/* * Copyright 2011-2019 Branimir Karadzic. All rights reserved. * License: https://github.com/bkaradzic/bgfx#license-bsd-2-clause */ #include #include #include "bounds.h" using namespace bx; Vec3 getCenter(const Aabb& _aabb) { return mul(add(_aabb.min, _aabb.max), 0.5f); } Vec3 getExtents(const Aabb& _aabb) { return mul(sub(_aabb.max, _aabb.min), 0.5f); } Vec3 getCenter(const Triangle& _triangle) { return mul(add(add(_triangle.v0, _triangle.v1), _triangle.v2), 1.0f/3.0f); } void toAabb(Aabb& _outAabb, const Vec3& _extents) { _outAabb.min = neg(_extents); _outAabb.max = _extents; } void toAabb(Aabb& _outAabb, const Vec3& _center, const Vec3& _extents) { _outAabb.min = sub(_center, _extents); _outAabb.max = add(_center, _extents); } void toAabb(Aabb& _outAabb, const Cylinder& _cylinder) { // Reference(s): // - https://web.archive.org/web/20181113055756/http://iquilezles.org/www/articles/diskbbox/diskbbox.htm // const Vec3 axis = sub(_cylinder.end, _cylinder.pos); const Vec3 asq = mul(axis, axis); const Vec3 nsq = mul(asq, 1.0f/dot(axis, axis) ); const Vec3 tmp = sub(Vec3(1.0f), nsq); const float inv = 1.0f/(tmp.x*tmp.y*tmp.z); const Vec3 extent = { _cylinder.radius * tmp.x * sqrt( (nsq.x + nsq.y * nsq.z) * inv), _cylinder.radius * tmp.y * sqrt( (nsq.y + nsq.z * nsq.x) * inv), _cylinder.radius * tmp.z * sqrt( (nsq.z + nsq.x * nsq.y) * inv), }; const Vec3 minP = sub(_cylinder.pos, extent); const Vec3 minE = sub(_cylinder.end, extent); const Vec3 maxP = add(_cylinder.pos, extent); const Vec3 maxE = add(_cylinder.end, extent); _outAabb.min = min(minP, minE); _outAabb.max = max(maxP, maxE); } void toAabb(Aabb& _outAabb, const Disk& _disk) { // Reference(s): // - https://web.archive.org/web/20181113055756/http://iquilezles.org/www/articles/diskbbox/diskbbox.htm // const Vec3 nsq = mul(_disk.normal, _disk.normal); const Vec3 one = { 1.0f, 1.0f, 1.0f }; const Vec3 tmp = sub(one, nsq); const float inv = 1.0f / (tmp.x*tmp.y*tmp.z); const Vec3 extent = { _disk.radius * tmp.x * sqrt( (nsq.x + nsq.y * nsq.z) * inv), _disk.radius * tmp.y * sqrt( (nsq.y + nsq.z * nsq.x) * inv), _disk.radius * tmp.z * sqrt( (nsq.z + nsq.x * nsq.y) * inv), }; _outAabb.min = sub(_disk.center, extent); _outAabb.max = add(_disk.center, extent); } void toAabb(Aabb& _outAabb, const Obb& _obb) { Vec3 xyz = { 1.0f, 1.0f, 1.0f }; Vec3 tmp = mul(xyz, _obb.mtx); _outAabb.min = tmp; _outAabb.max = tmp; for (uint32_t ii = 1; ii < 8; ++ii) { xyz.x = ii & 1 ? -1.0f : 1.0f; xyz.y = ii & 2 ? -1.0f : 1.0f; xyz.z = ii & 4 ? -1.0f : 1.0f; tmp = mul(xyz, _obb.mtx); _outAabb.min = min(_outAabb.min, tmp); _outAabb.max = max(_outAabb.max, tmp); } } void toAabb(Aabb& _outAabb, const Sphere& _sphere) { const float radius = _sphere.radius; _outAabb.min = sub(_sphere.center, radius); _outAabb.max = add(_sphere.center, radius); } void toAabb(Aabb& _outAabb, const Triangle& _triangle) { _outAabb.min = min(_triangle.v0, _triangle.v1, _triangle.v2); _outAabb.max = max(_triangle.v0, _triangle.v1, _triangle.v2); } void aabbTransformToObb(Obb& _obb, const Aabb& _aabb, const float* _mtx) { toObb(_obb, _aabb); float result[16]; mtxMul(result, _obb.mtx, _mtx); memCopy(_obb.mtx, result, sizeof(result) ); } void toAabb(Aabb& _outAabb, const void* _vertices, uint32_t _numVertices, uint32_t _stride) { Vec3 mn, mx; uint8_t* vertex = (uint8_t*)_vertices; mn = mx = load(vertex); vertex += _stride; for (uint32_t ii = 1; ii < _numVertices; ++ii) { const Vec3 pos = load(vertex); vertex += _stride; mn = min(pos, mn); mx = max(pos, mx); } _outAabb.min = mn; _outAabb.max = mx; } void toAabb(Aabb& _outAabb, const float* _mtx, const void* _vertices, uint32_t _numVertices, uint32_t _stride) { Vec3 mn, mx; uint8_t* vertex = (uint8_t*)_vertices; mn = mx = mul(load(vertex), _mtx); vertex += _stride; for (uint32_t ii = 1; ii < _numVertices; ++ii) { Vec3 pos = mul(load(vertex), _mtx); vertex += _stride; mn = min(pos, mn); mx = max(pos, mx); } _outAabb.min = mn; _outAabb.max = mx; } float calcAreaAabb(const Aabb& _aabb) { const float ww = _aabb.max.x - _aabb.min.x; const float hh = _aabb.max.y - _aabb.min.y; const float dd = _aabb.max.z - _aabb.min.z; return 2.0f * (ww*hh + ww*dd + hh*dd); } void aabbExpand(Aabb& _outAabb, float _factor) { _outAabb.min.x -= _factor; _outAabb.min.y -= _factor; _outAabb.min.z -= _factor; _outAabb.max.x += _factor; _outAabb.max.y += _factor; _outAabb.max.z += _factor; } void aabbExpand(Aabb& _outAabb, const Vec3& _pos) { _outAabb.min = min(_outAabb.min, _pos); _outAabb.max = max(_outAabb.max, _pos); } void toObb(Obb& _outObb, const Aabb& _aabb) { memSet(_outObb.mtx, 0, sizeof(_outObb.mtx) ); _outObb.mtx[ 0] = (_aabb.max.x - _aabb.min.x) * 0.5f; _outObb.mtx[ 5] = (_aabb.max.y - _aabb.min.y) * 0.5f; _outObb.mtx[10] = (_aabb.max.z - _aabb.min.z) * 0.5f; _outObb.mtx[12] = (_aabb.min.x + _aabb.max.x) * 0.5f; _outObb.mtx[13] = (_aabb.min.y + _aabb.max.y) * 0.5f; _outObb.mtx[14] = (_aabb.min.z + _aabb.max.z) * 0.5f; _outObb.mtx[15] = 1.0f; } void calcObb(Obb& _outObb, const void* _vertices, uint32_t _numVertices, uint32_t _stride, uint32_t _steps) { Aabb aabb; toAabb(aabb, _vertices, _numVertices, _stride); float minArea = calcAreaAabb(aabb); Obb best; toObb(best, aabb); float angleStep = float(kPiHalf/_steps); float ax = 0.0f; float mtx[16]; for (uint32_t ii = 0; ii < _steps; ++ii) { float ay = 0.0f; for (uint32_t jj = 0; jj < _steps; ++jj) { float az = 0.0f; for (uint32_t kk = 0; kk < _steps; ++kk) { mtxRotateXYZ(mtx, ax, ay, az); float mtxT[16]; mtxTranspose(mtxT, mtx); toAabb(aabb, mtxT, _vertices, _numVertices, _stride); float area = calcAreaAabb(aabb); if (area < minArea) { minArea = area; aabbTransformToObb(best, aabb, mtx); } az += angleStep; } ay += angleStep; } ax += angleStep; } memCopy(&_outObb, &best, sizeof(Obb) ); } void calcMaxBoundingSphere(Sphere& _sphere, const void* _vertices, uint32_t _numVertices, uint32_t _stride) { Aabb aabb; toAabb(aabb, _vertices, _numVertices, _stride); Vec3 center = getCenter(aabb); float maxDistSq = 0.0f; uint8_t* vertex = (uint8_t*)_vertices; for (uint32_t ii = 0; ii < _numVertices; ++ii) { const Vec3& pos = load(vertex); vertex += _stride; const Vec3 tmp = sub(pos, center); const float distSq = dot(tmp, tmp); maxDistSq = max(distSq, maxDistSq); } _sphere.center = center; _sphere.radius = sqrt(maxDistSq); } void calcMinBoundingSphere(Sphere& _sphere, const void* _vertices, uint32_t _numVertices, uint32_t _stride, float _step) { RngMwc rng; uint8_t* vertex = (uint8_t*)_vertices; Vec3 center; float* position = (float*)&vertex[0]; center.x = position[0]; center.y = position[1]; center.z = position[2]; position = (float*)&vertex[1*_stride]; center.x += position[0]; center.y += position[1]; center.z += position[2]; center.x *= 0.5f; center.y *= 0.5f; center.z *= 0.5f; float xx = position[0] - center.x; float yy = position[1] - center.y; float zz = position[2] - center.z; float maxDistSq = xx*xx + yy*yy + zz*zz; float radiusStep = _step * 0.37f; bool done; do { done = true; for (uint32_t ii = 0, index = rng.gen()%_numVertices; ii < _numVertices; ++ii, index = (index + 1)%_numVertices) { position = (float*)&vertex[index*_stride]; xx = position[0] - center.x; yy = position[1] - center.y; zz = position[2] - center.z; float distSq = xx*xx + yy*yy + zz*zz; if (distSq > maxDistSq) { done = false; center.x += xx * radiusStep; center.y += yy * radiusStep; center.z += zz * radiusStep; maxDistSq = lerp(maxDistSq, distSq, _step); break; } } } while (!done); _sphere.center = center; _sphere.radius = sqrt(maxDistSq); } void buildFrustumPlanes(Plane* _result, const float* _viewProj) { const float xw = _viewProj[ 3]; const float yw = _viewProj[ 7]; const float zw = _viewProj[11]; const float ww = _viewProj[15]; const float xz = _viewProj[ 2]; const float yz = _viewProj[ 6]; const float zz = _viewProj[10]; const float wz = _viewProj[14]; Plane& near = _result[0]; Plane& far = _result[1]; Plane& left = _result[2]; Plane& right = _result[3]; Plane& top = _result[4]; Plane& bottom = _result[5]; near.normal.x = xw - xz; near.normal.y = yw - yz; near.normal.z = zw - zz; near.dist = ww - wz; far.normal.x = xw + xz; far.normal.y = yw + yz; far.normal.z = zw + zz; far.dist = ww + wz; const float xx = _viewProj[ 0]; const float yx = _viewProj[ 4]; const float zx = _viewProj[ 8]; const float wx = _viewProj[12]; left.normal.x = xw - xx; left.normal.y = yw - yx; left.normal.z = zw - zx; left.dist = ww - wx; right.normal.x = xw + xx; right.normal.y = yw + yx; right.normal.z = zw + zx; right.dist = ww + wx; const float xy = _viewProj[ 1]; const float yy = _viewProj[ 5]; const float zy = _viewProj[ 9]; const float wy = _viewProj[13]; top.normal.x = xw + xy; top.normal.y = yw + yy; top.normal.z = zw + zy; top.dist = ww + wy; bottom.normal.x = xw - xy; bottom.normal.y = yw - yy; bottom.normal.z = zw - zy; bottom.dist = ww - wy; Plane* plane = _result; for (uint32_t ii = 0; ii < 6; ++ii) { const float invLen = 1.0f/length(plane->normal); plane->normal = normalize(plane->normal); plane->dist *= invLen; ++plane; } } Ray makeRay(float _x, float _y, const float* _invVp) { Ray ray; const Vec3 near = { _x, _y, 0.0f }; ray.pos = mulH(near, _invVp); const Vec3 far = { _x, _y, 1.0f }; Vec3 tmp = mulH(far, _invVp); const Vec3 dir = sub(tmp, ray.pos); ray.dir = normalize(dir); return ray; } inline Vec3 getPointAt(const Ray& _ray, float _t) { return mad(_ray.dir, _t, _ray.pos); } bool intersect(const Ray& _ray, const Aabb& _aabb, Hit* _hit) { const Vec3 invDir = rcp(_ray.dir); const Vec3 tmp0 = sub(_aabb.min, _ray.pos); const Vec3 t0 = mul(tmp0, invDir); const Vec3 tmp1 = sub(_aabb.max, _ray.pos); const Vec3 t1 = mul(tmp1, invDir); const Vec3 mn = min(t0, t1); const Vec3 mx = max(t0, t1); const float tmin = max(mn.x, mn.y, mn.z); const float tmax = min(mx.x, mx.y, mx.z); if (0.0f > tmax || tmin > tmax) { return false; } if (NULL != _hit) { _hit->plane.normal.x = float( (t1.x == tmin) - (t0.x == tmin) ); _hit->plane.normal.y = float( (t1.y == tmin) - (t0.y == tmin) ); _hit->plane.normal.z = float( (t1.z == tmin) - (t0.z == tmin) ); _hit->plane.dist = tmin; _hit->pos = getPointAt(_ray, tmin); } return true; } static constexpr Aabb kUnitAabb = { { -1.0f, -1.0f, -1.0f }, { 1.0f, 1.0f, 1.0f }, }; bool intersect(const Ray& _ray, const Obb& _obb, Hit* _hit) { Aabb aabb; toAabb(aabb, _obb); if (!intersect(_ray, aabb) ) { return false; } float mtxInv[16]; mtxInverse(mtxInv, _obb.mtx); Ray obbRay; obbRay.pos = mul(_ray.pos, mtxInv); obbRay.dir = mulXyz0(_ray.dir, mtxInv); if (intersect(obbRay, kUnitAabb, _hit) ) { if (NULL != _hit) { _hit->pos = mul(_hit->pos, _obb.mtx); const Vec3 tmp = mulXyz0(_hit->plane.normal, _obb.mtx); _hit->plane.normal = normalize(tmp); } return true; } return false; } bool intersect(const Ray& _ray, const Disk& _disk, Hit* _hit) { Plane plane; plane.normal = _disk.normal; plane.dist = -dot(_disk.center, _disk.normal); Hit tmpHit; _hit = NULL != _hit ? _hit : &tmpHit; if (intersect(_ray, plane, _hit) ) { const Vec3 tmp = sub(_disk.center, _hit->pos); return dot(tmp, tmp) <= square(_disk.radius); } return false; } static bool intersect(const Ray& _ray, const Cylinder& _cylinder, bool _capsule, Hit* _hit) { Vec3 axis = sub(_cylinder.end, _cylinder.pos); const Vec3 rc = sub(_ray.pos, _cylinder.pos); const Vec3 dxa = cross(_ray.dir, axis); const float len = length(dxa); const Vec3 normal = normalize(dxa); const float dist = bx::abs(dot(rc, normal) ); if (dist > _cylinder.radius) { return false; } Vec3 vo = cross(rc, axis); const float t0 = -dot(vo, normal) / len; vo = normalize(cross(normal, axis) ); const float rsq = square(_cylinder.radius); const float ddoto = dot(_ray.dir, vo); const float ss = t0 - bx::abs(sqrt(rsq - square(dist) ) / ddoto); if (0.0f > ss) { return false; } const Vec3 point = getPointAt(_ray, ss); const float axisLen = length(axis); axis = normalize(axis); const float pdota = dot(_cylinder.pos, axis); const float height = dot(point, axis) - pdota; if (0.0f < height && axisLen > height) { if (NULL != _hit) { const float t1 = height / axisLen; const Vec3 pointOnAxis = lerp(_cylinder.pos, _cylinder.end, t1); _hit->pos = point; const Vec3 tmp = sub(point, pointOnAxis); _hit->plane.normal = normalize(tmp); _hit->plane.dist = ss; } return true; } if (_capsule) { const float rdota = dot(_ray.pos, axis); const float pp = rdota - pdota; const float t1 = pp / axisLen; const Vec3 pointOnAxis = lerp(_cylinder.pos, _cylinder.end, t1); const Vec3 axisToRay = sub(_ray.pos, pointOnAxis); if (_cylinder.radius < length(axisToRay) && 0.0f > ss) { return false; } Sphere sphere; sphere.radius = _cylinder.radius; sphere.center = 0.0f >= height ? _cylinder.pos : _cylinder.end ; return intersect(_ray, sphere, _hit); } Plane plane; Vec3 pos; if (0.0f >= height) { plane.normal = neg(axis); pos = _cylinder.pos; } else { plane.normal = axis; pos = _cylinder.end; } plane.dist = -dot(pos, plane.normal); Hit tmpHit; _hit = NULL != _hit ? _hit : &tmpHit; if (intersect(_ray, plane, _hit) ) { const Vec3 tmp = sub(pos, _hit->pos); return dot(tmp, tmp) <= rsq; } return false; } bool intersect(const Ray& _ray, const Cylinder& _cylinder, Hit* _hit) { return intersect(_ray, _cylinder, false, _hit); } bool intersect(const Ray& _ray, const Capsule& _capsule, Hit* _hit) { BX_STATIC_ASSERT(sizeof(Capsule) == sizeof(Cylinder) ); return intersect(_ray, *( (const Cylinder*)&_capsule), true, _hit); } bool intersect(const Ray& _ray, const Cone& _cone, Hit* _hit) { const Vec3 axis = sub(_cone.pos, _cone.end); const float len = length(axis); const Vec3 normal = normalize(axis); Disk disk; disk.center = _cone.pos; disk.normal = normal; disk.radius = _cone.radius; Hit tmpInt; Hit* out = NULL != _hit ? _hit : &tmpInt; bool hit = intersect(_ray, disk, out); const Vec3 ro = sub(_ray.pos, _cone.end); const float hyp = sqrt(square(_cone.radius) + square(len) ); const float cosaSq = square(len/hyp); const float ndoto = dot(normal, ro); const float ndotd = dot(normal, _ray.dir); const float aa = square(ndotd) - cosaSq; const float bb = 2.0f * (ndotd*ndoto - dot(_ray.dir, ro)*cosaSq); const float cc = square(ndoto) - dot(ro, ro)*cosaSq; float det = bb*bb - 4.0f*aa*cc; if (0.0f > det) { return hit; } det = sqrt(det); const float invA2 = 1.0f / (2.0f*aa); const float t1 = (-bb - det) * invA2; const float t2 = (-bb + det) * invA2; float tt = t1; if (0.0f > t1 || (0.0f < t2 && t2 < t1) ) { tt = t2; } if (0.0f > tt) { return hit; } const Vec3 hitPos = getPointAt(_ray, tt); const Vec3 point = sub(hitPos, _cone.end); const float hh = dot(normal, point); if (0.0f > hh || len < hh) { return hit; } if (NULL != _hit) { if (!hit || tt < _hit->plane.dist) { _hit->plane.dist = tt; _hit->pos = hitPos; const float scale = hh / dot(point, point); const Vec3 pointScaled = mul(point, scale); const Vec3 tmp = sub(pointScaled, normal); _hit->plane.normal = normalize(tmp); } } return true; } bool intersect(const Ray& _ray, const Plane& _plane, Hit* _hit) { const float dist = distance(_plane, _ray.pos); if (0.0f > dist) { return false; } const float ndotd = dot(_ray.dir, _plane.normal); if (0.0f < ndotd) { return false; } if (NULL != _hit) { _hit->plane.normal = _plane.normal; float tt = -dist/ndotd; _hit->plane.dist = tt; _hit->pos = getPointAt(_ray, tt); } return true; } bool intersect(const Ray& _ray, const Sphere& _sphere, Hit* _hit) { const Vec3 rs = sub(_ray.pos, _sphere.center); const float bb = dot(rs, _ray.dir); if (0.0f < bb) { return false; } const float aa = dot(_ray.dir, _ray.dir); const float cc = dot(rs, rs) - square(_sphere.radius); const float discriminant = bb*bb - aa*cc; if (0.0f >= discriminant) { return false; } const float sqrtDiscriminant = sqrt(discriminant); const float invA = 1.0f / aa; const float tt = -(bb + sqrtDiscriminant)*invA; if (0.0f >= tt) { return false; } if (NULL != _hit) { _hit->plane.dist = tt; const Vec3 point = getPointAt(_ray, tt); _hit->pos = point; const Vec3 tmp = sub(point, _sphere.center); _hit->plane.normal = normalize(tmp); } return true; } bool intersect(const Ray& _ray, const Triangle& _triangle, Hit* _hit) { const Vec3 edge10 = sub(_triangle.v1, _triangle.v0); const Vec3 edge02 = sub(_triangle.v0, _triangle.v2); const Vec3 normal = cross(edge02, edge10); const Vec3 vo = sub(_triangle.v0, _ray.pos); const Vec3 dxo = cross(_ray.dir, vo); const float det = dot(normal, _ray.dir); if (0.0f < det) { return false; } const float invDet = 1.0f/det; const float bz = dot(dxo, edge02) * invDet; const float by = dot(dxo, edge10) * invDet; const float bx = 1.0f - by - bz; if (0.0f > bx || 0.0f > by || 0.0f > bz) { return false; } if (NULL != _hit) { _hit->plane.normal = normalize(normal); const float tt = dot(normal, vo) * invDet; _hit->plane.dist = tt; _hit->pos = getPointAt(_ray, tt); } return true; } Vec3 barycentric(const Triangle& _triangle, const Vec3& _pos) { const Vec3 v0 = sub(_triangle.v1, _triangle.v0); const Vec3 v1 = sub(_triangle.v2, _triangle.v0); const Vec3 v2 = sub(_pos, _triangle.v0); const float dot00 = dot(v0, v0); const float dot01 = dot(v0, v1); const float dot02 = dot(v0, v2); const float dot11 = dot(v1, v1); const float dot12 = dot(v1, v2); const float invDenom = 1.0f/(dot00*dot11 - square(dot01) ); const float vv = (dot11*dot02 - dot01*dot12)*invDenom; const float ww = (dot00*dot12 - dot01*dot02)*invDenom; const float uu = 1.0f - vv - ww; return { uu, vv, ww }; } Vec3 cartesian(const Triangle& _triangle, const Vec3& _uvw) { const Vec3 b0 = mul(_triangle.v0, _uvw.x); const Vec3 b1 = mul(_triangle.v1, _uvw.y); const Vec3 b2 = mul(_triangle.v2, _uvw.z); return add(add(b0, b1), b2); } void calcPlane(Plane& _outPlane, const Disk& _disk) { calcPlane(_outPlane, _disk.normal, _disk.center); } void calcPlane(Plane& _outPlane, const Triangle& _triangle) { calcPlane(_outPlane, _triangle.v0, _triangle.v1, _triangle.v2); } struct Interval { float start; float end; }; bool overlap(const Interval& _a, const Interval& _b) { return _a.end > _b.start && _b.end > _a.start ; } float projectToAxis(const Vec3& _axis, const Vec3& _point) { return dot(_axis, _point); } Interval projectToAxis(const Vec3& _axis, const Aabb& _aabb) { const float extent = bx::abs(dot(abs(_axis), getExtents(_aabb) ) ); const float center = dot( _axis , getCenter (_aabb) ); return { center - extent, center + extent, }; } Interval projectToAxis(const Vec3& _axis, const Triangle& _triangle) { const float a0 = dot(_axis, _triangle.v0); const float a1 = dot(_axis, _triangle.v1); const float a2 = dot(_axis, _triangle.v2); return { min(a0, a1, a2), max(a0, a1, a2), }; } struct Srt { Quaternion rotation; Vec3 translation; Vec3 scale; }; Srt toSrt(const void* _mtx) { Srt result; const float* mtx = (const float*)_mtx; result.translation = { mtx[12], mtx[13], mtx[14] }; float xx = mtx[ 0]; float xy = mtx[ 1]; float xz = mtx[ 2]; float yx = mtx[ 4]; float yy = mtx[ 5]; float yz = mtx[ 6]; float zx = mtx[ 8]; float zy = mtx[ 9]; float zz = mtx[10]; result.scale = { sqrt(xx*xx + xy*xy + xz*xz), sqrt(yx*yx + yy*yy + yz*yz), sqrt(zx*zx + zy*zy + zz*zz), }; const Vec3 invScale = rcp(result.scale); xx *= invScale.x; xy *= invScale.x; xz *= invScale.x; yx *= invScale.y; yy *= invScale.y; yz *= invScale.y; zx *= invScale.z; zy *= invScale.z; zz *= invScale.z; const float trace = xx + yy + zz; if (0.0f < trace) { const float invS = 0.5f * rsqrt(trace + 1.0f); result.rotation = { (yz - zy) * invS, (zx - xz) * invS, (xy - yx) * invS, 0.25f / invS, }; } else { if (xx > yy && xx > zz) { const float invS = 0.5f * sqrt(max(1.0f + xx - yy - zz, 1e-8f) ); result.rotation = { 0.25f / invS, (xy + yx) * invS, (xz + zx) * invS, (yz - zy) * invS, }; } else if (yy > zz) { const float invS = 0.5f * sqrt(max(1.0f + yy - xx - zz, 1e-8f) ); result.rotation = { (xy + yx) * invS, 0.25f / invS, (yz + zy) * invS, (zx - xz) * invS, }; } else { const float invS = 0.5f * sqrt(max(1.0f + zz - xx - yy, 1e-8f) ); result.rotation = { (xz + zx) * invS, (yz + zy) * invS, 0.25f / invS, (xy - yx) * invS, }; } } return result; } void mtxFromSrt(float* _outMtx, const Srt& _srt) { mtxQuat(_outMtx, _srt.rotation); store(&_outMtx[0], mul(load(&_outMtx[0]), _srt.scale.x) ); store(&_outMtx[4], mul(load(&_outMtx[4]), _srt.scale.y) ); store(&_outMtx[8], mul(load(&_outMtx[8]), _srt.scale.z) ); store(&_outMtx[12], _srt.translation); } bool isNearZero(float _v) { return equal(_v, 0.0f, 0.00001f); } bool isNearZero(const Vec3& _v) { return isNearZero(dot(_v, _v) ); } struct Line { Vec3 pos; Vec3 dir; }; inline Vec3 getPointAt(const Line& _line, float _t) { return mad(_line.dir, _t, _line.pos); } bool intersect(Line& _outLine, const Plane& _planeA, const Plane& _planeB) { const Vec3 axb = cross(_planeA.normal, _planeB.normal); const float denom = dot(axb, axb); if (isNearZero(denom) ) { return false; } const Vec3 bxaxb = cross(_planeB.normal, axb); const Vec3 axbxa = cross(axb, _planeA.normal); const Vec3 tmp0 = mul(bxaxb, _planeA.dist); const Vec3 tmp1 = mul(axbxa, _planeB.dist); const Vec3 tmp2 = add(tmp0, tmp1); _outLine.pos = mul(tmp2, -1.0f/denom); _outLine.dir = normalize(axb); return true; } Vec3 intersectPlanes(const Plane& _pa, const Plane& _pb, const Plane& _pc) { const Vec3 axb = cross(_pa.normal, _pb.normal); const Vec3 bxc = cross(_pb.normal, _pc.normal); const Vec3 cxa = cross(_pc.normal, _pa.normal); const Vec3 tmp0 = mul(bxc, _pa.dist); const Vec3 tmp1 = mul(cxa, _pb.dist); const Vec3 tmp2 = mul(axb, _pc.dist); const Vec3 tmp3 = add(tmp0, tmp1); const Vec3 tmp4 = add(tmp3, tmp2); const float denom = dot(_pa.normal, bxc); const Vec3 result = mul(tmp4, -1.0f/denom); return result; } struct LineSegment { Vec3 pos; Vec3 end; }; inline Vec3 getPointAt(const LineSegment& _line, float _t) { return lerp(_line.pos, _line.end, _t); } bool intersect(float& _outTa, float& _outTb, const LineSegment& _a, const LineSegment& _b) { // Reference(s): // // - The shortest line between two lines in 3D // https://web.archive.org/web/20120309093234/http://paulbourke.net/geometry/lineline3d/ const Vec3 bd = sub(_b.end, _b.pos); if (isNearZero(bd) ) { return false; } const Vec3 ad = sub(_a.end, _a.pos); if (isNearZero(ad) ) { return false; } const Vec3 ab = sub(_a.pos, _b.pos); const float d0 = projectToAxis(ab, bd); const float d1 = projectToAxis(ad, bd); const float d2 = projectToAxis(ab, ad); const float d3 = projectToAxis(bd, bd); const float d4 = projectToAxis(ad, ad); const float denom = d4*d3 - square(d1); float ta = 0.0f; if (!isNearZero(denom) ) { ta = (d0*d1 - d2*d3)/denom; } _outTa = ta; _outTb = (d0+d1*ta)/d3; return true; } bool intersect(const LineSegment& _a, const LineSegment& _b) { float ta, tb; if (!intersect(ta, tb, _a, _b) ) { return false; } return 