/* * Copyright 2021 elven cache. All rights reserved. * License: https://github.com/bkaradzic/bgfx#license-bsd-2-clause */ /* * Implement screen space shadows as bgfx example. Goal is to explore various * options and parameters. * * radius * ====== * Use radius/shadow distance defined in screen space pixels or world units. * * In world uints, the screen distance will shrink as objects get farther away. * This can provide more natural looking shadows and fade out the effect at a * distance, leaving screen space shadows as an added detail effect near the * camera. * * Screen space units mean that objects will cast the same length of shadow * regardless of how far they are away from the camera. Pull back the camera * and objects' shadows will appear to grow. On the other hand, this can be * desired because it will allow objects at the horizon like hills and trees to * cast a shadow. Depending on your scene, such far objects may be outside of * the area affected by regular shadow maps. Even with multiple cascades, you * may not be able to afford shadow maps across the entire scene. * * This sample does not put effort into avoiding the initial pixel or avoiding * resampling the same value if the step size is relatively smaller than the * sampled distance in screen space. May want to set a minimum distance so each * sample covers a unique value or take care to select a neighboring pixel for * the first sample. * * soft contact shadows * ==================== * If hard screen space shadows are added to a scene that already has soft * shadows via shadow maps, the hard edge can look out of place. Additionally, * it is common for screen space shadows to not quite line up with other * shadows. This is because the depth buffer does not specify thickness, * leaving some pixels incorrectly occluded. For example, you would not want * some thin feature like a pipe to cast a shadow as if you were seeing the * side of a metal wall. * * These soft contact shadows are an attempt to minimize the problems described * above. By adding a smoother falloff, they may blend into the scene better. * Inspired by screen space ambient occlusion, this sample takes into account * distance from shadowed pixel to its occluders. * * - hard If there's any occluder found, mark the source pixel as shadowed. * * - soft Modulate shadow by distance to the first occluder. Assuming a * nearby pixel is closer and more likely to represent an accurate * shadow, it is darker. If the first pixel to be an occluder is far * away, it should likely cast a softer shadow. * * - very In addition to the same modulation used by soft mode, also * soft reduce the occlusion contribution from pixels that are farther * away. This sample compares the depth difference to the shadow * radius, a 1D distance, instead of comparing the actually * distance in 3D space. */ #include #include #include #include #include #include namespace { // Gbuffer has multiple render targets #define GBUFFER_RT_COLOR 0 #define GBUFFER_RT_NORMAL 1 #define GBUFFER_RT_DEPTH 2 #define GBUFFER_RENDER_TARGETS 3 #define MODEL_COUNT 100 static const char * s_meshPaths[] = { "meshes/unit_sphere.bin", "meshes/column.bin", "meshes/tree.bin", "meshes/hollowcube.bin", "meshes/bunny.bin" }; static