/* * Copyright 2018 Attila Kocsis. All rights reserved. * License: https://github.com/bkaradzic/bgfx#license-bsd-2-clause */ /* * Reference(s): * - ASSAO is a SSAO implementation tuned for scalability and flexibility. * https://web.archive.org/web/20181214222937/https://software.intel.com/en-us/articles/adaptive-screen-space-ambient-occlusion * https://github.com/GameTechDev/ASSAO */ #include #include #include #include #include #include #define USE_ASSAO 0 namespace { // Render passes #define RENDER_PASS_GBUFFER 0 // GBuffer for normals and albedo #define RENDER_PASS_COMBINE 1 // Directional light and final result // Gbuffer has multiple render targets #define GBUFFER_RT_NORMAL 0 #define GBUFFER_RT_COLOR 1 #define GBUFFER_RT_DEPTH 2 // Random meshes we draw #define MODEL_COUNT 120 // In this demo, a model is a mesh plus a transform #define SAMPLER_POINT_CLAMP (BGFX_SAMPLER_POINT|BGFX_SAMPLER_UVW_CLAMP) #define SAMPLER_POINT_MIRROR (BGFX_SAMPLER_POINT|BGFX_SAMPLER_UVW_MIRROR) #define SAMPLER_LINEAR_CLAMP (BGFX_SAMPLER_UVW_CLAMP) #define SSAO_DEPTH_MIP_LEVELS 4 static const char * s_meshPaths[] = { "meshes/cube.bin", "meshes/orb.bin", "meshes/column.bin", "meshes/bunny_decimated.bin", "meshes/tree.bin", "meshes/hollowcube.bin" }; static const float s_meshScale[] = { 0.25f, 0.5f, 0.05f, 0.5f, 0.05f, 0.25f }; // Vertex layout for our screen space quad (used in deferred rendering) struct PosTexCoord0Vertex { float m_x; float m_y; float m_z; float m_u; float m_v; static void init() { ms_layout .begin() .add(bgfx::Attrib::Position, 3, bgfx::AttribType::Float) .add(bgfx::Attrib::TexCoord0, 2, bgfx::AttribType::Float) .end(); } static bgfx::VertexLayout ms_layout; }; bgfx::VertexLayout PosTexCoord0Vertex::ms_layout; // Utility function to draw a screen space quad for deferred rendering void screenSpaceQuad(float _textureWidth, float _textureHeight, float _texelHalf, bool _originBottomLeft, float _width = 1.0f, float _height = 1.0f) { if (3 == bgfx::getAvailTransientVertexBuffer(3, PosTexCoord0Vertex::ms_layout)) { bgfx::TransientVertexBuffer vb; bgfx::allocTransientVertexBuffer(&vb, 3, PosTexCoord0Vertex::ms_layout); PosTexCoord0Vertex* vertex = (PosTexCoord0Vertex*)vb.data; const float minx = -_width; const float maxx = _width; const float miny = 0.0f; const float maxy = _height * 2.0f; const float texelHalfW = _texelHalf / _textureWidth; const float texelHalfH = _texelHalf / _textureHeight; const float minu = -1.0f + texelHalfW; const float maxu = 1.0f + texelHalfH; const float zz = 0.0f; float minv = texelHalfH; float maxv = 2.0f + texelHalfH; if (_originBottomLeft) { float temp = minv; minv = maxv; maxv = temp; minv -= 1.0f; maxv -= 1.0f; } vertex[0].m_x = minx; vertex[0].m_y = miny; vertex[0].m_z = zz; vertex[0].m_u = minu; vertex[0].m_v = minv; vertex[1].m_x = maxx; vertex[1].m_y = miny; vertex[1].m_z = zz; vertex[1].m_u = maxu; vertex[1].m_v = minv; vertex[2].m_x = maxx; vertex[2].m_y = maxy; vertex[2].m_z = zz; vertex[2].m_u = maxu; vertex[2].m_v = maxv; bgfx::setVertexBuffer(0, &vb); } } struct Settings { float m_radius; // [0.0, ~ ] World (view) space size of the occlusion sphere. float m_shadowMultiplier; // [0.0, 5.0] Effect strength linear multiplier float m_shadowPower; // [0.5, 5.0] Effect strength pow modifier float m_shadowClamp; // [0.0, 1.0] Effect max limit (applied after multiplier but before blur) float m_horizonAngleThreshold; // [0.0, 0.2] Limits self-shadowing (makes the sampling area less of a hemisphere, more of a spherical