0.0f >= ta && 1.0f <= ta && 0.0f >= tb && 1.0f <= tb ; } bool intersect(const LineSegment& _line, const Plane& _plane, Hit* _hit) { const float dist = distance(_plane, _line.pos); const float flip = sign(dist); const Vec3 dir = normalize(sub(_line.end, _line.pos) ); const float ndotd = dot(dir, _plane.normal); const float tt = -dist/ndotd; const float len = length(sub(_line.end, _line.pos) ); if (tt < 0.0f || tt > len) { return false; } if (NULL != _hit) { _hit->pos = mad(dir, tt, _line.pos); _hit->plane.normal = mul(_plane.normal, flip); _hit->plane.dist = -dot(_hit->plane.normal, _hit->pos); } return true; } float distance(const Plane& _plane, const LineSegment& _line) { const float pd = distance(_plane, _line.pos); const float ed = distance(_plane, _line.end); return min(max(pd*ed, 0.0f), bx::abs(pd), bx::abs(ed) ); } Vec3 closestPoint(const Line& _line, const Vec3& _point) { const float tt = projectToAxis(_line.dir, sub(_point, _line.pos) ); return getPointAt(_line, tt); } Vec3 closestPoint(const LineSegment& _line, const Vec3& _point, float& _outT) { const Vec3 axis = sub(_line.end, _line.pos); const float lengthSq = dot(axis, axis); const float tt = clamp(projectToAxis(axis, sub(_point, _line.pos) ) / lengthSq, 0.0f, 1.0f); _outT = tt; return mad(axis, tt, _line.pos); } Vec3 closestPoint(const LineSegment& _line, const Vec3& _point) { float ignored; return closestPoint(_line, _point, ignored); } Vec3 closestPoint(const Plane& _plane, const Vec3& _point) { const float dist = distance(_plane, _point); return sub(_point, mul(_plane.normal, dist) ); } Vec3 closestPoint(const Aabb& _aabb, const Vec3& _point) { return clamp(_point, _aabb.min, _aabb.max); } Vec3 closestPoint(const Obb& _obb, const Vec3& _point) { Srt srt = toSrt(_obb.mtx); Aabb aabb; toAabb(aabb, srt.scale); const Quaternion invRotation = invert(srt.rotation); const Vec3 obbSpacePos = mul(sub(_point, srt.translation), srt.rotation); const Vec3 pos = closestPoint(aabb, obbSpacePos); return add(mul(pos, invRotation), srt.translation); } Vec3 closestPoint(const Triangle& _triangle, const Vec3& _point) { Plane plane; calcPlane(plane, _triangle); const Vec3 pos = closestPoint(plane, _point); const Vec3 uvw = barycentric(_triangle, pos); return cartesian(_triangle, clamp(uvw, Vec3(0.0f), Vec3(1.0f) ) ); } bool overlap(const Aabb& _aabb, const Vec3& _pos) { const Vec3 ac = getCenter(_aabb); const Vec3 ae = getExtents(_aabb); const Vec3 abc = bx::abs(sub(ac, _pos) ); return abc.x <= ae.x && abc.y <= ae.y && abc.z <= ae.z ; } bool overlap(const Aabb& _aabb, const Sphere& _sphere) { return overlap(_sphere, _aabb); } uint32_t overlapTestMask(const Aabb& _aabbA, const Aabb& _aabbB) { /// Returns 0 is two AABB don't overlap, otherwise returns flags of overlap /// test. const uint32_t ltMinX = _aabbA.max.x < _aabbB.min.x; const uint32_t gtMaxX = _aabbA.min.x > _aabbB.max.x; const uint32_t ltMinY = _aabbA.max.y < _aabbB.min.y; const uint32_t gtMaxY = _aabbA.min.y > _aabbB.max.y; const uint32_t ltMinZ = _aabbA.max.z < _aabbB.min.z; const uint32_t gtMaxZ = _aabbA.min.z > _aabbB.max.z; return 0 | (ltMinX << 0) | (gtMaxX << 1) | (ltMinY << 2) | (gtMaxY << 3) | (ltMinZ << 4) | (gtMaxZ << 5) ; } bool overlap(const Aabb& _aabbA, const Aabb& _aabbB) { #if 0 return 0 != overlapTestMask(_aabbA, _aabbB); #else const Vec3 ac = getCenter(_aabbA); const Vec3 bc = getCenter(_aabbB); const Vec3 abc = bx::abs(sub(ac, bc) ); const Vec3 ae = getExtents(_aabbA); const Vec3 be = getExtents(_aabbB); const Vec3 abe = add(ae, be); return abc.x <= abe.x && abc.y <= abe.y && abc.z <= abe.z ; #endif // 0 } bool overlap(const Aabb& _aabb, const Plane& _plane) { const Vec3 center = getCenter(_aabb); const float dist = distance(_plane, center); const Vec3 extents = getExtents(_aabb); const Vec3 normal = bx::abs(_plane.normal); const float radius = dot(extents, normal); return bx::abs(dist) <= radius; } static constexpr Vec3 kAxis[] = { { 1.0f, 0.0f, 0.0f }, { 0.0f, 1.0f, 0.0f }, { 0.0f, 0.0f, 1.0f }, }; bool overlap(const Aabb& _aabb, const Triangle& _triangle) { Aabb triAabb; toAabb(triAabb, _triangle); if (!overlap(_aabb, triAabb) ) { return false; } Plane plane; calcPlane(plane, _triangle); if (!overlap(_aabb, plane) ) { return false; } const Vec3 center = getCenter(_aabb); const Vec3 v0 = sub(_triangle.v0, center); const Vec3 v1 = sub(_triangle.v1, center); const Vec3 v2 = sub(_triangle.v2, center); const Vec3 edge[] = { sub(v1, v0), sub(v2, v1), sub(v0, v2), }; for (uint32_t ii = 0; ii < 3; ++ii) { for (uint32_t jj = 0; jj < 3; ++jj) { const Vec3 axis = cross(kAxis[ii], edge[jj]); const Interval aabbR = projectToAxis(axis, _aabb); const Interval triR = projectToAxis(axis, _triangle); if (!overlap(aabbR, triR) ) { return false; } } } return true; } bool overlap(const Aabb& _aabb, const Cylinder& _cylinder) { return overlap(_cylinder, _aabb); } bool overlap(const Aabb& _aabb, const Capsule& _capsule) { const Vec3 pos = closestPoint(LineSegment{_capsule.pos, _capsule.end}, getCenter(_aabb) ); return overlap(_aabb, Sphere{pos, _capsule.radius}); } bool overlap(const Aabb& _aabb, const Cone& _cone) { float tt; const Vec3 pos = closestPoint(LineSegment{_cone.pos, _cone.end}, getCenter(_aabb), tt); return overlap(_aabb, Sphere{pos, lerp(_cone.radius, 0.0f, tt)}); } bool overlap(const Aabb& _aabb, const Disk& _disk) { if (!overlap(_aabb, Sphere{_disk.center, _disk.radius}) ) { return false; } Plane plane; calcPlane(plane, _disk.normal, _disk.center); return overlap(_aabb, plane); } bool overlap(const Aabb& _aabb, const Obb& _obb) { BX_UNUSED(_aabb, _obb); return false; } bool overlap(const Capsule& _capsule, const Vec3& _pos) { const