const float s_meshScale[] = { 0.25f, 0.05f, 0.15f, 0.25f, 0.25f }; // Vertex decl for our screen space quad (used in deferred rendering) struct PosTexCoord0Vertex { float m_x; float m_y; float m_z; float m_u; float m_v; static void init() { ms_layout .begin() .add(bgfx::Attrib::Position, 3, bgfx::AttribType::Float) .add(bgfx::Attrib::TexCoord0, 2, bgfx::AttribType::Float) .end(); } static bgfx::VertexLayout ms_layout; }; bgfx::VertexLayout PosTexCoord0Vertex::ms_layout; struct Uniforms { enum { NumVec4 = 12 }; void init() { u_params = bgfx::createUniform("u_params", bgfx::UniformType::Vec4, NumVec4); }; void submit() const { bgfx::setUniform(u_params, m_params, NumVec4); } void destroy() { bgfx::destroy(u_params); } union { struct { /* 0 */ struct { float m_frameIdx; float m_shadowRadius; float m_shadowSteps; float m_useNoiseOffset; }; /* 1 */ struct { float m_depthUnpackConsts[2]; float m_contactShadowsMode; float m_useScreenSpaceRadius; }; /* 2 */ struct { float m_ndcToViewMul[2]; float m_ndcToViewAdd[2]; }; /* 3 */ struct { float m_lightPosition[3]; float m_displayShadows; }; /* 4-7 */ struct { float m_worldToView[16]; }; // built-in u_view will be transform for quad during screen passes /* 8-11 */ struct { float m_viewToProj[16]; }; // built-in u_proj will be transform for quad during screen passes }; float m_params[NumVec4 * 4]; }; bgfx::UniformHandle u_params; }; struct RenderTarget { void init(uint32_t _width, uint32_t _height, bgfx::TextureFormat::Enum _format, uint64_t _flags) { m_texture = bgfx::createTexture2D(uint16_t(_width), uint16_t(_height), false, 1, _format, _flags); const bool destroyTextures = true; m_buffer = bgfx::createFrameBuffer(1, &m_texture, destroyTextures); } void destroy() { // also responsible for destroying texture bgfx::destroy(m_buffer); } bgfx::TextureHandle m_texture; bgfx::FrameBufferHandle m_buffer; }; void screenSpaceQuad(float _textureWidth, float _textureHeight, float _texelHalf, bool _originBottomLeft, float _width = 1.0f, float _height = 1.0f) { if (3 == bgfx::getAvailTransientVertexBuffer(3, PosTexCoord0Vertex::ms_layout)) { bgfx::TransientVertexBuffer vb; bgfx::allocTransientVertexBuffer(&vb, 3, PosTexCoord0Vertex::ms_layout); PosTexCoord0Vertex* vertex = (PosTexCoord0Vertex*)vb.data; const float minx = -_width; const float maxx = _width; const float miny = 0.0f; const float maxy = _height * 2.0f; const float texelHalfW = _texelHalf / _textureWidth; const float texelHalfH = _texelHalf / _textureHeight; const float minu = -1.0f + texelHalfW; const float maxu = 1.0f + texelHalfW; const float zz = 0.0f; float minv = texelHalfH; float maxv = 2.0f + texelHalfH; if (_originBottomLeft) { float temp = minv; minv = maxv; maxv = temp; minv -= 1.0f; maxv -= 1.0f; } vertex[0].m_x = minx; vertex[0].m_y = miny; vertex[0].m_z = zz; vertex[0].m_u = minu; vertex[0].m_v = minv; vertex[1].m_x = maxx; vertex[1].m_y = miny; vertex[1].m_z = zz; vertex[1].m_u = maxu; vertex[1].m_v = minv; vertex[2].m_x = maxx; vertex[2].m_y = maxy; vertex[2].m_z = zz; vertex[2].m_u = maxu; vertex[2].m_v = maxv; bgfx::setVertexBuffer(0, &vb); } } void vec2Set(float* _v, float _x, float _y) { _v[0] = _x; _v[1] = _y; } void