/* * Copyright 2013-2014 Dario Manesku. All rights reserved. * License: https://github.com/bkaradzic/bgfx#license-bsd-2-clause */ #include #include #include #include #include namespace stl = tinystl; #include "common.h" #include "bgfx_utils.h" #include #include #include #include #include #include #include #include "entry/entry.h" #include "camera.h" #include "imgui/imgui.h" namespace bgfx { int32_t read(bx::ReaderI* _reader, bgfx::VertexDecl& _decl, bx::Error* _err = NULL); } namespace { #define SV_USE_SIMD 1 #define MAX_INSTANCE_COUNT 25 #define MAX_LIGHTS_COUNT 5 #define VIEWID_RANGE1_PASS0 1 #define VIEWID_RANGE1_RT_PASS1 2 #define VIEWID_RANGE15_PASS2 3 #define VIEWID_RANGE1_PASS3 20 struct PosNormalTexcoordVertex { float m_x; float m_y; float m_z; uint32_t m_normal; float m_u; float m_v; static void init() { ms_decl .begin() .add(bgfx::Attrib::Position, 3, bgfx::AttribType::Float) .add(bgfx::Attrib::Normal, 4, bgfx::AttribType::Uint8, true, true) .add(bgfx::Attrib::TexCoord0, 2, bgfx::AttribType::Float) .end(); } static bgfx::VertexDecl ms_decl; }; bgfx::VertexDecl PosNormalTexcoordVertex::ms_decl; static const float s_texcoord = 50.0f; static PosNormalTexcoordVertex s_hplaneVertices[] = { { -1.0f, 0.0f, 1.0f, encodeNormalRgba8(0.0f, 1.0f, 0.0f), s_texcoord, s_texcoord }, { 1.0f, 0.0f, 1.0f, encodeNormalRgba8(0.0f, 1.0f, 0.0f), s_texcoord, 0.0f }, { -1.0f, 0.0f, -1.0f, encodeNormalRgba8(0.0f, 1.0f, 0.0f), 0.0f, s_texcoord }, { 1.0f, 0.0f, -1.0f, encodeNormalRgba8(0.0f, 1.0f, 0.0f), 0.0f, 0.0f }, }; static PosNormalTexcoordVertex s_vplaneVertices[] = { { -1.0f, 1.0f, 0.0f, encodeNormalRgba8(0.0f, 0.0f, -1.0f), 1.0f, 1.0f }, { 1.0f, 1.0f, 0.0f, encodeNormalRgba8(0.0f, 0.0f, -1.0f), 1.0f, 0.0f }, { -1.0f, -1.0f, 0.0f, encodeNormalRgba8(0.0f, 0.0f, -1.0f), 0.0f, 1.0f }, { 1.0f, -1.0f, 0.0f, encodeNormalRgba8(0.0f, 0.0f, -1.0f), 0.0f, 0.0f }, }; static const uint16_t s_planeIndices[] = { 0, 1, 2, 1, 3, 2, }; static bool s_oglNdc = false; static float s_texelHalf = 0.0f; static uint32_t s_viewMask = 0; static bgfx::UniformHandle s_texColor; static bgfx::UniformHandle s_texStencil; static bgfx::FrameBufferHandle s_stencilFb; void setViewClearMask(uint32_t _viewMask, uint8_t _flags, uint32_t _rgba, float _depth, uint8_t _stencil) { for (uint32_t view = 0, viewMask = _viewMask, ntz = bx::uint32_cnttz(_viewMask); 0 != viewMask; viewMask >>= 1, view += 1, ntz = bx::uint32_cnttz(viewMask) ) { viewMask >>= ntz; view += ntz; bgfx::setViewClear( (uint8_t)view, _flags, _rgba, _depth, _stencil); } } void setViewTransformMask(uint32_t _viewMask, const void* _view, const void* _proj) { for (uint32_t view = 0, viewMask = _viewMask, ntz = bx::uint32_cnttz(_viewMask); 0 != viewMask; viewMask >>= 1, view += 1, ntz = bx::uint32_cnttz(viewMask) ) { viewMask >>= ntz; view += ntz; bgfx::setViewTransform( (uint8_t)view, _view, _proj); } } void setViewRectMask(uint32_t _viewMask, uint16_t _x, uint16_t _y, uint16_t _width, uint16_t _height) { for (uint32_t view = 0, viewMask = _viewMask, ntz = bx::uint32_cnttz(_viewMask); 0 != viewMask; viewMask >>= 1, view += 1, ntz = bx::uint32_cnttz(viewMask) ) { viewMask >>= ntz; view += ntz; bgfx::setViewRect( (uint8_t)view, _x, _y, _width, _height); } } void mtxBillboard(float* __restrict _result , const float* __restrict _view , const float* __restrict _pos , const float* __restrict _scale ) { _result[ 0] = _view[0] * _scale[0]; _result[ 1] = _view[4] * _scale[0]; _result[ 2] = _view[8] * _scale[0]; _result[ 3] = 0.0f; _result[ 4] = _view[1] * _scale[1]; _result[ 5] = _view[5] * _scale[1]; _result[ 6] = _view[9] * _scale[1]; _result[ 7] = 0.0f; _result[ 8] = _view[2] * _scale[2]; _result[ 9] = _view[6] * _scale[2]; _result[10] = _view[10] * _scale[2]; _result[11] = 0.0f; _result[12] = _pos[0]; _result[13] = _pos[1]; _result[14] = _pos[2]; _result[15] = 1.0f; } void planeNormal(float* __restrict _result , const float* __restrict _v0 , const float* __restrict _v1 , const float* __restrict _v2 ) { float vec0[3], vec1[3]; float cross[3]; vec0[0] = _v1[0] - _v0[0]; vec0[1] = _v1[1] - _v0[1]; vec0[2] = _v1[2] - _v0[2]; vec1[0] = _v2[0] - _v1[0]; vec1[1] = _v2[1] - _v1[1]; vec1[2] = _v2[2] - _v1[2]; bx::vec3Cross(cross, vec0, vec1); bx::vec3Norm(_result, cross); _result[3] = -bx::vec3Dot(_result, _v0); } struct Uniforms { void init() { m_params.m_ambientPass = 1.0f; m_params.m_lightingPass = 1.0f; m_params.m_texelHalf = 0.0f; m_ambient[0] = 0.05f; m_ambient[1] = 0.05f; m_ambient[2] = 0.05f; m_ambient[3] = 0.0f; //unused m_diffuse[0] = 0.8f; m_diffuse[1] = 0.8f; m_diffuse[2] = 0.8f; m_diffuse[3] = 0.0f; //unused m_specular_shininess[0] = 1.0f; m_specular_shininess[1] = 1.0f; m_specular_shininess[2] = 1.0f; m_specular_shininess[3] = 25.0f; //shininess m_fog[0] = 0.0f; //color m_fog[1] = 0.0f; m_fog[2] = 0.0f; m_fog[3] = 0.0055f; //density m_color[0] = 1.0f; m_color[1] = 1.0f; m_color[2] = 1.0f; m_color[3] = 1.0f; m_time = 0.0f; m_lightPosRadius[0] = 0.0f; m_lightPosRadius[1] = 0.0f; m_lightPosRadius[2] = 0.0f; m_lightPosRadius[3] = 1.0f; m_lightRgbInnerR[0] = 0.0f; m_lightRgbInnerR[1] = 0.0f; m_lightRgbInnerR[2] = 0.0f; m_lightRgbInnerR[3] = 1.0f; m_virtualLightPos_extrusionDist[0] = 0.0f; m_virtualLightPos_extrusionDist[1] = 0.0f; m_virtualLightPos_extrusionDist[2] = 0.0f; m_virtualLightPos_extrusionDist[3] = 100.0f; u_params = bgfx::createUniform("u_params", bgfx::UniformType::Vec4); u_svparams = bgfx::createUniform("u_svparams", bgfx::UniformType::Vec4); u_ambient = bgfx::createUniform("u_ambient", bgfx::UniformType::Vec4); u_diffuse = bgfx::createUniform("u_diffuse", bgfx::UniformType::Vec4); u_specular_shininess = bgfx::createUniform("u_specular_shininess", bgfx::UniformType::Vec4); u_fog = bgfx::createUniform("u_fog", bgfx::UniformType::Vec4); u_color = bgfx::createUniform("u_color", bgfx::UniformType::Vec4); u_lightPosRadius = bgfx::createUniform("u_lightPosRadius", bgfx::UniformType::Vec4); u_lightRgbInnerR = bgfx::createUniform("u_lightRgbInnerR", bgfx::UniformType::Vec4); u_virtualLightPos_extrusionDist = bgfx::createUniform("u_virtualLightPos_extrusionDist", bgfx::UniformType::Vec4); } //call this once at initialization void submitConstUniforms() { bgfx::setUniform(u_ambient, &m_ambient); bgfx::setUniform(u_diffuse, &m_diffuse); bgfx::setUniform(u_specular_shininess, &m_specular_shininess); bgfx::setUniform(u_fog, &m_fog); } //call this before each draw call void submitPerDrawUniforms() { bgfx::setUniform(u_params, &m_params); bgfx::setUniform(u_svparams, &m_svparams); bgfx::setUniform(u_color, &m_color); bgfx::setUniform(u_lightPosRadius, &m_lightPosRadius); bgfx::setUniform(u_lightRgbInnerR, &m_lightRgbInnerR); bgfx::setUniform(u_virtualLightPos_extrusionDist, &m_virtualLightPos_extrusionDist); } void destroy() { bgfx::destroy(u_params); bgfx::destroy(u_svparams); bgfx::destroy(u_ambient); bgfx::destroy(u_diffuse); bgfx::destroy(u_specular_shininess); bgfx::destroy(u_fog); bgfx::destroy(u_color); bgfx::destroy(u_lightPosRadius); bgfx::destroy(u_lightRgbInnerR); bgfx::destroy(u_virtualLightPos_extrusionDist); } struct Params { float m_ambientPass; float m_lightingPass; float m_texelHalf; float m_unused00; }; struct SvParams { float m_useStencilTex; float m_dfail; float m_unused10; float m_unused11; }; Params m_params; SvParams m_svparams; float m_ambient[4]; float m_diffuse[4]; float m_specular_shininess[4]; float m_fog[4]; float m_color[4]; float m_time; float m_lightPosRadius[4]; float m_lightRgbInnerR[4]; float m_virtualLightPos_extrusionDist[4]; /** * u_params.x - u_ambientPass * u_params.y - u_lightingPass * u_params.z - u_texelHalf * u_params.w - unused * u_svparams.x - u_useStencilTex * u_svparams.y - u_dfail * u_svparams.z - unused * u_svparams.w - unused */ bgfx::UniformHandle u_params; bgfx::UniformHandle u_svparams; bgfx::UniformHandle u_ambient; bgfx::UniformHandle u_diffuse; bgfx::UniformHandle u_specular_shininess; bgfx::UniformHandle u_fog; bgfx::UniformHandle u_color; bgfx::UniformHandle u_lightPosRadius; bgfx::UniformHandle u_lightRgbInnerR; bgfx::UniformHandle u_virtualLightPos_extrusionDist; }; static Uniforms s_uniforms; struct RenderState { enum Enum { ShadowVolume_UsingStencilTexture_DrawAmbient = 0, ShadowVolume_UsingStencilTexture_BuildDepth, ShadowVolume_UsingStencilTexture_CraftStencil_DepthPass, ShadowVolume_UsingStencilTexture_CraftStencil_DepthFail, ShadowVolume_UsingStencilTexture_DrawDiffuse, ShadowVolume_UsingStencilBuffer_DrawAmbient, ShadowVolume_UsingStencilBuffer_CraftStencil_DepthPass, ShadowVolume_UsingStencilBuffer_CraftStencil_DepthFail, ShadowVolume_UsingStencilBuffer_DrawDiffuse, Custom_Default, Custom_BlendLightTexture, Custom_DrawPlaneBottom, Custom_DrawShadowVolume_Lines, Count }; uint64_t m_state; uint32_t m_blendFactorRgba; uint32_t m_fstencil; uint32_t m_bstencil; }; static void setRenderState(const RenderState& _renderState) { bgfx::setStencil(_renderState.m_fstencil, _renderState.m_bstencil); bgfx::setState(_renderState.m_state, _renderState.m_blendFactorRgba); } static RenderState s_renderStates[RenderState::Count] = { { // ShadowVolume_UsingStencilTexture_DrawAmbient