/* * Copyright 2011-2017 Branimir Karadzic. All rights reserved. * License: https://github.com/bkaradzic/bgfx#license-bsd-2-clause */ #include "bgfx_p.h" #if BGFX_CONFIG_RENDERER_DIRECT3D9 # include "renderer_d3d9.h" # include namespace bgfx { namespace d3d9 { static wchar_t s_viewNameW[BGFX_CONFIG_MAX_VIEWS][BGFX_CONFIG_MAX_VIEW_NAME]; static char s_viewName[BGFX_CONFIG_MAX_VIEWS][BGFX_CONFIG_MAX_VIEW_NAME]; struct PrimInfo { D3DPRIMITIVETYPE m_type; uint32_t m_min; uint32_t m_div; uint32_t m_sub; }; static const PrimInfo s_primInfo[] = { { D3DPT_TRIANGLELIST, 3, 3, 0 }, { D3DPT_TRIANGLESTRIP, 3, 1, 2 }, { D3DPT_LINELIST, 2, 2, 0 }, { D3DPT_LINESTRIP, 2, 1, 1 }, { D3DPT_POINTLIST, 1, 1, 0 }, { D3DPRIMITIVETYPE(0), 0, 0, 0 }, }; static const char* s_primName[] = { "TriList", "TriStrip", "Line", "LineStrip", "Point", }; BX_STATIC_ASSERT(BX_COUNTOF(s_primInfo) == BX_COUNTOF(s_primName)+1); static const D3DMULTISAMPLE_TYPE s_checkMsaa[] = { D3DMULTISAMPLE_NONE, D3DMULTISAMPLE_2_SAMPLES, D3DMULTISAMPLE_4_SAMPLES, D3DMULTISAMPLE_8_SAMPLES, D3DMULTISAMPLE_16_SAMPLES, }; static Msaa s_msaa[] = { { D3DMULTISAMPLE_NONE, 0 }, { D3DMULTISAMPLE_2_SAMPLES, 0 }, { D3DMULTISAMPLE_4_SAMPLES, 0 }, { D3DMULTISAMPLE_8_SAMPLES, 0 }, { D3DMULTISAMPLE_16_SAMPLES, 0 }, }; struct Blend { D3DBLEND m_src; D3DBLEND m_dst; bool m_factor; }; static const Blend s_blendFactor[] = { { (D3DBLEND)0, (D3DBLEND)0, false }, // ignored { D3DBLEND_ZERO, D3DBLEND_ZERO, false }, // ZERO { D3DBLEND_ONE, D3DBLEND_ONE, false }, // ONE { D3DBLEND_SRCCOLOR, D3DBLEND_SRCCOLOR, false }, // SRC_COLOR { D3DBLEND_INVSRCCOLOR, D3DBLEND_INVSRCCOLOR, false }, // INV_SRC_COLOR { D3DBLEND_SRCALPHA, D3DBLEND_SRCALPHA, false }, // SRC_ALPHA { D3DBLEND_INVSRCALPHA, D3DBLEND_INVSRCALPHA, false }, // INV_SRC_ALPHA { D3DBLEND_DESTALPHA, D3DBLEND_DESTALPHA, false }, // DST_ALPHA { D3DBLEND_INVDESTALPHA, D3DBLEND_INVDESTALPHA, false }, // INV_DST_ALPHA { D3DBLEND_DESTCOLOR, D3DBLEND_DESTCOLOR, false }, // DST_COLOR { D3DBLEND_INVDESTCOLOR, D3DBLEND_INVDESTCOLOR, false }, // INV_DST_COLOR { D3DBLEND_SRCALPHASAT, D3DBLEND_ONE, false }, // SRC_ALPHA_SAT { D3DBLEND_BLENDFACTOR, D3DBLEND_BLENDFACTOR, true }, // FACTOR { D3DBLEND_INVBLENDFACTOR, D3DBLEND_INVBLENDFACTOR, true }, // INV_FACTOR }; static const D3DBLENDOP s_blendEquation[] = { D3DBLENDOP_ADD, D3DBLENDOP_SUBTRACT, D3DBLENDOP_REVSUBTRACT, D3DBLENDOP_MIN, D3DBLENDOP_MAX, }; static const D3DCMPFUNC s_cmpFunc[] = { (D3DCMPFUNC)0, // ignored D3DCMP_LESS, D3DCMP_LESSEQUAL, D3DCMP_EQUAL, D3DCMP_GREATEREQUAL, D3DCMP_GREATER, D3DCMP_NOTEQUAL, D3DCMP_NEVER, D3DCMP_ALWAYS, }; static const D3DSTENCILOP s_stencilOp[] = { D3DSTENCILOP_ZERO, D3DSTENCILOP_KEEP, D3DSTENCILOP_REPLACE, D3DSTENCILOP_INCR, D3DSTENCILOP_INCRSAT, D3DSTENCILOP_DECR, D3DSTENCILOP_DECRSAT, D3DSTENCILOP_INVERT, }; static const D3DRENDERSTATETYPE s_stencilFuncRs[] = { D3DRS_STENCILFUNC, D3DRS_CCW_STENCILFUNC, }; static const D3DRENDERSTATETYPE s_stencilFailRs[] = { D3DRS_STENCILFAIL, D3DRS_CCW_STENCILFAIL, }; static const D3DRENDERSTATETYPE s_stencilZFailRs[] = { D3DRS_STENCILZFAIL, D3DRS_CCW_STENCILZFAIL, }; static const D3DRENDERSTATETYPE s_stencilZPassRs[] = { D3DRS_STENCILPASS, D3DRS_CCW_STENCILPASS, }; static const D3DCULL s_cullMode[] = { D3DCULL_NONE, D3DCULL_CW, D3DCULL_CCW, }; static const D3DTEXTUREADDRESS s_textureAddress[] = { D3DTADDRESS_WRAP, D3DTADDRESS_MIRROR, D3DTADDRESS_CLAMP, D3DTADDRESS_BORDER, }; static const D3DTEXTUREFILTERTYPE s_textureFilter[] = { D3DTEXF_LINEAR, D3DTEXF_POINT, D3DTEXF_ANISOTROPIC, }; struct TextureFormatInfo { D3DFORMAT m_fmt; }; static TextureFormatInfo s_textureFormat[] = { { D3DFMT_DXT1 }, // BC1 { D3DFMT_DXT3 }, // BC2 { D3DFMT_DXT5 }, // BC3 { D3DFMT_UNKNOWN }, // BC4 { D3DFMT_UNKNOWN }, // BC5 { D3DFMT_UNKNOWN }, // BC6H { D3DFMT_UNKNOWN }, // BC7 { D3DFMT_UNKNOWN }, // ETC1 { D3DFMT_UNKNOWN }, // ETC2 { D3DFMT_UNKNOWN }, // ETC2A { D3DFMT_UNKNOWN }, // ETC2A1 { D3DFMT_UNKNOWN }, // PTC12 { D3DFMT_UNKNOWN }, // PTC14 { D3DFMT_UNKNOWN }, // PTC12A { D3DFMT_UNKNOWN }, // PTC14A { D3DFMT_UNKNOWN }, // PTC22 { D3DFMT_UNKNOWN }, // PTC24 { D3DFMT_UNKNOWN }, // Unknown { D3DFMT_A1 }, // R1 { D3DFMT_A8 }, // A8 { D3DFMT_L8 }, // R8 { D3DFMT_UNKNOWN }, // R8I { D3DFMT_UNKNOWN }, // R8U { D3DFMT_UNKNOWN }, // R8S { D3DFMT_L16 }, // R16 { D3DFMT_UNKNOWN }, // R16I { D3DFMT_UNKNOWN }, // R16U { D3DFMT_R16F }, // R16F { D3DFMT_UNKNOWN }, // R16S { D3DFMT_UNKNOWN }, // R32I { D3DFMT_UNKNOWN }, // R32U { D3DFMT_R32F }, // R32F { D3DFMT_A8L8 }, // RG8 { D3DFMT_UNKNOWN }, // RG8I { D3DFMT_UNKNOWN }, // RG8U { D3DFMT_UNKNOWN }, // RG8S { D3DFMT_G16R16 }, // RG16 { D3DFMT_UNKNOWN }, // RG16I { D3DFMT_UNKNOWN }, // RG16U { D3DFMT_G16R16F }, // RG16F { D3DFMT_UNKNOWN }, // RG16S { D3DFMT_UNKNOWN }, // RG32I { D3DFMT_UNKNOWN }, // RG32U { D3DFMT_G32R32F }, // RG32F { D3DFMT_UNKNOWN }, // RGB8 { D3DFMT_UNKNOWN }, // RGB8I { D3DFMT_UNKNOWN }, // RGB8U { D3DFMT_UNKNOWN }, // RGB8S { D3DFMT_UNKNOWN }, // RGB9E5F { D3DFMT_A8R8G8B8 }, // BGRA8 { D3DFMT_UNKNOWN }, // RGBA8 { D3DFMT_UNKNOWN }, // RGBA8I { D3DFMT_UNKNOWN }, // RGBA8U { D3DFMT_UNKNOWN }, // RGBA8S { D3DFMT_A16B16G16R16 }, // RGBA16 { D3DFMT_UNKNOWN }, // RGBA16I { D3DFMT_UNKNOWN }, // RGBA16U { D3DFMT_A16B16G16R16F }, // RGBA16F { D3DFMT_UNKNOWN }, // RGBA16S { D3DFMT_UNKNOWN }, // RGBA32I { D3DFMT_UNKNOWN }, // RGBA32U { D3DFMT_A32B32G32R32F }, // RGBA32F { D3DFMT_R5G6B5 }, // R5G6B5 { D3DFMT_A4R4G4B4 }, // RGBA4 { D3DFMT_A1R5G5B5 }, // RGB5A1 { D3DFMT_A2B10G10R10 }, // RGB10A2 { D3DFMT_UNKNOWN }, // RG11B10F { D3DFMT_UNKNOWN }, // UnknownDepth { D3DFMT_D16 }, // D16 { D3DFMT_D24X8 }, // D24 { D3DFMT_D24S8 }, // D24S8 { D3DFMT_D32 }, // D32 { D3DFMT_DF16 }, // D16F { D3DFMT_DF24 }, // D24F { D3DFMT_D32F_LOCKABLE }, // D32F { D3DFMT_S8_LOCKABLE }, // D0S8 }; BX_STATIC_ASSERT(TextureFormat::Count == BX_COUNTOF(s_textureFormat) ); static ExtendedFormat s_extendedFormats[ExtendedFormat::Count] = { { D3DFMT_ATI1, 0, D3DRTYPE_TEXTURE, false }, { D3DFMT_ATI2, 0, D3DRTYPE_TEXTURE, false }, { D3DFMT_DF16, D3DUSAGE_DEPTHSTENCIL, D3DRTYPE_SURFACE, false }, { D3DFMT_DF24, D3DUSAGE_DEPTHSTENCIL, D3DRTYPE_SURFACE, false }, { D3DFMT_INST, 0, D3DRTYPE_SURFACE, false }, { D3DFMT_INTZ, D3DUSAGE_DEPTHSTENCIL, D3DRTYPE_SURFACE, false }, { D3DFMT_NULL, D3DUSAGE_RENDERTARGET, D3DRTYPE_SURFACE, false }, { D3DFMT_RESZ, D3DUSAGE_RENDERTARGET, D3DRTYPE_SURFACE, false }, { D3DFMT_RAWZ, D3DUSAGE_DEPTHSTENCIL, D3DRTYPE_SURFACE, false }, { D3DFMT_ATOC, 0, D3DRTYPE_SURFACE, false }, }; static const GUID IID_IDirect3D9 = { 0x81bdcbca, 0x64d4, 0x426d, { 0xae, 0x8d, 0xad, 0x1, 0x47, 0xf4, 0x27, 0x5c } }; static const GUID IID_IDirect3DDevice9Ex = { 0xb18b10ce, 0x2649, 0x405a, { 0x87, 0xf, 0x95, 0xf7, 0x77, 0xd4, 0x31, 0x3a } }; typedef HRESULT (WINAPI *Direct3DCreate9ExFn)(UINT SDKVersion, IDirect3D9Ex**); static Direct3DCreate9ExFn Direct3DCreate9Ex; typedef IDirect3D9* (WINAPI *Direct3DCreate9Fn)(UINT SDKVersion); static Direct3DCreate9Fn Direct3DCreate9; static PFN_D3DPERF_SET_MARKER D3DPERF_SetMarker; static PFN_D3DPERF_BEGIN_EVENT D3DPERF_BeginEvent; static PFN_D3DPERF_END_EVENT D3DPERF_EndEvent; inline bool isLost(HRESULT _hr) { return false || _hr == D3DERR_DEVICELOST || _hr == D3DERR_DRIVERINTERNALERROR #if !defined(D3D_DISABLE_9EX) || _hr == D3DERR_DEVICEHUNG || _hr == D3DERR_DEVICEREMOVED #endif // !defined(D3D_DISABLE_9EX) ; } struct RendererContextD3D9 : public RendererContextI { RendererContextD3D9() : m_d3d9(NULL) , m_device(NULL) , m_flushQuery(NULL) , m_swapChain(NULL) , m_captureTexture(NULL) , m_captureSurface(NULL) , m_captureResolve(NULL) , m_maxAnisotropy(1) , m_initialized(false) , m_amd(false) , m_nvidia(false) , m_atocSupport(false) , m_instancingSupport(false) , m_occlusionQuerySupport(false) , m_timerQuerySupport(false) , m_rtMsaa(false) { } ~RendererContextD3D9() { } bool init() { struct ErrorState { enum Enum { Default, LoadedD3D9, CreatedD3D9, CreatedDevice, }; }; ErrorState::Enum errorState = ErrorState::Default; m_fbh.idx = invalidHandle; bx::memSet(m_uniforms, 0, sizeof(m_uniforms) ); bx::memSet(&m_resolution, 0, sizeof(m_resolution) ); D3DFORMAT adapterFormat = D3DFMT_X8R8G8B8; // http://msdn.microsoft.com/en-us/library/windows/desktop/bb172588%28v=vs.85%29.aspx bx::memSet(&m_params, 0, sizeof(m_params) ); m_params.BackBufferWidth = BGFX_DEFAULT_WIDTH; m_params.BackBufferHeight = BGFX_DEFAULT_HEIGHT; m_params.BackBufferFormat = adapterFormat; m_params.BackBufferCount = 1; m_params.MultiSampleType = D3DMULTISAMPLE_NONE; m_params.MultiSampleQuality = 0; m_params.EnableAutoDepthStencil = TRUE; m_params.AutoDepthStencilFormat = D3DFMT_D24S8; m_params.Flags = D3DPRESENTFLAG_DISCARD_DEPTHSTENCIL; #if BX_PLATFORM_WINDOWS m_params.FullScreen_RefreshRateInHz = 0; m_params.PresentationInterval = D3DPRESENT_INTERVAL_IMMEDIATE; m_params.SwapEffect = D3DSWAPEFFECT_DISCARD; m_params.hDeviceWindow = NULL; m_params.Windowed = true; RECT rect; GetWindowRect( (HWND)g_platformData.nwh, &rect); m_params.BackBufferWidth = rect.right-rect.left; m_params.BackBufferHeight = rect.bottom-rect.top; m_d3d9dll = bx::dlopen("d3d9.dll"); if (NULL == m_d3d9dll) { BX_TRACE("Failed to load d3d9.dll."); goto error; } errorState = ErrorState::LoadedD3D9; if (BX_ENABLED(BGFX_CONFIG_DEBUG_PIX) ) { D3DPERF_SetMarker = (PFN_D3DPERF_SET_MARKER )bx::dlsym(m_d3d9dll, "D3DPERF_SetMarker"); D3DPERF_BeginEvent = (PFN_D3DPERF_BEGIN_EVENT)bx::dlsym(m_d3d9dll, "D3DPERF_BeginEvent"); D3DPERF_EndEvent = (PFN_D3DPERF_END_EVENT )bx::dlsym(m_d3d9dll, "D3DPERF_EndEvent"); BX_CHECK(NULL != D3DPERF_SetMarker && NULL != D3DPERF_BeginEvent && NULL != D3DPERF_EndEvent , "Failed to initialize PIX events." ); } m_d3d9ex = NULL; m_deviceEx = NULL; Direct3DCreate9Ex = (Direct3DCreate9ExFn)bx::dlsym(m_d3d9dll, "Direct3DCreate9Ex"); if (BX_ENABLED(BGFX_CONFIG_RENDERER_DIRECT3D9EX) && NULL != Direct3DCreate9Ex) { Direct3DCreate9Ex(D3D_SDK_VERSION, &m_d3d9ex); if (NULL != m_d3d9ex) { HRESULT hr = m_d3d9ex->QueryInterface(IID_IDirect3D9, (void**)&m_d3d9); if (FAILED(hr) ) { BX_TRACE("Failed to query D3D9 interface 0x%08x.", hr); DX_RELEASE(m_d3d9ex, 0); } else { m_pool = D3DPOOL_DEFAULT; } } } if (NULL == m_d3d9) { Direct3DCreate9 = (Direct3DCreate9Fn)bx::dlsym(m_d3d9dll, "Direct3DCreate9"); if (NULL == Direct3DCreate9) { BX_TRACE("Function Direct3DCreate9 not found."); goto error; } m_d3d9 = Direct3DCreate9(D3D_SDK_VERSION); m_pool = D3DPOOL_MANAGED; } if (NULL == m_d3d9) { BX_TRACE("Unable to create Direct3D."); goto error; } errorState = ErrorState::CreatedD3D9; { m_adapter = D3DADAPTER_DEFAULT; m_deviceType = BGFX_PCI_ID_SOFTWARE_RASTERIZER == g_caps.vendorId ? D3DDEVTYPE_REF : D3DDEVTYPE_HAL ; uint8_t numGPUs = uint8_t(bx::uint32_min(BX_COUNTOF(g_caps.gpu), m_d3d9->GetAdapterCount() ) ); for (uint32_t ii = 0; ii < numGPUs; ++ii) { D3DADAPTER_IDENTIFIER9 desc; HRESULT hr = m_d3d9->GetAdapterIdentifier(ii, 0, &desc); if (SUCCEEDED(hr) ) { BX_TRACE("Adapter #%d", ii); BX_TRACE("\tDriver: %s", desc.Driver); BX_TRACE("\tDescription: %s", desc.Description); BX_TRACE("\tDeviceName: %s", desc.DeviceName); BX_TRACE("\tVendorId: 0x%08x, DeviceId: 0x%08x, SubSysId: 0x%08x, Revision: 0x%08x" , desc.VendorId , desc.DeviceId , desc.SubSysId , desc.Revision ); g_caps.gpu[ii].vendorId = (uint16_t)desc.VendorId; g_caps.gpu[ii].deviceId = (uint16_t)desc.DeviceId; if (D3DADAPTER_DEFAULT == m_adapter) { if ( (BGFX_PCI_ID_NONE != g_caps.vendorId || 0 != g_caps.deviceId) && (BGFX_PCI_ID_NONE == g_caps.vendorId || desc.VendorId == g_caps.vendorId) && ( 0 == g_caps.deviceId || desc.DeviceId == g_caps.deviceId) ) { m_adapter = ii; } if (BX_ENABLED(BGFX_CONFIG_DEBUG_PERFHUD) && 0 != bx::strFind(desc.Description, "PerfHUD") ) { m_adapter = ii; m_deviceType = D3DDEVTYPE_REF; } } } } DX_CHECK(m_d3d9->GetAdapterIdentifier(m_adapter, 0, &m_identifier) ); m_amd = m_identifier.VendorId == BGFX_PCI_ID_AMD; m_nvidia = m_identifier.VendorId == BGFX_PCI_ID_NVIDIA; g_caps.vendorId = 0 == m_identifier.VendorId ? BGFX_PCI_ID_SOFTWARE_RASTERIZER : (uint16_t)m_identifier.VendorId ; g_caps.deviceId = (uint16_t)m_identifier.DeviceId; uint32_t behaviorFlags[] = { D3DCREATE_HARDWARE_VERTEXPROCESSING | D3DCREATE_FPU_PRESERVE | D3DCREATE_PUREDEVICE, D3DCREATE_MIXED_VERTEXPROCESSING | D3DCREATE_FPU_PRESERVE, D3DCREATE_SOFTWARE_VERTEXPROCESSING | D3DCREATE_FPU_PRESERVE, }; for (uint32_t ii = 0; ii < BX_COUNTOF(behaviorFlags) && NULL == m_device; ++ii) { if (NULL != m_d3d9ex) { DX_CHECK(m_d3d9ex->CreateDeviceEx(m_adapter , m_deviceType , (HWND)g_platformData.nwh , behaviorFlags[ii] , &m_params , NULL , &m_deviceEx ) ); m_device = m_deviceEx; } else { DX_CHECK(m_d3d9->CreateDevice(m_adapter , m_deviceType , (HWND)g_platformData.nwh , behaviorFlags[ii] , &m_params , &m_device ) ); } } } if (NULL == m_device) { BX_TRACE("Unable to create Direct3D9 device."); goto error; } errorState = ErrorState::CreatedDevice; m_numWindows = 1; if (NULL != m_d3d9ex) { DX_CHECK(m_device->QueryInterface(IID_IDirect3DDevice9Ex, (void**)&m_deviceEx) ); } { IDirect3DQuery9* timerQueryTest[3] = {}; m_timerQuerySupport = true && SUCCEEDED(m_device->CreateQuery(D3DQUERYTYPE_TIMESTAMPDISJOINT, &timerQueryTest[0]) ) && SUCCEEDED(m_device->CreateQuery(D3DQUERYTYPE_TIMESTAMP, &timerQueryTest[1]) ) && SUCCEEDED(m_device->CreateQuery(D3DQUERYTYPE_TIMESTAMPFREQ, &timerQueryTest[2]) ) ; DX_RELEASE(timerQueryTest[0], 0); DX_RELEASE(timerQueryTest[1], 0); DX_RELEASE(timerQueryTest[2], 0); } { IDirect3DQuery9* occlusionQueryTest; m_occlusionQuerySupport = true && SUCCEEDED(m_device->CreateQuery(D3DQUERYTYPE_OCCLUSION, &occlusionQueryTest) ) ; DX_RELEASE(occlusionQueryTest, 0); } DX_CHECK(m_device->GetDeviceCaps(&m_caps) ); // For shit GPUs that can create DX9 device but can't do simple stuff. GTFO! BX_WARN( (D3DPTEXTURECAPS_SQUAREONLY & m_caps.TextureCaps) == 0, "D3DPTEXTURECAPS_SQUAREONLY"); BX_WARN( (D3DPTEXTURECAPS_MIPMAP & m_caps.TextureCaps) == D3DPTEXTURECAPS_MIPMAP, "D3DPTEXTURECAPS_MIPMAP"); BX_WARN( (D3DPTEXTURECAPS_ALPHA & m_caps.TextureCaps) == D3DPTEXTURECAPS_ALPHA, "D3DPTEXTURECAPS_ALPHA"); BX_WARN(m_caps.VertexShaderVersion >= D3DVS_VERSION(2, 0) && m_caps.PixelShaderVersion >= D3DPS_VERSION(2, 1) , "Shader Model Version (vs: %x, ps: %x)." , m_caps.VertexShaderVersion , m_caps.PixelShaderVersion ); if ( (D3DPTEXTURECAPS_SQUAREONLY & m_caps.TextureCaps) != 0 || (D3DPTEXTURECAPS_MIPMAP & m_caps.TextureCaps) != D3DPTEXTURECAPS_MIPMAP || (D3DPTEXTURECAPS_ALPHA & m_caps.TextureCaps) != D3DPTEXTURECAPS_ALPHA || !