mat4Set(float * _m, const float * _src) { const uint32_t MAT4_FLOATS = 16; for (uint32_t ii = 0; ii < MAT4_FLOATS; ++ii) { _m[ii] = _src[ii]; } } class ExampleScreenSpaceShadows : public entry::AppI { public: ExampleScreenSpaceShadows(const char* _name, const char* _description) : entry::AppI(_name, _description) , m_currFrame(UINT32_MAX) , m_texelHalf(0.0f) { } void init(int32_t _argc, const char* const* _argv, uint32_t _width, uint32_t _height) override { Args args(_argc, _argv); m_width = _width; m_height = _height; m_debug = BGFX_DEBUG_NONE; m_reset = BGFX_RESET_VSYNC; bgfx::Init init; init.type = args.m_type; init.vendorId = args.m_pciId; init.resolution.width = m_width; init.resolution.height = m_height; init.resolution.reset = m_reset; bgfx::init(init); // Enable debug text. bgfx::setDebug(m_debug); // Create uniforms m_uniforms.init(); // Create texture sampler uniforms (used when we bind textures) s_albedo = bgfx::createUniform("s_albedo", bgfx::UniformType::Sampler); // Model's source albedo s_color = bgfx::createUniform("s_color", bgfx::UniformType::Sampler); // Color (albedo) gbuffer, default color input s_normal = bgfx::createUniform("s_normal", bgfx::UniformType::Sampler); // Normal gbuffer, Model's source normal s_depth = bgfx::createUniform("s_depth", bgfx::UniformType::Sampler); // Depth gbuffer s_shadows = bgfx::createUniform("s_shadows", bgfx::UniformType::Sampler); // Create program from shaders. m_gbufferProgram = loadProgram("vs_sss_gbuffer", "fs_sss_gbuffer"); // Fill gbuffer m_sphereProgram = loadProgram("vs_sss_gbuffer", "fs_sss_unlit"); m_linearDepthProgram = loadProgram("vs_sss_screenquad", "fs_sss_linear_depth"); m_shadowsProgram = loadProgram("vs_sss_screenquad", "fs_screen_space_shadows"); m_combineProgram = loadProgram("vs_sss_screenquad", "fs_sss_deferred_combine"); // Compute lighting from gbuffer // Load some meshes for (uint32_t ii = 0; ii < BX_COUNTOF(s_meshPaths); ++ii) { m_meshes[ii] = meshLoad(s_meshPaths[ii]); } // sphere is first mesh m_lightModel.mesh = 0; // Randomly create some models bx::RngMwc mwc; for (uint32_t ii = 0; ii < BX_COUNTOF(m_models); ++ii) { Model& model = m_models[ii]; model.mesh = mwc.gen() % BX_COUNTOF(s_meshPaths); model.position[0] = (((mwc.gen() % 256)) - 128.0f) / 20.0f; model.position[1] = 0; model.position[2] = (((mwc.gen() % 256)) - 128.0f) / 20.0f; } // Load ground, just use the cube m_ground = meshLoad("meshes/cube.bin"); m_groundTexture = loadTexture("textures/fieldstone-rgba.dds"); m_normalTexture = loadTexture("textures/fieldstone-n.dds"); m_recreateFrameBuffers = false; createFramebuffers(); // Vertex decl PosTexCoord0Vertex::init(); // Init camera cameraCreate(); cameraSetPosition({ 0.0f, 1.5f, -4.0f }); cameraSetVerticalAngle(-0.3f); m_fovY = 60.0f; cameraGetViewMtx(m_view); bx::mtxProj(m_proj, m_fovY, float(m_size[0]) / float(m_size[1]), 0.01f, 100.0f, bgfx::getCaps()->homogeneousDepth); // Track whether previous results are valid m_havePrevious = false; // Get renderer capabilities info. const bgfx::RendererType::Enum renderer = bgfx::getRendererType(); m_texelHalf = bgfx::RendererType::Direct3D9 == renderer ? 