$input v_color0, v_texcoord0 /* * Copyright 2011-2021 Branimir Karadzic. All rights reserved. * License: https://github.com/bkaradzic/bgfx#license-bsd-2-clause */ // References: // Sphere tracing: a geometric method for the antialiased ray tracing of implicit surfaces - John C. Hart // http://web.archive.org/web/20110331200546/http://graphics.cs.uiuc.edu/~jch/papers/zeno.pdf // // Modeling with distance functions // http://www.iquilezles.org/www/articles/distfunctions/distfunctions.htm #include "../common/common.sh" #include "iq_sdf.sh" uniform mat4 u_mtx; uniform vec4 u_lightDirTime; #define u_lightDir u_lightDirTime.xyz #define u_time u_lightDirTime.w float sceneDist(vec3 _pos) { float d1 = udRoundBox(_pos, vec3(2.5, 2.5, 2.5), 0.5); float d2 = sdSphere(_pos + vec3( 4.0, 0.0, 0.0), 1.0); float d3 = sdSphere(_pos + vec3(-4.0, 0.0, 0.0), 1.0); float d4 = sdSphere(_pos + vec3( 0.0, 4.0, 0.0), 1.0); float d5 = sdSphere(_pos + vec3( 0.0,-4.0, 0.0), 1.0); float d6 = sdSphere(_pos + vec3( 0.0, 0.0, 4.0), 1.0); float d7 = sdSphere(_pos + vec3( 0.0, 0.0,-4.0), 1.0); float dist = min(min(min(min(min(min(d1, d2), d3), d4), d5), d6), d7); return dist; } vec3 calcNormal(vec3 _pos) { const vec2 delta = vec2(0.002, 0.0); float nx = sceneDist(_pos + delta.xyy) - sceneDist(_pos - delta.xyy); float ny = sceneDist(_pos + delta.yxy) - sceneDist(_pos - delta.yxy); float nz = sceneDist(_pos + delta.yyx) - sceneDist(_pos - delta.yyx); return normalize(vec3(nx, ny, nz) ); } float calcAmbOcc(vec3 _pos, vec3 _normal) { float occ = 0.0; float aostep = 0.2; for (int ii = 1; ii < 4; ii++) { float fi = float(ii); float dist = sceneDist(_pos + _normal * fi * aostep); occ += (fi * aostep - dist) / pow(2.0, fi); } return 1.0 - occ; } float trace(vec3 _ray, vec3 _dir, float _maxd) { float tt = 0.0; float epsilon = 0.001; for (int ii = 0; ii < 64; ii++) { float dist = sceneDist(_ray + _dir*tt); if (dist > epsilon) { tt += dist; } } return tt < _maxd ? tt : 0.0; } vec2 blinn(vec3 _lightDir, vec3 _normal, vec3 _viewDir) { float ndotl = dot(_normal, _lightDir); vec3 reflected = _lightDir - 2.0*ndotl*_normal; // reflect(_lightDir, _normal); float rdotv = dot(reflected, _viewDir); return vec2(ndotl, rdotv); } float fresnel(float _ndotl, float _bias, float _pow) { float facing = (1.0 - _ndotl); return max(_bias + (1.0 - _bias) * pow(facing, _pow), 0.0); } vec4 lit(float _ndotl, float _rdotv, float _m) { float diff = max(0.0, _ndotl); float spec = step(0.0, _ndotl) * max(0.0, _rdotv * _m); return vec4(1.0, diff, spec, 1.0); } void main() { vec4 tmp; tmp = mul(u_mtx, vec4(v_texcoord0.xy, 0.0, 1.0) ); vec3 eye = tmp.xyz/tmp.w; tmp = mul(u_mtx, vec4(v_texcoord0.xy, 1.0, 1.0) ); vec3 at = tmp.xyz/tmp.w; float maxd = length(at - eye); vec3 dir = normalize(at - eye); float dist = trace(eye, dir, maxd); if (dist > 0.5) { vec3 pos = eye + dir*dist; vec3 normal = calcNormal(pos); vec2 bln = blinn(u_lightDir, normal, dir); vec4 lc = lit(bln.x, bln.y, 1.0); float fres = fresnel(bln.x, 0.2, 5.0); float val = 0.9*lc.y + pow(lc.z, 128.0)*fres; val *= calcAmbOcc(pos, normal); val = pow(val, 1.0/2.2); gl_FragColor = vec4(val, val, val, 1.0); gl_FragDepth = dist/maxd; } else { gl_FragColor = v_color0; gl_FragDepth = 1.0; } }