cone, to avoid self-shadowing and various artifacts due to low tessellation and depth buffer imprecision, etc.) float m_fadeOutFrom; // [0.0, ~ ] Distance to start start fading out the effect. float m_fadeOutTo; // [0.0, ~ ] Distance at which the effect is faded out. int32_t m_qualityLevel; // [ -1, 3 ] Effect quality; -1 - lowest (low, half res checkerboard), 0 - low, 1 - medium, 2 - high, 3 - very high / adaptive; each quality level is roughly 2x more costly than the previous, except the q3 which is variable but, in general, above q2. float m_adaptiveQualityLimit; // [0.0, 1.0] (only for Quality Level 3) int32_t m_blurPassCount; // [ 0, 6] Number of edge-sensitive smart blur passes to apply. Quality 0 is an exception with only one 'dumb' blur pass used. float m_sharpness; // [0.0, 1.0] (How much to bleed over edges; 1: not at all, 0.5: half-half; 0.0: completely ignore edges) float m_temporalSupersamplingAngleOffset; // [0.0, PI] Used to rotate sampling kernel; If using temporal AA / supersampling, suggested to rotate by ( (frame%3)/3.0*PI ) or similar. Kernel is already symmetrical, which is why we use PI and not 2*PI. float m_temporalSupersamplingRadiusOffset; // [0.0, 2.0] Used to scale sampling kernel; If using temporal AA / supersampling, suggested to scale by ( 1.0f + (((frame%3)-1.0)/3.0)*0.1 ) or similar. float m_detailShadowStrength; // [0.0, 5.0] Used for high-res detail AO using neighboring depth pixels: adds a lot of detail but also reduces temporal stability (adds aliasing). bool m_generateNormals; // [true/false] If true normals will be generated from depth. Settings() { m_radius = 1.2f; m_shadowMultiplier = 1.0f; m_shadowPower = 1.50f; m_shadowClamp = 0.98f; m_horizonAngleThreshold = 0.06f; m_fadeOutFrom = 50.0f; m_fadeOutTo = 200.0f; m_adaptiveQualityLimit = 0.45f; m_qualityLevel = 3; m_blurPassCount = 2; m_sharpness = 0.98f; m_temporalSupersamplingAngleOffset = 0.0f; m_temporalSupersamplingRadiusOffset = 1.0f; m_detailShadowStrength = 0.5f; m_generateNormals = true; } }; struct Uniforms { enum { NumVec4 = 19 }; void init() { u_params = bgfx::createUniform("u_params", bgfx::UniformType::Vec4, NumVec4); } void submit() { bgfx::setUniform(u_params, m_params, NumVec4); } void destroy() { bgfx::destroy(u_params); } union { struct { /* 0 */ struct { float m_viewportPixelSize[2]; float m_halfViewportPixelSize[2]; }; /* 1 */ struct { float m_depthUnpackConsts[2]; float m_unused0[2]; }; /* 2 */ struct { float m_ndcToViewMul[2]; float m_ndcToViewAdd[2]; }; /* 3 */ struct { float m_perPassFullResCoordOffset[2]; float m_perPassFullResUVOffset[2]; }; /* 4 */ struct { float m_viewport2xPixelSize[2]; float m_viewport2xPixelSize_x_025[2]; }; /* 5 */ struct { float m_effectRadius; float m_effectShadowStrength; float m_effectShadowPow; float m_effectShadowClamp; }; /* 6 */ struct { float m_effectFadeOutMul; float m_effectFadeOutAdd; float m_effectHorizonAngleThreshold; float m_effectSamplingRadiusNearLimitRec; }; /* 7 */ struct { float m_depthPrecisionOffsetMod; float m_negRecEffectRadius; float m_loadCounterAvgDiv; float m_adaptiveSampleCountLimit; }; /* 8 */ struct { float m_invSharpness; float m_passIndex; float m_quarterResPixelSize[2]; }; /* 9-13 */ struct { float m_patternRotScaleMatrices[5][4]; }; /* 14 */ struct { float m_normalsUnpackMul; float m_normalsUnpackAdd; float m_detailAOStrength; float m_layer; }; /* 15-18 */ struct { float m_normalsWorldToViewspaceMatrix[16]; }; }; float m_params[NumVec4 * 4]; }; bgfx::UniformHandle