BGFX_STATE_WRITE_RGB | BGFX_STATE_WRITE_A | BGFX_STATE_WRITE_Z | BGFX_STATE_DEPTH_TEST_LESS | BGFX_STATE_CULL_CCW | BGFX_STATE_MSAA , UINT32_MAX , BGFX_STENCIL_NONE , BGFX_STENCIL_NONE }, { // ShadowVolume_UsingStencilTexture_BuildDepth BGFX_STATE_WRITE_Z | BGFX_STATE_DEPTH_TEST_LESS | BGFX_STATE_CULL_CCW | BGFX_STATE_MSAA , UINT32_MAX , BGFX_STENCIL_NONE , BGFX_STENCIL_NONE }, { // ShadowVolume_UsingStencilTexture_CraftStencil_DepthPass BGFX_STATE_WRITE_RGB | BGFX_STATE_WRITE_A | BGFX_STATE_BLEND_FUNC(BGFX_STATE_BLEND_ONE, BGFX_STATE_BLEND_ONE) | BGFX_STATE_DEPTH_TEST_LEQUAL | BGFX_STATE_MSAA , UINT32_MAX , BGFX_STENCIL_NONE , BGFX_STENCIL_NONE }, { // ShadowVolume_UsingStencilTexture_CraftStencil_DepthFail BGFX_STATE_WRITE_RGB | BGFX_STATE_WRITE_A | BGFX_STATE_BLEND_FUNC(BGFX_STATE_BLEND_ONE, BGFX_STATE_BLEND_ONE) | BGFX_STATE_DEPTH_TEST_GEQUAL | BGFX_STATE_MSAA , UINT32_MAX , BGFX_STENCIL_NONE , BGFX_STENCIL_NONE }, { // ShadowVolume_UsingStencilTexture_DrawDiffuse BGFX_STATE_WRITE_RGB | BGFX_STATE_WRITE_A | BGFX_STATE_BLEND_FUNC(BGFX_STATE_BLEND_ONE, BGFX_STATE_BLEND_ONE) | BGFX_STATE_WRITE_Z | BGFX_STATE_DEPTH_TEST_EQUAL | BGFX_STATE_CULL_CCW | BGFX_STATE_MSAA , UINT32_MAX , BGFX_STENCIL_NONE , BGFX_STENCIL_NONE }, { // ShadowVolume_UsingStencilBuffer_DrawAmbient BGFX_STATE_WRITE_RGB | BGFX_STATE_WRITE_A | BGFX_STATE_WRITE_Z | BGFX_STATE_DEPTH_TEST_LESS | BGFX_STATE_CULL_CCW | BGFX_STATE_MSAA , UINT32_MAX , BGFX_STENCIL_NONE , BGFX_STENCIL_NONE }, { // ShadowVolume_UsingStencilBuffer_CraftStencil_DepthPass BGFX_STATE_DEPTH_TEST_LEQUAL | BGFX_STATE_MSAA , UINT32_MAX , BGFX_STENCIL_TEST_ALWAYS | BGFX_STENCIL_FUNC_REF(1) | BGFX_STENCIL_FUNC_RMASK(0xff) | BGFX_STENCIL_OP_FAIL_S_KEEP | BGFX_STENCIL_OP_FAIL_Z_KEEP | BGFX_STENCIL_OP_PASS_Z_DECR , BGFX_STENCIL_TEST_ALWAYS | BGFX_STENCIL_FUNC_REF(1) | BGFX_STENCIL_FUNC_RMASK(0xff) | BGFX_STENCIL_OP_FAIL_S_KEEP | BGFX_STENCIL_OP_FAIL_Z_KEEP | BGFX_STENCIL_OP_PASS_Z_INCR }, { // ShadowVolume_UsingStencilBuffer_CraftStencil_DepthFail BGFX_STATE_DEPTH_TEST_LEQUAL | BGFX_STATE_MSAA , UINT32_MAX , BGFX_STENCIL_TEST_ALWAYS | BGFX_STENCIL_FUNC_REF(1) | BGFX_STENCIL_FUNC_RMASK(0xff) | BGFX_STENCIL_OP_FAIL_S_KEEP | BGFX_STENCIL_OP_FAIL_Z_INCR | BGFX_STENCIL_OP_PASS_Z_KEEP , BGFX_STENCIL_TEST_ALWAYS | BGFX_STENCIL_FUNC_REF(1) | BGFX_STENCIL_FUNC_RMASK(0xff) | BGFX_STENCIL_OP_FAIL_S_KEEP | BGFX_STENCIL_OP_FAIL_Z_DECR | BGFX_STENCIL_OP_PASS_Z_KEEP }, { // ShadowVolume_UsingStencilBuffer_DrawDiffuse BGFX_STATE_WRITE_RGB | BGFX_STATE_WRITE_A | BGFX_STATE_BLEND_FUNC(BGFX_STATE_BLEND_ONE, BGFX_STATE_BLEND_ONE) | BGFX_STATE_DEPTH_TEST_EQUAL | BGFX_STATE_CULL_CCW | BGFX_STATE_MSAA , UINT32_MAX , BGFX_STENCIL_TEST_EQUAL | BGFX_STENCIL_FUNC_REF(0) | BGFX_STENCIL_FUNC_RMASK(0xff) | BGFX_STENCIL_OP_FAIL_S_KEEP | BGFX_STENCIL_OP_FAIL_Z_KEEP | BGFX_STENCIL_OP_PASS_Z_KEEP , BGFX_STENCIL_NONE }, { // Custom_Default BGFX_STATE_WRITE_RGB | BGFX_STATE_WRITE_A | BGFX_STATE_WRITE_Z | BGFX_STATE_DEPTH_TEST_LESS | BGFX_STATE_CULL_CCW | BGFX_STATE_MSAA , UINT32_MAX , BGFX_STENCIL_NONE , BGFX_STENCIL_NONE }, { // Custom_BlendLightTexture BGFX_STATE_WRITE_RGB | BGFX_STATE_WRITE_A | BGFX_STATE_WRITE_Z | BGFX_STATE_DEPTH_TEST_LESS | BGFX_STATE_BLEND_FUNC(BGFX_STATE_BLEND_SRC_COLOR, BGFX_STATE_BLEND_INV_SRC_COLOR) | BGFX_STATE_CULL_CCW | BGFX_STATE_MSAA , UINT32_MAX , BGFX_STENCIL_NONE , BGFX_STENCIL_NONE }, { // Custom_DrawPlaneBottom BGFX_STATE_WRITE_RGB | BGFX_STATE_WRITE_A | BGFX_STATE_WRITE_Z | BGFX_STATE_CULL_CW | BGFX_STATE_MSAA , UINT32_MAX , BGFX_STENCIL_NONE , BGFX_STENCIL_NONE }, { // Custom_DrawShadowVolume_Lines BGFX_STATE_WRITE_RGB | BGFX_STATE_DEPTH_TEST_LESS | BGFX_STATE_BLEND_FUNC(BGFX_STATE_BLEND_FACTOR, BGFX_STATE_BLEND_SRC_ALPHA) | BGFX_STATE_PT_LINES | BGFX_STATE_MSAA , 0x0f0f0fff , BGFX_STENCIL_NONE , BGFX_STENCIL_NONE } }; struct ViewState { ViewState(uint32_t _width = 0, uint32_t _height = 0) : m_width(_width) , m_height(_height) { } uint32_t m_width; uint32_t m_height; float m_view[16]; float m_proj[16]; }; struct ClearValues { uint32_t m_clearRgba; float m_clearDepth; uint8_t m_clearStencil; }; void submit(bgfx::ViewId _id, bgfx::ProgramHandle _handle, int32_t _depth = 0) { bgfx::submit(_id, _handle, _depth); // Keep track of submited view ids. s_viewMask |= 1 << _id; } void touch(bgfx::ViewId _id) { bgfx::ProgramHandle handle = BGFX_INVALID_HANDLE; ::submit(_id, handle); } struct Aabb { float m_min[3]; float m_max[3]; }; struct Obb { float m_mtx[16]; }; struct Sphere { float m_center[3]; float m_radius; }; struct Primitive { uint32_t m_startIndex; uint32_t m_numIndices; uint32_t m_startVertex; uint32_t m_numVertices; Sphere m_sphere; Aabb m_aabb; Obb m_obb; }; typedef std::vector PrimitiveArray; struct Face { uint16_t m_i[3]; float m_plane[4]; }; typedef std::vector FaceArray; struct Edge { bool m_faceReverseOrder[2]; uint8_t m_faceIndex; uint16_t m_i0, m_i1; }; struct Plane { float m_plane[4]; }; struct HalfEdge { #define INVALID_EDGE_INDEX UINT16_MAX uint16_t m_secondIndex; bool m_marked; }; struct HalfEdges { HalfEdges() : m_data() , m_offsets() , m_endPtr() { } void init(uint16_t* _indices, uint32_t _numIndices) { m_data = (HalfEdge*)malloc(2 * _numIndices * sizeof(HalfEdge) ); stl::unordered_map > edges; for (uint32_t ii = 0; ii < _numIndices; ii+=3) { uint16_t idx0 = _indices[ii]; uint16_t idx1 = _indices[ii+1]; uint16_t idx2 = _indices[ii+2]; edges[idx0].push_back(idx1); edges[idx1].push_back(idx2); edges[idx2].push_back(idx0); } uint32_t numRows = (uint32_t)edges.size(); m_offsets = (uint32_t*)malloc(numRows * sizeof(uint32_t) ); HalfEdge* he = m_data; for (uint16_t ii = 0; ii < numRows; ++ii) { m_offsets[ii] = uint32_t(he - m_data); std::vector& row = edges[ii]; for (uint32_t jj = 0, size = (uint32_t)row.size(); jj < size; ++jj) { he->m_secondIndex = row[jj]; he->m_marked = false; ++he; } he->m_secondIndex = INVALID_EDGE_INDEX; ++he; } he->m_secondIndex = 0; m_endPtr = he; } void destroy() { free(m_data); m_data = NULL; free(m_offsets); m_offsets = NULL; } void mark(uint16_t _firstIndex, uint16_t _secondIndex) { HalfEdge* ptr = &m_data[m_offsets[_firstIndex]]; while (INVALID_EDGE_INDEX != ptr->m_secondIndex) { if (ptr->m_secondIndex == _secondIndex) { ptr->m_marked = true; break; } ++ptr; } } bool unmark(uint16_t _firstIndex, uint16_t _secondIndex) { bool ret = false; HalfEdge* ptr = &m_data[m_offsets[_firstIndex]]; while (INVALID_EDGE_INDEX != ptr->m_secondIndex) { if (ptr->m_secondIndex == _secondIndex && ptr->m_marked) { ptr->m_marked = false; ret = true; break; } ++ptr; } return ret; } inline HalfEdge* begin() const { return m_data; } inline HalfEdge* end() const { return m_endPtr; } HalfEdge* m_data; uint32_t* m_offsets; HalfEdge* m_endPtr; }; struct WeldedVertex { uint16_t m_v; bool m_welded; }; inline float sqLength(const float _a[3], const float _b[3]) { const float xx = _a[0] - _b[0]; const float yy = _a[1] - _b[1]; const float zz = _a[2] - _b[2]; return xx*xx + yy*yy + zz*zz; } uint16_t weldVertices(WeldedVertex* _output, const bgfx::VertexDecl& _decl, const void* _data, uint16_t _num, float _epsilon) { const uint32_t hashSize = bx::uint32_nextpow2(_num); const uint32_t hashMask = hashSize-1; const float epsilonSq = _epsilon*_epsilon; uint16_t numVertices = 0; const uint32_t size = sizeof(uint16_t)*(hashSize + _num); uint16_t* hashTable = (uint16_t*)alloca(size); bx::memSet(hashTable, 0xff, size); uint16_t* next = hashTable + hashSize; for (uint16_t ii = 0; ii < _num; ++ii) { float pos[4]; vertexUnpack(pos, bgfx::Attrib::Position, _decl, _data, ii); uint32_t hashValue = bx::hash(pos, 3*sizeof(float) ) & hashMask; uint16_t offset = hashTable[hashValue]; for (; UINT16_MAX != offset; offset = next[offset]) { float test[4]; vertexUnpack(test, bgfx::Attrib::Position, _decl, _data, _output[offset].m_v); if (sqLength(test, pos) < epsilonSq) { _output[ii].m_v = _output[offset].m_v; _output[ii].m_welded = true; break; } } if (UINT16_MAX == offset) { _output[ii].m_v = ii; _output[ii].m_welded = false; next[ii] = hashTable[hashValue]; hashTable[hashValue] = ii; numVertices++; } } return numVertices; } struct Group { Group() { reset(); } void reset() { m_vbh.idx = bgfx::kInvalidHandle; m_ibh.idx = bgfx::kInvalidHandle; m_numVertices = 0; m_vertices = NULL; m_numIndices = 0; m_indices = NULL; m_numEdges = 0; m_edges = NULL; m_edgePlanesUnalignedPtr = NULL; m_prims.clear(); } typedef struct { float f[6]; } f6_t; struct EdgeAndPlane { EdgeAndPlane(uint16_t _i0, uint16_t _i1) : m_faceIndex(0) , m_i0(_i0) , m_i1(_i1) { } bool m_faceReverseOrder[2]; uint8_t m_faceIndex; uint16_t m_i0, m_i1; Plane m_plane[2]; }; void fillStructures(const bgfx::VertexDecl& _decl) { uint16_t stride = _decl.getStride(); m_faces.clear(); m_halfEdges.destroy(); //Init halfedges. m_halfEdges.init(m_indices, m_numIndices); //Init faces and edges. m_faces.reserve(m_numIndices/3); //1 face = 3 indices m_edges = (Edge*)malloc(m_numIndices * sizeof(Edge) ); //1 triangle = 3 indices = 3 edges. m_edgePlanesUnalignedPtr = (Plane*)malloc(m_numIndices * sizeof(Plane) + 15); m_edgePlanes = (Plane*)bx::alignPtr(m_edgePlanesUnalignedPtr, 