0.5f : 0.0f; imguiCreate(); } int32_t shutdown() override { for (uint32_t ii = 0; ii < BX_COUNTOF(s_meshPaths); ++ii) { meshUnload(m_meshes[ii]); } meshUnload(m_ground); bgfx::destroy(m_normalTexture); bgfx::destroy(m_groundTexture); bgfx::destroy(m_gbufferProgram); bgfx::destroy(m_sphereProgram); bgfx::destroy(m_linearDepthProgram); bgfx::destroy(m_shadowsProgram); bgfx::destroy(m_combineProgram); m_uniforms.destroy(); bgfx::destroy(s_albedo); bgfx::destroy(s_color); bgfx::destroy(s_normal); bgfx::destroy(s_depth); bgfx::destroy(s_shadows); destroyFramebuffers(); cameraDestroy(); imguiDestroy(); bgfx::shutdown(); return 0; } bool update() override { if (!entry::processEvents(m_width, m_height, m_debug, m_reset, &m_mouseState)) { // skip processing when minimized, otherwise crashing if (0 == m_width || 0 == m_height) { return true; } // Update frame timer int64_t now = bx::getHPCounter(); static int64_t last = now; const int64_t frameTime = now - last; last = now; const double freq = double(bx::getHPFrequency()); const float deltaTime = float(frameTime / freq); const bgfx::Caps* caps = bgfx::getCaps(); if (m_size[0] != (int32_t)m_width || m_size[1] != (int32_t)m_height || m_recreateFrameBuffers) { destroyFramebuffers(); createFramebuffers(); m_recreateFrameBuffers = false; } // rotate light const float rotationSpeed = m_moveLight ? 0.75f : 0.0f; m_lightRotation += deltaTime * rotationSpeed; if (bx::kPi2 < m_lightRotation) { m_lightRotation -= bx::kPi2; } m_lightModel.position[0] = bx::cos(m_lightRotation) * 3.0f; m_lightModel.position[1] = 1.5f; m_lightModel.position[2] = bx::sin(m_lightRotation) * 3.0f; // Update camera cameraUpdate(deltaTime*0.15f, m_mouseState, ImGui::MouseOverArea() ); // Set up matrices for gbuffer cameraGetViewMtx(m_view); updateUniforms(); bx::mtxProj(m_proj, m_fovY, float(m_size[0]) / float(m_size[1]), 0.01f, 100.0f, caps->homogeneousDepth); bx::mtxProj(m_proj2, m_fovY, float(m_size[0]) / float(m_size[1]), 0.01f, 100.0f, false); bgfx::ViewId view = 0; // Draw everything into gbuffer { bgfx::setViewName(view, "gbuffer"); bgfx::setViewClear(view , BGFX_CLEAR_COLOR | BGFX_CLEAR_DEPTH , 0 , 1.0f , 0 ); bgfx::setViewRect(view, 0, 0, uint16_t(m_size[0]), uint16_t(m_size[1])); bgfx::setViewTransform(view, m_view, m_proj); // Make sure when we draw it goes into gbuffer and not backbuffer bgfx::setViewFrameBuffer(view, m_gbuffer); bgfx::setState(0 | BGFX_STATE_WRITE_RGB | BGFX_STATE_WRITE_A | BGFX_STATE_WRITE_Z | BGFX_STATE_DEPTH_TEST_LESS ); drawAllModels(view, m_gbufferProgram, m_uniforms); // draw sphere to visualize light { const float scale = s_meshScale[m_lightModel.mesh]; float mtx[16]; bx::mtxSRT(mtx , scale , scale , scale , 0.0f , 0.0f , 0.0f , m_lightModel.position[0] , m_lightModel.position[1] , m_lightModel.position[2] ); m_uniforms.submit(); meshSubmit(m_meshes[m_lightModel.mesh], view, m_sphereProgram, mtx); } ++view; } float orthoProj[16]; bx::mtxOrtho(orthoProj, 0.0f, 1.0f, 1.0f, 0.0f, 0.0f, 1.0f, 0.0f, caps->homogeneousDepth); { // clear out transform stack float identity[16]; bx::mtxIdentity(identity); bgfx::setTransform(identity); } // Convert depth to linear depth for shadow depth compare { bgfx::setViewName(view, "linear depth"); bgfx::setViewRect(view, 0, 