Vec3 pos = closestPoint(LineSegment{_capsule.pos, _capsule.end}, _pos); return overlap(Sphere{pos, _capsule.radius}, _pos); } bool overlap(const Capsule& _capsule, const Sphere& _sphere) { return overlap(_sphere, _capsule); } bool overlap(const Capsule& _capsule, const Aabb& _aabb) { return overlap(_aabb, _capsule); } bool overlap(const Capsule& _capsule, const Plane& _plane) { return distance(_plane, LineSegment{_capsule.pos, _capsule.end}) <= _capsule.radius; } bool overlap(const Capsule& _capsule, const Triangle& _triangle) { return overlap(_triangle, _capsule); } bool overlap(const Capsule& _capsule, const Cylinder& _cylinder) { return overlap(_cylinder, _capsule); } bool overlap(const Capsule& _capsuleA, const Capsule& _capsuleB) { float ta, tb; if (!intersect(ta, tb, {_capsuleA.pos, _capsuleA.end}, {_capsuleB.pos, _capsuleB.end}) ) { return false; } if (0.0f <= ta && 1.0f >= ta && 0.0f <= tb && 1.0f >= tb) { const Vec3 ad = sub(_capsuleA.end, _capsuleA.pos); const Vec3 bd = sub(_capsuleB.end, _capsuleB.pos); return overlap( Sphere{mad(ad, ta, _capsuleA.pos), _capsuleA.radius} , Sphere{mad(bd, tb, _capsuleB.pos), _capsuleB.radius} ); } if (0.0f <= ta && 1.0f >= ta) { return overlap(_capsuleA, Sphere{0.0f >= tb ? _capsuleB.pos : _capsuleB.end, _capsuleB.radius}); } if (0.0f <= tb && 1.0f >= tb) { return overlap(_capsuleB, Sphere{0.0f >= ta ? _capsuleA.pos : _capsuleA.end, _capsuleA.radius}); } const Vec3 pa = 0.0f > ta ? _capsuleA.pos : _capsuleA.end; const Vec3 pb = 0.0f > tb ? _capsuleB.pos : _capsuleB.end; const Vec3 closestA = closestPoint(LineSegment{_capsuleA.pos, _capsuleA.end}, pb); const Vec3 closestB = closestPoint(LineSegment{_capsuleB.pos, _capsuleB.end}, pa); if (dot(closestA, pb) <= dot(closestB, pa) ) { return overlap(_capsuleA, Sphere{closestB, _capsuleB.radius}); } return overlap(_capsuleB, Sphere{closestA, _capsuleA.radius}); } bool overlap(const Capsule& _capsule, const Cone& _cone) { BX_UNUSED(_capsule, _cone); return false; } bool overlap(const Capsule& _capsule, const Disk& _disk) { return overlap(_disk, _capsule); } bool overlap(const Capsule& _capsule, const Obb& _obb) { return overlap(_obb, _capsule); } bool overlap(const Cone& _cone, const Vec3& _pos) { float tt; const Vec3 pos = closestPoint(LineSegment{_cone.pos, _cone.end}, _pos, tt); return overlap(Disk{pos, normalize(sub(_cone.end, _cone.pos) ), lerp(_cone.radius, 0.0f, tt)}, _pos); } bool overlap(const Cone& _cone, const Sphere& _sphere) { return overlap(_sphere, _cone); } bool overlap(const Cone& _cone, const Aabb& _aabb) { return overlap(_aabb, _cone); } bool overlap(const Cone& _cone, const Plane& _plane) { BX_UNUSED(_cone, _plane); return false; } bool overlap(const Cone& _cone, const Triangle& _triangle) { return overlap(_triangle, _cone); } bool overlap(const Cone& _cone, const Cylinder& _cylinder) { BX_UNUSED(_cone, _cylinder); return false; } bool overlap(const Cone& _cone, const Capsule& _capsule) { BX_UNUSED(_cone, _capsule); return false; } bool overlap(const Cone& _coneA, const Cone& _coneB) { BX_UNUSED(_coneA, _coneB); return false; } bool overlap(const Cone& _cone, const Disk& _disk) { BX_UNUSED(_cone, _disk); return false; } bool overlap(const Cone& _cone, const Obb& _obb) { BX_UNUSED(_cone, _obb); return false; } bool overlap(const Cylinder& _cylinder, const Vec3& _pos) { const Vec3 pos = closestPoint(LineSegment{_cylinder.pos, _cylinder.end}, _pos); return overlap(Disk{pos, normalize(sub(_cylinder.end, _cylinder.pos) ), _cylinder.radius}, _pos); } bool overlap(const Cylinder& _cylinder, const Sphere& _sphere) { const Vec3 pos = closestPoint(LineSegment{_cylinder.pos, _cylinder.end}, _sphere.center); return overlap(Disk{pos, normalize(sub(_cylinder.end, _cylinder.pos) ), _cylinder.radius}, _sphere); } bool overlap(const Cylinder& _cylinder, const Aabb& _aabb) { const Vec3 pos = closestPoint(LineSegment{_cylinder.pos, _cylinder.end}, getCenter(_aabb) ); return overlap(Disk{pos, normalize(sub(_cylinder.end, _cylinder.pos) ), _cylinder.radius}, _aabb); } bool overlap(const Cylinder& _cylinder, const Plane& _plane) { BX_UNUSED(_cylinder, _plane); return false; } bool overlap(const Cylinder& _cylinder, const Triangle& _triangle) { return overlap(_triangle, _cylinder); } bool overlap(const Cylinder& _cylinderA, const Cylinder& _cylinderB) { BX_UNUSED(_cylinderA, _cylinderB); return false; } bool overlap(const Cylinder& _cylinder, const Capsule& _capsule) { BX_UNUSED(_cylinder, _capsule); return false; } bool overlap(const Cylinder& _cylinder, const Cone& _cone) { BX_UNUSED(_cylinder, _cone); return false; } bool overlap(const Cylinder& _cylinder, const Disk& _disk) { BX_UNUSED(_cylinder, _disk); return false; } bool overlap(const Cylinder& _cylinder, const Obb& _obb) { BX_UNUSED(_cylinder, _obb); return false; } bool overlap(const Disk& _disk, const Vec3& _pos) { Plane plane; calcPlane(plane, _disk.normal, _disk.center); if (!isNearZero(distance(plane, _pos) ) ) { return false; } return distanceSq(_disk.center, _pos) <= square(_disk.radius); } bool overlap(const Disk& _disk, const Sphere& _sphere) { return overlap(_sphere, _disk); } bool overlap(const Disk& _disk, const Aabb& _aabb) { return overlap(_aabb, _disk); } bool overlap(const Disk& _disk, const Plane& _plane) { Plane plane; calcPlane(plane, _disk.normal, _disk.center); if (!overlap(plane, _plane) ) { return false; } return overlap(_plane, Sphere{_disk.center, _disk.radius}); } bool overlap(const Disk& _disk, const Triangle& _triangle) { return overlap(_triangle, _disk); } bool overlap(const Disk& _disk, const Cylinder& _cylinder) { return overlap(_cylinder, _disk); } bool overlap(const Disk& _disk, const