0, 16); typedef std::map, EdgeAndPlane> EdgeMap; EdgeMap edgeMap; //Get unique indices. WeldedVertex* uniqueVertices = (WeldedVertex*)malloc(m_numVertices*sizeof(WeldedVertex) ); ::weldVertices(uniqueVertices, _decl, m_vertices, m_numVertices, 0.0001f); uint16_t* uniqueIndices = (uint16_t*)malloc(m_numIndices*sizeof(uint16_t) ); for (uint32_t ii = 0; ii < m_numIndices; ++ii) { uint16_t index = m_indices[ii]; if (uniqueVertices[index].m_welded) { uniqueIndices[ii] = uniqueVertices[index].m_v; } else { uniqueIndices[ii] = index; } } free(uniqueVertices); for (uint32_t ii = 0, size = m_numIndices/3; ii < size; ++ii) { const uint16_t* indices = &m_indices[ii*3]; uint16_t i0 = indices[0]; uint16_t i1 = indices[1]; uint16_t i2 = indices[2]; const float* v0 = (float*)&m_vertices[i0*stride]; const float* v1 = (float*)&m_vertices[i1*stride]; const float* v2 = (float*)&m_vertices[i2*stride]; float plane[4]; planeNormal(plane, v0, v2, v1); Face face; face.m_i[0] = i0; face.m_i[1] = i1; face.m_i[2] = i2; bx::memCopy(face.m_plane, plane, 4*sizeof(float) ); m_faces.push_back(face); //Use unique indices for EdgeMap. const uint16_t* uindices = &uniqueIndices[ii*3]; i0 = uindices[0]; i1 = uindices[1]; i2 = uindices[2]; const uint16_t triangleEdge[3][2] = { { i0, i1 }, { i1, i2 }, { i2, i0 }, }; for (uint8_t jj = 0; jj < 3; ++jj) { const uint16_t ui0 = triangleEdge[jj][0]; const uint16_t ui1 = triangleEdge[jj][1]; std::pair key = std::make_pair(ui0, ui1); std::pair keyInv = std::make_pair(ui1, ui0); EdgeMap::iterator iter = edgeMap.find(keyInv); if (iter != edgeMap.end() ) { EdgeAndPlane& ep = iter->second; bx::memCopy(ep.m_plane[ep.m_faceIndex].m_plane, plane, 4*sizeof(float) ); ep.m_faceReverseOrder[ep.m_faceIndex] = true; } else { std::pair result = edgeMap.insert(std::make_pair(key, EdgeAndPlane(ui0, ui1) ) ); EdgeAndPlane& ep = result.first->second; bx::memCopy(ep.m_plane[ep.m_faceIndex].m_plane, plane, 4*sizeof(float) ); ep.m_faceReverseOrder[ep.m_faceIndex] = false; ep.m_faceIndex++; } } } free(uniqueIndices); uint32_t index = 0; for (EdgeMap::const_iterator iter = edgeMap.begin(), end = edgeMap.end(); iter != end; ++iter) { Edge* edge = &m_edges[m_numEdges]; Plane* plane = &m_edgePlanes[index]; bx::memCopy(edge, iter->second.m_faceReverseOrder, sizeof(Edge) ); bx::memCopy(plane, iter->second.m_plane, 2 * sizeof(Plane) ); m_numEdges++; index += 2; } } void unload() { bgfx::destroy(m_vbh); if (bgfx::kInvalidHandle != m_ibh.idx) { bgfx::destroy(m_ibh); } free(m_vertices); m_vertices = NULL; free(m_indices); m_indices = NULL; free(m_edges); m_edges = NULL; free(m_edgePlanesUnalignedPtr); m_edgePlanesUnalignedPtr = NULL; m_halfEdges.destroy(); } bgfx::VertexBufferHandle m_vbh; bgfx::IndexBufferHandle m_ibh; uint16_t m_numVertices; uint8_t* m_vertices; uint32_t m_numIndices; uint16_t* m_indices; Sphere m_sphere; Aabb m_aabb; Obb m_obb; PrimitiveArray m_prims; uint32_t m_numEdges; Edge* m_edges; Plane* m_edgePlanesUnalignedPtr; Plane* m_edgePlanes; FaceArray m_faces; HalfEdges m_halfEdges; }; typedef std::vector GroupArray; struct Mesh { void load(const void* _vertices, uint16_t _numVertices, const bgfx::VertexDecl _decl, const uint16_t* _indices, uint32_t _numIndices) { Group group; const bgfx::Memory* mem; uint32_t size; //vertices group.m_numVertices = _numVertices; size = _numVertices*_decl.getStride(); group.m_vertices = (uint8_t*)malloc(size); bx::memCopy(group.m_vertices, _vertices, size); mem = bgfx::makeRef(group.m_vertices, size); group.m_vbh = bgfx::createVertexBuffer(mem, _decl); //indices group.m_numIndices = _numIndices; size = _numIndices*2; group.m_indices = (uint16_t*)malloc(size); bx::memCopy(group.m_indices, _indices, size); mem = bgfx::makeRef(group.m_indices, size); group.m_ibh = bgfx::createIndexBuffer(mem); m_groups.push_back(group); } void load(const char* _filePath) { #define BGFX_CHUNK_MAGIC_VB BX_MAKEFOURCC('V', 'B', ' ', 0x1) #define BGFX_CHUNK_MAGIC_IB BX_MAKEFOURCC('I', 'B', ' ', 0x0) #define BGFX_CHUNK_MAGIC_PRI BX_MAKEFOURCC('P', 'R', 'I', 0x0) bx::FileReaderI* reader = entry::getFileReader(); bx::open(reader, _filePath); Group group; uint32_t chunk; while (4 == bx::read(reader, chunk) ) { switch (chunk) { case BGFX_CHUNK_MAGIC_VB: { bx::read(reader, group.m_sphere); bx::read(reader, group.m_aabb); bx::read(reader, group.m_obb); bgfx::read(reader, m_decl); uint16_t stride = m_decl.getStride(); bx::read(reader, group.m_numVertices); const uint32_t size = group.m_numVertices*stride; group.m_vertices = (uint8_t*)malloc(size); bx::read(reader, group.m_vertices, size); const bgfx::Memory* mem = bgfx::makeRef(group.m_vertices, size); group.m_vbh = bgfx::createVertexBuffer(mem, m_decl); } break; case BGFX_CHUNK_MAGIC_IB: { bx::read(reader, group.m_numIndices); const uint32_t size = group.m_numIndices*2; group.m_indices = (uint16_t*)malloc(size); bx::read(reader, group.m_indices, size); const bgfx::Memory* mem = bgfx::makeRef(group.m_indices, size); group.m_ibh = bgfx::createIndexBuffer(mem); } break; case BGFX_CHUNK_MAGIC_PRI: { uint16_t len; bx::read(reader, len); std::string material; material.resize(len); bx::read(reader, const_cast(material.c_str() ), len); uint16_t num; bx::read(reader, num); for (uint32_t ii = 0; ii < num; ++ii) { bx::read(reader, len); std::string name; name.resize(len); bx::read(reader, const_cast(name.c_str() ), len); Primitive prim; bx::read(reader, prim.m_startIndex); bx::read(reader, prim.m_numIndices); bx::read(reader, prim.m_startVertex); bx::read(reader, prim.m_numVertices); bx::read(reader, prim.m_sphere); bx::read(reader, prim.m_aabb); bx::read(reader, prim.m_obb); group.m_prims.push_back(prim); } m_groups.push_back(group); group.reset(); } break; default: DBG("%08x at %d", chunk, bx::seek(reader) ); abort(); break; } } bx::close(reader); for (GroupArray::iterator it = m_groups.begin(), itEnd = m_groups.end(); it != itEnd; ++it) { it->fillStructures(m_decl); } } void unload() { for (GroupArray::iterator it = m_groups.begin(), itEnd = m_groups.end(); it != itEnd; ++it) { it->unload(); } m_groups.clear(); } bgfx::VertexDecl m_decl; GroupArray m_groups; }; struct Model { Model() { m_program.idx = bgfx::kInvalidHandle; m_texture.idx = bgfx::kInvalidHandle; } void load(const void* _vertices, uint16_t _numVertices, const bgfx::VertexDecl _decl, const uint16_t* _indices, uint32_t _numIndices) { m_mesh.load(_vertices, _numVertices, _decl, _indices, _numIndices); } void load(const char* _meshFilePath) { m_mesh.load(_meshFilePath); } void unload() { m_mesh.unload(); } void submit(uint8_t _viewId, float* _mtx, const RenderState& _renderState) { for (GroupArray::const_iterator it = m_mesh.m_groups.begin(), itEnd = m_mesh.m_groups.end(); it != itEnd; ++it) { const Group& group = *it; // Set uniforms s_uniforms.submitPerDrawUniforms(); // Set transform bgfx::setTransform(_mtx); // Set buffers bgfx::setIndexBuffer(group.m_ibh); bgfx::setVertexBuffer(0, group.m_vbh); // Set textures if (bgfx::kInvalidHandle != m_texture.idx) { bgfx::setTexture(0, s_texColor, m_texture); } bgfx::setTexture(1, s_texStencil, bgfx::getTexture(s_stencilFb) ); // Apply render state ::setRenderState(_renderState); // Submit BX_CHECK(bgfx::kInvalidHandle != m_program, "Error, program is not set."); ::submit(_viewId, m_program); } } Mesh m_mesh; bgfx::ProgramHandle m_program; bgfx::TextureHandle m_texture; }; struct Instance { Instance() : m_svExtrusionDistance(150.0f) { m_color[0] = 1.0f; m_color[1] = 1.0f; m_color[2] = 1.0f; } void submit(uint8_t _viewId, const RenderState& _renderState) { bx::memCopy(s_uniforms.m_color, m_color, 3*sizeof(float) ); float mtx[16]; bx::mtxSRT(mtx , m_scale[0] , m_scale[1] , m_scale[2] , m_rotation[0] , m_rotation[1] , m_rotation[2] , m_pos[0] , m_pos[1] , m_pos[2] ); BX_CHECK(NULL != m_model, "Instance model cannot be NULL!"); m_model->submit(_viewId, mtx, _renderState); } float m_scale[3]; float m_rotation[3]; float m_pos[3]; float m_color[3]; float m_svExtrusionDistance; Model* m_model; }; #define SV_INSTANCE_MEM_SIZE (1500 << 10) #define SV_INSTANCE_COUNT ( (25 > MAX_INSTANCE_COUNT) ? 