0, uint16_t(m_width), uint16_t(m_height)); bgfx::setViewTransform(view, NULL, orthoProj); bgfx::setViewFrameBuffer(view, m_linearDepth.m_buffer); bgfx::setState(0 | BGFX_STATE_WRITE_RGB | BGFX_STATE_WRITE_A | BGFX_STATE_DEPTH_TEST_ALWAYS ); bgfx::setTexture(0, s_depth, m_gbufferTex[GBUFFER_RT_DEPTH]); m_uniforms.submit(); screenSpaceQuad(float(m_width), float(m_height), m_texelHalf, caps->originBottomLeft); bgfx::submit(view, m_linearDepthProgram); ++view; } // Do screen space shadows { bgfx::setViewName(view, "screen space shadows"); bgfx::setViewRect(view, 0, 0, uint16_t(m_width), uint16_t(m_height)); bgfx::setViewTransform(view, NULL, orthoProj); bgfx::setViewFrameBuffer(view, m_shadows.m_buffer); bgfx::setState(0 | BGFX_STATE_WRITE_RGB | BGFX_STATE_WRITE_A | BGFX_STATE_DEPTH_TEST_ALWAYS ); bgfx::setTexture(0, s_depth, m_linearDepth.m_texture); m_uniforms.submit(); screenSpaceQuad(float(m_width), float(m_height), m_texelHalf, caps->originBottomLeft); bgfx::submit(view, m_shadowsProgram); ++view; } // Shade gbuffer { bgfx::setViewName(view, "combine"); bgfx::setViewRect(view, 0, 0, uint16_t(m_width), uint16_t(m_height)); bgfx::setViewTransform(view, NULL, orthoProj); bgfx::setViewFrameBuffer(view, BGFX_INVALID_HANDLE); bgfx::setState(0 | BGFX_STATE_WRITE_RGB | BGFX_STATE_WRITE_A | BGFX_STATE_DEPTH_TEST_ALWAYS ); bgfx::setTexture(0, s_color, m_gbufferTex[GBUFFER_RT_COLOR]); bgfx::setTexture(1, s_normal, m_gbufferTex[GBUFFER_RT_NORMAL]); bgfx::setTexture(2, s_depth, m_linearDepth.m_texture); bgfx::setTexture(3, s_shadows, m_shadows.m_texture); m_uniforms.submit(); screenSpaceQuad(float(m_width), float(m_height), m_texelHalf, caps->originBottomLeft); bgfx::submit(view, m_combineProgram); ++view; } // Draw UI imguiBeginFrame(m_mouseState.m_mx , m_mouseState.m_my , (m_mouseState.m_buttons[entry::MouseButton::Left] ? IMGUI_MBUT_LEFT : 0) | (m_mouseState.m_buttons[entry::MouseButton::Right] ? IMGUI_MBUT_RIGHT : 0) | (m_mouseState.m_buttons[entry::MouseButton::Middle] ? IMGUI_MBUT_MIDDLE : 0) , m_mouseState.m_mz , uint16_t(m_width) , uint16_t(m_height) ); showExampleDialog(this); ImGui::SetNextWindowPos( ImVec2(m_width - m_width / 4.0f - 10.0f, 10.0f) , ImGuiCond_FirstUseEver ); ImGui::SetNextWindowSize( ImVec2(m_width / 4.0f, m_height / 2.3f) , ImGuiCond_FirstUseEver ); ImGui::Begin("Settings" , NULL , 0 ); ImGui::PushItemWidth(ImGui::GetWindowWidth() * 0.5f); { ImGui::Text("shadow controls:"); ImGui::Checkbox("screen space radius", &m_useScreenSpaceRadius); if (ImGui::IsItemHovered()) ImGui::SetTooltip("define radius in pixels or world units"); if (m_useScreenSpaceRadius) { ImGui::SliderFloat("radius in pixels", &m_shadowRadiusPixels, 1.0f, 100.0f); } else { ImGui::SliderFloat("radius in world units", &m_shadowRadius, 1e-3f, 1.0f); } ImGui::SliderInt("shadow steps", &m_shadowSteps, 1, 64); if (ImGui::IsItemHovered()) ImGui::SetTooltip("number of steps/samples to take between shaded pixel and radius"); ImGui::Combo("contact shadows mode", &m_contactShadowsMode, "hard\0soft\0very soft\0\0"); if (ImGui::IsItemHovered()) { ImGui::BeginTooltip(); ImGui::Text("hard"); ImGui::BulletText("any occluder, fully shadowed"); ImGui::Text("soft"); ImGui::BulletText("modulate shadow by distance to