(m_caps.VertexShaderVersion >= D3DVS_VERSION(2, 0) && m_caps.PixelShaderVersion >= D3DPS_VERSION(2, 1) ) ) { goto error; } BX_TRACE("Max vertex shader 3.0 instr. slots: %d", m_caps.MaxVertexShader30InstructionSlots); BX_TRACE("Max vertex shader constants: %d", m_caps.MaxVertexShaderConst); BX_TRACE("Max fragment shader 2.0 instr. slots: %d", m_caps.PS20Caps.NumInstructionSlots); BX_TRACE("Max fragment shader 3.0 instr. slots: %d", m_caps.MaxPixelShader30InstructionSlots); BX_TRACE("Num simultaneous render targets: %d", m_caps.NumSimultaneousRTs); BX_TRACE("Max vertex index: %d", m_caps.MaxVertexIndex); g_caps.supported |= ( 0 | BGFX_CAPS_TEXTURE_3D | BGFX_CAPS_TEXTURE_COMPARE_LEQUAL | BGFX_CAPS_VERTEX_ATTRIB_HALF | BGFX_CAPS_VERTEX_ATTRIB_UINT10 | BGFX_CAPS_FRAGMENT_DEPTH | BGFX_CAPS_SWAP_CHAIN | ( (UINT16_MAX < m_caps.MaxVertexIndex) ? BGFX_CAPS_INDEX32 : 0) | ( (m_caps.DevCaps2 & D3DDEVCAPS2_CAN_STRETCHRECT_FROM_TEXTURES) ? BGFX_CAPS_TEXTURE_BLIT : 0) | BGFX_CAPS_TEXTURE_READ_BACK | (m_occlusionQuerySupport ? BGFX_CAPS_OCCLUSION_QUERY : 0) ); g_caps.limits.maxTextureSize = uint16_t(bx::uint32_min(m_caps.MaxTextureWidth, m_caps.MaxTextureHeight) ); m_caps.NumSimultaneousRTs = uint8_t(bx::uint32_min(m_caps.NumSimultaneousRTs, BGFX_CONFIG_MAX_FRAME_BUFFER_ATTACHMENTS) ); g_caps.limits.maxFBAttachments = uint8_t(m_caps.NumSimultaneousRTs); m_caps.MaxAnisotropy = bx::uint32_max(m_caps.MaxAnisotropy, 1); if (BX_ENABLED(BGFX_CONFIG_RENDERER_USE_EXTENSIONS) ) { BX_TRACE("Extended formats:"); for (uint32_t ii = 0; ii < ExtendedFormat::Count; ++ii) { ExtendedFormat& fmt = s_extendedFormats[ii]; fmt.m_supported = SUCCEEDED(m_d3d9->CheckDeviceFormat(m_adapter, m_deviceType, adapterFormat, fmt.m_usage, fmt.m_type, fmt.m_fmt) ); const char* fourcc = (const char*)&fmt.m_fmt; BX_TRACE("\t%2d: %c%c%c%c %s", ii, fourcc[0], fourcc[1], fourcc[2], fourcc[3], fmt.m_supported ? "supported" : ""); BX_UNUSED(fourcc); } m_instancingSupport = false || s_extendedFormats[ExtendedFormat::Inst].m_supported || (m_caps.VertexShaderVersion >= D3DVS_VERSION(3, 0) ) ; m_atocSupport = false || s_extendedFormats[ExtendedFormat::Atoc].m_supported ; if (m_amd && s_extendedFormats[ExtendedFormat::Inst].m_supported) { // AMD only m_device->SetRenderState(D3DRS_POINTSIZE, D3DFMT_INST); } if (s_extendedFormats[ExtendedFormat::Intz].m_supported) { s_textureFormat[TextureFormat::D24].m_fmt = D3DFMT_INTZ; s_textureFormat[TextureFormat::D32].m_fmt = D3DFMT_INTZ; } s_textureFormat[TextureFormat::BC4].m_fmt = s_extendedFormats[ExtendedFormat::Ati1].m_supported ? D3DFMT_ATI1 : D3DFMT_UNKNOWN; s_textureFormat[TextureFormat::BC5].m_fmt = s_extendedFormats[ExtendedFormat::Ati2].m_supported ? D3DFMT_ATI2 : D3DFMT_UNKNOWN; g_caps.supported |= m_instancingSupport ? BGFX_CAPS_INSTANCING : 0; g_caps.supported |= m_atocSupport ? BGFX_CAPS_ALPHA_TO_COVERAGE : 0; } for (uint32_t ii = 0; ii < TextureFormat::Count; ++ii) { uint16_t support = BGFX_CAPS_FORMAT_TEXTURE_NONE; support |= SUCCEEDED(m_d3d9->CheckDeviceFormat(m_adapter , m_deviceType , adapterFormat , 0 , D3DRTYPE_TEXTURE , s_textureFormat[ii].m_fmt ) ) ? BGFX_CAPS_FORMAT_TEXTURE_2D : BGFX_CAPS_FORMAT_TEXTURE_NONE; support |= SUCCEEDED(m_d3d9->CheckDeviceFormat(m_adapter , m_deviceType , adapterFormat , D3DUSAGE_QUERY_SRGBREAD , D3DRTYPE_TEXTURE , s_textureFormat[ii].m_fmt ) ) ? BGFX_CAPS_FORMAT_TEXTURE_2D_SRGB : BGFX_CAPS_FORMAT_TEXTURE_NONE; support |= SUCCEEDED(m_d3d9->CheckDeviceFormat(m_adapter , m_deviceType , adapterFormat , 0 , D3DRTYPE_VOLUMETEXTURE , s_textureFormat[ii].m_fmt ) ) ? BGFX_CAPS_FORMAT_TEXTURE_3D : BGFX_CAPS_FORMAT_TEXTURE_NONE; support |= SUCCEEDED(m_d3d9->CheckDeviceFormat(m_adapter , m_deviceType , adapterFormat , D3DUSAGE_QUERY_SRGBREAD , D3DRTYPE_VOLUMETEXTURE , s_textureFormat[ii].m_fmt ) ) ? BGFX_CAPS_FORMAT_TEXTURE_3D_SRGB : BGFX_CAPS_FORMAT_TEXTURE_NONE; support |= SUCCEEDED(m_d3d9->CheckDeviceFormat(m_adapter , m_deviceType , adapterFormat , 0 , D3DRTYPE_CUBETEXTURE , s_textureFormat[ii].m_fmt ) ) ? BGFX_CAPS_FORMAT_TEXTURE_CUBE : BGFX_CAPS_FORMAT_TEXTURE_NONE; support |= SUCCEEDED(m_d3d9->CheckDeviceFormat(m_adapter , m_deviceType , adapterFormat , D3DUSAGE_QUERY_SRGBREAD , D3DRTYPE_CUBETEXTURE , s_textureFormat[ii].m_fmt ) ) ? BGFX_CAPS_FORMAT_TEXTURE_CUBE_SRGB : BGFX_CAPS_FORMAT_TEXTURE_NONE; support |= SUCCEEDED(m_d3d9->CheckDeviceFormat(m_adapter , m_deviceType , adapterFormat , D3DUSAGE_QUERY_VERTEXTEXTURE , D3DRTYPE_TEXTURE , s_textureFormat[ii].m_fmt ) ) ? BGFX_CAPS_FORMAT_TEXTURE_VERTEX : BGFX_CAPS_FORMAT_TEXTURE_NONE; support |= SUCCEEDED(m_d3d9->CheckDeviceFormat(m_adapter , m_deviceType , adapterFormat , bimg::isDepth(bimg::TextureFormat::Enum(ii) ) ? D3DUSAGE_DEPTHSTENCIL : D3DUSAGE_RENDERTARGET , D3DRTYPE_TEXTURE , s_textureFormat[ii].m_fmt ) ) ? BGFX_CAPS_FORMAT_TEXTURE_FRAMEBUFFER : BGFX_CAPS_FORMAT_TEXTURE_NONE; support |= SUCCEEDED(m_d3d9->CheckDeviceMultiSampleType(m_adapter , m_deviceType , s_textureFormat[ii].m_fmt , true , D3DMULTISAMPLE_2_SAMPLES , NULL ) ) ? BGFX_CAPS_FORMAT_TEXTURE_FRAMEBUFFER_MSAA : BGFX_CAPS_FORMAT_TEXTURE_NONE; support |= SUCCEEDED(m_d3d9->CheckDeviceFormat(m_adapter , m_deviceType , adapterFormat , bimg::isDepth(bimg::TextureFormat::Enum(ii) ) ? D3DUSAGE_DEPTHSTENCIL : D3DUSAGE_RENDERTARGET , D3DRTYPE_TEXTURE , s_textureFormat[ii].m_fmt ) ) ? BGFX_CAPS_FORMAT_TEXTURE_MIP_AUTOGEN : BGFX_CAPS_FORMAT_TEXTURE_NONE; g_caps.formats[ii] = support; } m_fmtDepth = D3DFMT_D24S8; #elif BX_PLATFORM_XBOX360 m_params.PresentationInterval = D3DPRESENT_INTERVAL_ONE; m_params.DisableAutoBackBuffer = FALSE; m_params.DisableAutoFrontBuffer = FALSE; m_params.FrontBufferFormat = D3DFMT_X8R8G8B8; m_params.FrontBufferColorSpace = D3DCOLORSPACE_RGB; m_d3d9 = Direct3DCreate9(D3D_SDK_VERSION); BX_TRACE("Creating D3D9 %p", m_d3d9); XVIDEO_MODE videoMode; XGetVideoMode(&videoMode); if (!videoMode.fIsWideScreen) { m_params.Flags |= D3DPRESENTFLAG_NO_LETTERBOX; } BX_TRACE("Creating device"); DX_CHECK(m_d3d9->CreateDevice(m_adapter , m_deviceType , NULL , D3DCREATE_HARDWARE_VERTEXPROCESSING|D3DCREATE_BUFFER_2_FRAMES , &m_params , &m_device ) ); BX_TRACE("Device %p", m_device); m_fmtDepth = D3DFMT_D24FS8; #endif // BX_PLATFORM_WINDOWS { IDirect3DSwapChain9* swapChain; DX_CHECK(m_device->GetSwapChain(0, &swapChain) ); // GPA increases swapchain ref count. // // This causes assert in debug. When debugger is present refcount // checks are off. setGraphicsDebuggerPresent(1 != getRefCount(swapChain) ); DX_RELEASE(swapChain, 0); } // Init reserved part of view name. for (uint32_t ii = 0; ii < BGFX_CONFIG_MAX_VIEWS; ++ii) { bx::snprintf(s_viewName[ii], BGFX_CONFIG_MAX_VIEW_NAME_RESERVED + 1, "%3d ", ii); mbstowcs(s_viewNameW[ii], s_viewName[ii], BGFX_CONFIG_MAX_VIEW_NAME_RESERVED); } if (NULL != m_deviceEx) { int32_t gpuPriority; DX_CHECK(m_deviceEx->GetGPUThreadPriority(&gpuPriority) ); BX_TRACE("GPU thread priority: %d", gpuPriority); uint32_t maxLatency; DX_CHECK(m_deviceEx->GetMaximumFrameLatency(&maxLatency) ); BX_TRACE("GPU max frame latency: %d", maxLatency); } postReset(); m_initialized = true; g_internalData.context = m_device; return true; error: switch (errorState) { case ErrorState::CreatedDevice: if (NULL != m_d3d9ex) { DX_RELEASE(m_deviceEx, 1); DX_RELEASE(m_device, 0); } else { DX_RELEASE(m_device, 0); } case ErrorState::CreatedD3D9: if (NULL != m_d3d9ex) { DX_RELEASE(m_d3d9, 1); DX_RELEASE(m_d3d9ex, 0); } else { DX_RELEASE(m_d3d9, 0); } #if BX_PLATFORM_WINDOWS case ErrorState::LoadedD3D9: bx::dlclose(m_d3d9dll); #endif // BX_PLATFORM_WINDOWS case ErrorState::Default: break; } return false; } void shutdown() { preReset(); for (uint32_t ii = 0; ii < BX_COUNTOF(m_indexBuffers); ++ii) { m_indexBuffers[ii].destroy(); } for (uint32_t ii = 0; ii < BX_COUNTOF(m_vertexBuffers); ++ii) { m_vertexBuffers[ii].destroy(); } for (uint32_t ii = 0; ii < BX_COUNTOF(m_shaders); ++ii) { m_shaders[ii].destroy(); } for (uint32_t ii = 0; ii < BX_COUNTOF(m_textures); ++ii) { m_textures[ii].destroy(); } for (uint32_t ii = 0; ii < BX_COUNTOF(m_vertexDecls); ++ii) { m_vertexDecls[ii].destroy(); } if (NULL != m_d3d9ex) { DX_RELEASE(m_deviceEx, 1); DX_RELEASE(m_device, 0); DX_RELEASE(m_d3d9, 1); DX_RELEASE(m_d3d9ex, 0); } else { DX_RELEASE(m_device, 0); DX_RELEASE(m_d3d9, 0); } #if BX_PLATFORM_WINDOWS bx::dlclose(m_d3d9dll); #endif // BX_PLATFORM_WINDOWS m_initialized = false; } RendererType::Enum getRendererType() const BX_OVERRIDE { return RendererType::Direct3D9; } const char* getRendererName() const BX_OVERRIDE { if (NULL != m_d3d9ex) { return BGFX_RENDERER_DIRECT3D9_NAME " Ex"; } return BGFX_RENDERER_DIRECT3D9_NAME; } void createIndexBuffer(IndexBufferHandle _handle, Memory* _mem, uint16_t _flags) BX_OVERRIDE { m_indexBuffers[_handle.idx].create(_mem->size, _mem->data, _flags); } void destroyIndexBuffer(IndexBufferHandle _handle) BX_OVERRIDE { m_indexBuffers[_handle.idx].destroy(); } void createVertexDecl(VertexDeclHandle _handle, const VertexDecl& _decl) BX_OVERRIDE { m_vertexDecls[_handle.idx].create(_decl); } void destroyVertexDecl(VertexDeclHandle _handle) BX_OVERRIDE { m_vertexDecls[_handle.idx].destroy(); } void createVertexBuffer(VertexBufferHandle _handle, Memory* _mem, VertexDeclHandle _declHandle, uint16_t /*_flags*/) BX_OVERRIDE { m_vertexBuffers[_handle.idx].create(_mem->size, _mem->data, _declHandle); } void destroyVertexBuffer(VertexBufferHandle _handle) BX_OVERRIDE { m_vertexBuffers[_handle.idx].destroy(); } void createDynamicIndexBuffer(IndexBufferHandle _handle, uint32_t _size, uint16_t _flags) BX_OVERRIDE { m_indexBuffers[_handle.idx].create(_size, NULL, _flags); } void updateDynamicIndexBuffer(IndexBufferHandle _handle, uint32_t _offset, uint32_t _size, Memory* _mem) BX_OVERRIDE { m_indexBuffers[_handle.idx].update(_offset, bx::uint32_min(_size, _mem->size), _mem->data); } void destroyDynamicIndexBuffer(IndexBufferHandle _handle) BX_OVERRIDE { m_indexBuffers[_handle.idx].destroy(); } void createDynamicVertexBuffer(VertexBufferHandle _handle, uint32_t _size, uint16_t /*_flags*/) BX_OVERRIDE { VertexDeclHandle decl = BGFX_INVALID_HANDLE; m_vertexBuffers[_handle.idx].create(_size, NULL, decl); } void updateDynamicVertexBuffer(VertexBufferHandle _handle, uint32_t _offset, uint32_t _size, Memory* _mem) BX_OVERRIDE { m_vertexBuffers[_handle.idx].update(_offset, bx::uint32_min(_size, _mem->size), _mem->data); } void destroyDynamicVertexBuffer(VertexBufferHandle _handle) BX_OVERRIDE { m_vertexBuffers[_handle.idx].destroy(); } void createShader(ShaderHandle _handle, Memory* _mem) BX_OVERRIDE { m_shaders[_handle.idx].create(_mem); } void destroyShader(ShaderHandle _handle) BX_OVERRIDE { m_shaders[_handle.idx].destroy(); } void createProgram(ProgramHandle _handle, ShaderHandle _vsh, ShaderHandle _fsh) BX_OVERRIDE { m_program[_handle.idx].create(m_shaders[_vsh.idx], m_shaders[_fsh.idx]); } void destroyProgram(ProgramHandle _handle) BX_OVERRIDE { m_program[_handle.idx].destroy(); } void createTexture(TextureHandle _handle, Memory* _mem, uint32_t _flags, uint8_t _skip) BX_OVERRIDE { m_textures[_handle.idx].create(_mem, _flags, _skip); } void updateTextureBegin(TextureHandle _handle, uint8_t _side, uint8_t _mip) BX_OVERRIDE { m_updateTexture = &m_textures[_handle.idx]; m_updateTexture->updateBegin(_side, _mip); } void updateTexture(TextureHandle /*_handle*/, uint8_t _side, uint8_t _mip, const Rect& _rect, uint16_t _z, uint16_t _depth, uint16_t _pitch, const Memory* _mem) BX_OVERRIDE { m_updateTexture->update(_side, _mip, _rect, _z, _depth, _pitch, _mem); } void updateTextureEnd() BX_OVERRIDE { m_updateTexture->updateEnd(); m_updateTexture = NULL; } void readTexture(TextureHandle _handle, void* _data, uint8_t _mip) BX_OVERRIDE { TextureD3D9& texture = m_textures[_handle.idx]; D3DLOCKED_RECT lockedRect; DX_CHECK(texture.m_texture2d->LockRect(_mip , &lockedRect , NULL , D3DLOCK_NO_DIRTY_UPDATE|D3DLOCK_NOSYSLOCK|D3DLOCK_READONLY ) ); uint32_t srcWidth = bx::uint32_max(1, texture.m_width >>_mip); uint32_t srcHeight = bx::uint32_max(1, texture.m_height>>_mip); uint32_t srcPitch = lockedRect.Pitch; uint8_t* src = (uint8_t*)lockedRect.pBits; const uint8_t bpp = bimg::getBitsPerPixel(bimg::TextureFormat::Enum(texture.m_textureFormat) ); uint8_t* dst = (uint8_t*)_data; uint32_t dstPitch = srcWidth*bpp/8; uint32_t pitch = bx::uint32_min(srcPitch, dstPitch); for (uint32_t yy = 0, height = srcHeight; yy < height; ++yy) { bx::memCopy(dst, src, pitch); src += srcPitch; dst += dstPitch; } DX_CHECK(texture.m_texture2d->UnlockRect(_mip) ); } void resizeTexture(TextureHandle _handle, uint16_t _width, uint16_t _height, uint8_t _numMips) BX_OVERRIDE { TextureD3D9& texture = m_textures[_handle.idx]; uint32_t size = sizeof(uint32_t) + sizeof(TextureCreate); const Memory* mem = alloc(size); bx::StaticMemoryBlockWriter writer(mem->data, mem->size); uint32_t magic = BGFX_CHUNK_MAGIC_TEX; bx::write(&writer, magic); TextureCreate