25 : MAX_INSTANCE_COUNT) #define SV_PAGE_SIZE (SV_INSTANCE_MEM_SIZE * SV_INSTANCE_COUNT * MAX_LIGHTS_COUNT) struct ShadowVolumeAllocator { ShadowVolumeAllocator() { m_mem = (uint8_t*)malloc(SV_PAGE_SIZE*2); m_ptr = m_mem; m_firstPage = true; } ~ShadowVolumeAllocator() { free(m_mem); } void* alloc(uint32_t _size) { void* ret = (void*)m_ptr; m_ptr += _size; BX_CHECK(m_ptr - m_mem < (m_firstPage ? SV_PAGE_SIZE : 2 * SV_PAGE_SIZE), "Buffer overflow!"); return ret; } void swap() { m_ptr = m_firstPage ? m_mem + SV_PAGE_SIZE : m_mem; m_firstPage = !m_firstPage; } uint8_t* m_mem; uint8_t* m_ptr; bool m_firstPage; }; static ShadowVolumeAllocator s_svAllocator; struct ShadowVolumeImpl { enum Enum { DepthPass, DepthFail, }; }; struct ShadowVolumeAlgorithm { enum Enum { FaceBased, EdgeBased, }; }; struct ShadowVolume { bgfx::VertexBufferHandle m_vbSides; bgfx::IndexBufferHandle m_ibSides; bgfx::IndexBufferHandle m_ibFrontCap; bgfx::IndexBufferHandle m_ibBackCap; uint32_t m_numVertices; uint32_t m_numIndices; const float* m_mtx; const float* m_lightPos; bool m_cap; }; void shadowVolumeLightTransform(float* __restrict _outLightPos , const float* __restrict _scale , const float* __restrict _rotate , const float* __restrict _translate , const float* __restrict _lightPos // world pos ) { /** * Instead of transforming all the vertices, transform light instead: * mtx = pivotTranslate -> rotateZYX -> invScale * light = mtx * origin */ float pivot[16]; bx::mtxTranslate(pivot , _lightPos[0] - _translate[0] , _lightPos[1] - _translate[1] , _lightPos[2] - _translate[2] ); float mzyx[16]; bx::mtxRotateZYX(mzyx , -_rotate[0] , -_rotate[1] , -_rotate[2] ); float invScale[16]; bx::mtxScale(invScale , 1.0f / _scale[0] , 1.0f / _scale[1] , 1.0f / _scale[2] ); float tmp0[16]; bx::mtxMul(tmp0, pivot, mzyx); float mtx[16]; bx::mtxMul(mtx, tmp0, invScale); float origin[3] = { 0.0f, 0.0f, 0.0f }; bx::vec3MulMtx(_outLightPos, origin, mtx); } void shadowVolumeCreate(ShadowVolume& _shadowVolume , Group& _group , uint16_t _stride , const float* _mtx , const float* _light // in model space , ShadowVolumeImpl::Enum _impl = ShadowVolumeImpl::DepthPass , ShadowVolumeAlgorithm::Enum _algo = ShadowVolumeAlgorithm::FaceBased , bool _textureAsStencil = false ) { const uint8_t* vertices = _group.m_vertices; const FaceArray& faces = _group.m_faces; const Edge* edges = _group.m_edges; const Plane* edgePlanes = _group.m_edgePlanes; const uint32_t numEdges = _group.m_numEdges; HalfEdges& halfEdges = _group.m_halfEdges; struct VertexData { VertexData() { } VertexData(const float* _v3, float _extrude = 0.0f, float _k = 1.0f) { bx::memCopy(m_v, _v3, 3*sizeof(float) ); m_extrude = _extrude; m_k = _k; } float m_v[3]; float m_extrude; float m_k; }; bool cap = (ShadowVolumeImpl::DepthFail == _impl); VertexData* verticesSide = (VertexData*) s_svAllocator.alloc(20000 * sizeof(VertexData) ); uint16_t* indicesSide = (uint16_t*) s_svAllocator.alloc(20000 * 3*sizeof(uint16_t) ); uint16_t* indicesFrontCap = 0; uint16_t* indicesBackCap = 0; if (cap) { indicesFrontCap = (uint16_t*)s_svAllocator.alloc(80000 * 3*sizeof(uint16_t) ); indicesBackCap = (uint16_t*)s_svAllocator.alloc(80000 * 3*sizeof(uint16_t) ); } uint32_t vsideI = 0; uint32_t sideI = 0; uint32_t frontCapI = 0; uint32_t backCapI = 0; uint16_t indexSide = 0; if (ShadowVolumeAlgorithm::FaceBased == _algo) { for (FaceArray::const_iterator iter = faces.begin(), end = faces.end(); iter != end; ++iter) { const Face& face = *iter; bool frontFacing = false; float f = bx::vec3Dot(face.m_plane, _light) + face.m_plane[3]; if (f > 0.0f) { frontFacing = true; uint16_t triangleEdges[3][2] = { { face.m_i[0], face.m_i[1] }, { face.m_i[1], face.m_i[2] }, { face.m_i[2], face.m_i[0] }, }; for (uint8_t ii = 0; ii < 3; ++ii) { uint16_t first = triangleEdges[ii][0]; uint16_t second = triangleEdges[ii][1]; if (!halfEdges.unmark(second, first) ) { halfEdges.mark(first, second); } } } if (cap) { if (frontFacing) { indicesFrontCap[frontCapI++] = face.m_i[0]; indicesFrontCap[frontCapI++] = face.m_i[1]; indicesFrontCap[frontCapI++] = face.m_i[2]; } else { indicesBackCap[backCapI++] = face.m_i[0]; indicesBackCap[backCapI++] = face.m_i[1]; indicesBackCap[backCapI++] = face.m_i[2]; } /** * if '_useFrontFacingFacesAsBackCap' is needed, implement it as such: * * bool condition0 = frontFacing && _useFrontFacingFacesAsBackCap; * bool condition1 = !frontFacing && !_useFrontFacingFacesAsBackCap; * if (condition0 || condition1) * { * indicesBackCap[backCapI++] = face.m_i[0]; * indicesBackCap[backCapI++] = face.m_i[1+condition0]; * indicesBackCap[backCapI++] = face.m_i[2-condition0]; * } */ } } // Fill side arrays. uint16_t firstIndex = 0; HalfEdge* he = halfEdges.begin(); while (halfEdges.end() != he) { if (he->m_marked) { he->m_marked = false; const float* v0 = (float*)&vertices[firstIndex*_stride]; const float* v1 = (float*)&vertices[he->m_secondIndex*_stride]; verticesSide[vsideI++] = VertexData(v0, 0.0f); verticesSide[vsideI++] = VertexData(v0, 1.0f); verticesSide[vsideI++] = VertexData(v1, 0.0f); verticesSide[vsideI++] = VertexData(v1, 1.0f); indicesSide[sideI++] = indexSide+0; indicesSide[sideI++] = indexSide+1; indicesSide[sideI++] = indexSide+2; indicesSide[sideI++] = indexSide+2; indicesSide[sideI++] = indexSide+1; indicesSide[sideI++] = indexSide+3; indexSide += 4; } ++he; if (INVALID_EDGE_INDEX == he->m_secondIndex) { ++he; ++firstIndex; } } } else // ShadowVolumeAlgorithm::EdgeBased: { { uint32_t ii = 0; #if SV_USE_SIMD uint32_t numEdgesRounded = numEdges & (~0x1); using namespace bx; const simd128_t lx = simd_splat(_light[0]); const simd128_t ly = simd_splat(_light[1]); const simd128_t lz = simd_splat(_light[2]); for (; ii < numEdgesRounded; ii+=2) { const Edge& edge0 = edges[ii]; const Edge& edge1 = edges[ii+1]; const Plane* edgePlane0 = &edgePlanes[ii*2]; const Plane* edgePlane1 = &edgePlanes[ii*2 + 2]; const simd128_t reverse = simd_ild(edge0.m_faceReverseOrder[0] , edge1.m_faceReverseOrder[0] , edge0.m_faceReverseOrder[1] , edge1.m_faceReverseOrder[1] ); const simd128_t p00 = simd_ld(edgePlane0[0].m_plane); const simd128_t p10 = simd_ld(edgePlane1[0].m_plane); const simd128_t p01 = simd_ld(edgePlane0[1].m_plane); const simd128_t p11 = simd_ld(edgePlane1[1].m_plane); const simd128_t xxyy0 = simd_shuf_xAyB(p00, p01); const simd128_t zzww0 = simd_shuf_zCwD(p00, p01); const simd128_t xxyy1 = simd_shuf_xAyB(p10, p11); const simd128_t zzww1 = simd_shuf_zCwD(p10, p11); const simd128_t vX = simd_shuf_xAyB(xxyy0, xxyy1); const simd128_t vY = simd_shuf_zCwD(xxyy0, xxyy1); const simd128_t vZ = simd_shuf_xAyB(zzww0, zzww1); const simd128_t vW = simd_shuf_zCwD(zzww0, zzww1); const simd128_t r0 = simd_mul(vX, lx); const simd128_t r1 = simd_mul(vY, ly); const simd128_t r2 = simd_mul(vZ, lz); const simd128_t dot = simd_add(r0, simd_add(r1, r2) ); const simd128_t f = simd_add(dot, vW); const simd128_t zero = simd_zero(); const simd128_t mask = simd_cmpgt(f, zero); const simd128_t onef = simd_splat(1.0f); const simd128_t tmp0 = simd_and(mask, onef); const simd128_t tmp1 = simd_ftoi(tmp0); const simd128_t tmp2 = simd_xor(tmp1, reverse); const simd128_t tmp3 = simd_sll(tmp2, 1); const simd128_t onei = simd_isplat(1); const simd128_t tmp4 = simd_isub(tmp3, onei); BX_ALIGN_DECL_16(int32_t res[4]); simd_st(&res, tmp4); for (uint16_t jj = 0; jj < 2; ++jj) { int32_t kk = res[jj] + res[jj+2]; if (kk != 0) { float* v0 = (float*)&vertices[edges[ii+jj].m_i0*_stride]; float* v1 = (float*)&vertices[edges[ii+jj].m_i1*_stride]; verticesSide[vsideI++] = VertexData(v0, 0.0f, float(kk) ); verticesSide[vsideI++] = VertexData(v0, 1.0f, float(kk) ); verticesSide[vsideI++] = VertexData(v1, 0.0f, float(kk) ); verticesSide[vsideI++] = VertexData(v1, 1.0f, float(kk) ); kk = _textureAsStencil ? 1 : kk; uint16_t winding = uint16_t(kk > 0); for (int32_t ll = 0, end = abs(kk); ll < end; ++ll) { indicesSide[sideI++] = indexSide; indicesSide[sideI++] = indexSide + 2 - winding; indicesSide[sideI++] = indexSide + 1 + winding; indicesSide[sideI++] = indexSide + 2; indicesSide[sideI++] = indexSide + 3 - winding*2; indicesSide[sideI++] = indexSide + 1 + winding*2; } indexSide += 4; } } } #endif for (; ii < numEdges; ++ii) { const Edge& edge = edges[ii]; const Plane* edgePlane = &edgePlanes[ii*2]; int16_t s0 = ( (vec3Dot(edgePlane[0].m_plane, _light) + edgePlane[0].m_plane[3]) > 0.0f) ^ edge.m_faceReverseOrder[0]; int16_t s1 = ( (vec3Dot(edgePlane[1].m_plane, _light) + edgePlane[1].m_plane[3]) > 0.0f) ^ edge.m_faceReverseOrder[1]; int16_t kk = ( (s0 + s1) << 1) - 2; if (kk != 0) { float* v0 = (float*)&vertices[edge.m_i0*_stride]; float* v1 = (float*)&vertices[edge.m_i1*_stride]; verticesSide[vsideI++] = VertexData(v0, 0.0f, kk); verticesSide[vsideI++] = VertexData(v0, 1.0f, kk); verticesSide[vsideI++] = VertexData(v1, 0.0f, kk); verticesSide[vsideI++] = VertexData(v1, 1.0f, kk); kk = _textureAsStencil ? 1 : kk; uint16_t winding = uint16_t(kk > 0); for (int32_t jj = 0, end = abs(kk); jj < end; ++jj) { indicesSide[sideI++] = indexSide; indicesSide[sideI++] = indexSide + 2 - winding; indicesSide[sideI++] = indexSide + 1 + winding; indicesSide[sideI++] = indexSide + 2; indicesSide[sideI++] = indexSide + 3 - winding*2; indicesSide[sideI++] = indexSide + 1 + winding*2; } indexSide += 4; } } } if (cap) { // This could/should be done on GPU! for (FaceArray::const_iterator iter = faces.begin(), end = faces.end(); iter != end; ++iter) { const Face& face = *iter; float f = bx::vec3Dot(face.m_plane, _light) + face.m_plane[3]; bool frontFacing = (f > 0.0f); for (uint8_t ii = 0, num = 1 + uint8_t(!