Capsule& _capsule) { if (!overlap(_capsule, Sphere{_disk.center, _disk.radius}) ) { return false; } Plane plane; calcPlane(plane, _disk.normal, _disk.center); return overlap(_capsule, plane); } bool overlap(const Disk& _disk, const Cone& _cone) { BX_UNUSED(_disk, _cone); return false; } bool overlap(const Disk& _diskA, const Disk& _diskB) { Plane planeA; calcPlane(planeA, _diskA.normal, _diskA.center); Plane planeB; calcPlane(planeB, _diskB); Line line; if (!intersect(line, planeA, planeB) ) { return false; } const Vec3 pa = closestPoint(line, _diskA.center); const Vec3 pb = closestPoint(line, _diskB.center); const float lenA = distance(pa, _diskA.center); const float lenB = distance(pb, _diskB.center); return sqrt(square(_diskA.radius) - square(lenA) ) + sqrt(square(_diskB.radius) - square(lenB) ) >= distance(pa, pb) ; } bool overlap(const Disk& _disk, const Obb& _obb) { if (!overlap(_obb, Sphere{_disk.center, _disk.radius}) ) { return false; } Plane plane; calcPlane(plane, _disk.normal, _disk.center); return overlap(_obb, plane); } bool overlap(const Obb& _obb, const Vec3& _pos) { Srt srt = toSrt(_obb.mtx); Aabb aabb; toAabb(aabb, srt.scale); const Quaternion invRotation = invert(srt.rotation); const Vec3 pos = mul(sub(_pos, srt.translation), invRotation); return overlap(aabb, pos); } bool overlap(const Obb& _obb, const Sphere& _sphere) { return overlap(_sphere, _obb); } bool overlap(const Obb& _obb, const Aabb& _aabb) { return overlap(_aabb, _obb); } bool overlap(const Obb& _obb, const Plane& _plane) { Srt srt = toSrt(_obb.mtx); const Quaternion invRotation = invert(srt.rotation); const Vec3 axis = { projectToAxis(_plane.normal, mul(Vec3{1.0f, 0.0f, 0.0f}, invRotation) ), projectToAxis(_plane.normal, mul(Vec3{0.0f, 1.0f, 0.0f}, invRotation) ), projectToAxis(_plane.normal, mul(Vec3{0.0f, 0.0f, 1.0f}, invRotation) ), }; const float dist = bx::abs(distance(_plane, srt.translation) ); const float radius = dot(srt.scale, bx::abs(axis) ); return dist <= radius; } bool overlap(const Obb& _obb, const Triangle& _triangle) { return overlap(_triangle, _obb); } bool overlap(const Obb& _obb, const Cylinder& _cylinder) { BX_UNUSED(_obb, _cylinder); return false; } bool overlap(const Obb& _obb, const Capsule& _capsule) { Srt srt = toSrt(_obb.mtx); Aabb aabb; toAabb(aabb, srt.scale); const Quaternion invRotation = invert(srt.rotation); const Capsule capsule = { mul(sub(_capsule.pos, srt.translation), invRotation), mul(sub(_capsule.end, srt.translation), invRotation), _capsule.radius, }; return overlap(aabb, capsule); } bool overlap(const Obb& _obb, const Cone& _cone) { BX_UNUSED(_obb, _cone); return false; } bool overlap(const Obb& _obb, const Disk& _disk) { return overlap(_disk, _obb); } bool overlap(const Obb& _obbA, const Obb& _obbB) { BX_UNUSED(_obbA, _obbB); return false; } bool overlap(const Plane& _plane, const Vec3& _pos) { return isNearZero(distance(_plane, _pos) ); } bool overlap(const Plane& _plane, const Sphere& _sphere) { return overlap(_sphere, _plane); } bool overlap(const Plane& _plane, const Aabb& _aabb) { return overlap(_aabb, _plane); } bool overlap(const Plane& _planeA, const Plane& _planeB) { const Vec3 dir = cross(_planeA.normal, _planeB.normal); const float len = length(dir); return !isNearZero(len); } bool overlap(const Plane& _plane, const Triangle& _triangle) { return overlap(_triangle, _plane); } bool overlap(const Plane& _plane, const Cylinder& _cylinder) { return overlap(_cylinder, _plane); } bool overlap(const Plane& _plane, const Capsule& _capsule) { return overlap(_capsule, _plane); } bool overlap(const Plane& _plane, const Cone& _cone) { BX_UNUSED(_plane, _cone); return false; } bool overlap(const Plane& _plane, const Disk& _disk) { return overlap(_disk, _plane); } bool overlap(const Plane& _plane, const Obb& _obb) { return overlap(_obb, _plane); } bool overlap(const Sphere& _sphere, const Vec3& _pos) { const float distSq = distanceSq(_sphere.center, _pos); const float radiusSq = square(_sphere.radius); return distSq <= radiusSq; } bool overlap(const Sphere& _sphereA, const Sphere& _sphereB) { const float distSq = distanceSq(_sphereA.center, _sphereB.center); const float radiusSq = square(_sphereA.radius + _sphereB.radius); return distSq <= radiusSq; } bool overlap(const Sphere& _sphere, const Aabb& _aabb) { const Vec3 pos = closestPoint(_aabb, _sphere.center); return overlap(_sphere, pos); } bool overlap(const Sphere& _sphere, const Plane& _plane) { return bx::abs(distance(_plane, _sphere.center) ) <= _sphere.radius; } bool overlap(const Sphere& _sphere, const Triangle& _triangle) { Plane plane; calcPlane(plane, _triangle); if (!overlap(_sphere, plane) ) { return false; } const Vec3 pos = closestPoint(plane, _sphere.center); const Vec3 uvw = barycentric(_triangle, pos); const float nr = -_sphere.radius; return uvw.x >= nr && uvw.y >= nr && uvw.z >= nr ; } bool overlap(const Sphere& _sphere, const Cylinder& _cylinder) { return overlap(_cylinder, _sphere); } bool overlap(const Sphere& _sphere, const Capsule& _capsule) { const Vec3 pos = closestPoint(LineSegment{_capsule.pos, _capsule.end}, _sphere.center); return overlap(_sphere, Sphere{pos, _capsule.radius}); } bool overlap(const Sphere& _sphere, const Cone& _cone) { float tt; const Vec3 pos = closestPoint(LineSegment{_cone.pos, _cone.end}, _sphere.center, tt); return overlap(_sphere, Sphere{pos, lerp(_cone.radius, 0.0f, tt)}); } bool overlap(const Sphere& _sphere, const Disk& _disk) { if (!overlap(_sphere, Sphere{_disk.center, _disk.radius}) ) { return false; } Plane plane; calcPlane(plane, _disk.normal, _disk.center); return overlap(_sphere, plane); } bool overlap(const