first occluder"); ImGui::Text("very soft"); ImGui::BulletText("also reduce each shadow contribution by distance"); ImGui::EndTooltip(); } ImGui::Checkbox("add random offset to initial position", &m_useNoiseOffset); if (ImGui::IsItemHovered()) ImGui::SetTooltip("hide banding with noise"); ImGui::Checkbox("use different offset each frame", &m_dynamicNoise); ImGui::Separator(); ImGui::Text("scene controls:"); ImGui::Checkbox("display shadows only", &m_displayShadows); ImGui::Checkbox("move light", &m_moveLight); } ImGui::End(); imguiEndFrame(); // Advance to next frame. Rendering thread will be kicked to // process submitted rendering primitives. m_currFrame = bgfx::frame(); return true; } return false; } void drawAllModels(bgfx::ViewId _pass, bgfx::ProgramHandle _program, const Uniforms & _uniforms) { for (uint32_t ii = 0; ii < BX_COUNTOF(m_models); ++ii) { const Model& model = m_models[ii]; // Set up transform matrix for each model const float scale = s_meshScale[model.mesh]; float mtx[16]; bx::mtxSRT(mtx , scale , scale , scale , 0.0f , 0.0f , 0.0f , model.position[0] , model.position[1] , model.position[2] ); // Submit mesh to gbuffer bgfx::setTexture(0, s_albedo, m_groundTexture); bgfx::setTexture(1, s_normal, m_normalTexture); _uniforms.submit(); meshSubmit(m_meshes[model.mesh], _pass, _program, mtx); } // Draw ground float mtxScale[16]; const float scale = 10.0f; bx::mtxScale(mtxScale, scale, scale, scale); float mtxTranslate[16]; bx::mtxTranslate(mtxTranslate , 0.0f , -10.0f , 0.0f ); float mtx[16]; bx::mtxMul(mtx, mtxScale, mtxTranslate); bgfx::setTexture(0, s_albedo, m_groundTexture); bgfx::setTexture(1, s_normal, m_normalTexture); _uniforms.submit(); meshSubmit(m_ground, _pass, _program, mtx); } void createFramebuffers() { m_size[0] = m_width; m_size[1] = m_height; const uint64_t pointSampleFlags = 0 | BGFX_TEXTURE_RT | BGFX_SAMPLER_U_CLAMP | BGFX_SAMPLER_V_CLAMP | BGFX_SAMPLER_MIN_POINT | BGFX_SAMPLER_MAG_POINT | BGFX_SAMPLER_MIP_POINT ; m_gbufferTex[GBUFFER_RT_COLOR] = bgfx::createTexture2D(uint16_t(m_size[0]), uint16_t(m_size[1]), false, 1, bgfx::TextureFormat::BGRA8, pointSampleFlags); m_gbufferTex[GBUFFER_RT_NORMAL] = bgfx::createTexture2D(uint16_t(m_size[0]), uint16_t(m_size[1]), false, 1, bgfx::TextureFormat::BGRA8, pointSampleFlags); m_gbufferTex[GBUFFER_RT_DEPTH] = bgfx::createTexture2D(uint16_t(m_size[0]), uint16_t(m_size[1]), false, 1, bgfx::TextureFormat::D32F, pointSampleFlags); m_gbuffer = bgfx::createFrameBuffer(BX_COUNTOF(m_gbufferTex), m_gbufferTex, true); m_linearDepth.init(m_size[0], m_size[1], bgfx::TextureFormat::R16F, pointSampleFlags); m_shadows.init(m_size[0], m_size[1], bgfx::TextureFormat::R16F, pointSampleFlags); } // all buffers set to destroy their textures void destroyFramebuffers() { bgfx::destroy(m_gbuffer); m_linearDepth.destroy(); m_shadows.destroy(); } void updateUniforms() { m_uniforms.m_displayShadows = m_displayShadows ? 1.0f : 0.0f; m_uniforms.m_frameIdx = m_dynamicNoise ? float(m_currFrame % 8) : 0.0f; m_uniforms.m_shadowRadius = m_useScreenSpaceRadius ? m_shadowRadiusPixels : m_shadowRadius; m_uniforms.m_shadowSteps = float(m_shadowSteps); m_uniforms.m_useNoiseOffset = m_useNoiseOffset ? 