_textureAsStencil); ii < num; ++ii) { if (frontFacing) { indicesFrontCap[frontCapI++] = face.m_i[0]; indicesFrontCap[frontCapI++] = face.m_i[1]; indicesFrontCap[frontCapI++] = face.m_i[2]; } else { indicesBackCap[backCapI++] = face.m_i[0]; indicesBackCap[backCapI++] = face.m_i[1]; indicesBackCap[backCapI++] = face.m_i[2]; } } } } } bgfx::VertexDecl decl; decl.begin() .add(bgfx::Attrib::Position, 3, bgfx::AttribType::Float) .add(bgfx::Attrib::TexCoord0, 2, bgfx::AttribType::Float) .end(); //fill the structure _shadowVolume.m_numVertices = vsideI; _shadowVolume.m_numIndices = sideI + frontCapI + backCapI; _shadowVolume.m_mtx = _mtx; _shadowVolume.m_lightPos = _light; _shadowVolume.m_cap = cap; const bgfx::Memory* mem; //sides uint32_t vsize = vsideI * 5*sizeof(float); uint32_t isize = sideI * sizeof(uint16_t); mem = bgfx::makeRef(verticesSide, vsize); _shadowVolume.m_vbSides = bgfx::createVertexBuffer(mem, decl); mem = bgfx::makeRef(indicesSide, isize); _shadowVolume.m_ibSides = bgfx::createIndexBuffer(mem); // bgfx::destroy*Buffer doesn't actually destroy buffers now. // Instead, these bgfx::destroy*Buffer commands get queued to be executed after the end of the next frame. bgfx::destroy(_shadowVolume.m_vbSides); bgfx::destroy(_shadowVolume.m_ibSides); if (cap) { //front cap isize = frontCapI * sizeof(uint16_t); mem = bgfx::makeRef(indicesFrontCap, isize); _shadowVolume.m_ibFrontCap = bgfx::createIndexBuffer(mem); //gets destroyed after the end of the next frame bgfx::destroy(_shadowVolume.m_ibFrontCap); //back cap isize = backCapI * sizeof(uint16_t); mem = bgfx::makeRef(indicesBackCap, isize); _shadowVolume.m_ibBackCap = bgfx::createIndexBuffer(mem); //gets destroyed after the end of the next frame bgfx::destroy(_shadowVolume.m_ibBackCap); } } void createNearClipVolume(float* __restrict _outPlanes24f , float* __restrict _lightPos , float* __restrict _view , float _fovy , float _aspect , float _near ) { float (*volumePlanes)[4] = (float(*)[4])_outPlanes24f; float mtxViewInv[16]; float mtxViewTrans[16]; bx::mtxInverse(mtxViewInv, _view); bx::mtxTranspose(mtxViewTrans, _view); float lightPosV[4]; bx::vec4MulMtx(lightPosV, _lightPos, _view); const float delta = 0.1f; float nearNormal[4] = { 0.0f, 0.0f, 1.0f, _near }; float d = bx::vec3Dot(lightPosV, nearNormal) + lightPosV[3] * nearNormal[3]; // Light is: // 1.0f - in front of near plane // 0.0f - on the near plane // -1.0f - behind near plane float lightSide = float( (d > delta) - (d < -delta) ); float t = bx::tan(bx::toRad(_fovy)*0.5f) * _near; float b = -t; float r = t * _aspect; float l = -r; float cornersV[4][3] = { { r, t, _near }, { l, t, _near }, { l, b, _near }, { r, b, _near }, }; float corners[4][3]; bx::vec3MulMtx(corners[0], cornersV[0], mtxViewInv); bx::vec3MulMtx(corners[1], cornersV[1], mtxViewInv); bx::vec3MulMtx(corners[2], cornersV[2], mtxViewInv); bx::vec3MulMtx(corners[3], cornersV[3], mtxViewInv); float planeNormals[4][3]; for (uint8_t ii = 0; ii < 4; ++ii) { float* normal = planeNormals[ii]; float* plane = volumePlanes[ii]; float planeVec[3]; bx::vec3Sub(planeVec, corners[ii], corners[(ii-1)&3]); float light[3]; float tmp[3]; bx::vec3Mul(tmp, corners[ii], _lightPos[3]); bx::vec3Sub(light, _lightPos, tmp); bx::vec3Cross(normal, planeVec, light); normal[0] *= lightSide; normal[1] *= lightSide; normal[2] *= lightSide; float lenInv = 1.0f / bx::sqrt(bx::vec3Dot(normal, normal) ); plane[0] = normal[0] * lenInv; plane[1] = normal[1] * lenInv; plane[2] = normal[2] * lenInv; plane[3] = -bx::vec3Dot(normal, corners[ii]) * lenInv; } float nearPlaneV[4] = { 0.0f * lightSide, 0.0f * lightSide, 1.0f * lightSide, _near * lightSide, }; bx::vec4MulMtx(volumePlanes[4], nearPlaneV, mtxViewTrans); float* lightPlane = volumePlanes[5]; float lightPlaneNormal[3] = { 0.0f, 0.0f, -_near * lightSide }; float tmp[3]; bx::vec3MulMtx(tmp, lightPlaneNormal, mtxViewInv); bx::vec3Sub(lightPlaneNormal, tmp, _lightPos); float lenInv = 1.0f / bx::sqrt(bx::vec3Dot(lightPlaneNormal, lightPlaneNormal) ); lightPlane[0] = lightPlaneNormal[0] * lenInv; lightPlane[1] = lightPlaneNormal[1] * lenInv; lightPlane[2] = lightPlaneNormal[2] * lenInv; lightPlane[3] = -bx::vec3Dot(lightPlaneNormal, _lightPos) * lenInv; } bool clipTest(const float* _planes, uint8_t _planeNum, const Mesh& _mesh, const float* _scale, const float* _translate) { float (*volumePlanes)[4] = (float(*)[4])_planes; float scale = bx::max(_scale[0], _scale[1], _scale[2]); const GroupArray& groups = _mesh.m_groups; for (GroupArray::const_iterator it = groups.begin(), itEnd = groups.end(); it != itEnd; ++it) { const Group& group = *it; Sphere sphere = group.m_sphere; sphere.m_center[0] = sphere.m_center[0] * scale + _translate[0]; sphere.m_center[1] = sphere.m_center[1] * scale + _translate[1]; sphere.m_center[2] = sphere.m_center[2] * scale + _translate[2]; sphere.m_radius *= (scale+0.4f); bool isInside = true; for (uint8_t ii = 0; ii < _planeNum; ++ii) { const float* plane = volumePlanes[ii]; float positiveSide = bx::vec3Dot(plane, sphere.m_center) + plane[3] + sphere.m_radius; if (positiveSide < 0.0f) { isInside = false; break; } } if (isInside) { return true; } } return false; } struct ShadowVolumeProgramType { enum Enum { Blank = 0, Color, Tex1, Tex2, Count }; }; struct ShadowVolumePart { enum Enum { Back = 0, Side, Front, Count }; }; enum LightPattern { LightPattern0 = 0, LightPattern1 }; enum MeshChoice { BunnyHighPoly = 0, BunnyLowPoly }; enum Scene { Scene0 = 0, Scene1, SceneCount }; class ExampleShadowVolumes : public entry::AppI { public: ExampleShadowVolumes(const char* _name, const char* _description) : entry::AppI(_name, _description) { } void init(int32_t _argc, const char* const* _argv, uint32_t _width, uint32_t _height) override { Args args(_argc, _argv); m_viewState = ViewState(_width, _height); m_clearValues = { 0x00000000, 1.0f, 0 }; m_debug = BGFX_DEBUG_TEXT; m_reset = BGFX_RESET_VSYNC; bgfx::init(args.m_type, args.m_pciId); bgfx::reset(m_viewState.m_width, m_viewState.m_height, m_reset); // Enable debug text. bgfx::setDebug(m_debug); const bgfx::Caps* caps = bgfx::getCaps(); s_oglNdc = caps->homogeneousDepth; s_texelHalf = bgfx::RendererType::Direct3D9 == caps->rendererType ? 0.5f : 0.0f; // Imgui imguiCreate(); PosNormalTexcoordVertex::init(); s_uniforms.init(); m_figureTex = loadTexture("textures/figure-rgba.dds"); m_flareTex = loadTexture("textures/flare.dds"); m_fieldstoneTex = loadTexture("textures/fieldstone-rgba.dds"); bgfx::TextureHandle fbtextures[] = { bgfx::createTexture2D(uint16_t(m_viewState.m_width), uint16_t(m_viewState.m_height), false, 1, bgfx::TextureFormat::BGRA8, BGFX_TEXTURE_U_CLAMP | BGFX_TEXTURE_V_CLAMP | BGFX_TEXTURE_RT), bgfx::createTexture2D(uint16_t(m_viewState.m_width), uint16_t(m_viewState.m_height), false, 1, bgfx::TextureFormat::D16, BGFX_TEXTURE_RT_WRITE_ONLY), }; s_stencilFb = bgfx::createFrameBuffer(BX_COUNTOF(fbtextures), fbtextures, true); s_texColor = bgfx::createUniform("s_texColor", bgfx::UniformType::Int1); s_texStencil = bgfx::createUniform("s_texStencil", bgfx::UniformType::Int1); m_programTextureLighting = loadProgram("vs_shadowvolume_texture_lighting", "fs_shadowvolume_texture_lighting"); m_programColorLighting = loadProgram("vs_shadowvolume_color_lighting", "fs_shadowvolume_color_lighting" ); m_programColorTexture = loadProgram("vs_shadowvolume_color_texture", "fs_shadowvolume_color_texture" ); m_programTexture = loadProgram("vs_shadowvolume_texture", "fs_shadowvolume_texture" ); m_programBackBlank = loadProgram("vs_shadowvolume_svback", "fs_shadowvolume_svbackblank" ); m_programSideBlank = loadProgram("vs_shadowvolume_svside", "fs_shadowvolume_svsideblank" ); m_programFrontBlank = loadProgram("vs_shadowvolume_svfront", "fs_shadowvolume_svfrontblank"); m_programBackColor = loadProgram("vs_shadowvolume_svback", "fs_shadowvolume_svbackcolor" ); m_programSideColor = loadProgram("vs_shadowvolume_svside", "fs_shadowvolume_svsidecolor" ); m_programFrontColor = loadProgram("vs_shadowvolume_svfront", "fs_shadowvolume_svfrontcolor"); m_programSideTex = loadProgram("vs_shadowvolume_svside", "fs_shadowvolume_svsidetex" ); m_programBackTex1 = loadProgram("vs_shadowvolume_svback", "fs_shadowvolume_svbacktex1" ); m_programBackTex2 = loadProgram("vs_shadowvolume_svback", "fs_shadowvolume_svbacktex2" ); m_programFrontTex1 = loadProgram("vs_shadowvolume_svfront", "fs_shadowvolume_svfronttex1" ); m_programFrontTex2 = loadProgram("vs_shadowvolume_svfront", "fs_shadowvolume_svfronttex2" ); bgfx::ProgramHandle svProgs[ShadowVolumeProgramType::Count][ShadowVolumePart::Count] = { { m_programBackBlank, m_programSideBlank, m_programFrontBlank }, // Blank { m_programBackColor, m_programSideColor, m_programFrontColor }, // Color { m_programBackTex1, m_programSideTex, m_programFrontTex1 }, // Tex1 { m_programBackTex2, m_programSideTex, m_programFrontTex2 }, // Tex2 }; bx::memCopy(m_svProgs, svProgs, sizeof(svProgs)); m_bunnyHighPolyModel.load("meshes/bunny_patched.bin"); m_bunnyHighPolyModel.m_program = m_programColorLighting; m_bunnyLowPolyModel.load("meshes/bunny_decimated.bin"); m_bunnyLowPolyModel.m_program = m_programColorLighting; m_columnModel.load("meshes/column.bin"); m_columnModel.m_program = m_programColorLighting; m_platformModel.load("meshes/platform.bin"); m_platformModel.m_program = m_programTextureLighting; m_platformModel.m_texture = m_figureTex; m_cubeModel.load("meshes/cube.bin"); m_cubeModel.m_program = m_programTextureLighting; m_cubeModel.m_texture = m_figureTex; m_hplaneFieldModel.load(s_hplaneVertices , BX_COUNTOF(s_hplaneVertices) , PosNormalTexcoordVertex::ms_decl , s_planeIndices , BX_COUNTOF(s_planeIndices) ); m_hplaneFieldModel.m_program = m_programTextureLighting; m_hplaneFieldModel.m_texture = m_fieldstoneTex; m_hplaneFigureModel.load(s_hplaneVertices , BX_COUNTOF(s_hplaneVertices) , PosNormalTexcoordVertex::ms_decl , s_planeIndices , BX_COUNTOF(s_planeIndices) ); m_hplaneFigureModel.m_program = m_programTextureLighting; m_hplaneFigureModel.m_texture = m_figureTex; m_vplaneModel.load(s_vplaneVertices , BX_COUNTOF(s_vplaneVertices) , PosNormalTexcoordVertex::ms_decl , s_planeIndices , BX_COUNTOF(s_planeIndices) ); m_vplaneModel.m_program = m_programColorTexture; m_vplaneModel.m_texture = m_flareTex; // Setup lights. const float rgbInnerR[MAX_LIGHTS_COUNT][4] = { { 1.0f, 0.7f, 0.2f, 0.0f }, //yellow { 0.7f, 0.2f, 1.0f, 0.0f }, //purple { 0.2f, 1.0f, 0.7f, 0.0f }, //cyan { 1.0f, 0.4f, 0.2f, 0.0f }, //orange { 0.7f, 0.7f, 0.7f, 0.0f }, //white }; for (uint8_t ii = 0, jj = 0; ii < MAX_LIGHTS_COUNT; ++ii, ++jj) { const uint8_t index = jj%MAX_LIGHTS_COUNT; m_lightRgbInnerR[ii][0] = rgbInnerR[index][0]; m_lightRgbInnerR[ii][1] = rgbInnerR[index][1]; m_lightRgbInnerR[ii][2] = rgbInnerR[index][2]; m_lightRgbInnerR[ii][3] = rgbInnerR[index][3]; } m_profTime = 0; m_timeOffset = bx::getHPCounter(); m_numShadowVolumeVertices = 0; m_numShadowVolumeIndices = 0; m_oldWidth = 0; m_oldHeight = 0; // Imgui. m_showHelp = false; m_updateLights = true; m_updateScene = true; m_mixedSvImpl = true; m_useStencilTexture = false; m_drawShadowVolumes = false; m_numLights = 1; m_instanceCount = 9; m_shadowVolumeImpl = ShadowVolumeImpl::DepthFail; m_shadowVolumeAlgorithm = ShadowVolumeAlgorithm::EdgeBased; m_lightPattern = LightPattern0; m_currentMesh = BunnyLowPoly; m_currentScene = Scene0; // Set view matrix cameraCreate(); float initialPos[3] = { 3.0f, 20.0f, -58.0f }; cameraSetPosition(initialPos); cameraSetVerticalAngle(-0.25f); cameraGetViewMtx(m_viewState.m_view); } virtual int shutdown() override { // Cleanup m_bunnyLowPolyModel.unload(); m_bunnyHighPolyModel.unload(); m_columnModel.unload(); m_cubeModel.unload(); m_platformModel.unload(); m_hplaneFieldModel.unload(); m_hplaneFigureModel.unload(); m_vplaneModel.unload(); s_uniforms.destroy(); bgfx::destroy(s_texColor); bgfx::destroy(s_texStencil); bgfx::destroy(s_stencilFb); bgfx::destroy(m_figureTex); bgfx::destroy(m_fieldstoneTex); bgfx::destroy(m_flareTex); bgfx::destroy(m_programTextureLighting); bgfx::destroy(m_programColorLighting); bgfx::destroy(m_programColorTexture); bgfx::destroy(m_programTexture); bgfx::destroy(m_programBackBlank); bgfx::destroy(m_programSideBlank); bgfx::destroy(m_programFrontBlank); bgfx::destroy(m_programBackColor); bgfx::destroy(m_programSideColor); bgfx::destroy(m_programFrontColor); bgfx::destroy(m_programSideTex); bgfx::destroy(m_programBackTex1); bgfx::destroy(m_programBackTex2); bgfx::destroy(m_programFrontTex1); bgfx::destroy(m_programFrontTex2); cameraDestroy(); imguiDestroy(); // Shutdown bgfx. bgfx::shutdown(); return 0; } bool update() override { if (!entry::processEvents(m_viewState.m_width, m_viewState.m_height, m_debug, m_reset, &m_mouseState) ) { s_uniforms.submitConstUniforms(); // Set projection matrices. const float fov = 60.0f; const float aspect = float(m_viewState.m_width)/float(m_viewState.m_height); const float nearPlane = 1.0f; const float farPlane = 1000.0f; // Respond properly on resize. if (m_oldWidth != m_viewState.m_width || m_oldHeight != m_viewState.m_height) { m_oldWidth = m_viewState.m_width; m_oldHeight = m_viewState.m_height; bgfx::destroy(s_stencilFb); bgfx::TextureHandle fbtextures[] = { bgfx::createTexture2D(uint16_t(m_viewState.m_width), uint16_t(m_viewState.m_height), false, 1, bgfx::TextureFormat::BGRA8, BGFX_TEXTURE_U_CLAMP|BGFX_TEXTURE_V_CLAMP|BGFX_TEXTURE_RT), bgfx::createTexture2D(uint16_t(m_viewState.m_width), uint16_t(m_viewState.m_height), false, 1, bgfx::TextureFormat::D16, BGFX_TEXTURE_RT_WRITE_ONLY) }; s_stencilFb = bgfx::createFrameBuffer(BX_COUNTOF(fbtextures), fbtextures, true); } // Time. int64_t now = bx::getHPCounter(); static int64_t last = now; const int64_t frameTime = now - last; last = now; const double freq = double(bx::getHPFrequency() ); const double toMs = 1000.0/freq; float time = (float)( (now - m_timeOffset)/double(bx::getHPFrequency() ) ); const float deltaTime = float(frameTime/freq); s_uniforms.m_time = time; // Update camera. cameraUpdate(deltaTime, m_mouseState); // Set view and projection matrix for view 0. const bgfx::HMD* hmd = bgfx::getHMD(); if (NULL != hmd && 0 != (hmd->flags & BGFX_HMD_RENDERING) ) { float eye[3]; cameraGetPosition(eye); bx::mtxQuatTranslationHMD(m_viewState.m_view, hmd->eye[0].rotation, eye); bx::mtxProj(m_viewState.m_proj, hmd->eye[0].fov, nearPlane, farPlane, s_oglNdc); m_viewState.m_width = hmd->width; m_viewState.m_height = hmd->height; } else { cameraGetViewMtx(m_viewState.m_view); bx::mtxProj(m_viewState.m_proj, fov, aspect, nearPlane, farPlane, s_oglNdc); } imguiBeginFrame( m_mouseState.m_mx , m_mouseState.m_my , (m_mouseState.m_buttons[entry::MouseButton::Left] ? IMGUI_MBUT_LEFT : 0) | (m_mouseState.m_buttons[entry::MouseButton::Right] ? IMGUI_MBUT_RIGHT : 0) | (m_mouseState.m_buttons[entry::MouseButton::Middle] ? IMGUI_MBUT_MIDDLE : 0) , m_mouseState.m_mz , uint16_t(m_viewState.m_width) , uint16_t(m_viewState.m_height) ); showExampleDialog(this); ImGui::SetNextWindowPos( ImVec2(m_viewState.m_width - 256.0f, 10.0f) , ImGuiCond_FirstUseEver ); ImGui::SetNextWindowSize( ImVec2(256.0f, 700.0f) , ImGuiCond_FirstUseEver ); ImGui::Begin("Settings" , NULL , 0 ); const char* titles[2] = { "Scene 0", "Scene 1", }; if (ImGui::RadioButton(titles[Scene0], Scene0 == m_currentScene) ) { m_currentScene = Scene0; } if (ImGui::RadioButton(titles[Scene1], Scene1 == m_currentScene) ) { m_currentScene = Scene1; } ImGui::SliderInt("Lights", &m_numLights, 1, MAX_LIGHTS_COUNT); ImGui::Checkbox("Update lights", &m_updateLights); ImGui::Indent(); if (ImGui::RadioButton("Light pattern 0", LightPattern0 == m_lightPattern) ) { m_lightPattern = LightPattern0; } if (ImGui::RadioButton("Light pattern 1", LightPattern1 == m_lightPattern) ) { m_lightPattern = LightPattern1; } ImGui::Unindent(); if ( Scene0 == m_currentScene ) { ImGui::Checkbox("Update scene", &m_updateScene); } ImGui::Separator(); ImGui::Text("Stencil buffer implementation:"); ImGui::Checkbox("Mixed", &m_mixedSvImpl); if (!m_mixedSvImpl) { m_shadowVolumeImpl = (ImGui::RadioButton("Depth fail", ShadowVolumeImpl::DepthFail == m_shadowVolumeImpl) ? ShadowVolumeImpl::DepthFail : m_shadowVolumeImpl); m_shadowVolumeImpl = (ImGui::RadioButton("Depth pass", ShadowVolumeImpl::DepthPass == m_shadowVolumeImpl) ? ShadowVolumeImpl::DepthPass : m_shadowVolumeImpl); } ImGui::Text("Shadow volume implementation:"); m_shadowVolumeAlgorithm = (ImGui::RadioButton("Face based impl.", ShadowVolumeAlgorithm::FaceBased == m_shadowVolumeAlgorithm) ? ShadowVolumeAlgorithm::FaceBased : m_shadowVolumeAlgorithm); m_shadowVolumeAlgorithm = (ImGui::RadioButton("Edge based impl.", ShadowVolumeAlgorithm::EdgeBased == m_shadowVolumeAlgorithm) ? ShadowVolumeAlgorithm::EdgeBased : m_shadowVolumeAlgorithm); ImGui::Text("Stencil:"); if (ImGui::RadioButton("Use stencil buffer", !m_useStencilTexture) ) { if (m_useStencilTexture) { m_useStencilTexture = false; } } if (ImGui::RadioButton("Use texture as stencil", m_useStencilTexture) ) { if (!m_useStencilTexture) { m_useStencilTexture = true; } } ImGui::Separator(); ImGui::Text("Mesh:"); if (ImGui::RadioButton("Bunny - high poly", BunnyHighPoly == m_currentMesh) ) { m_currentMesh = BunnyHighPoly; } if (ImGui::RadioButton("Bunny - low poly", BunnyLowPoly == m_currentMesh) ) { m_currentMesh = BunnyLowPoly; } if (Scene1 == m_currentScene) { ImGui::SliderInt("Instance count", &m_instanceCount, 1, MAX_INSTANCE_COUNT); } ImGui::Text("CPU Time: %7.1f [ms]", double(m_profTime)*toMs); ImGui::Text("Volume Vertices: %5.uk", m_numShadowVolumeVertices/1000); ImGui::Text("Volume Indices: %6.uk", m_numShadowVolumeIndices/1000); m_numShadowVolumeVertices = 0; m_numShadowVolumeIndices = 0; ImGui::Separator(); ImGui::Checkbox("Draw Shadow Volumes", &m_drawShadowVolumes); ImGui::End(); ImGui::SetNextWindowPos( ImVec2(10, float(m_viewState.m_height) - 77.0f - 10.0f) , ImGuiCond_FirstUseEver ); ImGui::SetNextWindowSize( ImVec2(120.0f, 77.0f) , ImGuiCond_FirstUseEver ); ImGui::Begin("Show help:" , NULL , 0 ); if (ImGui::Button(m_showHelp ? "ON" : "OFF") ) { m_showHelp = !m_showHelp; } ImGui::End(); imguiEndFrame(); //update settings s_uniforms.m_params.m_ambientPass = 1.0f; s_uniforms.m_params.m_lightingPass = 1.0f; s_uniforms.m_params.m_texelHalf = s_texelHalf; s_uniforms.m_svparams.m_useStencilTex = float(m_useStencilTexture); //set picked bunny model Model* bunnyModel = BunnyLowPoly == m_currentMesh ? &m_bunnyLowPolyModel : &m_bunnyHighPolyModel; //update time accumulators static float sceneTimeAccumulator = 0.0f; if (m_updateScene) { sceneTimeAccumulator += deltaTime; } static float lightTimeAccumulator = 0.0f; if (m_updateLights) { lightTimeAccumulator += deltaTime; } //setup light positions float lightPosRadius[MAX_LIGHTS_COUNT][4]; if (LightPattern0 == m_lightPattern) { for (uint8_t ii = 0; ii < m_numLights; ++ii) { lightPosRadius[ii][0] = bx::cos(2.0f*bx::kPi/float(m_numLights) * float(ii) + lightTimeAccumulator * 1.1f + 3.0f) * 20.0f; lightPosRadius[ii][1] = 20.0f; lightPosRadius[ii][2] = bx::sin(2.0f*bx::kPi/float(m_numLights) * float(ii) + lightTimeAccumulator * 1.1f + 3.0f) * 20.0f; lightPosRadius[ii][3] = 20.0f; } } else { for (uint8_t ii = 0; ii < m_numLights; ++ii) { lightPosRadius[ii][0] = bx::cos(float(ii) * 2.0f/float(m_numLights) + lightTimeAccumulator * 1.3f + bx::kPi) * 40.0f; lightPosRadius[ii][1] = 20.0f; lightPosRadius[ii][2] = bx::sin(float(ii) * 2.0f/float(m_numLights) + lightTimeAccumulator * 1.3f + bx::kPi) * 40.0f; lightPosRadius[ii][3] = 20.0f; } } if (m_showHelp) { uint8_t row = 18; bgfx::dbgTextPrintf(3, row++, 0x0f, "Stencil buffer implementation:"); bgfx::dbgTextPrintf(8, row++, 0x0f, "Depth fail - Robust, but slower than 'Depth pass'. Requires computing and drawing of shadow volume caps."); bgfx::dbgTextPrintf(8, row++, 0x0f, "Depth pass - Faster, but not stable. Shadows are wrong when camera is in the shadow."); bgfx::dbgTextPrintf(8, row++, 0x0f, "Mixed - 'Depth pass' where possible, 'Depth fail' where necessary. Best of both words."); row++; bgfx::dbgTextPrintf(3, row++, 0x0f, "Shadow volume implementation:"); bgfx::dbgTextPrintf(8, row++, 0x0f, "Face Based - Slower. Works fine with either stencil buffer or texture as stencil."); bgfx::dbgTextPrintf(8, row++, 0x0f, "Edge Based - Faster, but requires +2 incr/decr on stencil buffer. To avoid massive redraw, use RGBA texture as stencil."); row++; bgfx::dbgTextPrintf(3, row++, 0x0f, "Stencil:"); bgfx::dbgTextPrintf(8, row++, 0x0f, "Stencil buffer - Faster, but capable only of +1 incr."); bgfx::dbgTextPrintf(8, row++, 0x0f, "Texture as stencil - Slower, but capable of +2 incr."); } else { bgfx::dbgTextClear(); } // Setup instances Instance shadowCasters[SceneCount][60]; uint16_t shadowCastersCount[SceneCount]; for (uint8_t ii = 0; ii < SceneCount; ++ii) { shadowCastersCount[ii] = 0; } Instance shadowReceivers[SceneCount][10]; uint16_t shadowReceiversCount[SceneCount]; for (uint8_t ii = 0; ii < SceneCount; ++ii) { shadowReceiversCount[ii] = 0; } // Scene 0 - shadow casters - Bunny { Instance& inst = shadowCasters[Scene0][shadowCastersCount[Scene0]++]; inst.m_scale[0] = 5.0f; inst.m_scale[1] = 5.0f; inst.m_scale[2] = 5.0f; inst.m_rotation[0] = 0.0f; inst.m_rotation[1] = float(4.0f - sceneTimeAccumulator * 0.7f); inst.m_rotation[2] = 0.0f; inst.m_pos[0] = 0.0f; inst.m_pos[1] = 10.0f; inst.m_pos[2] = 0.0f; inst.m_color[0] = 0.68f; inst.m_color[1] = 0.65f; inst.m_color[2] = 0.60f; inst.m_model = bunnyModel; } // Scene 0 - shadow casters - Cubes top. const uint8_t numCubesTop = 9; for (uint16_t ii = 0; ii < numCubesTop; ++ii) { Instance& inst = shadowCasters[Scene0][shadowCastersCount[Scene0]++]; inst.m_scale[0] = 1.0f; inst.m_scale[1] = 1.0f; inst.m_scale[2] = 1.0f; inst.m_rotation[0] = 0.0f; inst.m_rotation[1] = 0.0f; inst.m_rotation[2] = 0.0f; inst.m_pos[0] = bx::sin(ii * 2.0f + 13.0f + sceneTimeAccumulator * 1.1f) * 13.0f; inst.m_pos[1] = 6.0f; inst.m_pos[2] = bx::cos(ii * 2.0f + 13.0f + sceneTimeAccumulator * 1.1f) * 13.0f; inst.m_model = &m_cubeModel; } // Scene 0 - shadow casters - Cubes bottom. const uint8_t numCubesBottom = 9; for (uint16_t ii = 0; ii < numCubesBottom; ++ii) { Instance& inst = shadowCasters[Scene0][shadowCastersCount[Scene0]++]; inst.m_scale[0] = 1.0f; inst.m_scale[1] = 1.0f; inst.m_scale[2] = 1.0f; inst.m_rotation[0] = 0.0f; inst.m_rotation[1] = 0.0f; inst.m_rotation[2] = 0.0f; inst.m_pos[0] = bx::sin(ii * 2.0f + 13.0f + sceneTimeAccumulator * 1.1f) * 13.0f; inst.m_pos[1] = 22.0f; inst.m_pos[2] = bx::cos(ii * 2.0f + 13.0f + sceneTimeAccumulator * 1.1f) * 13.0f; inst.m_model = &m_cubeModel; } // Scene 0 - shadow casters - Columns. const float dist = 16.0f; const float columnPositions[][3] = { { dist, 3.3f, dist }, { -dist, 3.3f, dist }, { dist, 3.3f, -dist }, { -dist, 3.3f, -dist }, }; for (uint8_t ii = 0; ii < 4; ++ii) { Instance& inst = shadowCasters[Scene0][shadowCastersCount[Scene0]++]; inst.m_scale[0] = 1.5f; inst.m_scale[1] = 1.5f; inst.m_scale[2] = 1.5f; inst.m_rotation[0] = 0.0f; inst.m_rotation[1] = 1.57f; inst.m_rotation[2] = 0.0f; inst.m_pos[0] = columnPositions[ii][0]; inst.m_pos[1] = columnPositions[ii][1]; inst.m_pos[2] = columnPositions[ii][2]; inst.m_color[0] = 0.25f; inst.m_color[1] = 0.25f; inst.m_color[2] = 0.25f; inst.m_model = &m_columnModel; } // Scene 0 - shadow casters - Ceiling. { Instance& inst = shadowCasters[Scene0][shadowCastersCount[Scene0]++]; inst.m_scale[0] = 21.0f; inst.m_scale[1] = 21.0f; inst.m_scale[2] = 21.0f; inst.m_rotation[0] = bx::kPi; inst.m_rotation[1] = 0.0f; inst.m_rotation[2] = 0.0f; inst.m_pos[0] = 0.0f; inst.m_pos[1] = 28.2f; inst.m_pos[2] = 0.0f; inst.m_model = &m_platformModel; inst.m_svExtrusionDistance = 2.0f; //prevent culling on tight view frustum } // Scene 0 - shadow casters - Platform. { Instance& inst = shadowCasters[Scene0][shadowCastersCount[Scene0]++]; inst.m_scale[0] = 24.0f; inst.m_scale[1] = 24.0f; inst.m_scale[2] = 24.0f; inst.m_rotation[0] = 0.0f; inst.m_rotation[1] = 0.0f; inst.m_rotation[2] = 0.0f; inst.m_pos[0] = 0.0f; inst.m_pos[1] = 0.0f; inst.m_pos[2] = 0.0f; inst.m_model = &m_platformModel; inst.m_svExtrusionDistance = 2.0f; //prevent culling on tight view frustum } // Scene 0 - shadow receivers - Floor. { Instance& inst = shadowReceivers[Scene0][shadowReceiversCount[Scene0]++]; inst.m_scale[0] = 500.0f; inst.m_scale[1] = 500.0f; inst.m_scale[2] = 500.0f; inst.m_rotation[0] = 0.0f; inst.m_rotation[1] = 0.0f; inst.m_rotation[2] = 0.0f; inst.m_pos[0] = 0.0f; inst.m_pos[1] = 0.0f; inst.m_pos[2] = 0.0f; inst.m_model = &m_hplaneFieldModel; } // Scene 1 - shadow casters - Bunny instances { enum Direction { Left = 0x0, Down = 0x1, Right = 0x2, Up = 0x3, }; const uint8_t directionMask = 0x3; uint8_t currentDirection = Left; float currX = 0.0f; float currY = 0.0f; const float stepX = 20.0f; const float stepY = 20.0f; uint8_t stateStep = 0; uint8_t stateChange = 1; for (uint8_t ii = 0; ii < m_instanceCount; ++ii) { Instance& inst = shadowCasters[Scene1][shadowCastersCount[Scene1]++]; inst.m_scale[0] = 5.0f; inst.m_scale[1] = 5.0f; inst.m_scale[2] = 5.0f; inst.m_rotation[0] = 0.0f; inst.m_rotation[1] = bx::kPi; inst.m_rotation[2] = 0.0f; inst.m_pos[0] = currX; inst.m_pos[1] = 0.0f; inst.m_pos[2] = currY; inst.m_model = bunnyModel; ++stateStep; if (stateStep >= ( (stateChange & ~0x1) >> 1) ) { currentDirection = (currentDirection + 1) & directionMask; stateStep = 0; ++stateChange; } switch (currentDirection) { case Left: currX -= stepX; break; case Down: currY -= stepY; break; case Right: currX += stepX; break; case Up: currY += stepY; break; } } } // Scene 1 - shadow receivers - Floor. { Instance& inst = shadowReceivers[Scene1][shadowReceiversCount[Scene1]++]; inst.m_scale[0] = 500.0f; inst.m_scale[1] = 500.0f; inst.m_scale[2] = 500.0f; inst.m_rotation[0] = 0.0f; inst.m_rotation[1] = 0.0f; inst.m_rotation[2] = 0.0f; inst.m_pos[0] = 0.0f; inst.m_pos[1] = 0.0f; inst.m_pos[2] = 0.0f; inst.m_model = &m_hplaneFigureModel; } // Make sure at the beginning everything gets cleared. bgfx::setViewClear(0 , BGFX_CLEAR_COLOR | BGFX_CLEAR_DEPTH | BGFX_CLEAR_STENCIL , m_clearValues.m_clearRgba , m_clearValues.m_clearDepth , m_clearValues.m_clearStencil ); ::touch(0); // Draw ambient only. s_uniforms.m_params.m_ambientPass = 1.0f; s_uniforms.m_params.m_lightingPass = 0.0f; s_uniforms.m_color[0] = 1.0f; s_uniforms.m_color[1] = 1.0f; s_uniforms.m_color[2] = 1.0f; const RenderState& drawAmbient = m_useStencilTexture ? s_renderStates[RenderState::ShadowVolume_UsingStencilTexture_DrawAmbient] : s_renderStates[RenderState::ShadowVolume_UsingStencilBuffer_DrawAmbient] ; // Draw shadow casters. for (uint8_t ii = 0; ii < shadowCastersCount[m_currentScene]; ++ii) { shadowCasters[m_currentScene][ii].submit(VIEWID_RANGE1_PASS0, drawAmbient); } // Draw shadow receivers. for (uint8_t ii = 0; ii < shadowReceiversCount[m_currentScene]; ++ii) { shadowReceivers[m_currentScene][ii].submit(VIEWID_RANGE1_PASS0, drawAmbient); } // Using stencil texture requires rendering to separate render target. first pass is building depth buffer. if (m_useStencilTexture) { bgfx::setViewClear(VIEWID_RANGE1_RT_PASS1, BGFX_CLEAR_DEPTH, 0x00000000, 1.0f, 0); bgfx::setViewFrameBuffer(VIEWID_RANGE1_RT_PASS1, s_stencilFb); const RenderState& renderState = s_renderStates[RenderState::ShadowVolume_UsingStencilTexture_BuildDepth]; for (uint8_t ii = 0; ii < shadowCastersCount[m_currentScene]; ++ii) { shadowCasters[m_currentScene][ii].submit(VIEWID_RANGE1_RT_PASS1, renderState); } for (uint8_t ii = 0; ii < shadowReceiversCount[m_currentScene]; ++ii) { shadowReceivers[m_currentScene][ii].submit(VIEWID_RANGE1_RT_PASS1, renderState); } } m_profTime = bx::getHPCounter(); /** * For each light: * 1. Compute and draw shadow volume to stencil buffer * 2. Draw diffuse with stencil test */ for (uint8_t ii = 0, viewId = VIEWID_RANGE15_PASS2; ii < m_numLights; ++ii, ++viewId) { const