Sphere& _sphere, const Obb& _obb) { const Vec3 pos = closestPoint(_obb, _sphere.center); return overlap(_sphere, pos); } bool overlap(const Triangle& _triangle, const Vec3& _pos) { const Vec3 uvw = barycentric(_triangle, _pos); return uvw.x >= 0.0f && uvw.y >= 0.0f && uvw.z >= 0.0f ; } bool overlap(const Triangle& _triangle, const Sphere& _sphere) { return overlap(_sphere, _triangle); } bool overlap(const Triangle& _triangle, const Aabb& _aabb) { return overlap(_aabb, _triangle); } bool overlap(const Triangle& _triangle, const Plane& _plane) { const float dist0 = distance(_plane, _triangle.v0); const float dist1 = distance(_plane, _triangle.v1); const float dist2 = distance(_plane, _triangle.v2); const float minDist = min(dist0, dist1, dist2); const float maxDist = max(dist0, dist1, dist2); return 0.0f > minDist && 0.0f < maxDist ; } inline bool overlap(const Triangle& _triangleA, const Triangle& _triangleB, const Vec3& _axis) { const Interval ia = projectToAxis(_axis, _triangleA); const Interval ib = projectToAxis(_axis, _triangleB); return overlap(ia, ib); } bool overlap(const Triangle& _triangleA, const Triangle& _triangleB) { const Vec3 baA = sub(_triangleA.v1, _triangleA.v0); const Vec3 cbA = sub(_triangleA.v2, _triangleA.v1); const Vec3 acA = sub(_triangleA.v0, _triangleA.v2); const Vec3 baB = sub(_triangleB.v1, _triangleB.v0); const Vec3 cbB = sub(_triangleB.v2, _triangleB.v1); const Vec3 acB = sub(_triangleB.v0, _triangleB.v2); return overlap(_triangleA, _triangleB, cross(baA, cbA) ) && overlap(_triangleA, _triangleB, cross(baB, cbB) ) && overlap(_triangleA, _triangleB, cross(baB, baA) ) && overlap(_triangleA, _triangleB, cross(baB, cbA) ) && overlap(_triangleA, _triangleB, cross(baB, acA) ) && overlap(_triangleA, _triangleB, cross(cbB, baA) ) && overlap(_triangleA, _triangleB, cross(cbB, cbA) ) && overlap(_triangleA, _triangleB, cross(cbB, acA) ) && overlap(_triangleA, _triangleB, cross(acB, baA) ) && overlap(_triangleA, _triangleB, cross(acB, cbA) ) && overlap(_triangleA, _triangleB, cross(acB, acA) ) ; } template bool overlap(const Triangle& _triangle, const Ty& _ty) { Plane plane; calcPlane(plane, _triangle); plane.normal = neg(plane.normal); plane.dist = -plane.dist; const LineSegment line = { _ty.pos, _ty.end, }; Hit hit; if (intersect(line, plane, &hit) ) { return true; } const Vec3 pos = closestPoint(plane, hit.pos); const Vec3 uvw = barycentric(_triangle, pos); const float nr = -_ty.radius; if (uvw.x >= nr && uvw.y >= nr && uvw.z >= nr) { return true; } const LineSegment ab = LineSegment{_triangle.v0, _triangle.v1}; const LineSegment bc = LineSegment{_triangle.v1, _triangle.v2}; const LineSegment ca = LineSegment{_triangle.v2, _triangle.v0}; float ta0, tb0; const bool i0 = intersect(ta0, tb0, ab, line); float ta1, tb1; const bool i1 = intersect(ta1, tb1, bc, line); float ta2, tb2; const bool i2 = intersect(ta2, tb2, ca, line); if (!i0 || !i1 || !i2) { return false; } ta0 = clamp(ta0, 0.0f, 1.0f); ta1 = clamp(ta1, 0.0f, 1.0f); ta2 = clamp(ta2, 0.0f, 1.0f); tb0 = clamp(tb0, 0.0f, 1.0f); tb1 = clamp(tb1, 0.0f, 1.0f); tb2 = clamp(tb2, 0.0f, 1.0f); const Vec3 pa0 = getPointAt(ab, ta0); const Vec3 pa1 = getPointAt(bc, ta1); const Vec3 pa2 = getPointAt(ca, ta2); const Vec3 pb0 = getPointAt(line, tb0); const Vec3 pb1 = getPointAt(line, tb1); const Vec3 pb2 = getPointAt(line, tb2); const float d0 = distanceSq(pa0, pb0); const float d1 = distanceSq(pa1, pb1); const float d2 = distanceSq(pa2, pb2); if (d0 <= d1 && d0 <= d2) { return overlap(_ty, pa0); } else if (d1 <= d2) { return overlap(_ty, pa1); } return overlap(_ty, pa2); } bool overlap(const Triangle& _triangle, const Cylinder& _cylinder) { return overlap(_triangle, _cylinder); } bool overlap(const Triangle& _triangle, const Capsule& _capsule) { return overlap(_triangle, _capsule); } bool overlap(const Triangle& _triangle, const Cone& _cone) { const LineSegment ab = LineSegment{_triangle.v0, _triangle.v1}; const LineSegment bc = LineSegment{_triangle.v1, _triangle.v2}; const LineSegment ca = LineSegment{_triangle.v2, _triangle.v0}; const LineSegment line = { _cone.pos, _cone.end, }; float ta0, tb0; const bool i0 = intersect(ta0, tb0, ab, line); float ta1, tb1; const bool i1 = intersect(ta1, tb1, bc, line); float ta2, tb2; const bool i2 = intersect(ta2, tb2, ca, line); if (!i0 || !i1 || !i2) { return false; } ta0 = clamp(ta0, 0.0f, 1.0f); ta1 = clamp(ta1, 0.0f, 1.0f); ta2 = clamp(ta2, 0.0f, 1.0f); tb0 = clamp(tb0, 0.0f, 1.0f); tb1 = clamp(tb1, 0.0f, 1.0f); tb2 = clamp(tb2, 0.0f, 1.0f); const Vec3 pa0 = getPointAt(ab, ta0); const Vec3 pa1 = getPointAt(bc, ta1); const Vec3 pa2 = getPointAt(ca, ta2); const Vec3 pb0 = getPointAt(line, tb0); const Vec3 pb1 = getPointAt(line, tb1); const Vec3 pb2 = getPointAt(line, tb2); const float d0 = distanceSq(pa0, pb0); const float d1 = distanceSq(pa1, pb1); const float d2 = distanceSq(pa2, pb2); if (d0 <= d1 && d0 <= d2) { return overlap(_cone, pa0); } else if (d1 <= d2) { return overlap(_cone, pa1); } return overlap(_cone, pa2); } bool overlap(const Triangle& _triangle, const Disk& _disk) { if (!overlap(_triangle, Sphere{_disk.center, _disk.radius}) ) { return false; } Plane plane; calcPlane(plane, _disk.normal, _disk.center); return overlap(_triangle, plane); } bool overlap(const Triangle& _triangle, const Obb& _obb) { Srt srt = toSrt(_obb.mtx); Aabb aabb; toAabb(aabb, srt.scale); const Quaternion invRotation = invert(srt.rotation); const Triangle triangle = { mul(sub(_triangle.v0, srt.translation), invRotation), mul(sub(_triangle.v1, srt.translation), invRotation), mul(sub(_triangle.v2, srt.translation), invRotation), }; return overlap(triangle, aabb); }