tc; tc.m_width = _width; tc.m_height = _height; tc.m_depth = 0; tc.m_numLayers = 1; tc.m_numMips = _numMips; tc.m_format = TextureFormat::Enum(texture.m_requestedFormat); tc.m_cubeMap = false; tc.m_mem = NULL; bx::write(&writer, tc); texture.destroy(true); texture.create(mem, texture.m_flags, 0); release(mem); } void overrideInternal(TextureHandle _handle, uintptr_t _ptr) BX_OVERRIDE { // Resource ref. counts might be messed up outside of bgfx. // Disabling ref. count check once texture is overridden. setGraphicsDebuggerPresent(true); m_textures[_handle.idx].overrideInternal(_ptr); } uintptr_t getInternal(TextureHandle _handle) BX_OVERRIDE { // Resource ref. counts might be messed up outside of bgfx. // Disabling ref. count check once texture is overridden. setGraphicsDebuggerPresent(true); return uintptr_t(m_textures[_handle.idx].m_ptr); } void destroyTexture(TextureHandle _handle) BX_OVERRIDE { m_textures[_handle.idx].destroy(); } void createFrameBuffer(FrameBufferHandle _handle, uint8_t _num, const Attachment* _attachment) BX_OVERRIDE { m_frameBuffers[_handle.idx].create(_num, _attachment); } void createFrameBuffer(FrameBufferHandle _handle, void* _nwh, uint32_t _width, uint32_t _height, TextureFormat::Enum _depthFormat) BX_OVERRIDE { uint16_t denseIdx = m_numWindows++; m_windows[denseIdx] = _handle; m_frameBuffers[_handle.idx].create(denseIdx, _nwh, _width, _height, _depthFormat); } void destroyFrameBuffer(FrameBufferHandle _handle) BX_OVERRIDE { uint16_t denseIdx = m_frameBuffers[_handle.idx].destroy(); if (UINT16_MAX != denseIdx) { --m_numWindows; if (m_numWindows > 1) { FrameBufferHandle handle = m_windows[m_numWindows]; m_windows[denseIdx] = handle; m_frameBuffers[handle.idx].m_denseIdx = denseIdx; } } } void createUniform(UniformHandle _handle, UniformType::Enum _type, uint16_t _num, const char* _name) BX_OVERRIDE { if (NULL != m_uniforms[_handle.idx]) { BX_FREE(g_allocator, m_uniforms[_handle.idx]); } uint32_t size = BX_ALIGN_16(g_uniformTypeSize[_type]*_num); void* data = BX_ALLOC(g_allocator, size); bx::memSet(data, 0, size); m_uniforms[_handle.idx] = data; m_uniformReg.add(_handle, _name, data); } void destroyUniform(UniformHandle _handle) BX_OVERRIDE { BX_FREE(g_allocator, m_uniforms[_handle.idx]); m_uniforms[_handle.idx] = NULL; m_uniformReg.remove(_handle); } void requestScreenShot(FrameBufferHandle _handle, const char* _filePath) BX_OVERRIDE { #if BX_PLATFORM_WINDOWS IDirect3DSwapChain9* swapChain = isValid(_handle) ? m_frameBuffers[_handle.idx].m_swapChain : m_swapChain ; if (NULL == swapChain) { BX_TRACE("Unable to capture screenshot %s.", _filePath); return; } D3DPRESENT_PARAMETERS params; DX_CHECK(swapChain->GetPresentParameters(¶ms)); IDirect3DSurface9* surface; D3DDEVICE_CREATION_PARAMETERS dcp; DX_CHECK(m_device->GetCreationParameters(&dcp) ); D3DDISPLAYMODE dm; DX_CHECK(m_d3d9->GetAdapterDisplayMode(dcp.AdapterOrdinal, &dm) ); DX_CHECK(m_device->CreateOffscreenPlainSurface(dm.Width , dm.Height , D3DFMT_A8R8G8B8 , D3DPOOL_SCRATCH , &surface , NULL ) ); HWND nwh = params.hDeviceWindow; SetWindowPos(nwh, HWND_TOPMOST, 0, 0, 0, 0, SWP_NOMOVE|SWP_NOSIZE); DX_CHECK(m_device->GetFrontBufferData(0, surface) ); SetWindowPos(nwh, HWND_NOTOPMOST, 0, 0, 0, 0, SWP_NOMOVE|SWP_NOSIZE); D3DLOCKED_RECT rect; DX_CHECK(surface->LockRect(&rect , NULL , D3DLOCK_NO_DIRTY_UPDATE|D3DLOCK_NOSYSLOCK|D3DLOCK_READONLY ) ); RECT rc; GetClientRect(nwh, &rc); POINT point; point.x = rc.left; point.y = rc.top; ClientToScreen(nwh, &point); uint8_t* data = (uint8_t*)rect.pBits; uint32_t bytesPerPixel = rect.Pitch/dm.Width; g_callback->screenShot(_filePath , params.BackBufferWidth , params.BackBufferHeight , rect.Pitch , &data[point.y*rect.Pitch+point.x*bytesPerPixel] , params.BackBufferHeight*rect.Pitch , false ); DX_CHECK(surface->UnlockRect() ); DX_RELEASE(surface, 0); #else BX_UNUSED(_handle, _filePath); #endif // BX_PLATFORM_WINDOWS } void updateViewName(uint8_t _id, const char* _name) BX_OVERRIDE { if (BX_ENABLED(BGFX_CONFIG_DEBUG_PIX) ) { mbstowcs(&s_viewNameW[_id][BGFX_CONFIG_MAX_VIEW_NAME_RESERVED] , _name , BX_COUNTOF(s_viewNameW[0])-BGFX_CONFIG_MAX_VIEW_NAME_RESERVED ); } bx::strCopy(&s_viewName[_id][BGFX_CONFIG_MAX_VIEW_NAME_RESERVED] , BX_COUNTOF(s_viewName[0]) - BGFX_CONFIG_MAX_VIEW_NAME_RESERVED , _name ); } void updateUniform(uint16_t _loc, const void* _data, uint32_t _size) BX_OVERRIDE { bx::memCopy(m_uniforms[_loc], _data, _size); } void setMarker(const char* _marker, uint32_t _size) BX_OVERRIDE { #if BGFX_CONFIG_DEBUG_PIX uint32_t size = _size*sizeof(wchar_t); wchar_t* name = (wchar_t*)alloca(size); mbstowcs(name, _marker, size-2); PIX_SETMARKER(D3DCOLOR_MARKER, name); #endif // BGFX_CONFIG_DEBUG_PIX BX_UNUSED(_marker, _size); } void invalidateOcclusionQuery(OcclusionQueryHandle _handle) BX_OVERRIDE { m_occlusionQuery.invalidate(_handle); } void submitBlit(BlitState& _bs, uint16_t _view); void submit(Frame* _render, ClearQuad& _clearQuad, TextVideoMemBlitter& _textVideoMemBlitter) BX_OVERRIDE; void blitSetup(TextVideoMemBlitter& _blitter) BX_OVERRIDE { uint32_t width = m_params.BackBufferWidth; uint32_t height = m_params.BackBufferHeight; FrameBufferHandle fbh = BGFX_INVALID_HANDLE; setFrameBuffer(fbh, false, false); D3DVIEWPORT9 vp; vp.X = 0; vp.Y = 0; vp.Width = width; vp.Height = height; vp.MinZ = 0.0f; vp.MaxZ = 1.0f; IDirect3DDevice9* device = m_device; DX_CHECK(device->SetViewport(&vp) ); DX_CHECK(device->SetRenderState(D3DRS_STENCILENABLE, FALSE) ); DX_CHECK(device->SetRenderState(D3DRS_ZENABLE, FALSE) ); DX_CHECK(device->SetRenderState(D3DRS_ZFUNC, D3DCMP_ALWAYS) ); DX_CHECK(device->SetRenderState(D3DRS_CULLMODE, D3DCULL_NONE) ); DX_CHECK(device->SetRenderState(D3DRS_ALPHABLENDENABLE, FALSE) ); DX_CHECK(device->SetRenderState(D3DRS_ALPHAFUNC, D3DCMP_GREATER) ); DX_CHECK(device->SetRenderState(D3DRS_COLORWRITEENABLE, D3DCOLORWRITEENABLE_RED|D3DCOLORWRITEENABLE_GREEN|D3DCOLORWRITEENABLE_BLUE) ); DX_CHECK(device->SetRenderState(D3DRS_FILLMODE, D3DFILL_SOLID) ); ProgramD3D9& program = m_program[_blitter.m_program.idx]; DX_CHECK(device->SetVertexShader(program.m_vsh->m_vertexShader) ); DX_CHECK(device->SetPixelShader(program.m_fsh->m_pixelShader) ); VertexBufferD3D9& vb = m_vertexBuffers[_blitter.m_vb->handle.idx]; VertexDeclD3D9& vertexDecl = m_vertexDecls[_blitter.m_vb->decl.idx]; DX_CHECK(device->SetStreamSource(0, vb.m_ptr, 0, vertexDecl.m_decl.m_stride) ); DX_CHECK(device->SetVertexDeclaration(vertexDecl.m_ptr) ); IndexBufferD3D9& ib = m_indexBuffers[_blitter.m_ib->handle.idx]; DX_CHECK(device->SetIndices(ib.m_ptr) ); float proj[16]; bx::mtxOrtho(proj, 0.0f, (float)width, (float)height, 0.0f, 0.0f, 1000.0f); PredefinedUniform& predefined = program.m_predefined[0]; uint8_t flags = predefined.m_type; setShaderUniform(flags, predefined.m_loc, proj, 4); m_textures[_blitter.m_texture.idx].commit(0, BGFX_TEXTURE_INTERNAL_DEFAULT_SAMPLER, NULL); } void blitRender(TextVideoMemBlitter& _blitter, uint32_t _numIndices) BX_OVERRIDE { const uint32_t numVertices = _numIndices*4/6; if (0 < numVertices) { m_indexBuffers[_blitter.m_ib->handle.idx].update(0, _numIndices * 2, _blitter.m_ib->data, true); m_vertexBuffers[_blitter.m_vb->handle.idx].update(0, numVertices*_blitter.m_decl.m_stride, _blitter.m_vb->data, true); DX_CHECK(m_device->DrawIndexedPrimitive(D3DPT_TRIANGLELIST , 0 , 0 , numVertices , 0 , _numIndices / 3 ) ); } } void updateMsaa() { for (uint32_t ii = 1, last = 0; ii < BX_COUNTOF(s_checkMsaa); ++ii) { D3DMULTISAMPLE_TYPE msaa = s_checkMsaa[ii]; DWORD quality; HRESULT hr = m_d3d9->CheckDeviceMultiSampleType(m_adapter , m_deviceType , m_params.BackBufferFormat , m_params.Windowed , msaa , &quality ); if (SUCCEEDED(hr) ) { s_msaa[ii].m_type = msaa; s_msaa[ii].m_quality = bx::uint32_imax(0, quality-1); last = ii; } else { s_msaa[ii] = s_msaa[last]; } } } void updateResolution(const Resolution& _resolution) { m_maxAnisotropy = !!(_resolution.m_flags & BGFX_RESET_MAXANISOTROPY) ? m_caps.MaxAnisotropy : 1 ; const uint32_t maskFlags = ~(0 | BGFX_RESET_HMD_RECENTER | BGFX_RESET_MAXANISOTROPY | BGFX_RESET_DEPTH_CLAMP | BGFX_RESET_SUSPEND ); if (m_resolution.m_width != _resolution.m_width || m_resolution.m_height != _resolution.m_height || (m_resolution.m_flags&maskFlags) != (_resolution.m_flags&maskFlags) ) { uint32_t flags = _resolution.m_flags & (~BGFX_RESET_INTERNAL_FORCE); m_resolution = _resolution; m_resolution.m_flags = flags; m_textVideoMem.resize(false, _resolution.m_width, _resolution.m_height); m_textVideoMem.clear(); #if BX_PLATFORM_WINDOWS D3DDEVICE_CREATION_PARAMETERS dcp; DX_CHECK(m_device->GetCreationParameters(&dcp) ); D3DDISPLAYMODE dm; DX_CHECK(m_d3d9->GetAdapterDisplayMode(dcp.AdapterOrdinal, &dm) ); m_params.BackBufferFormat = dm.Format; #endif // BX_PLATFORM_WINDOWS m_params.BackBufferWidth = _resolution.m_width; m_params.BackBufferHeight = _resolution.m_height; m_params.FullScreen_RefreshRateInHz = BGFX_RESET_FULLSCREEN == (m_resolution.m_flags&BGFX_RESET_FULLSCREEN_MASK) ? 60 : 0; m_params.PresentationInterval = !!(m_resolution.m_flags&BGFX_RESET_VSYNC) ? D3DPRESENT_INTERVAL_ONE : D3DPRESENT_INTERVAL_IMMEDIATE; updateMsaa(); Msaa& msaa = s_msaa[(m_resolution.m_flags&BGFX_RESET_MSAA_MASK)>>BGFX_RESET_MSAA_SHIFT]; m_params.MultiSampleType = msaa.m_type; m_params.MultiSampleQuality = msaa.m_quality; preReset(); DX_CHECK(m_device->Reset(&m_params) ); postReset(); } } void setFrameBuffer(FrameBufferHandle _fbh, bool _msaa = true, bool _needPresent = true) { if (isValid(m_fbh) && m_fbh.idx != _fbh.idx) { FrameBufferD3D9& frameBuffer = m_frameBuffers[m_fbh.idx]; frameBuffer.resolve(); } if (!isValid(_fbh) ) { m_needPresent |= _needPresent; DX_CHECK(m_device->SetRenderTarget(0, m_backBufferColor) ); for (uint32_t ii = 1, num = g_caps.limits.maxFBAttachments; ii < num; ++ii) { DX_CHECK(m_device->SetRenderTarget(ii, NULL) ); } DX_CHECK(m_device->SetDepthStencilSurface(m_backBufferDepthStencil) ); DX_CHECK(m_device->SetRenderState(D3DRS_SRGBWRITEENABLE, 0 != (m_resolution.m_flags & BGFX_RESET_SRGB_BACKBUFFER) ) ); } else { m_frameBuffers[_fbh.idx].set(); } m_fbh = _fbh; m_rtMsaa = _msaa; } void setShaderUniform(uint8_t _flags, uint32_t _regIndex, const void* _val, uint32_t _numRegs) { if (_flags&BGFX_UNIFORM_FRAGMENTBIT) { DX_CHECK(m_device->SetPixelShaderConstantF(_regIndex, (const float*)_val, _numRegs) ); } else { DX_CHECK(m_device->SetVertexShaderConstantF(_regIndex, (const float*)_val, _numRegs) ); } } void setShaderUniform4f(uint8_t _flags, uint32_t _regIndex, const void* _val, uint32_t _numRegs) { setShaderUniform(_flags, _regIndex, _val, _numRegs); } void setShaderUniform4x4f(uint8_t _flags, uint32_t _regIndex, const void* _val, uint32_t _numRegs) { setShaderUniform(_flags, _regIndex, _val, _numRegs); } void reset() { preReset(); HRESULT hr; do { hr = m_device->Reset(&m_params); } while (FAILED(hr) ); postReset(); } void flush() { m_flushQuery->Issue(D3DISSUE_END); m_flushQuery->GetData(NULL, 0, D3DGETDATA_FLUSH); } bool isDeviceRemoved() BX_OVERRIDE { return false; } void flip(HMD& /*_hmd*/) BX_OVERRIDE { if (NULL != m_swapChain) { if (NULL != m_deviceEx) { DX_CHECK(m_deviceEx->WaitForVBlank(0) ); } for (uint32_t ii = 0, num = m_numWindows; ii < num; ++ii) { HRESULT hr = S_OK; if (0 == ii) { if (m_needPresent) { hr = m_swapChain->Present(NULL, NULL, (HWND)g_platformData.nwh, NULL, 0); m_needPresent = false; } else { flush(); } } else { hr = m_frameBuffers[m_windows[ii].idx].present(); } #if BX_PLATFORM_WINDOWS if (isLost(hr) ) { do { do { hr = m_device->TestCooperativeLevel(); } while (D3DERR_DEVICENOTRESET != hr); reset(); hr = m_device->TestCooperativeLevel(); } while (FAILED(hr) ); break; } else if (FAILED(hr) ) { BX_TRACE("Present failed with err 0x%08x.", hr); } #endif // BX_PLATFORM_ } } } void preReset() { m_needPresent = false; invalidateSamplerState(); for (uint32_t stage = 0; stage < BGFX_CONFIG_MAX_TEXTURE_SAMPLERS; ++stage) { DX_CHECK(m_device->SetTexture(stage, NULL) ); } DX_CHECK(m_device->SetRenderTarget(0, m_backBufferColor) ); for (uint32_t ii = 1, num = g_caps.limits.maxFBAttachments; ii < num; ++ii) { DX_CHECK(m_device->SetRenderTarget(ii, NULL) ); } DX_CHECK(m_device->SetDepthStencilSurface(m_backBufferDepthStencil) ); DX_CHECK(m_device->SetVertexShader(NULL) ); DX_CHECK(m_device->SetPixelShader(NULL) ); DX_CHECK(m_device->SetStreamSource(0, NULL, 0, 0) ); DX_CHECK(m_device->SetIndices(NULL) ); DX_RELEASE(m_backBufferColor, 0); DX_RELEASE(m_backBufferDepthStencil, 0); DX_RELEASE(m_swapChain, 0); capturePreReset(); DX_RELEASE(m_flushQuery, 0); if (m_timerQuerySupport) { m_gpuTimer.preReset(); } if (m_occlusionQuerySupport) { m_occlusionQuery.preReset(); } for (uint32_t ii = 0; ii < BX_COUNTOF(m_indexBuffers); ++ii) { m_indexBuffers[ii].preReset(); } for (uint32_t ii = 0; ii < BX_COUNTOF(m_vertexBuffers); ++ii) { m_vertexBuffers[ii].preReset(); } for (uint32_t ii = 0; ii < BX_COUNTOF(m_frameBuffers); ++ii) { m_frameBuffers[ii].preReset(); } for (uint32_t ii = 0; ii < BX_COUNTOF(m_textures); ++ii) { m_textures[ii].preReset(); } } void postReset() { DX_CHECK(m_device->GetSwapChain(0, &m_swapChain) ); DX_CHECK(m_swapChain->GetBackBuffer(0, D3DBACKBUFFER_TYPE_MONO, &m_backBufferColor) ); DX_CHECK(m_device->GetDepthStencilSurface(&m_backBufferDepthStencil) ); DX_CHECK(m_device->CreateQuery(D3DQUERYTYPE_EVENT, &m_flushQuery) ); if (m_timerQuerySupport) { m_gpuTimer.postReset(); } if (m_occlusionQuerySupport) { m_occlusionQuery.postReset(); } capturePostReset(); for (uint32_t ii = 0; ii < BX_COUNTOF(m_indexBuffers); ++ii) { m_indexBuffers[ii].postReset(); } for (uint32_t ii = 0; ii < BX_COUNTOF(m_vertexBuffers); ++ii) { m_vertexBuffers[ii].postReset(); } for (uint32_t ii = 0; ii < BX_COUNTOF(m_textures); ++ii) { m_textures[ii].postReset(); } for (uint32_t ii = 0; ii < BX_COUNTOF(m_frameBuffers); ++ii) { m_frameBuffers[ii].postReset(); } } void invalidateSamplerState() { for (uint32_t stage = 0; stage < BGFX_CONFIG_MAX_TEXTURE_SAMPLERS; ++stage) { m_samplerFlags[stage] = UINT32_MAX; } } static void setSamplerState(IDirect3DDevice9* _device, DWORD _stage, D3DSAMPLERSTATETYPE _type, DWORD _value) { DX_CHECK(_device->SetSamplerState(_stage, _type, _value) ); if (4 > _stage) { DX_CHECK(_device->SetSamplerState(D3DVERTEXTEXTURESAMPLER0 + _stage, _type, _value) ); } } void setSamplerState(uint8_t _stage, uint32_t _flags, const float _rgba[4]) { const uint32_t flags = _flags&( (~BGFX_TEXTURE_RESERVED_MASK) | BGFX_TEXTURE_SAMPLER_BITS_MASK | BGFX_TEXTURE_SRGB); BX_CHECK(_stage < BX_COUNTOF(m_samplerFlags), ""); if (m_samplerFlags[_stage] != flags) { m_samplerFlags[_stage] = flags; IDirect3DDevice9* device = m_device; D3DTEXTUREADDRESS tau = s_textureAddress[(_flags&BGFX_TEXTURE_U_MASK)>>BGFX_TEXTURE_U_SHIFT]; D3DTEXTUREADDRESS tav = s_textureAddress[(_flags&BGFX_TEXTURE_V_MASK)>>BGFX_TEXTURE_V_SHIFT]; D3DTEXTUREADDRESS taw = s_textureAddress[(_flags&BGFX_TEXTURE_W_MASK)>>BGFX_TEXTURE_W_SHIFT]; D3DTEXTUREFILTERTYPE minFilter = s_textureFilter[(_flags&BGFX_TEXTURE_MIN_MASK)>>BGFX_TEXTURE_MIN_SHIFT]; D3DTEXTUREFILTERTYPE magFilter = s_textureFilter[(_flags&BGFX_TEXTURE_MAG_MASK)>>BGFX_TEXTURE_MAG_SHIFT]; D3DTEXTUREFILTERTYPE mipFilter = s_textureFilter[(_flags&BGFX_TEXTURE_MIP_MASK)>>BGFX_TEXTURE_MIP_SHIFT]; setSamplerState(device, _stage, D3DSAMP_ADDRESSU, tau); setSamplerState(device, _stage, D3DSAMP_ADDRESSV, tav); setSamplerState(device, _stage, D3DSAMP_ADDRESSW, taw); setSamplerState(device, _stage, D3DSAMP_MINFILTER, minFilter); setSamplerState(device, _stage, D3DSAMP_MAGFILTER, magFilter); setSamplerState(device, _stage, D3DSAMP_MIPFILTER, mipFilter); setSamplerState(device, _stage, D3DSAMP_MAXANISOTROPY, m_maxAnisotropy); setSamplerState(device, _stage, D3DSAMP_SRGBTEXTURE, 0 != (flags & BGFX_TEXTURE_SRGB) ); if (NULL != _rgba) { if (needBorderColor(_flags) ) { DWORD bc = D3DCOLOR_COLORVALUE(_rgba[0], _rgba[1], _rgba[2], _rgba[3]); setSamplerState(device , _stage , D3DSAMP_BORDERCOLOR , bc ); } } } } bool isVisible(Frame* _render, OcclusionQueryHandle _handle, bool _visible) { m_occlusionQuery.resolve(_render); return _visible == (0 != _render->m_occlusion[_handle.idx]); } void capturePreReset() { if (NULL != m_captureSurface) { g_callback->captureEnd(); } DX_RELEASE(m_captureSurface, 1); DX_RELEASE(m_captureTexture, 0); DX_RELEASE(m_captureResolve, 0); } void capturePostReset() { if (m_resolution.m_flags&BGFX_RESET_CAPTURE) { uint32_t width = m_params.BackBufferWidth; uint32_t height = m_params.BackBufferHeight; D3DFORMAT fmt = m_params.BackBufferFormat; DX_CHECK(m_device->CreateTexture(width , height , 1 , 0 , fmt , D3DPOOL_SYSTEMMEM , &m_captureTexture , NULL ) ); DX_CHECK(m_captureTexture->GetSurfaceLevel(0 , &m_captureSurface ) ); if (m_params.MultiSampleType != D3DMULTISAMPLE_NONE) { DX_CHECK(m_device->CreateRenderTarget(width , height , fmt , D3DMULTISAMPLE_NONE , 0 , false , &m_captureResolve , NULL ) ); } g_callback->captureBegin(width, height, width*4, TextureFormat::BGRA8, false); } } void capture() { if (NULL != m_captureSurface) { IDirect3DSurface9* resolve = m_backBufferColor; if (NULL != m_captureResolve) { resolve = m_captureResolve; DX_CHECK(m_device->StretchRect(m_backBufferColor , 0 , m_captureResolve , NULL , D3DTEXF_NONE ) ); } HRESULT hr = m_device->GetRenderTargetData(resolve, m_captureSurface); if (SUCCEEDED(hr) ) { D3DLOCKED_RECT rect; DX_CHECK(m_captureSurface->LockRect(&rect , NULL , D3DLOCK_NO_DIRTY_UPDATE|D3DLOCK_NOSYSLOCK|D3DLOCK_READONLY ) ); g_callback->captureFrame(rect.pBits, m_params.BackBufferHeight*rect.Pitch); DX_CHECK(m_captureSurface->UnlockRect() ); } } } void commit(UniformBuffer& _uniformBuffer) { _uniformBuffer.reset(); IDirect3DDevice9* device = m_device; for (;;) { uint32_t opcode = _uniformBuffer.read(); if (UniformType::End == opcode) { break; } UniformType::Enum type; uint16_t loc; uint16_t num; uint16_t copy; UniformBuffer::decodeOpcode(opcode, type, loc, num, copy); const char* data; if (copy) { data = _uniformBuffer.read(g_uniformTypeSize[type]*num); } else { UniformHandle handle; bx::memCopy(&handle, _uniformBuffer.read(sizeof(UniformHandle) ), sizeof(UniformHandle) ); data = (const char*)m_uniforms[handle.idx]; } #define CASE_IMPLEMENT_UNIFORM(_uniform, _dxsuffix, _type) \ case UniformType::_uniform: \ { \ _type* value = (_type*)data; \ DX_CHECK(device->SetVertexShaderConstant##_dxsuffix(loc, value, num) ); \ } \ break; \ \ case UniformType::_uniform|BGFX_UNIFORM_FRAGMENTBIT: \ { \ _type* value = (_type*)data; \ DX_CHECK(device->SetPixelShaderConstant##_dxsuffix(loc, value, num) ); \ } \ break switch ( (int32_t)type) { case UniformType::Mat3: { float* value = (float*)data; for (uint32_t ii = 0, count = num/3; ii < count; ++ii, loc += 3, value += 9) { Matrix4 mtx; mtx.un.val[ 0] = value[0]; mtx.un.val[ 1] = value[1]; mtx.un.val[ 2] = value[2]; mtx.un.val[ 3] = 0.0f; mtx.un.val[ 4] = value[3]; mtx.un.val[ 5] = value[4]; mtx.un.val[ 6] = value[5]; mtx.un.val[ 7] = 0.0f; mtx.un.val[ 8] = value[6]; mtx.un.val[ 9] = value[7]; mtx.un.val[10] = value[8]; mtx.un.val[11] = 0.0f; DX_CHECK(device->SetVertexShaderConstantF(loc, &mtx.un.val[0], 3) ); } } break; case UniformType::Mat3|BGFX_UNIFORM_FRAGMENTBIT: { float* value = (float*)data; for (uint32_t ii = 0, count = num/3; ii < count; ++ii, loc += 3, value += 9) { Matrix4 mtx; mtx.un.val[ 0] = value[0]; mtx.un.val[ 1] = value[1]; mtx.un.val[ 2] = value[2]; mtx.un.val[ 3] = 0.0f; mtx.un.val[ 4] = value[3]; mtx.un.val[ 5] = value[4]; mtx.un.val[ 6] = value[5]; mtx.un.val[ 7] = 0.0f; mtx.un.val[ 8] = value[6]; mtx.un.val[ 9] = value[7]; mtx.un.val[10] = value[8]; mtx.un.val[11] = 0.0f; DX_CHECK(device->SetPixelShaderConstantF(loc, &mtx.un.val[0], 3) ); } } break; CASE_IMPLEMENT_UNIFORM(Int1, I, int); CASE_IMPLEMENT_UNIFORM(Vec4, F, float); CASE_IMPLEMENT_UNIFORM(Mat4, F, float); case UniformType::End: break; default: BX_TRACE("%4d: INVALID 0x%08x, t %d, l %d, n %d, c %d", _uniformBuffer.getPos(), opcode, type, loc, num, copy); break; } #undef CASE_IMPLEMENT_UNIFORM } } void clearQuad(ClearQuad& _clearQuad, const Rect& _rect, const Clear& _clear, const float _palette[][4]) { IDirect3DDevice9* device = m_device; uint32_t numMrt = 1; FrameBufferHandle fbh = m_fbh; if (isValid(fbh) ) { const FrameBufferD3D9& fb = m_frameBuffers[fbh.idx]; numMrt = bx::uint32_max(1, fb.m_num); } if (1 == numMrt) { D3DCOLOR color = 0; DWORD flags = 0; if (BGFX_CLEAR_COLOR & _clear.m_flags) { if (BGFX_CLEAR_COLOR_USE_PALETTE & _clear.m_flags) { uint8_t index = (uint8_t)bx::uint32_min(BGFX_CONFIG_MAX_COLOR_PALETTE-1, _clear.m_index[0]); const float* rgba = _palette[index]; const float rr = rgba[0]; const float gg = rgba[1]; const float bb = rgba[2]; const float aa = rgba[3]; color = D3DCOLOR_COLORVALUE(rr, gg, bb, aa); } else { color = D3DCOLOR_RGBA(_clear.m_index[0], _clear.m_index[1], _clear.m_index[2], _clear.m_index[3]); } flags |= D3DCLEAR_TARGET; DX_CHECK(device->SetRenderState(D3DRS_COLORWRITEENABLE , D3DCOLORWRITEENABLE_RED | D3DCOLORWRITEENABLE_GREEN | D3DCOLORWRITEENABLE_BLUE | D3DCOLORWRITEENABLE_ALPHA ) ); } if (BGFX_CLEAR_DEPTH & _clear.m_flags) { flags |= D3DCLEAR_ZBUFFER; DX_CHECK(device->SetRenderState(D3DRS_ZWRITEENABLE, TRUE) ); } if (BGFX_CLEAR_STENCIL & _clear.m_flags) { flags |= D3DCLEAR_STENCIL; } if (0 != flags) { RECT rc; rc.left = _rect.m_x; rc.top = _rect.m_y; rc.right = _rect.m_x + _rect.m_width; rc.bottom = _rect.m_y + _rect.m_height; DX_CHECK(device->SetRenderState(D3DRS_SCISSORTESTENABLE, TRUE) ); DX_CHECK(device->SetScissorRect(&rc) ); DX_CHECK(device->Clear(0, NULL, flags, color, _clear.m_depth, _clear.m_stencil) ); DX_CHECK(device->SetRenderState(D3DRS_SCISSORTESTENABLE, FALSE) ); } } else { DX_CHECK(device->SetRenderState(D3DRS_SCISSORTESTENABLE, FALSE) ); DX_CHECK(device->SetRenderState(D3DRS_CULLMODE, D3DCULL_NONE) ); DX_CHECK(device->SetRenderState(D3DRS_ALPHABLENDENABLE, FALSE) ); if (BGFX_CLEAR_COLOR & _clear.m_flags) { DX_CHECK(device->SetRenderState(D3DRS_COLORWRITEENABLE , D3DCOLORWRITEENABLE_RED | D3DCOLORWRITEENABLE_GREEN | D3DCOLORWRITEENABLE_BLUE | D3DCOLORWRITEENABLE_ALPHA ) ); } else { DX_CHECK(device->SetRenderState(D3DRS_COLORWRITEENABLE, 0) ); } if (BGFX_CLEAR_DEPTH & _clear.m_flags) { DX_CHECK(device->SetRenderState(D3DRS_ZWRITEENABLE, TRUE) ); DX_CHECK(device->SetRenderState(D3DRS_ZENABLE, TRUE) ); DX_CHECK(device->SetRenderState(D3DRS_ZFUNC, D3DCMP_ALWAYS) ); } else { DX_CHECK(device->SetRenderState(D3DRS_ZWRITEENABLE, FALSE) ); DX_CHECK(device->SetRenderState(D3DRS_ZENABLE, FALSE) ); } if (BGFX_CLEAR_STENCIL & _clear.m_flags) { DX_CHECK(device->SetRenderState(D3DRS_STENCILENABLE, TRUE) ); DX_CHECK(device->SetRenderState(D3DRS_TWOSIDEDSTENCILMODE, TRUE) ); DX_CHECK(device->SetRenderState(D3DRS_STENCILREF, _clear.m_stencil) ); DX_CHECK(device->SetRenderState(D3DRS_STENCILMASK, 0xff) ); DX_CHECK(device->SetRenderState(D3DRS_STENCILFUNC, D3DCMP_ALWAYS) ); DX_CHECK(device->SetRenderState(D3DRS_STENCILFAIL, D3DSTENCILOP_REPLACE) ); DX_CHECK(device->SetRenderState(D3DRS_STENCILZFAIL, D3DSTENCILOP_REPLACE) ); DX_CHECK(device->SetRenderState(D3DRS_STENCILPASS, D3DSTENCILOP_REPLACE) ); } else { DX_CHECK(device->SetRenderState(D3DRS_STENCILENABLE, FALSE) ); } VertexBufferD3D9& vb = m_vertexBuffers[_clearQuad.m_vb->handle.idx]; VertexDeclD3D9& vertexDecl = m_vertexDecls[_clearQuad.m_vb->decl.idx]; uint32_t stride = _clearQuad.m_decl.m_stride; { struct Vertex { float m_x; float m_y; float m_z; }; Vertex* vertex = (Vertex*)_clearQuad.m_vb->data; BX_CHECK(stride == sizeof(Vertex), "Stride/Vertex mismatch (stride %d, sizeof(Vertex) %d)", stride, sizeof(Vertex) ); const float depth = _clear.m_depth; vertex->m_x = -1.0f; vertex->m_y = -1.0f; vertex->m_z = depth; vertex++; vertex->m_x = 1.0f; vertex->m_y = -1.0f; vertex->m_z = depth; vertex++; vertex->m_x = -1.0f; vertex->m_y = 1.0f; vertex->m_z = depth; vertex++; vertex->m_x = 1.0f; vertex->m_y = 1.0f; vertex->m_z = depth; } vb.update(0, 4*stride, _clearQuad.m_vb->data); ProgramD3D9& program = m_program[_clearQuad.m_program[numMrt-1].idx]; device->SetVertexShader(program.m_vsh->m_vertexShader); device->SetPixelShader(program.m_fsh->m_pixelShader); float mrtClear[BGFX_CONFIG_MAX_FRAME_BUFFER_ATTACHMENTS][4]; if (BGFX_CLEAR_COLOR_USE_PALETTE & _clear.m_flags) { for (uint32_t ii = 0; ii < numMrt; ++ii) { uint8_t index = (uint8_t)bx::uint32_min(BGFX_CONFIG_MAX_COLOR_PALETTE - 1, _clear.m_index[ii]); bx::memCopy(mrtClear[ii], _palette[index], 16); } } else { float rgba[4] = { _clear.m_index[0] * 1.0f / 255.0f, _clear.m_index[1] * 1.0f / 255.0f, _clear.m_index[2] * 1.0f / 255.0f, _clear.m_index[3] * 1.0f / 255.0f, }; for (uint32_t ii = 0; ii < numMrt; ++ii) { bx::memCopy(mrtClear[ii], rgba, 16); } } DX_CHECK(device->SetPixelShaderConstantF(0, mrtClear[0], numMrt)); DX_CHECK(device->SetStreamSource(0, vb.m_ptr, 0, stride) ); DX_CHECK(device->SetStreamSourceFreq(0, 1) ); DX_CHECK(device->SetStreamSource(1, NULL, 0, 0) ); DX_CHECK(device->SetVertexDeclaration(vertexDecl.m_ptr) ); DX_CHECK(device->SetIndices(NULL) ); DX_CHECK(device->DrawPrimitive(D3DPT_TRIANGLESTRIP , 0 , 2 ) ); } } #if BX_PLATFORM_WINDOWS D3DCAPS9 m_caps; #endif // BX_PLATFORM_WINDOWS IDirect3D9Ex* m_d3d9ex; IDirect3DDevice9Ex* m_deviceEx; IDirect3D9* m_d3d9; IDirect3DDevice9* m_device; IDirect3DQuery9* m_flushQuery; TimerQueryD3D9 m_gpuTimer; OcclusionQueryD3D9 m_occlusionQuery; D3DPOOL m_pool; IDirect3DSwapChain9* m_swapChain; bool m_needPresent; uint16_t m_numWindows; FrameBufferHandle m_windows[BGFX_CONFIG_MAX_FRAME_BUFFERS]; IDirect3DSurface9* m_backBufferColor; IDirect3DSurface9* m_backBufferDepthStencil; IDirect3DTexture9* m_captureTexture; IDirect3DSurface9* m_captureSurface; IDirect3DSurface9* m_captureResolve; IDirect3DVertexDeclaration9* m_instanceDataDecls[BGFX_CONFIG_MAX_INSTANCE_DATA_COUNT]; void* m_d3d9dll; uint32_t m_adapter; D3DDEVTYPE m_deviceType; D3DPRESENT_PARAMETERS m_params; uint32_t m_maxAnisotropy; D3DADAPTER_IDENTIFIER9 m_identifier; Resolution m_resolution; bool m_initialized; bool m_amd; bool m_nvidia; bool m_atocSupport; bool m_instancingSupport; bool m_occlusionQuerySupport; bool m_timerQuerySupport; D3DFORMAT m_fmtDepth; IndexBufferD3D9 m_indexBuffers[BGFX_CONFIG_MAX_INDEX_BUFFERS]; VertexBufferD3D9 m_vertexBuffers[BGFX_CONFIG_MAX_VERTEX_BUFFERS]; ShaderD3D9 m_shaders[BGFX_CONFIG_MAX_SHADERS]; ProgramD3D9 m_program[BGFX_CONFIG_MAX_PROGRAMS]; TextureD3D9 m_textures[BGFX_CONFIG_MAX_TEXTURES]; VertexDeclD3D9 m_vertexDecls[BGFX_CONFIG_MAX_VERTEX_DECLS]; FrameBufferD3D9 m_frameBuffers[BGFX_CONFIG_MAX_FRAME_BUFFERS]; UniformRegistry m_uniformReg; void* m_uniforms[BGFX_CONFIG_MAX_UNIFORMS]; uint32_t m_samplerFlags[BGFX_CONFIG_MAX_TEXTURE_SAMPLERS]; TextureD3D9* m_updateTexture; uint8_t* m_updateTextureBits; uint32_t m_updateTexturePitch; uint8_t m_updateTextureSide; uint8_t m_updateTextureMip; TextVideoMem m_textVideoMem; FrameBufferHandle m_fbh; bool m_rtMsaa; }; static RendererContextD3D9* s_renderD3D9; RendererContextI* rendererCreate() { s_renderD3D9 = BX_NEW(g_allocator, RendererContextD3D9); if (!s_renderD3D9->init() ) { BX_DELETE(g_allocator, s_renderD3D9); s_renderD3D9 = NULL; } return s_renderD3D9; } void rendererDestroy() { s_renderD3D9->shutdown(); BX_DELETE(g_allocator, s_renderD3D9); s_renderD3D9 = NULL; } void IndexBufferD3D9::create(uint32_t _size, void* _data, uint16_t _flags) { m_size = _size; m_flags = _flags; m_dynamic = NULL == _data; uint32_t usage = D3DUSAGE_WRITEONLY; D3DPOOL pool = s_renderD3D9->m_pool; if (m_dynamic) { usage |= D3DUSAGE_DYNAMIC; pool = D3DPOOL_DEFAULT; } const D3DFORMAT format = 0 == (_flags & BGFX_BUFFER_INDEX32) ? D3DFMT_INDEX16 : D3DFMT_INDEX32 ; DX_CHECK(s_renderD3D9->m_device->CreateIndexBuffer(m_size , usage , format , pool , &m_ptr , NULL ) ); if (NULL != _data) { update(0, _size, _data); } } void IndexBufferD3D9::preReset() { if (m_dynamic) { DX_RELEASE(m_ptr, 0); } } void IndexBufferD3D9::postReset() { if (m_dynamic) { const D3DFORMAT format = 0 == (m_flags & BGFX_BUFFER_INDEX32) ? D3DFMT_INDEX16 : D3DFMT_INDEX32 ; DX_CHECK(s_renderD3D9->m_device->CreateIndexBuffer(m_size , D3DUSAGE_WRITEONLY|D3DUSAGE_DYNAMIC , format , D3DPOOL_DEFAULT , &m_ptr , NULL ) ); } } void VertexBufferD3D9::create(uint32_t _size, void* _data, VertexDeclHandle _declHandle) { m_size = _size; m_decl = _declHandle; m_dynamic = NULL == _data; uint32_t usage = D3DUSAGE_WRITEONLY; D3DPOOL pool = s_renderD3D9->m_pool; if (m_dynamic) { usage |= D3DUSAGE_DYNAMIC; pool = D3DPOOL_DEFAULT; } DX_CHECK(s_renderD3D9->m_device->CreateVertexBuffer(m_size , usage , 0 , pool , &m_ptr , NULL ) ); if (NULL != _data) { update(0, _size, _data); } } void VertexBufferD3D9::preReset() { if (m_dynamic) { DX_RELEASE(m_ptr, 0); } } void VertexBufferD3D9::postReset() { if (m_dynamic) { DX_CHECK(s_renderD3D9->m_device->CreateVertexBuffer(m_size , D3DUSAGE_WRITEONLY|D3DUSAGE_DYNAMIC , 0 , D3DPOOL_DEFAULT , &m_ptr , NULL ) ); } } static const D3DVERTEXELEMENT9 s_attrib[] = { { 0, 0, D3DDECLTYPE_FLOAT3, D3DDECLMETHOD_DEFAULT, D3DDECLUSAGE_POSITION, 0 }, { 0, 0, D3DDECLTYPE_FLOAT3, D3DDECLMETHOD_DEFAULT, D3DDECLUSAGE_NORMAL, 0 }, { 0, 0, D3DDECLTYPE_FLOAT3, D3DDECLMETHOD_DEFAULT, D3DDECLUSAGE_TANGENT, 0 }, { 0, 0, D3DDECLTYPE_FLOAT3, D3DDECLMETHOD_DEFAULT, D3DDECLUSAGE_BINORMAL, 0 }, { 0, 0, D3DDECLTYPE_UBYTE4, D3DDECLMETHOD_DEFAULT, D3DDECLUSAGE_COLOR, 0 }, { 0, 0, D3DDECLTYPE_UBYTE4, D3DDECLMETHOD_DEFAULT, D3DDECLUSAGE_COLOR, 1 }, { 0, 0, D3DDECLTYPE_UBYTE4, D3DDECLMETHOD_DEFAULT, D3DDECLUSAGE_BLENDINDICES, 0 }, { 0, 0, D3DDECLTYPE_FLOAT3, D3DDECLMETHOD_DEFAULT, D3DDECLUSAGE_BLENDWEIGHT, 0 }, { 0, 0, D3DDECLTYPE_FLOAT2, D3DDECLMETHOD_DEFAULT, D3DDECLUSAGE_TEXCOORD, 0 }, { 0, 0, D3DDECLTYPE_FLOAT2, D3DDECLMETHOD_DEFAULT, D3DDECLUSAGE_TEXCOORD, 1 }, { 0, 0, D3DDECLTYPE_FLOAT2, D3DDECLMETHOD_DEFAULT, D3DDECLUSAGE_TEXCOORD, 2 }, { 0, 0, D3DDECLTYPE_FLOAT2, D3DDECLMETHOD_DEFAULT, D3DDECLUSAGE_TEXCOORD, 3 }, { 0, 0, D3DDECLTYPE_FLOAT2, D3DDECLMETHOD_DEFAULT, D3DDECLUSAGE_TEXCOORD, 4 }, { 0, 0, D3DDECLTYPE_FLOAT2, D3DDECLMETHOD_DEFAULT, D3DDECLUSAGE_TEXCOORD, 5 }, { 0, 0, D3DDECLTYPE_FLOAT2, D3DDECLMETHOD_DEFAULT, D3DDECLUSAGE_TEXCOORD, 6 }, { 0, 0, D3DDECLTYPE_FLOAT2, D3DDECLMETHOD_DEFAULT, D3DDECLUSAGE_TEXCOORD, 7 }, D3DDECL_END() }; BX_STATIC_ASSERT(Attrib::Count == BX_COUNTOF(s_attrib)-1); static const uint8_t s_attribType[][4][2] = { { // Uint8 { D3DDECLTYPE_UBYTE4, D3DDECLTYPE_UBYTE4N }, { D3DDECLTYPE_UBYTE4, D3DDECLTYPE_UBYTE4N }, { D3DDECLTYPE_UBYTE4, D3DDECLTYPE_UBYTE4N }, { D3DDECLTYPE_UBYTE4, D3DDECLTYPE_UBYTE4N }, }, { // Uint10 { D3DDECLTYPE_UDEC3, D3DDECLTYPE_DEC3N }, { D3DDECLTYPE_UDEC3, D3DDECLTYPE_DEC3N }, { D3DDECLTYPE_UDEC3, D3DDECLTYPE_DEC3N }, { D3DDECLTYPE_UDEC3, D3DDECLTYPE_DEC3N }, }, { // Int16 { D3DDECLTYPE_SHORT2, D3DDECLTYPE_SHORT2N }, { D3DDECLTYPE_SHORT2, D3DDECLTYPE_SHORT2N }, { D3DDECLTYPE_SHORT4, D3DDECLTYPE_SHORT4N }, { D3DDECLTYPE_SHORT4, D3DDECLTYPE_SHORT4N }, }, { // Half { D3DDECLTYPE_FLOAT16_2, D3DDECLTYPE_FLOAT16_2 }, { D3DDECLTYPE_FLOAT16_2, D3DDECLTYPE_FLOAT16_2 }, { D3DDECLTYPE_FLOAT16_4, D3DDECLTYPE_FLOAT16_4 }, { D3DDECLTYPE_FLOAT16_4, D3DDECLTYPE_FLOAT16_4 }, }, { // Float { D3DDECLTYPE_FLOAT1, D3DDECLTYPE_FLOAT1 }, { D3DDECLTYPE_FLOAT2, D3DDECLTYPE_FLOAT2 }, { D3DDECLTYPE_FLOAT3, D3DDECLTYPE_FLOAT3 }, { D3DDECLTYPE_FLOAT4, D3DDECLTYPE_FLOAT4 }, }, }; BX_STATIC_ASSERT(AttribType::Count == BX_COUNTOF(s_attribType) ); static D3DVERTEXELEMENT9* fillVertexDecl(D3DVERTEXELEMENT9* _out, const VertexDecl& _decl) { D3DVERTEXELEMENT9* elem = _out; for (uint32_t attr = 0; attr < Attrib::Count; ++attr) { if (UINT16_MAX != _decl.m_attributes[attr]) { uint8_t num; AttribType::Enum type; bool normalized; bool asInt; _decl.decode(Attrib::Enum(attr), num, type, normalized, asInt); bx::memCopy(elem, &s_attrib[attr], sizeof(D3DVERTEXELEMENT9) ); elem->Type = s_attribType[type][num-1][normalized]; elem->Offset = _decl.m_offset[attr]; ++elem; } } return elem; } static IDirect3DVertexDeclaration9* createVertexDeclaration(const VertexDecl& _decl, uint16_t _numInstanceData) { D3DVERTEXELEMENT9 vertexElements[Attrib::Count+1+BGFX_CONFIG_MAX_INSTANCE_DATA_COUNT]; D3DVERTEXELEMENT9* elem = fillVertexDecl(vertexElements, _decl); const D3DVERTEXELEMENT9 inst = { 1, 0, D3DDECLTYPE_FLOAT4, D3DDECLMETHOD_DEFAULT, D3DDECLUSAGE_TEXCOORD, 0 }; for (uint8_t ii = 0; ii < _numInstanceData; ++ii) { bx::memCopy(elem, &inst, sizeof(D3DVERTEXELEMENT9) ); elem->UsageIndex = uint8_t(7-ii); // TEXCOORD7 = i_data0, TEXCOORD6 = i_data1, etc. elem->Offset = ii*16; ++elem; } bx::memCopy(elem, &s_attrib[Attrib::Count], sizeof(D3DVERTEXELEMENT9) ); IDirect3DVertexDeclaration9* ptr; DX_CHECK(s_renderD3D9->m_device->CreateVertexDeclaration(vertexElements, &ptr) ); return ptr; } void VertexDeclD3D9::create(const VertexDecl& _decl) { bx::memCopy(&m_decl, &_decl, sizeof(VertexDecl) ); dump(m_decl); m_ptr = createVertexDeclaration(_decl, 0); } void ShaderD3D9::create(const Memory* _mem) { bx::MemoryReader reader(_mem->data, _mem->size); uint32_t magic; bx::read(&reader, magic); switch (magic) { case BGFX_CHUNK_MAGIC_FSH: case BGFX_CHUNK_MAGIC_VSH: break; default: BGFX_FATAL(false, Fatal::InvalidShader, "Unknown shader format %x.", magic); break; } bool fragment = BGFX_CHUNK_MAGIC_FSH == magic; uint32_t iohash; bx::read(&reader, iohash); uint16_t count; bx::read(&reader, count); m_numPredefined = 0; BX_TRACE("Shader consts %d", count); uint8_t fragmentBit = fragment ? BGFX_UNIFORM_FRAGMENTBIT : 0; if (0 < count) { for (uint32_t ii = 0; ii < count; ++ii) { uint8_t nameSize = 0; bx::read(&reader, nameSize); char name[256] = {}; bx::read(&reader, &name, nameSize); name[nameSize] = '\0'; uint8_t type = 0; bx::read(&reader, type); uint8_t num = 0; bx::read(&reader, num); uint16_t regIndex = 0; bx::read(&reader, regIndex); uint16_t regCount = 0; bx::read(&reader, regCount); const char* kind = "invalid"; PredefinedUniform::Enum predefined = nameToPredefinedUniformEnum(name); if (PredefinedUniform::Count != predefined) { kind = "predefined"; m_predefined[m_numPredefined].m_loc = regIndex; m_predefined[m_numPredefined].m_count = regCount; m_predefined[m_numPredefined].m_type = uint8_t(predefined|fragmentBit); m_numPredefined++; } else if (0 == (BGFX_UNIFORM_SAMPLERBIT & type) ) { const UniformRegInfo* info = s_renderD3D9->m_uniformReg.find(name); BX_WARN(NULL != info, "User defined uniform '%s' is not found, it won't be set.", name); if (NULL != info) { if (NULL == m_constantBuffer) { m_constantBuffer = UniformBuffer::create(1024); } kind = "user"; m_constantBuffer->writeUniformHandle( (UniformType::Enum)(type|fragmentBit), regIndex, info->m_handle, regCount); } } else { kind = "sampler"; } BX_TRACE("\t%s: %s (%s), num %2d, r.index %3d, r.count %2d" , kind , name , getUniformTypeName(UniformType::Enum(type&~BGFX_UNIFORM_MASK) ) , num , regIndex , regCount ); BX_UNUSED(kind); } if (NULL != m_constantBuffer) { m_constantBuffer->finish(); } } uint16_t shaderSize; bx::read(&reader, shaderSize); const DWORD* code = (const DWORD*)reader.getDataPtr(); if (fragment) { m_type = 1; DX_CHECK(s_renderD3D9->m_device->CreatePixelShader(code, &m_pixelShader) ); BGFX_FATAL(NULL != m_pixelShader, bgfx::Fatal::InvalidShader, "Failed to create fragment shader."); } else { m_type = 0; DX_CHECK(s_renderD3D9->m_device->CreateVertexShader(code, &m_vertexShader) ); BGFX_FATAL(NULL != m_vertexShader, bgfx::Fatal::InvalidShader, "Failed to create vertex shader."); } } void TextureD3D9::createTexture(uint32_t _width, uint32_t _height, uint8_t _numMips) { m_type = Texture2D; const bimg::TextureFormat::Enum fmt = (bimg::TextureFormat::Enum)m_textureFormat; DWORD usage = 0; D3DPOOL pool = D3DPOOL_DEFAULT; const bool renderTarget = 0 != (m_flags&BGFX_TEXTURE_RT_MASK); const bool blit = 0 != (m_flags&BGFX_TEXTURE_BLIT_DST); const bool readBack = 0 != (m_flags&BGFX_TEXTURE_READ_BACK); if (bimg::isDepth(fmt) ) { usage = D3DUSAGE_DEPTHSTENCIL; } else if (readBack) { usage = 0; pool = D3DPOOL_SYSTEMMEM; } else if (renderTarget || blit) { usage = 0 | D3DUSAGE_RENDERTARGET | (1 < _numMips ? D3DUSAGE_AUTOGENMIPMAP : 0) ; } IDirect3DDevice9* device = s_renderD3D9->m_device; if (renderTarget) { uint32_t msaaQuality = ( (m_flags&BGFX_TEXTURE_RT_MSAA_MASK)>>BGFX_TEXTURE_RT_MSAA_SHIFT); msaaQuality = bx::uint32_satsub(msaaQuality, 1); bool writeOnly = 0 != (m_flags&BGFX_TEXTURE_RT_WRITE_ONLY); if (0 != msaaQuality || writeOnly) { const Msaa& msaa = s_msaa[msaaQuality]; if (bimg::isDepth(fmt) ) { DX_CHECK(device->CreateDepthStencilSurface( m_width , m_height , s_textureFormat[m_textureFormat].m_fmt , msaa.m_type , msaa.m_quality , FALSE , &m_surface , NULL ) ); } else { DX_CHECK(device->CreateRenderTarget( m_width , m_height , s_textureFormat[m_textureFormat].m_fmt , msaa.m_type , msaa.m_quality , FALSE , &m_surface , NULL ) ); } if (writeOnly) { // This is render buffer, there is no sampling, no need // to create texture. return; } } } DX_CHECK(device->CreateTexture(_width , _height , _numMips , usage , s_textureFormat[fmt].m_fmt , pool , &m_texture2d , NULL ) ); if (!renderTarget && !readBack) { if (NULL == m_staging) { DX_CHECK(device->CreateTexture(_width , _height , _numMips , 0 , s_textureFormat[fmt].m_fmt , D3DPOOL_SYSTEMMEM , &m_staging2d , NULL ) ); } else { DX_CHECK(m_staging2d->AddDirtyRect(NULL)); DX_CHECK(device->UpdateTexture(m_staging2d, m_texture2d)); } } BGFX_FATAL(NULL != m_texture2d, Fatal::UnableToCreateTexture, "Failed to create texture (size: %dx%d, mips: %d, fmt: %d)." , _width , _height , _numMips , bimg::getName(fmt) ); } void TextureD3D9::createVolumeTexture(uint32_t _width, uint32_t _height, uint32_t _depth, uint8_t _numMips) { m_type = Texture3D; const TextureFormat::Enum fmt = (TextureFormat::Enum)m_textureFormat; IDirect3DDevice9* device = s_renderD3D9->m_device; DX_CHECK(device->CreateVolumeTexture(_width , _height , _depth , _numMips , 0 , s_textureFormat[fmt].m_fmt , D3DPOOL_DEFAULT , &m_texture3d , NULL ) ); if (NULL == m_staging) { DX_CHECK(device->CreateVolumeTexture(_width , _height , _depth , _numMips , 0 , s_textureFormat[fmt].m_fmt , D3DPOOL_SYSTEMMEM , &m_staging3d , NULL ) ); } else { DX_CHECK(m_staging3d->AddDirtyBox(NULL) ); DX_CHECK(device->UpdateTexture(m_staging3d, m_texture3d) ); } BGFX_FATAL(NULL != m_texture3d, Fatal::UnableToCreateTexture, "Failed to create volume texture (size: %dx%dx%d, mips: %d, fmt: %s)." , _width , _height , _depth , _numMips , getName(fmt) ); } void TextureD3D9::createCubeTexture(uint32_t _width, uint8_t _numMips) { m_type = TextureCube; const bimg::TextureFormat::Enum fmt = (bimg::TextureFormat::Enum)m_textureFormat; DWORD usage = 0; const bool renderTarget = 0 != (m_flags&BGFX_TEXTURE_RT_MASK); const bool blit = 0 != (m_flags&BGFX_TEXTURE_BLIT_DST); if (bimg::isDepth(fmt) ) { usage = D3DUSAGE_DEPTHSTENCIL; } else if (renderTarget || blit) { usage = D3DUSAGE_RENDERTARGET; } IDirect3DDevice9* device = s_renderD3D9->m_device; DX_CHECK(device->CreateCubeTexture(_width , _numMips , usage , s_textureFormat[fmt].m_fmt , D3DPOOL_DEFAULT , &m_textureCube , NULL ) ); if (!renderTarget) { if (NULL == m_staging) { DX_CHECK(device->CreateCubeTexture(_width , _numMips , 0 , s_textureFormat[fmt].m_fmt , D3DPOOL_SYSTEMMEM , &m_stagingCube , NULL ) ); } else { for (uint8_t ii = 0; ii < 6; ++ii) { DX_CHECK(m_stagingCube->AddDirtyRect(D3DCUBEMAP_FACES(ii), NULL) ); } DX_CHECK(device->UpdateTexture(m_stagingCube, m_textureCube) ); } } BGFX_FATAL(NULL != m_textureCube, Fatal::UnableToCreateTexture, "Failed to create cube texture (edge: %d, mips: %d, fmt: %s)." , _width , _numMips , getName(fmt) ); } uint8_t* TextureD3D9::lock(uint8_t _side, uint8_t _lod, uint32_t& _pitch, uint32_t& _slicePitch, const Rect* _rect) { switch (m_type) { case Texture2D: { D3DLOCKED_RECT lockedRect; if (NULL != _rect) { RECT rect; rect.left = _rect->m_x; rect.top = _rect->m_y; rect.right = rect.left + _rect->m_width; rect.bottom = rect.top + _rect->m_height; DX_CHECK(m_staging2d->LockRect(_lod, &lockedRect, &rect, 0) ); DX_CHECK(m_staging2d->AddDirtyRect(&rect) ); } else { DX_CHECK(m_staging2d->LockRect(_lod, &lockedRect, NULL, 0) ); DX_CHECK(m_staging2d->AddDirtyRect(NULL) ); } _pitch = lockedRect.Pitch; _slicePitch = 0; return (uint8_t*)lockedRect.pBits; } case Texture3D: { D3DLOCKED_BOX box; DX_CHECK(m_staging3d->LockBox(_lod, &box, NULL, 0) ); DX_CHECK(m_staging3d->AddDirtyBox(NULL) ); _pitch = box.RowPitch; _slicePitch = box.SlicePitch; return (uint8_t*)box.pBits; } case TextureCube: { D3DLOCKED_RECT lockedRect; if (NULL != _rect) { RECT rect; rect.left = _rect->m_x; rect.top = _rect->m_y; rect.right = rect.left + _rect->m_width; rect.bottom = rect.top + _rect->m_height; DX_CHECK(m_stagingCube->LockRect(D3DCUBEMAP_FACES(_side), _lod, &lockedRect, &rect, 0) ); DX_CHECK(m_textureCube->AddDirtyRect(D3DCUBEMAP_FACES(_side), &rect) ); } else { DX_CHECK(m_stagingCube->LockRect(D3DCUBEMAP_FACES(_side), _lod, &lockedRect, NULL, 0) ); DX_CHECK(m_textureCube->AddDirtyRect(D3DCUBEMAP_FACES(_side), NULL) ); } _pitch = lockedRect.Pitch; _slicePitch = 0; return (uint8_t*)lockedRect.pBits; } } BX_CHECK(false, "You should not be here."); _pitch = 0; _slicePitch = 0; return NULL; } void TextureD3D9::unlock(uint8_t _side, uint8_t _lod) { IDirect3DDevice9* device = s_renderD3D9->m_device; switch (m_type) { case Texture2D: { DX_CHECK(m_staging2d->UnlockRect(_lod) ); DX_CHECK(device->UpdateTexture(m_staging2d, m_texture2d) ); } return; case Texture3D: { DX_CHECK(m_staging3d->UnlockBox(_lod) ); DX_CHECK(device->UpdateTexture(m_staging3d, m_texture3d) ); } return; case TextureCube: { DX_CHECK(m_stagingCube->UnlockRect(D3DCUBEMAP_FACES(_side), _lod) ); DX_CHECK(device->UpdateTexture(m_stagingCube, m_textureCube) ); } return; } BX_CHECK(false, "You should not be here."); } void TextureD3D9::dirty(uint8_t _side, const Rect& _rect, uint16_t _z, uint16_t _depth) { switch (m_type) { case Texture2D: { RECT rect; rect.left = _rect.m_x; rect.top = _rect.m_y; rect.right = rect.left + _rect.m_width; rect.bottom = rect.top + _rect.m_height; DX_CHECK(m_texture2d->AddDirtyRect(&rect) ); } return; case Texture3D: { D3DBOX box; box.Left = _rect.m_x; box.Top = _rect.m_y; box.Right = box.Left + _rect.m_width; box.Bottom = box.Top + _rect.m_height; box.Front = _z; box.Back = box.Front + _depth; DX_CHECK(m_texture3d->AddDirtyBox(&box) ); } return; case TextureCube: { RECT rect; rect.left = _rect.m_x; rect.top = _rect.m_y; rect.right = rect.left + _rect.m_width; rect.bottom = rect.top + _rect.m_height; DX_CHECK(m_textureCube->AddDirtyRect(D3DCUBEMAP_FACES(_side), &rect) ); } return; } BX_CHECK(false, "You should not be here."); } IDirect3DSurface9* TextureD3D9::getSurface(uint8_t _side, uint8_t _mip) const { IDirect3DSurface9* surface = NULL; switch (m_type) { case Texture2D: DX_CHECK(m_texture2d->GetSurfaceLevel(_mip, &surface) ); break; case Texture3D: BX_CHECK(false, ""); break; case TextureCube: DX_CHECK(m_textureCube->GetCubeMapSurface(D3DCUBEMAP_FACES(_side), _mip, &surface) ); break; } return surface; } void TextureD3D9::create(const Memory* _mem, uint32_t _flags, uint8_t _skip) { bimg::ImageContainer imageContainer; if (bimg::imageParse(imageContainer, _mem->data, _mem->size) ) { uint8_t numMips = imageContainer.m_numMips; const uint8_t startLod = uint8_t(bx::uint32_min(_skip, numMips-1) ); numMips -= startLod; const bimg::ImageBlockInfo& blockInfo = bimg::getBlockInfo(bimg::TextureFormat::Enum(imageContainer.m_format) ); const uint32_t textureWidth = bx::uint32_max(blockInfo.blockWidth, imageContainer.m_width >>startLod); const uint32_t textureHeight = bx::uint32_max(blockInfo.blockHeight, imageContainer.m_height>>startLod); m_flags = _flags; m_width = textureWidth; m_height = textureHeight; m_depth = imageContainer.m_depth; m_numMips = numMips; m_requestedFormat = uint8_t(imageContainer.m_format); m_textureFormat = uint8_t(getViableTextureFormat(imageContainer) ); const bool convert = m_textureFormat != m_requestedFormat; uint8_t bpp = bimg::getBitsPerPixel(bimg::TextureFormat::Enum(m_textureFormat) ); if (imageContainer.m_cubeMap) { createCubeTexture(textureWidth, numMips); } else if (imageContainer.m_depth > 1) { createVolumeTexture(textureWidth, textureHeight, imageContainer.m_depth, numMips); } else { createTexture(textureWidth, textureHeight, numMips); } if (imageContainer.m_srgb) { m_flags |= BGFX_TEXTURE_SRGB; } BX_TRACE("Texture %3d: %s (requested: %s), %dx%d%s%s." , this - s_renderD3D9->m_textures , getName( (TextureFormat::Enum)m_textureFormat) , getName( (TextureFormat::Enum)m_requestedFormat) , textureWidth , textureHeight , imageContainer.m_cubeMap ? "x6" : "" , 0 != (m_flags&BGFX_TEXTURE_RT_MASK) ? " (render target)" : "" ); if (0 != (_flags&BGFX_TEXTURE_RT_WRITE_ONLY) ) { return; } // For BC4 and B5 in DX9 LockRect returns wrong number of // bytes. If actual mip size is used it causes memory corruption. // http://www.aras-p.info/texts/D3D9GPUHacks.html#3dc const bool useMipSize = true && imageContainer.m_format != bimg::TextureFormat::BC4 && imageContainer.m_format != bimg::TextureFormat::BC5 ; for (uint8_t side = 0, numSides = imageContainer.m_cubeMap ? 6 : 1; side < numSides; ++side) { uint32_t width = textureWidth; uint32_t height = textureHeight; uint32_t depth = imageContainer.m_depth; uint32_t mipWidth = imageContainer.m_width; uint32_t mipHeight = imageContainer.m_height; for (uint8_t lod = 0, num = numMips; lod < num; ++lod) { width = bx::uint32_max(1, width); height = bx::uint32_max(1, height); depth = bx::uint32_max(1, depth); mipWidth = bx::uint32_max(blockInfo.blockWidth, mipWidth); mipHeight = bx::uint32_max(blockInfo.blockHeight, mipHeight); uint32_t mipSize = width*height*depth*bpp/8; bimg::ImageMip mip; if (bimg::imageGetRawData(imageContainer, side, lod+startLod, _mem->data, _mem->size, mip) ) { uint32_t pitch; uint32_t slicePitch; uint8_t* bits = lock(side, lod, pitch, slicePitch); if (convert) { if (width != mipWidth || height != mipHeight) { uint32_t srcpitch = mipWidth*bpp/8; uint8_t* temp = (uint8_t*)BX_ALLOC(g_allocator, srcpitch*mipHeight); bimg::imageDecodeToBgra8(temp , mip.m_data , mip.m_width , mip.m_height , srcpitch , mip.m_format ); bx::memCopy(bits, temp, pitch, height, srcpitch, pitch); BX_FREE(g_allocator, temp); } else { bimg::imageDecodeToBgra8(bits, mip.m_data, mip.m_width, mip.m_height, pitch, mip.m_format); } } else { uint32_t size = useMipSize ? mip.m_size : mipSize; switch (m_textureFormat) { case TextureFormat::RGB5A1: bimg::imageConvert(bits, 16, bx::packBgr5a1, mip.m_data, bx::unpackRgb5a1, size); break; case TextureFormat::RGBA4: bimg::imageConvert(bits, 16, bx::packBgra4, mip.m_data, bx::unpackRgba4, size); break; default: bx::memCopy(bits, mip.m_data, size); break; } } unlock(side, lod); } width >>= 1; height >>= 1; depth >>= 1; mipWidth >>= 1; mipHeight >>= 1; } } } } void TextureD3D9::updateBegin(uint8_t _side, uint8_t _mip) { uint32_t slicePitch; s_renderD3D9->m_updateTextureSide = _side; s_renderD3D9->m_updateTextureMip = _mip; s_renderD3D9->m_updateTextureBits = lock(_side, _mip, s_renderD3D9->m_updateTexturePitch, slicePitch); } void TextureD3D9::update(uint8_t _side, uint8_t _mip, const Rect& _rect, uint16_t _z, uint16_t _depth, uint16_t _pitch, const Memory* _mem) { const uint32_t bpp = bimg::getBitsPerPixel(bimg::TextureFormat::Enum(m_textureFormat) ); const uint32_t rectpitch = _rect.m_width*bpp/8; const uint32_t srcpitch = UINT16_MAX == _pitch ? rectpitch : _pitch; const uint32_t dstpitch = s_renderD3D9->m_updateTexturePitch; uint8_t* bits = s_renderD3D9->m_updateTextureBits + _rect.m_y*dstpitch + _rect.m_x*bpp/8; const bool convert = m_textureFormat != m_requestedFormat; uint8_t* data = _mem->data; uint8_t* temp = NULL; if (convert) { temp = (uint8_t*)BX_ALLOC(g_allocator, rectpitch*_rect.m_height); bimg::imageDecodeToBgra8(temp, data, _rect.m_width, _rect.m_height, srcpitch, bimg::TextureFormat::Enum(m_requestedFormat) ); data = temp; } { uint8_t* src = data; uint8_t* dst = bits; for (uint32_t yy = 0, height = _rect.m_height; yy < height; ++yy) { switch (m_textureFormat) { case TextureFormat::RGB5A1: bimg::imageConvert(dst, 16, bx::packBgr5a1, src, bx::unpackRgb5a1, rectpitch); break; case TextureFormat::RGBA4: bimg::imageConvert(dst, 16, bx::packBgra4, src, bx::unpackRgba4, rectpitch); break; default: bx::memCopy(dst, src, rectpitch); break; } src += srcpitch; dst += dstpitch; } } if (NULL != temp) { BX_FREE(g_allocator, temp); } if (0 == _mip) { dirty(_side, _rect, _z, _depth); } } void TextureD3D9::updateEnd() { unlock(s_renderD3D9->m_updateTextureSide, s_renderD3D9->m_updateTextureMip); } void TextureD3D9::commit(uint8_t _stage, uint32_t _flags, const float _palette[][4]) { uint32_t flags = 0 == (BGFX_TEXTURE_INTERNAL_DEFAULT_SAMPLER & _flags) ? _flags : m_flags ; uint32_t index = (flags & BGFX_TEXTURE_BORDER_COLOR_MASK) >> BGFX_TEXTURE_BORDER_COLOR_SHIFT; s_renderD3D9->setSamplerState(_stage, flags, _palette[index]); IDirect3DDevice9* device = s_renderD3D9->m_device; DX_CHECK(device->SetTexture(_stage, m_ptr) ); if (4 > _stage) { DX_CHECK(device->SetTexture(D3DVERTEXTEXTURESAMPLER0 + _stage, m_ptr) ); } } void TextureD3D9::resolve() const { if (NULL != m_surface && NULL != m_ptr) { IDirect3DSurface9* surface = getSurface(); DX_CHECK(s_renderD3D9->m_device->StretchRect(m_surface , NULL , surface , NULL , D3DTEXF_LINEAR ) ); DX_RELEASE(surface, 1); if (1 < m_numMips) { m_ptr->GenerateMipSubLevels(); } } } void TextureD3D9::preReset() { TextureFormat::Enum fmt = (TextureFormat::Enum)m_textureFormat; if (TextureFormat::Unknown != fmt) { DX_RELEASE(m_ptr, 0); DX_RELEASE(m_surface, 0); } } void TextureD3D9::postReset() { TextureFormat::Enum fmt = (TextureFormat::Enum)m_textureFormat; if (TextureFormat::Unknown != fmt) { switch (m_type) { default: case Texture2D: createTexture(m_width, m_height, m_numMips); break; case Texture3D: createVolumeTexture(m_width, m_height, m_depth, m_numMips); break; case TextureCube: createCubeTexture(m_width, m_numMips); break; } } } void FrameBufferD3D9::create(uint8_t _num, const Attachment* _attachment) { for (uint32_t ii = 0; ii < BX_COUNTOF(m_surface); ++ii) { m_surface[ii] = NULL; } m_denseIdx = UINT16_MAX; m_dsIdx = UINT8_MAX; m_num = 0; m_numTh = _num; m_needResolve = false; bx::memCopy(m_attachment, _attachment, _num*sizeof(Attachment) ); for (uint32_t ii = 0; ii < _num; ++ii) { TextureHandle handle = m_attachment[ii].handle; if (isValid(handle) ) { const TextureD3D9& texture = s_renderD3D9->m_textures[handle.idx]; if (NULL != texture.m_surface) { m_surface[ii] = texture.m_surface; m_surface[ii]->AddRef(); } else { m_surface[ii] = texture.getSurface(uint8_t(m_attachment[ii].layer), uint8_t(m_attachment[ii].mip) ); } if (0 == m_num) { m_width = texture.m_width; m_height = texture.m_height; } if (bimg::isDepth(bimg::TextureFormat::Enum(texture.m_textureFormat) ) ) { m_dsIdx = uint8_t(ii); } else { ++m_num; } m_needResolve |= true && (NULL != texture.m_surface) && (NULL != texture.m_texture2d) ; } } if (0 == m_num) { createNullColorRT(); } } void FrameBufferD3D9::create(uint16_t _denseIdx, void* _nwh, uint32_t _width, uint32_t _height, TextureFormat::Enum _depthFormat) { BX_UNUSED(_depthFormat); m_hwnd = (HWND)_nwh; m_width = bx::uint32_max(_width, 16); m_height = bx::uint32_max(_height, 16); D3DPRESENT_PARAMETERS params; bx::memCopy(¶ms, &s_renderD3D9->m_params, sizeof(D3DPRESENT_PARAMETERS) ); params.BackBufferWidth = m_width; params.BackBufferHeight = m_height; DX_CHECK(s_renderD3D9->m_device->CreateAdditionalSwapChain(¶ms, &m_swapChain) ); DX_CHECK(m_swapChain->GetBackBuffer(0, D3DBACKBUFFER_TYPE_MONO, &m_surface[0]) ); DX_CHECK(s_renderD3D9->m_device->CreateDepthStencilSurface( params.BackBufferWidth , params.BackBufferHeight , params.AutoDepthStencilFormat , params.MultiSampleType , params.MultiSampleQuality , FALSE , &m_surface[1] , NULL ) ); m_dsIdx = 1; m_denseIdx = _denseIdx; m_num = 1; m_needResolve = false; m_needPresent = false; } uint16_t FrameBufferD3D9::destroy() { if (NULL != m_hwnd) { DX_RELEASE(m_surface[0], 0); DX_RELEASE(m_surface[1], 0); DX_RELEASE(m_swapChain, 0); } else { uint32_t num = m_numTh; num += uint32_t(0 < m_numTh && 0 == m_num); for (uint32_t ii = 0; ii < num; ++ii) { IDirect3DSurface9* ptr = m_surface[ii]; if (NULL != ptr) { ptr->Release(); m_surface[ii] = NULL; } } } m_hwnd = NULL; m_num = 0; m_numTh = 0; m_needPresent = false; uint16_t denseIdx = m_denseIdx; m_denseIdx = UINT16_MAX; return denseIdx; } HRESULT FrameBufferD3D9::present() { if (m_needPresent) { HRESULT hr = m_swapChain->Present(NULL, NULL, m_hwnd, NULL, 0); m_needPresent = false; return hr; } return S_OK; } void FrameBufferD3D9::resolve() const { if (m_needResolve) { for (uint32_t ii = 0, num = m_numTh; ii < num; ++ii) { const TextureD3D9& texture = s_renderD3D9->m_textures[m_attachment[ii].handle.idx]; texture.resolve(); } } } void FrameBufferD3D9::preReset() { if (NULL != m_hwnd) { DX_RELEASE(m_surface[0], 0); DX_RELEASE(m_surface[1], 0); DX_RELEASE(m_swapChain, 0); } else { uint32_t num = m_numTh; num += uint32_t(0 < m_numTh && 0 == m_num); for (uint32_t ii = 0; ii < num; ++ii) { m_surface[ii]->Release(); m_surface[ii] = NULL; } } } void FrameBufferD3D9::postReset() { if (NULL != m_hwnd) { D3DPRESENT_PARAMETERS params; bx::memCopy(¶ms, &s_renderD3D9->m_params, sizeof(D3DPRESENT_PARAMETERS) ); params.BackBufferWidth = m_width; params.BackBufferHeight = m_height; DX_CHECK(s_renderD3D9->m_device->CreateAdditionalSwapChain(¶ms, &m_swapChain) ); DX_CHECK(m_swapChain->GetBackBuffer(0, D3DBACKBUFFER_TYPE_MONO, &m_surface[0]) ); DX_CHECK(s_renderD3D9->m_device->CreateDepthStencilSurface(params.BackBufferWidth , params.BackBufferHeight , params.AutoDepthStencilFormat , params.MultiSampleType , params.MultiSampleQuality , FALSE , &m_surface[1] , NULL ) ); } else if (0 < m_numTh) { for (uint32_t ii = 0, num = m_numTh; ii < num; ++ii) { TextureHandle th = m_attachment[ii].handle; if (isValid(th) ) { TextureD3D9& texture = s_renderD3D9->m_textures[th.idx]; if (NULL != texture.m_surface) { m_surface[ii] = texture.m_surface; m_surface[ii]->AddRef(); } else { m_surface[ii] = texture.getSurface(uint8_t(m_attachment[ii].layer), uint8_t(m_attachment[ii].mip) ); } } } if (0 == m_num) { createNullColorRT(); } } } void FrameBufferD3D9::createNullColorRT() { DX_CHECK(s_renderD3D9->m_device->CreateRenderTarget( m_width , m_height , D3DFMT_NULL , D3DMULTISAMPLE_NONE , 0 , false , &m_surface[1] , NULL ) ); } void FrameBufferD3D9::set() { m_needPresent = UINT16_MAX != m_denseIdx; // If frame buffer has only depth attachment D3DFMT_NULL // render target is created. const uint32_t fbnum = bx::uint32_max(2, m_numTh); const uint8_t dsIdx = m_dsIdx; IDirect3DDevice9* device = s_renderD3D9->m_device; DX_CHECK(device->SetDepthStencilSurface(UINT8_MAX == dsIdx ? s_renderD3D9->m_backBufferDepthStencil : m_surface[dsIdx] ) ); uint32_t rtIdx = 0; for (uint32_t ii = 0; ii < fbnum; ++ii) { IDirect3DSurface9* surface = m_surface[ii]; if (ii != dsIdx) { DX_CHECK(device->SetRenderTarget(rtIdx, surface) ); ++rtIdx; } } for (uint32_t ii = rtIdx, num = g_caps.limits.maxFBAttachments; ii < num; ++ii) { DX_CHECK(device->SetRenderTarget(ii, NULL) ); } DX_CHECK(device->SetRenderState(D3DRS_SRGBWRITEENABLE, FALSE) ); } void TimerQueryD3D9::postReset() { IDirect3DDevice9* device = s_renderD3D9->m_device; for (uint32_t ii = 0; ii < BX_COUNTOF(m_frame); ++ii) { Frame& frame = m_frame[ii]; DX_CHECK(device->CreateQuery(D3DQUERYTYPE_TIMESTAMPDISJOINT, &frame.m_disjoint) ); DX_CHECK(device->CreateQuery(D3DQUERYTYPE_TIMESTAMP, &frame.m_begin) ); DX_CHECK(device->CreateQuery(D3DQUERYTYPE_TIMESTAMP, &frame.m_end) ); DX_CHECK(device->CreateQuery(D3DQUERYTYPE_TIMESTAMPFREQ, &frame.m_freq) ); } m_elapsed = 0; m_frequency = 1; m_control.reset(); } void TimerQueryD3D9::preReset() { for (uint32_t ii = 0; ii < BX_COUNTOF(m_frame); ++ii) { Frame& frame = m_frame[ii]; DX_RELEASE(frame.m_disjoint, 0); DX_RELEASE(frame.m_begin, 0); DX_RELEASE(frame.m_end, 0); DX_RELEASE(frame.m_freq, 0); } } void TimerQueryD3D9::begin() { while (0 == m_control.reserve(1) ) { get(); } Frame& frame = m_frame[m_control.m_current]; frame.m_disjoint->Issue(D3DISSUE_BEGIN); frame.m_begin->Issue(D3DISSUE_END); } void TimerQueryD3D9::end() { Frame& frame = m_frame[m_control.m_current]; frame.m_disjoint->Issue(D3DISSUE_END); frame.m_freq->Issue(D3DISSUE_END); frame.m_end->Issue(D3DISSUE_END); m_control.commit(1); } bool TimerQueryD3D9::get() { if (0 != m_control.available() ) { Frame& frame = m_frame[m_control.m_read]; uint64_t timeEnd; const bool flush = BX_COUNTOF(m_frame)-1 == m_control.available(); HRESULT hr = frame.m_end->GetData(&timeEnd, sizeof(timeEnd), flush ? D3DGETDATA_FLUSH : 0); if (S_OK == hr || isLost(hr) ) { m_control.consume(1); uint64_t timeBegin; DX_CHECK(frame.m_begin->GetData(&timeBegin, sizeof(timeBegin), 0) ); uint64_t freq; DX_CHECK(frame.m_freq->GetData(&freq, sizeof(freq), 0) ); m_frequency = freq; m_begin = timeBegin; m_end = timeEnd; m_elapsed = timeEnd - timeBegin; return true; } } return false; } void OcclusionQueryD3D9::postReset() { IDirect3DDevice9* device = s_renderD3D9->m_device; for (uint32_t ii = 0; ii < BX_COUNTOF(m_query); ++ii) { Query& query = m_query[ii]; DX_CHECK(device->CreateQuery(D3DQUERYTYPE_OCCLUSION, &query.m_ptr) ); } } void OcclusionQueryD3D9::preReset() { for (uint32_t ii = 0; ii < BX_COUNTOF(m_query); ++ii) { Query& query = m_query[ii]; DX_RELEASE(query.m_ptr, 0); } } void OcclusionQueryD3D9::begin(Frame* _render, OcclusionQueryHandle _handle) { while (0 == m_control.reserve(1) ) { resolve(_render, true); } Query& query = m_query[m_control.m_current]; query.m_ptr->Issue(D3DISSUE_BEGIN); query.m_handle = _handle; } void OcclusionQueryD3D9::end() { Query& query = m_query[m_control.m_current]; query.m_ptr->Issue(D3DISSUE_END); m_control.commit(1); } void OcclusionQueryD3D9::resolve(Frame* _render, bool) { while (0 != m_control.available() ) { Query& query = m_query[m_control.m_read]; if (isValid(query.m_handle) ) { uint32_t result; HRESULT hr = query.m_ptr->GetData(&result, sizeof(result), 0); if (S_FALSE == hr) { break; } _render->m_occlusion[query.m_handle.idx] = int32_t(result); } m_control.consume(1); } } void OcclusionQueryD3D9::invalidate(OcclusionQueryHandle _handle) { const uint32_t size = m_control.m_size; for (uint32_t ii = 0, num = m_control.available(); ii < num; ++ii) { Query& query = m_query[(m_control.m_read + ii) % size]; if (query.m_handle.idx == _handle.idx) { query.m_handle.idx = bgfx::invalidHandle; } } } void RendererContextD3D9::submitBlit(BlitState& _bs, uint16_t _view) { while (_bs.hasItem(_view) ) { const BlitItem& blit = _bs.advance(); const TextureD3D9& src = m_textures[blit.m_src.idx]; const TextureD3D9& dst = m_textures[blit.m_dst.idx]; uint32_t srcWidth = bx::uint32_min(src.m_width, blit.m_srcX + blit.m_width) - blit.m_srcX; uint32_t srcHeight = bx::uint32_min(src.m_height, blit.m_srcY + blit.m_height) - blit.m_srcY; uint32_t dstWidth = bx::uint32_min(dst.m_width, blit.m_dstX + blit.m_width) - blit.m_dstX; uint32_t dstHeight = bx::uint32_min(dst.m_height, blit.m_dstY + blit.m_height) - blit.m_dstY; uint32_t width = bx::uint32_min(srcWidth, dstWidth); uint32_t height = bx::uint32_min(srcHeight, dstHeight); RECT srcRect = { LONG(blit.m_srcX), LONG(blit.m_srcY), LONG(blit.m_srcX + width), LONG(blit.m_srcY + height) }; RECT dstRect = { LONG(blit.m_dstX), LONG(blit.m_dstY), LONG(blit.m_dstX + width), LONG(blit.m_dstY + height) }; IDirect3DSurface9* srcSurface = src.getSurface(uint8_t(blit.m_srcZ), blit.m_srcMip); IDirect3DSurface9* dstSurface = dst.getSurface(uint8_t(blit.m_dstZ), blit.m_dstMip); // UpdateSurface (pool src: SYSTEMMEM, dst: DEFAULT) // s/d T RTT RT // T y y y // RTT - - - // RT - - - // // StretchRect (pool src and dst must be DEFAULT) // s/d T RTT RT // T - y y // RTT - y y // RT - y y // // GetRenderTargetData (dst must be SYSTEMMEM) bool depth = bimg::isDepth(bimg::TextureFormat::Enum(src.m_textureFormat) ); HRESULT hr = m_device->StretchRect(srcSurface , depth ? NULL : &srcRect , dstSurface , depth ? NULL : &dstRect , D3DTEXF_NONE ); if (FAILED(hr) ) { hr = m_device->GetRenderTargetData(srcSurface, dstSurface); BX_WARN(SUCCEEDED(hr), "StretchRect and GetRenderTargetData failed %x.", hr); } srcSurface->Release(); dstSurface->Release(); } } void RendererContextD3D9::submit(Frame* _render, ClearQuad& _clearQuad, TextVideoMemBlitter& _textVideoMemBlitter) { IDirect3DDevice9* device = m_device; PIX_BEGINEVENT(D3DCOLOR_FRAME, L"rendererSubmit"); updateResolution(_render->m_resolution); int64_t elapsed = -bx::getHPCounter(); int64_t captureElapsed = 0; device->BeginScene(); if (m_timerQuerySupport) { m_gpuTimer.begin(); } if (0 < _render->m_iboffset) { TransientIndexBuffer* ib = _render->m_transientIb; m_indexBuffers[ib->handle.idx].update(0, _render->m_iboffset, ib->data, true); } if (0 < _render->m_vboffset) { TransientVertexBuffer* vb = _render->m_transientVb; m_vertexBuffers[vb->handle.idx].update(0, _render->m_vboffset, vb->data, true); } _render->sort(); RenderDraw currentState; currentState.clear(); currentState.m_stateFlags = BGFX_STATE_NONE; currentState.m_stencil = packStencil(BGFX_STENCIL_NONE, BGFX_STENCIL_NONE); RenderBind currentBind; currentBind.clear(); ViewState viewState(_render, false); DX_CHECK(device->SetRenderState(D3DRS_FILLMODE, _render->m_debug&BGFX_DEBUG_WIREFRAME ? D3DFILL_WIREFRAME : D3DFILL_SOLID) ); uint16_t programIdx = invalidHandle; SortKey key; uint16_t view = UINT16_MAX; FrameBufferHandle fbh = { BGFX_CONFIG_MAX_FRAME_BUFFERS }; uint32_t blendFactor = 0; BlitState bs(_render); uint8_t primIndex; { const uint64_t pt = _render->m_debug&BGFX_DEBUG_WIREFRAME ? BGFX_STATE_PT_LINES : 0; primIndex = uint8_t(pt>>BGFX_STATE_PT_SHIFT); } PrimInfo prim = s_primInfo[primIndex]; bool viewHasScissor = false; Rect viewScissorRect; viewScissorRect.clear(); uint32_t statsNumPrimsSubmitted[BX_COUNTOF(s_primInfo)] = {}; uint32_t statsNumPrimsRendered[BX_COUNTOF(s_primInfo)] = {}; uint32_t statsNumInstances[BX_COUNTOF(s_primInfo)] = {}; uint32_t statsNumIndices = 0; uint32_t statsKeyType[2] = {}; invalidateSamplerState(); if (m_occlusionQuerySupport) { m_occlusionQuery.resolve(_render); } if (0 == (_render->m_debug&BGFX_DEBUG_IFH) ) { for (uint32_t item = 0, numItems = _render->m_num; item < numItems; ++item) { const uint64_t encodedKey = _render->m_sortKeys[item]; const bool isCompute = key.decode(encodedKey, _render->m_viewRemap); statsKeyType[isCompute]++; if (isCompute) { BX_CHECK(false, "Compute is not supported on DirectX 9."); continue; } const uint32_t itemIdx = _render->m_sortValues[item]; const RenderDraw& draw = _render->m_renderItem[itemIdx].draw; const RenderBind& renderBind = _render->m_renderItemBind[itemIdx]; const bool hasOcclusionQuery = 0 != (draw.m_stateFlags & BGFX_STATE_INTERNAL_OCCLUSION_QUERY); if (isValid(draw.m_occlusionQuery) && !hasOcclusionQuery && !isVisible(_render, draw.m_occlusionQuery, 0 != (draw.m_submitFlags&BGFX_SUBMIT_INTERNAL_OCCLUSION_VISIBLE) ) ) { continue; } const uint64_t newFlags = draw.m_stateFlags; uint64_t changedFlags = currentState.m_stateFlags ^ draw.m_stateFlags; currentState.m_stateFlags = newFlags; const uint64_t newStencil = draw.m_stencil; uint64_t changedStencil = currentState.m_stencil ^ draw.m_stencil; currentState.m_stencil = newStencil; if (key.m_view != view) { currentState.clear(); currentState.m_scissor = !draw.m_scissor; changedFlags = BGFX_STATE_MASK; changedStencil = packStencil(BGFX_STENCIL_MASK, BGFX_STENCIL_MASK); currentState.m_stateFlags = newFlags; currentState.m_stencil = newStencil; PIX_ENDEVENT(); PIX_BEGINEVENT(D3DCOLOR_VIEW, s_viewNameW[key.m_view]); if (item > 0) { BGFX_PROFILER_END(); } BGFX_PROFILER_BEGIN_DYNAMIC(s_viewName[key.m_view]); view = key.m_view; programIdx = invalidHandle; if (_render->m_fb[view].idx != fbh.idx) { fbh = _render->m_fb[view]; setFrameBuffer(fbh); } viewState.m_rect = _render->m_rect[view]; const Rect& scissorRect = _render->m_scissor[view]; viewHasScissor = !scissorRect.isZero(); viewScissorRect = viewHasScissor ? scissorRect : viewState.m_rect; D3DVIEWPORT9 vp; vp.X = viewState.m_rect.m_x; vp.Y = viewState.m_rect.m_y; vp.Width = viewState.m_rect.m_width; vp.Height = viewState.m_rect.m_height; vp.MinZ = 0.0f; vp.MaxZ = 1.0f; DX_CHECK(device->SetViewport(&vp) ); Clear& clear = _render->m_clear[view]; if (BGFX_CLEAR_NONE != (clear.m_flags & BGFX_CLEAR_MASK) ) { clearQuad(_clearQuad, viewState.m_rect, clear, _render->m_colorPalette); prim = s_primInfo[BX_COUNTOF(s_primName)]; // Force primitive type update after clear quad. } DX_CHECK(device->SetRenderState(D3DRS_STENCILENABLE, FALSE) ); DX_CHECK(device->SetRenderState(D3DRS_ZENABLE, TRUE) ); DX_CHECK(device->SetRenderState(D3DRS_ZFUNC, D3DCMP_LESS) ); DX_CHECK(device->SetRenderState(D3DRS_CULLMODE, D3DCULL_NONE) ); DX_CHECK(device->SetRenderState(D3DRS_ALPHABLENDENABLE, FALSE) ); DX_CHECK(device->SetRenderState(D3DRS_ALPHAFUNC, D3DCMP_GREATER) ); submitBlit(bs, view); } uint16_t scissor = draw.m_scissor; if (currentState.m_scissor != scissor) { currentState.m_scissor = scissor; if (UINT16_MAX == scissor) { DX_CHECK(device->SetRenderState(D3DRS_SCISSORTESTENABLE, viewHasScissor) ); if (viewHasScissor) { RECT rc; rc.left = viewScissorRect.m_x; rc.top = viewScissorRect.m_y; rc.right = viewScissorRect.m_x + viewScissorRect.m_width; rc.bottom = viewScissorRect.m_y + viewScissorRect.m_height; DX_CHECK(device->SetScissorRect(&rc) ); } } else { Rect scissorRect; scissorRect.setIntersect(viewScissorRect, _render->m_rectCache.m_cache[scissor]); if (scissorRect.isZeroArea() ) { continue; } DX_CHECK(device->SetRenderState(D3DRS_SCISSORTESTENABLE, true) ); RECT rc; rc.left = scissorRect.m_x; rc.top = scissorRect.m_y; rc.right = scissorRect.m_x + scissorRect.m_width; rc.bottom = scissorRect.m_y + scissorRect.m_height; DX_CHECK(device->SetScissorRect(&rc) ); } } if (0 != changedStencil) { bool enable = 0 != newStencil; DX_CHECK(device->SetRenderState(D3DRS_STENCILENABLE, enable) ); if (0 != newStencil) { uint32_t fstencil = unpackStencil(0, newStencil); uint32_t bstencil = unpackStencil(1, newStencil); uint8_t frontAndBack = bstencil != BGFX_STENCIL_NONE && bstencil != fstencil; DX_CHECK(device->SetRenderState(D3DRS_TWOSIDEDSTENCILMODE, 0 != frontAndBack) ); uint32_t fchanged = unpackStencil(0, changedStencil); if ( (BGFX_STENCIL_FUNC_REF_MASK|BGFX_STENCIL_FUNC_RMASK_MASK) & fchanged) { uint32_t ref = (fstencil&BGFX_STENCIL_FUNC_REF_MASK)>>BGFX_STENCIL_FUNC_REF_SHIFT; DX_CHECK(device->SetRenderState(D3DRS_STENCILREF, ref) ); uint32_t rmask = (fstencil&BGFX_STENCIL_FUNC_RMASK_MASK)>>BGFX_STENCIL_FUNC_RMASK_SHIFT; DX_CHECK(device->SetRenderState(D3DRS_STENCILMASK, rmask) ); } // uint32_t bchanged = unpackStencil(1, changedStencil); // if (BGFX_STENCIL_FUNC_RMASK_MASK & bchanged) // { // uint32_t wmask = (bstencil&BGFX_STENCIL_FUNC_RMASK_MASK)>>BGFX_STENCIL_FUNC_RMASK_SHIFT; // DX_CHECK(device->SetRenderState(D3DRS_STENCILWRITEMASK, wmask) ); // } for (uint8_t ii = 0, num = frontAndBack+1; ii < num; ++ii) { uint32_t stencil = unpackStencil(ii, newStencil); uint32_t changed = unpackStencil(ii, changedStencil); if ( (BGFX_STENCIL_TEST_MASK|BGFX_STENCIL_FUNC_REF_MASK|BGFX_STENCIL_FUNC_RMASK_MASK) & changed) { uint32_t func = (stencil&BGFX_STENCIL_TEST_MASK)>>BGFX_STENCIL_TEST_SHIFT; DX_CHECK(device->SetRenderState(s_stencilFuncRs[ii], s_cmpFunc[func]) ); } if ( (BGFX_STENCIL_OP_FAIL_S_MASK|BGFX_STENCIL_OP_FAIL_Z_MASK|BGFX_STENCIL_OP_PASS_Z_MASK) & changed) { uint32_t sfail = (stencil&BGFX_STENCIL_OP_FAIL_S_MASK)>>BGFX_STENCIL_OP_FAIL_S_SHIFT; DX_CHECK(device->SetRenderState(s_stencilFailRs[ii], s_stencilOp[sfail]) ); uint32_t zfail = (stencil&BGFX_STENCIL_OP_FAIL_Z_MASK)>>BGFX_STENCIL_OP_FAIL_Z_SHIFT; DX_CHECK(device->SetRenderState(s_stencilZFailRs[ii], s_stencilOp[zfail]) ); uint32_t zpass = (stencil&BGFX_STENCIL_OP_PASS_Z_MASK)>>BGFX_STENCIL_OP_PASS_Z_SHIFT; DX_CHECK(device->SetRenderState(s_stencilZPassRs[ii], s_stencilOp[zpass]) ); } } } } if ( (0 | BGFX_STATE_CULL_MASK | BGFX_STATE_DEPTH_WRITE | BGFX_STATE_DEPTH_TEST_MASK | BGFX_STATE_RGB_WRITE | BGFX_STATE_ALPHA_WRITE | BGFX_STATE_BLEND_MASK | BGFX_STATE_BLEND_EQUATION_MASK | BGFX_STATE_ALPHA_REF_MASK | BGFX_STATE_PT_MASK | BGFX_STATE_POINT_SIZE_MASK | BGFX_STATE_MSAA ) & changedFlags) { if (BGFX_STATE_CULL_MASK & changedFlags) { uint32_t cull = (newFlags&BGFX_STATE_CULL_MASK)>>BGFX_STATE_CULL_SHIFT; DX_CHECK(device->SetRenderState(D3DRS_CULLMODE, s_cullMode[cull]) ); } if (BGFX_STATE_DEPTH_WRITE & changedFlags) { DX_CHECK(device->SetRenderState(D3DRS_ZWRITEENABLE, !!