type.array.empty()) { assert(constant_type.parent_type); uint32_t parent_id = ir.increase_bound_by(1); make_constant_null(parent_id, constant_type.parent_type); if (!constant_type.array_size_literal.back()) SPIRV_CROSS_THROW("Array size of OpConstantNull must be a literal."); SmallVector elements(constant_type.array.back()); for (uint32_t i = 0; i < constant_type.array.back(); i++) elements[i] = parent_id; set(id, type, elements.data(), uint32_t(elements.size()), false); } else if (!constant_type.member_types.empty()) { uint32_t member_ids = ir.increase_bound_by(uint32_t(constant_type.member_types.size())); SmallVector elements(constant_type.member_types.size()); for (uint32_t i = 0; i < constant_type.member_types.size(); i++) { make_constant_null(member_ids + i, constant_type.member_types[i]); elements[i] = member_ids + i; } set(id, type, elements.data(), uint32_t(elements.size()), false); } else { auto &constant = set(id, type); constant.make_null(constant_type); } } } // namespace SPIRV_CROSS_NAMESPACE