float* lightPos = lightPosRadius[ii]; bx::memCopy(s_uniforms.m_lightPosRadius, lightPosRadius[ii], 4*sizeof(float) ); bx::memCopy(s_uniforms.m_lightRgbInnerR, m_lightRgbInnerR[ii], 3*sizeof(float) ); bx::memCopy(s_uniforms.m_color, m_lightRgbInnerR[ii], 3*sizeof(float) ); if (m_useStencilTexture) { bgfx::setViewFrameBuffer(viewId, s_stencilFb); bgfx::setViewClear(viewId , BGFX_CLEAR_COLOR , 0x00000000 , 1.0f , 0 ); } else { const bgfx::FrameBufferHandle invalid = BGFX_INVALID_HANDLE; bgfx::setViewFrameBuffer(viewId, invalid); bgfx::setViewClear(viewId , BGFX_CLEAR_STENCIL , m_clearValues.m_clearRgba , m_clearValues.m_clearDepth , m_clearValues.m_clearStencil ); } // Create near clip volume for current light. float nearClipVolume[6 * 4] = {}; float pointLight[4]; if (m_mixedSvImpl) { pointLight[0] = lightPos[0]; pointLight[1] = lightPos[1]; pointLight[2] = lightPos[2]; pointLight[3] = 1.0f; createNearClipVolume(nearClipVolume, pointLight, m_viewState.m_view, fov, aspect, nearPlane); } for (uint8_t jj = 0; jj < shadowCastersCount[m_currentScene]; ++jj) { const Instance& instance = shadowCasters[m_currentScene][jj]; Model* model = instance.m_model; ShadowVolumeImpl::Enum shadowVolumeImpl = m_shadowVolumeImpl; if (m_mixedSvImpl) { // If instance is inside near clip volume, depth fail must be used, else depth pass is fine. bool isInsideVolume = clipTest(nearClipVolume, 6, model->m_mesh, instance.m_scale, instance.m_pos); shadowVolumeImpl = (isInsideVolume ? ShadowVolumeImpl::DepthFail : ShadowVolumeImpl::DepthPass); } s_uniforms.m_svparams.m_dfail = float(ShadowVolumeImpl::DepthFail == shadowVolumeImpl); // Compute virtual light position for shadow volume generation. float transformedLightPos[3]; shadowVolumeLightTransform(transformedLightPos , instance.m_scale , instance.m_rotation , instance.m_pos , lightPos ); // Set virtual light pos. bx::memCopy(s_uniforms.m_virtualLightPos_extrusionDist, transformedLightPos, 3*sizeof(float) ); s_uniforms.m_virtualLightPos_extrusionDist[3] = instance.m_svExtrusionDistance; // Compute transform for shadow volume. float shadowVolumeMtx[16]; bx::mtxSRT(shadowVolumeMtx , instance.m_scale[0] , instance.m_scale[1] , instance.m_scale[2] , instance.m_rotation[0] , instance.m_rotation[1] , instance.m_rotation[2] , instance.m_pos[0] , instance.m_pos[1] , instance.m_pos[2] ); GroupArray& groups = model->m_mesh.m_groups; const uint16_t stride = model->m_mesh.m_decl.getStride(); for (GroupArray::iterator it = groups.begin(), itEnd = groups.end(); it != itEnd; ++it) { Group& group = *it; // Create shadow volume. ShadowVolume shadowVolume; shadowVolumeCreate(shadowVolume , group , stride , shadowVolumeMtx , transformedLightPos , shadowVolumeImpl , m_shadowVolumeAlgorithm , m_useStencilTexture ); m_numShadowVolumeVertices += shadowVolume.m_numVertices; m_numShadowVolumeIndices += shadowVolume.m_numIndices; ShadowVolumeProgramType::Enum programIndex = ShadowVolumeProgramType::Blank; RenderState::Enum renderStateIndex; if (m_useStencilTexture) { renderStateIndex = ShadowVolumeImpl::DepthFail == shadowVolumeImpl ? RenderState::ShadowVolume_UsingStencilTexture_CraftStencil_DepthFail : RenderState::ShadowVolume_UsingStencilTexture_CraftStencil_DepthPass ; programIndex = ShadowVolumeAlgorithm::FaceBased == m_shadowVolumeAlgorithm ? ShadowVolumeProgramType::Tex1 : ShadowVolumeProgramType::Tex2 ; } else { renderStateIndex = ShadowVolumeImpl::DepthFail == shadowVolumeImpl ? RenderState::ShadowVolume_UsingStencilBuffer_CraftStencil_DepthFail : RenderState::ShadowVolume_UsingStencilBuffer_CraftStencil_DepthPass ; } const RenderState& renderStateCraftStencil = s_renderStates[renderStateIndex]; s_uniforms.submitPerDrawUniforms(); bgfx::setTransform(shadowVolumeMtx); bgfx::setVertexBuffer(0, shadowVolume.m_vbSides); bgfx::setIndexBuffer(shadowVolume.m_ibSides); setRenderState(renderStateCraftStencil); ::submit(viewId, m_svProgs[programIndex][ShadowVolumePart::Side]); if (shadowVolume.m_cap) { s_uniforms.submitPerDrawUniforms(); bgfx::setTransform(shadowVolumeMtx); bgfx::setVertexBuffer(0, group.m_vbh); bgfx::setIndexBuffer(shadowVolume.m_ibFrontCap); setRenderState(renderStateCraftStencil); ::submit(viewId, m_svProgs[programIndex][ShadowVolumePart::Front]); s_uniforms.submitPerDrawUniforms(); bgfx::setTransform(shadowVolumeMtx); bgfx::setVertexBuffer(0, group.m_vbh); bgfx::setIndexBuffer(shadowVolume.m_ibBackCap); ::setRenderState(renderStateCraftStencil); ::submit(viewId, m_svProgs[programIndex][ShadowVolumePart::Back]); } if (m_drawShadowVolumes) { const RenderState& renderState = s_renderStates[RenderState::Custom_DrawShadowVolume_Lines]; s_uniforms.submitPerDrawUniforms(); bgfx::setTransform(shadowVolumeMtx); bgfx::setVertexBuffer(0, shadowVolume.m_vbSides); bgfx::setIndexBuffer(shadowVolume.m_ibSides); ::setRenderState(renderState); ::submit(VIEWID_RANGE1_PASS3, m_svProgs[ShadowVolumeProgramType::Color][ShadowVolumePart::Side]); if (shadowVolume.m_cap) { s_uniforms.submitPerDrawUniforms(); bgfx::setTransform(shadowVolumeMtx); bgfx::setVertexBuffer(0, group.m_vbh); bgfx::setIndexBuffer(shadowVolume.m_ibFrontCap); ::setRenderState(renderState); ::submit(VIEWID_RANGE1_PASS3, m_svProgs[ShadowVolumeProgramType::Color][ShadowVolumePart::Front]); s_uniforms.submitPerDrawUniforms(); bgfx::setTransform(shadowVolumeMtx); bgfx::setVertexBuffer(0, group.m_vbh); bgfx::setIndexBuffer(shadowVolume.m_ibBackCap); ::setRenderState(renderState); ::submit(VIEWID_RANGE1_PASS3, m_svProgs[ShadowVolumeProgramType::Color][ShadowVolumePart::Back]); } } } } // Draw diffuse only. s_uniforms.m_params.m_ambientPass = 0.0f; s_uniforms.m_params.m_lightingPass = 1.0f; RenderState& drawDiffuse = m_useStencilTexture ? s_renderStates[RenderState::ShadowVolume_UsingStencilTexture_DrawDiffuse] : s_renderStates[RenderState::ShadowVolume_UsingStencilBuffer_DrawDiffuse] ; // If using stencil texture, viewId is set to render target. Incr it to render to default back buffer. viewId += uint8_t(m_useStencilTexture); // Draw shadow casters. for (uint8_t jj = 0; jj < shadowCastersCount[m_currentScene]; ++jj) { shadowCasters[m_currentScene][jj].submit(viewId, drawDiffuse); } // Draw shadow receivers. for (uint8_t jj = 0; jj < shadowReceiversCount[m_currentScene]; ++jj) { shadowReceivers[m_currentScene][jj].submit(viewId, drawDiffuse); } } m_profTime = bx::getHPCounter() - m_profTime; // Lights. const float lightScale[3] = { 1.5f, 1.5f, 1.5f }; for (uint8_t ii = 0; ii < m_numLights; ++ii) { bx::memCopy(s_uniforms.m_color, m_lightRgbInnerR[ii], 3*sizeof(float) ); float lightMtx[16]; mtxBillboard(lightMtx, m_viewState.m_view, lightPosRadius[ii], lightScale); m_vplaneModel.submit(VIEWID_RANGE1_PASS3, lightMtx, s_renderStates[RenderState::Custom_BlendLightTexture]); } // Setup view rect and transform for all used views. setViewRectMask(s_viewMask, 0, 0, uint16_t(m_viewState.m_width), uint16_t(m_viewState.m_height) ); setViewTransformMask(s_viewMask, m_viewState.m_view, m_viewState.m_proj); s_viewMask = 0; // Advance to next frame. Rendering thread will be kicked to // process submitted rendering primitives. bgfx::frame(); // Swap memory pages. s_svAllocator.swap(); // Reset clear values. setViewClearMask(UINT32_MAX , BGFX_CLEAR_NONE , m_clearValues.m_clearRgba , m_clearValues.m_clearDepth , m_clearValues.m_clearStencil ); return true; } return false; } ViewState m_viewState; ClearValues m_clearValues; uint32_t m_debug; uint32_t m_reset; bgfx::TextureHandle m_figureTex; bgfx::TextureHandle m_flareTex; bgfx::TextureHandle m_fieldstoneTex; bgfx::ProgramHandle m_programTextureLighting; bgfx::ProgramHandle m_programColorLighting; bgfx::ProgramHandle m_programColorTexture; bgfx::ProgramHandle m_programTexture; bgfx::ProgramHandle m_programBackBlank; bgfx::ProgramHandle m_programSideBlank; bgfx::ProgramHandle m_programFrontBlank; bgfx::ProgramHandle m_programBackColor; bgfx::ProgramHandle m_programSideColor; bgfx::ProgramHandle m_programFrontColor; bgfx::ProgramHandle m_programSideTex; bgfx::ProgramHandle m_programBackTex1; bgfx::ProgramHandle m_programBackTex2; bgfx::ProgramHandle m_programFrontTex1; bgfx::ProgramHandle m_programFrontTex2; bgfx::ProgramHandle m_svProgs[ShadowVolumeProgramType::Count][ShadowVolumePart::Count]; Model m_bunnyLowPolyModel; Model m_bunnyHighPolyModel; Model m_columnModel; Model m_platformModel; Model m_cubeModel; Model m_hplaneFieldModel; Model m_hplaneFigureModel; Model m_vplaneModel; float m_lightRgbInnerR[MAX_LIGHTS_COUNT][4]; int64_t m_profTime; int64_t m_timeOffset; uint32_t m_numShadowVolumeVertices; uint32_t m_numShadowVolumeIndices; uint32_t m_oldWidth; uint32_t m_oldHeight; int32_t m_numLights; int32_t m_instanceCount; bool m_showHelp; bool m_updateLights; bool m_updateScene; bool m_mixedSvImpl; bool m_useStencilTexture; bool m_drawShadowVolumes; ShadowVolumeImpl::Enum m_shadowVolumeImpl; ShadowVolumeAlgorithm::Enum m_shadowVolumeAlgorithm; LightPattern m_lightPattern; MeshChoice m_currentMesh; Scene m_currentScene; entry::MouseState m_mouseState; }; } // namespace ENTRY_IMPLEMENT_MAIN(ExampleShadowVolumes, "14-shadowvolumes", "Shadow volumes.");