(BGFX_STATE_DEPTH_WRITE & newFlags) ) ); } if (BGFX_STATE_DEPTH_TEST_MASK & changedFlags) { uint32_t func = (newFlags&BGFX_STATE_DEPTH_TEST_MASK)>>BGFX_STATE_DEPTH_TEST_SHIFT; DX_CHECK(device->SetRenderState(D3DRS_ZENABLE, 0 != func) ); if (0 != func) { DX_CHECK(device->SetRenderState(D3DRS_ZFUNC, s_cmpFunc[func]) ); } } if (BGFX_STATE_ALPHA_REF_MASK & changedFlags) { uint32_t ref = (newFlags&BGFX_STATE_ALPHA_REF_MASK)>>BGFX_STATE_ALPHA_REF_SHIFT; viewState.m_alphaRef = ref/255.0f; } if ( (BGFX_STATE_PT_POINTS|BGFX_STATE_POINT_SIZE_MASK) & changedFlags) { DX_CHECK(device->SetRenderState(D3DRS_POINTSIZE, castfu( (float)( (newFlags&BGFX_STATE_POINT_SIZE_MASK)>>BGFX_STATE_POINT_SIZE_SHIFT) ) ) ); } if (BGFX_STATE_MSAA & changedFlags) { DX_CHECK(device->SetRenderState(D3DRS_MULTISAMPLEANTIALIAS, (newFlags&BGFX_STATE_MSAA) == BGFX_STATE_MSAA) ); } if (BGFX_STATE_LINEAA & changedFlags) { DX_CHECK(m_device->SetRenderState(D3DRS_ANTIALIASEDLINEENABLE, !!(newFlags&BGFX_STATE_LINEAA) ) ); } if ( (BGFX_STATE_ALPHA_WRITE|BGFX_STATE_RGB_WRITE) & changedFlags) { uint32_t writeEnable = (newFlags&BGFX_STATE_ALPHA_WRITE) ? D3DCOLORWRITEENABLE_ALPHA : 0; writeEnable |= (newFlags&BGFX_STATE_RGB_WRITE) ? D3DCOLORWRITEENABLE_RED|D3DCOLORWRITEENABLE_GREEN|D3DCOLORWRITEENABLE_BLUE : 0; DX_CHECK(device->SetRenderState(D3DRS_COLORWRITEENABLE, writeEnable) ); } if ( ( (0 | BGFX_STATE_BLEND_MASK | BGFX_STATE_BLEND_EQUATION_MASK | BGFX_STATE_BLEND_ALPHA_TO_COVERAGE ) & changedFlags) || blendFactor != draw.m_rgba) { bool enabled = !!(BGFX_STATE_BLEND_MASK & newFlags); DX_CHECK(device->SetRenderState(D3DRS_ALPHABLENDENABLE, enabled) ); if (m_atocSupport && BGFX_STATE_BLEND_ALPHA_TO_COVERAGE & changedFlags) { DX_CHECK(m_device->SetRenderState(D3DRS_ADAPTIVETESS_Y , !!(newFlags&BGFX_STATE_BLEND_ALPHA_TO_COVERAGE) ? D3DFMT_ATOC : 0 ) ); } if (enabled) { const uint32_t blend = uint32_t( (newFlags&BGFX_STATE_BLEND_MASK)>>BGFX_STATE_BLEND_SHIFT); const uint32_t equation = uint32_t( (newFlags&BGFX_STATE_BLEND_EQUATION_MASK)>>BGFX_STATE_BLEND_EQUATION_SHIFT); const uint32_t srcRGB = (blend )&0xf; const uint32_t dstRGB = (blend>> 4)&0xf; const uint32_t srcA = (blend>> 8)&0xf; const uint32_t dstA = (blend>>12)&0xf; const uint32_t equRGB = (equation )&0x7; const uint32_t equA = (equation>>3)&0x7; DX_CHECK(device->SetRenderState(D3DRS_SRCBLEND, s_blendFactor[srcRGB].m_src) ); DX_CHECK(device->SetRenderState(D3DRS_DESTBLEND, s_blendFactor[dstRGB].m_dst) ); DX_CHECK(device->SetRenderState(D3DRS_BLENDOP, s_blendEquation[equRGB]) ); const bool separate = srcRGB != srcA || dstRGB != dstA || equRGB != equA; DX_CHECK(device->SetRenderState(D3DRS_SEPARATEALPHABLENDENABLE, separate) ); if (separate) { DX_CHECK(device->SetRenderState(D3DRS_SRCBLENDALPHA, s_blendFactor[srcA].m_src) ); DX_CHECK(device->SetRenderState(D3DRS_DESTBLENDALPHA, s_blendFactor[dstA].m_dst) ); DX_CHECK(device->SetRenderState(D3DRS_BLENDOPALPHA, s_blendEquation[equA]) ); } if ( (s_blendFactor[srcRGB].m_factor || s_blendFactor[dstRGB].m_factor) && blendFactor != draw.m_rgba) { const uint32_t rgba = draw.m_rgba; D3DCOLOR color = D3DCOLOR_RGBA(rgba>>24 , (rgba>>16)&0xff , (rgba>> 8)&0xff , (rgba )&0xff ); DX_CHECK(device->SetRenderState(D3DRS_BLENDFACTOR, color) ); } } blendFactor = draw.m_rgba; } const uint64_t pt = _render->m_debug&BGFX_DEBUG_WIREFRAME ? BGFX_STATE_PT_LINES : newFlags&BGFX_STATE_PT_MASK; primIndex = uint8_t(pt>>BGFX_STATE_PT_SHIFT); prim = s_primInfo[primIndex]; } bool programChanged = false; bool constantsChanged = draw.m_constBegin < draw.m_constEnd; rendererUpdateUniforms(this, _render->m_uniformBuffer, draw.m_constBegin, draw.m_constEnd); if (key.m_program != programIdx) { programIdx = key.m_program; if (invalidHandle == programIdx) { device->SetVertexShader(NULL); device->SetPixelShader(NULL); } else { ProgramD3D9& program = m_program[programIdx]; device->SetVertexShader(program.m_vsh->m_vertexShader); device->SetPixelShader(program.m_fsh->m_pixelShader); } programChanged = constantsChanged = true; } if (invalidHandle != programIdx) { ProgramD3D9& program = m_program[programIdx]; if (constantsChanged) { UniformBuffer* vcb = program.m_vsh->m_constantBuffer; if (NULL != vcb) { commit(*vcb); } UniformBuffer* fcb = program.m_fsh->m_constantBuffer; if (NULL != fcb) { commit(*fcb); } } viewState.setPredefined<4>(this, view, 0, program, _render, draw); } { for (uint8_t stage = 0; stage < BGFX_CONFIG_MAX_TEXTURE_SAMPLERS; ++stage) { const Binding& bind = renderBind.m_bind[stage]; Binding& current = currentBind.m_bind[stage]; if (current.m_idx != bind.m_idx || current.m_un.m_draw.m_textureFlags != bind.m_un.m_draw.m_textureFlags || programChanged) { if (invalidHandle != bind.m_idx) { m_textures[bind.m_idx].commit(stage, bind.m_un.m_draw.m_textureFlags, _render->m_colorPalette); } else { DX_CHECK(device->SetTexture(stage, NULL) ); } } current = bind; } } if (programChanged || currentState.m_streamMask != draw.m_streamMask || currentState.m_stream[0].m_handle.idx != draw.m_stream[0].m_handle.idx || currentState.m_instanceDataBuffer.idx != draw.m_instanceDataBuffer.idx || currentState.m_instanceDataOffset != draw.m_instanceDataOffset || currentState.m_instanceDataStride != draw.m_instanceDataStride) { currentState.m_streamMask = draw.m_streamMask; currentState.m_stream[0].m_handle = draw.m_stream[0].m_handle; currentState.m_instanceDataBuffer.idx = draw.m_instanceDataBuffer.idx; currentState.m_instanceDataOffset = draw.m_instanceDataOffset; currentState.m_instanceDataStride = draw.m_instanceDataStride; uint16_t handle = draw.m_stream[0].m_handle.idx; if (invalidHandle != handle) { const VertexBufferD3D9& vb = m_vertexBuffers[handle]; uint16_t decl = !isValid(vb.m_decl) ? draw.m_stream[0].m_decl.idx : vb.m_decl.idx; const VertexDeclD3D9& vertexDecl = m_vertexDecls[decl]; DX_CHECK(device->SetStreamSource(0, vb.m_ptr, 0, vertexDecl.m_decl.m_stride) ); if (isValid(draw.m_instanceDataBuffer) && m_instancingSupport) { const VertexBufferD3D9& inst = m_vertexBuffers[draw.m_instanceDataBuffer.idx]; DX_CHECK(device->SetStreamSourceFreq(0, D3DSTREAMSOURCE_INDEXEDDATA|draw.m_numInstances) ); DX_CHECK(device->SetStreamSourceFreq(1, UINT(D3DSTREAMSOURCE_INSTANCEDATA|1) ) ); DX_CHECK(device->SetStreamSource(1, inst.m_ptr, draw.m_instanceDataOffset, draw.m_instanceDataStride) ); IDirect3DVertexDeclaration9* ptr = createVertexDeclaration(vertexDecl.m_decl, draw.m_instanceDataStride/16); DX_CHECK(device->SetVertexDeclaration(ptr) ); DX_RELEASE(ptr, 0); } else { DX_CHECK(device->SetStreamSourceFreq(0, 1) ); DX_CHECK(device->SetStreamSource(1, NULL, 0, 0) ); DX_CHECK(device->SetVertexDeclaration(vertexDecl.m_ptr) ); } } else { DX_CHECK(device->SetStreamSource(0, NULL, 0, 0) ); DX_CHECK(device->SetStreamSource(1, NULL, 0, 0) ); } } if (currentState.m_indexBuffer.idx != draw.m_indexBuffer.idx) { currentState.m_indexBuffer = draw.m_indexBuffer; uint16_t handle = draw.m_indexBuffer.idx; if (invalidHandle != handle) { const IndexBufferD3D9& ib = m_indexBuffers[handle]; DX_CHECK(device->SetIndices(ib.m_ptr) ); } else { DX_CHECK(device->SetIndices(NULL) ); } } if (0 != currentState.m_streamMask) { uint32_t numVertices = draw.m_numVertices; if (UINT32_MAX == numVertices) { const VertexBufferD3D9& vb = m_vertexBuffers[currentState.m_stream[0].m_handle.idx]; uint16_t decl = !isValid(vb.m_decl) ? draw.m_stream[0].m_decl.idx : vb.m_decl.idx; const VertexDeclD3D9& vertexDecl = m_vertexDecls[decl]; numVertices = vb.m_size/vertexDecl.m_decl.m_stride; } uint32_t numIndices = 0; uint32_t numPrimsSubmitted = 0; uint32_t numInstances = 0; uint32_t numPrimsRendered = 0; if (hasOcclusionQuery) { m_occlusionQuery.begin(_render, draw.m_occlusionQuery); } if (isValid(draw.m_indexBuffer) ) { if (UINT32_MAX == draw.m_numIndices) { const IndexBufferD3D9& ib = m_indexBuffers[draw.m_indexBuffer.idx]; const uint32_t indexSize = 0 == (ib.m_flags & BGFX_BUFFER_INDEX32) ? 2 : 4; numIndices = ib.m_size/indexSize; numPrimsSubmitted = numIndices/prim.m_div - prim.m_sub; numInstances = draw.m_numInstances; numPrimsRendered = numPrimsSubmitted*draw.m_numInstances; DX_CHECK(device->DrawIndexedPrimitive(prim.m_type , draw.m_stream[0].m_startVertex , 0 , numVertices , 0 , numPrimsSubmitted ) ); } else if (prim.m_min <= draw.m_numIndices) { numIndices = draw.m_numIndices; numPrimsSubmitted = numIndices/prim.m_div - prim.m_sub; numInstances = draw.m_numInstances; numPrimsRendered = numPrimsSubmitted*draw.m_numInstances; DX_CHECK(device->DrawIndexedPrimitive(prim.m_type , draw.m_stream[0].m_startVertex , 0 , numVertices , draw.m_startIndex , numPrimsSubmitted ) ); } } else { numPrimsSubmitted = numVertices/prim.m_div - prim.m_sub; numInstances = draw.m_numInstances; numPrimsRendered = numPrimsSubmitted*draw.m_numInstances; DX_CHECK(device->DrawPrimitive(prim.m_type , draw.m_stream[0].m_startVertex , numPrimsSubmitted ) ); } if (hasOcclusionQuery) { m_occlusionQuery.end(); } statsNumPrimsSubmitted[primIndex] += numPrimsSubmitted; statsNumPrimsRendered[primIndex] += numPrimsRendered; statsNumInstances[primIndex] += numInstances; statsNumIndices += numIndices; } } submitBlit(bs, BGFX_CONFIG_MAX_VIEWS); if (0 < _render->m_num) { if (0 != (m_resolution.m_flags & BGFX_RESET_FLUSH_AFTER_RENDER) ) { flush(); } captureElapsed = -bx::getHPCounter(); capture(); captureElapsed += bx::getHPCounter(); BGFX_PROFILER_END(); } } PIX_ENDEVENT(); int64_t now = bx::getHPCounter(); elapsed += now; static int64_t last = now; Stats& perfStats = _render->m_perfStats; perfStats.cpuTimeBegin = last; int64_t frameTime = now - last; last = now; static int64_t min = frameTime; static int64_t max = frameTime; min = min > frameTime ? frameTime : min; max = max < frameTime ? frameTime : max; static uint32_t maxGpuLatency = 0; static double maxGpuElapsed = 0.0f; double elapsedGpuMs = 0.0; if (m_timerQuerySupport) { m_gpuTimer.end(); do { double toGpuMs = 1000.0 / double(m_gpuTimer.m_frequency); elapsedGpuMs = m_gpuTimer.m_elapsed * toGpuMs; maxGpuElapsed = elapsedGpuMs > maxGpuElapsed ? elapsedGpuMs : maxGpuElapsed; } while (m_gpuTimer.get() ); maxGpuLatency = bx::uint32_imax(maxGpuLatency, m_gpuTimer.m_control.available()-1); } const int64_t timerFreq = bx::getHPFrequency(); perfStats.cpuTimeEnd = now; perfStats.cpuTimerFreq = timerFreq; perfStats.gpuTimeBegin = m_gpuTimer.m_begin; perfStats.gpuTimeEnd = m_gpuTimer.m_end; perfStats.gpuTimerFreq = m_gpuTimer.m_frequency; perfStats.numDraw = statsKeyType[0]; perfStats.numCompute = statsKeyType[1]; perfStats.maxGpuLatency = maxGpuLatency; if (_render->m_debug & (BGFX_DEBUG_IFH|BGFX_DEBUG_STATS) ) { PIX_BEGINEVENT(D3DCOLOR_FRAME, L"debugstats"); m_needPresent = true; TextVideoMem& tvm = m_textVideoMem; static int64_t next = now; if (now >= next) { next = now + timerFreq; double freq = double(timerFreq); double toMs = 1000.0/freq; tvm.clear(); uint16_t pos = 0; tvm.printf(0, pos++, BGFX_CONFIG_DEBUG ? 0x89 : 0x8f, " %s / " BX_COMPILER_NAME " / " BX_CPU_NAME " / " BX_ARCH_NAME " / " BX_PLATFORM_NAME " " , getRendererName() ); const D3DADAPTER_IDENTIFIER9& identifier = m_identifier; tvm.printf(0, pos++, 0x8f, " Device: %s (%s)", identifier.Description, identifier.Driver); char processMemoryUsed[16]; bx::prettify(processMemoryUsed, BX_COUNTOF(processMemoryUsed), bx::getProcessMemoryUsed() ); tvm.printf(0, pos++, 0x8f, " Memory: %s (process) ", processMemoryUsed); pos = 10; tvm.printf(10, pos++, 0x8e, " Frame: %7.3f, % 7.3f \x1f, % 7.3f \x1e [ms] / % 6.2f FPS " , double(frameTime)*toMs , double(min)*toMs , double(max)*toMs , freq/frameTime ); const uint32_t msaa = (m_resolution.m_flags&BGFX_RESET_MSAA_MASK)>>BGFX_RESET_MSAA_SHIFT; tvm.printf(10, pos++, 0x8e, " Reset flags: [%c] vsync, [%c] MSAAx%d, [%c] MaxAnisotropy " , !!(m_resolution.m_flags&BGFX_RESET_VSYNC) ? '\xfe' : ' ' , 0 != msaa ? '\xfe' : ' ' , 1<m_num , statsKeyType[0] , statsKeyType[1] , elapsedCpuMs , elapsedCpuMs > maxGpuElapsed ? '>' : '<' , maxGpuElapsed , maxGpuLatency ); maxGpuLatency = 0; maxGpuElapsed = 0.0; for (uint32_t ii = 0; ii < BX_COUNTOF(s_primName); ++ii) { tvm.printf(10, pos++, 0x8e, " %10s: %7d (#inst: %5d), submitted: %7d" , s_primName[ii] , statsNumPrimsRendered[ii] , statsNumInstances[ii] , statsNumPrimsSubmitted[ii] ); } tvm.printf(10, pos++, 0x8e, " Indices: %7d ", statsNumIndices); tvm.printf(10, pos++, 0x8e, " Uniform size: %7d, Max: %7d ", _render->m_uniformEnd, _render->m_uniformMax); tvm.printf(10, pos++, 0x8e, " DVB size: %7d ", _render->m_vboffset); tvm.printf(10, pos++, 0x8e, " DIB size: %7d ", _render->m_iboffset); pos++; double captureMs = double(captureElapsed)*toMs; tvm.printf(10, pos++, 0x8e, " Capture: %7.4f [ms]", captureMs); uint8_t attr[2] = { 0x89, 0x8a }; uint8_t attrIndex = _render->m_waitSubmit < _render->m_waitRender; tvm.printf(10, pos++, attr[attrIndex&1], " Submit wait: %7.4f [ms]", _render->m_waitSubmit*toMs); tvm.printf(10, pos++, attr[(attrIndex+1)&1], " Render wait: %7.4f [ms]", _render->m_waitRender*toMs); min = frameTime; max = frameTime; } blit(this, _textVideoMemBlitter, tvm); PIX_ENDEVENT(); } else if (_render->m_debug & BGFX_DEBUG_TEXT) { PIX_BEGINEVENT(D3DCOLOR_FRAME, L"debugtext"); blit(this, _textVideoMemBlitter, _render->m_textVideoMem); PIX_ENDEVENT(); } device->EndScene(); } } /* namespace d3d9 */ } // namespace bgfx #else namespace bgfx { namespace d3d9 { RendererContextI* rendererCreate() { return NULL; } void rendererDestroy() { } } /* namespace d3d9 */ } // namespace bgfx #endif // BGFX_CONFIG_RENDERER_DIRECT3D9