1.0f : 0.0f; m_uniforms.m_contactShadowsMode = float(m_contactShadowsMode); m_uniforms.m_useScreenSpaceRadius = m_useScreenSpaceRadius ? 1.0f : 0.0f; mat4Set(m_uniforms.m_worldToView, m_view); mat4Set(m_uniforms.m_viewToProj, m_proj); // from assao sample, cs_assao_prepare_depths.sc { // float depthLinearizeMul = ( clipFar * clipNear ) / ( clipFar - clipNear ); // float depthLinearizeAdd = clipFar / ( clipFar - clipNear ); // correct the handedness issue. need to make sure this below is correct, but I think it is. float depthLinearizeMul = -m_proj2[3*4+2]; float depthLinearizeAdd = m_proj2[2*4+2]; if (depthLinearizeMul * depthLinearizeAdd < 0) { depthLinearizeAdd = -depthLinearizeAdd; } vec2Set(m_uniforms.m_depthUnpackConsts, depthLinearizeMul, depthLinearizeAdd); float tanHalfFOVY = 1.0f / m_proj2[1*4+1]; // = tanf( drawContext.Camera.GetYFOV( ) * 0.5f ); float tanHalfFOVX = 1.0F / m_proj2[0]; // = tanHalfFOVY * drawContext.Camera.GetAspect( ); if (bgfx::getRendererType() == bgfx::RendererType::OpenGL) { vec2Set(m_uniforms.m_ndcToViewMul, tanHalfFOVX * 2.0f, tanHalfFOVY * 2.0f); vec2Set(m_uniforms.m_ndcToViewAdd, tanHalfFOVX * -1.0f, tanHalfFOVY * -1.0f); } else { vec2Set(m_uniforms.m_ndcToViewMul, tanHalfFOVX * 2.0f, tanHalfFOVY * -2.0f); vec2Set(m_uniforms.m_ndcToViewAdd, tanHalfFOVX * -1.0f, tanHalfFOVY * 1.0f); } } { float lightPosition[4]; bx::memCopy(lightPosition, m_lightModel.position, 3*sizeof(float)); lightPosition[3] = 1.0f; float viewSpaceLightPosition[4]; bx::vec4MulMtx(viewSpaceLightPosition, lightPosition, m_view); bx::memCopy(m_uniforms.m_lightPosition, viewSpaceLightPosition, 3*sizeof(float)); } } uint32_t m_width; uint32_t m_height; uint32_t m_debug; uint32_t m_reset; entry::MouseState m_mouseState; // Resource handles bgfx::ProgramHandle m_gbufferProgram; bgfx::ProgramHandle m_sphereProgram; bgfx::ProgramHandle m_linearDepthProgram; bgfx::ProgramHandle m_shadowsProgram; bgfx::ProgramHandle m_combineProgram; // Shader uniforms Uniforms m_uniforms; // Uniforms to indentify texture samplers bgfx::UniformHandle s_albedo; bgfx::UniformHandle s_color; bgfx::UniformHandle s_normal; bgfx::UniformHandle s_depth; bgfx::UniformHandle s_shadows; bgfx::FrameBufferHandle m_gbuffer; bgfx::TextureHandle m_gbufferTex[GBUFFER_RENDER_TARGETS]; RenderTarget m_linearDepth; RenderTarget m_shadows; struct Model { uint32_t mesh; // Index of mesh in m_meshes float position[3]; }; Model m_lightModel; Model m_models[MODEL_COUNT]; Mesh* m_meshes[BX_COUNTOF(s_meshPaths)]; Mesh* m_ground; bgfx::TextureHandle m_groundTexture; bgfx::TextureHandle m_normalTexture; uint32_t m_currFrame; float m_lightRotation = 0.0f; float m_texelHalf = 0.0f; float m_fovY = 60.0f; bool m_recreateFrameBuffers = false; bool m_havePrevious = false; float m_view[16]; float m_proj[16]; float m_proj2[16]; int32_t m_size[2]; // UI parameters bool m_displayShadows = false; bool m_useNoiseOffset = true; bool m_dynamicNoise = true; float m_shadowRadius = 0.25f; float m_shadowRadiusPixels = 25.0f; int32_t m_shadowSteps = 8; bool m_moveLight = true; int32_t m_contactShadowsMode = 0; bool m_useScreenSpaceRadius = false; }; } // namespace ENTRY_IMPLEMENT_MAIN( ExampleScreenSpaceShadows , "44-sss" , "Screen Space Shadows." );