u_params; }; void vec2Set(float* _v, float _x, float _y) { _v[0] = _x; _v[1] = _y; } void vec4Set(float* _v, float _x, float _y, float _z, float _w) { _v[0] = _x; _v[1] = _y; _v[2] = _z; _v[3] = _w; } void vec4iSet(int32_t* _v, int32_t _x, int32_t _y, int32_t _z, int32_t _w) { _v[0] = _x; _v[1] = _y; _v[2] = _z; _v[3] = _w; } static const int32_t cMaxBlurPassCount = 6; class ExampleASSAO : public entry::AppI { public: ExampleASSAO(const char* _name, const char* _description, const char* _url) : entry::AppI(_name, _description, _url) , m_currFrame(UINT32_MAX) , m_enableSSAO(true) , m_enableTexturing(true) , m_texelHalf(0.0f) , m_framebufferGutter(true) { } void init(int32_t _argc, const char* const* _argv, uint32_t _width, uint32_t _height) override { Args args(_argc, _argv); m_width = _width; m_height = _height; m_debug = BGFX_DEBUG_NONE; m_reset = BGFX_RESET_VSYNC; bgfx::Init init; init.type = args.m_type; init.vendorId = args.m_pciId; init.resolution.width = m_width; init.resolution.height = m_height; init.resolution.reset = m_reset; bgfx::init(init); // Enable debug text. bgfx::setDebug(m_debug); // Labeling for renderdoc captures, etc bgfx::setViewName(RENDER_PASS_GBUFFER, "gbuffer"); bgfx::setViewName(RENDER_PASS_COMBINE, "post combine"); // Set up screen clears bgfx::setViewClear(RENDER_PASS_GBUFFER , BGFX_CLEAR_COLOR | BGFX_CLEAR_DEPTH , 0 , 1.0f , 0 ); // Create uniforms u_combineParams = bgfx::createUniform("u_combineParams", bgfx::UniformType::Vec4, 2); u_rect = bgfx::createUniform("u_rect", bgfx::UniformType::Vec4); // viewport/scissor rect for compute m_uniforms.init(); // Create texture sampler uniforms (used when we bind textures) s_normal = bgfx::createUniform("s_normal", bgfx::UniformType::Sampler); // Normal gbuffer s_depth = bgfx::createUniform("s_depth", bgfx::UniformType::Sampler); // Normal gbuffer s_color = bgfx::createUniform("s_color", bgfx::UniformType::Sampler); // Color (albedo) gbuffer s_albedo = bgfx::createUniform("s_albedo", bgfx::UniformType::Sampler); s_ao = bgfx::createUniform("s_ao", bgfx::UniformType::Sampler); s_blurInput = bgfx::createUniform("s_blurInput", bgfx::UniformType::Sampler); s_finalSSAO = bgfx::createUniform("s_finalSSAO", bgfx::UniformType::Sampler); s_depthSource = bgfx::createUniform("s_depthSource", bgfx::UniformType::Sampler); s_viewspaceDepthSource = bgfx::createUniform("s_viewspaceDepthSource", bgfx::UniformType::Sampler); s_viewspaceDepthSourceMirror = bgfx::createUniform("s_viewspaceDepthSourceMirror", bgfx::UniformType::Sampler); s_importanceMap = bgfx::createUniform("s_importanceMap", bgfx::UniformType::Sampler); // Create program from shaders. m_gbufferProgram = loadProgram("vs_assao_gbuffer", "fs_assao_gbuffer"); // Gbuffer m_combineProgram = loadProgram("vs_assao", "fs_assao_deferred_combine"); m_prepareDepthsProgram = loadProgram("cs_assao_prepare_depths", NULL); m_prepareDepthsAndNormalsProgram = loadProgram("cs_assao_prepare_depths_and_normals", NULL); m_prepareDepthsHalfProgram = loadProgram("cs_assao_prepare_depths_half", NULL); m_prepareDepthsAndNormalsHalfProgram = loadProgram("cs_assao_prepare_depths_and_normals_half", NULL); m_prepareDepthMipProgram = loadProgram("cs_assao_prepare_depth_mip", NULL); m_generateQ0Program = loadProgram("cs_assao_generate_q0", NULL); m_generateQ1Program = loadProgram("cs_assao_generate_q1", NULL); m_generateQ2Program = loadProgram("cs_assao_generate_q2", NULL); m_generateQ3Program = loadProgram("cs_assao_generate_q3", NULL); m_generateQ3BaseProgram = loadProgram("cs_assao_generate_q3base", NULL); m_smartBlurProgram = loadProgram("cs_assao_smart_blur", NULL); m_smartBlurWideProgram = loadProgram("cs_assao_smart_blur_wide", NULL); m_nonSmartBlurProgram = loadProgram("cs_assao_non_smart_blur", NULL); m_applyProgram = loadProgram("cs_assao_apply", NULL); m_nonSmartApplyProgram = loadProgram("cs_assao_non_smart_apply", NULL); m_nonSmartHalfApplyProgram = loadProgram("cs_assao_non_smart_half_apply", NULL); m_generateImportanceMapProgram = loadProgram("cs_assao_generate_importance_map", NULL); m_postprocessImportanceMapAProgram = loadProgram("cs_assao_postprocess_importance_map_a", NULL); m_postprocessImportanceMapBProgram = loadProgram("cs_assao_postprocess_importance_map_b", NULL); m_loadCounterClearProgram = loadProgram("cs_assao_load_counter_clear", NULL); // Load some meshes for (uint32_t ii = 0; ii < BX_COUNTOF(s_meshPaths); ++ii) { m_meshes[ii] = meshLoad(s_meshPaths[ii]); } // Randomly create some models bx::RngMwc mwc; // Random number generator for (uint32_t ii = 0; ii < BX_COUNTOF(m_models); ++ii) { Model& model = m_models[ii]; model.mesh = 1 + mwc.gen() % (BX_COUNTOF(s_meshPaths) - 1); model.position[0] = (((mwc.gen() % 256)) - 128.0f) / 20.0f; model.position[1] = 0; model.position[2] = (((mwc.gen() % 256)) - 128.0f) / 20.0f; } // Load ground. We'll just use the cube since I don't have a ground model right now m_ground = meshLoad("meshes/cube.bin"); m_groundTexture = loadTexture("textures/fieldstone-rgba.dds"); const bgfx::Memory* mem = bgfx::alloc(4); bx::memSet(mem->data, 0xc0, 4); m_modelTexture = bgfx::createTexture2D(1,1, false, 1, bgfx::TextureFormat::RGBA8, 0, mem); m_recreateFrameBuffers = false; createFramebuffers(); m_loadCounter = bgfx::createDynamicIndexBuffer(1, BGFX_BUFFER_COMPUTE_READ_WRITE | BGFX_BUFFER_INDEX32); // Vertex layout PosTexCoord0Vertex::init(); // Init camera cameraCreate(); cameraSetPosition({ 0.0f, 1.5f, 0.0f }); cameraSetVerticalAngle(-0.3f); m_fovY = 60.0f; // Get renderer capabilities info. const bgfx::RendererType::Enum renderer = bgfx::getRendererType(); m_texelHalf = bgfx::RendererType::Direct3D9 == renderer ? 0.5f : 0.0f; imguiCreate(); } int32_t shutdown() override { for (uint32_t ii = 0; ii < BX_COUNTOF(s_meshPaths); ++ii) { meshUnload(m_meshes[ii]); } meshUnload(m_ground); bgfx::destroy(m_groundTexture); bgfx::destroy(m_modelTexture); // Cleanup. bgfx::destroy(m_gbufferProgram); bgfx::destroy(m_combineProgram); bgfx::destroy(m_prepareDepthsProgram); bgfx::destroy(m_prepareDepthsAndNormalsProgram); bgfx::destroy(m_prepareDepthsHalfProgram); bgfx::destroy(m_prepareDepthsAndNormalsHalfProgram); bgfx::destroy(m_prepareDepthMipProgram); bgfx::destroy(m_generateQ0Program); bgfx::destroy(m_generateQ1Program); bgfx::destroy(m_generateQ2Program); bgfx::destroy(m_generateQ3Program); bgfx::destroy(m_generateQ3BaseProgram); bgfx::destroy(m_smartBlurProgram); bgfx::destroy(m_smartBlurWideProgram); bgfx::destroy(m_nonSmartBlurProgram); bgfx::destroy(m_applyProgram); bgfx::destroy(m_nonSmartApplyProgram); bgfx::destroy(m_nonSmartHalfApplyProgram); bgfx::destroy(m_generateImportanceMapProgram); bgfx::destroy(m_postprocessImportanceMapAProgram); bgfx::destroy(m_postprocessImportanceMapBProgram); bgfx::destroy(m_loadCounterClearProgram); bgfx::destroy(m_combineProgram); m_uniforms.destroy(); bgfx::destroy(u_combineParams); bgfx::destroy(u_rect); bgfx::destroy(s_normal); bgfx::destroy(s_depth); bgfx::destroy(s_color); bgfx::destroy(s_albedo); bgfx::destroy(s_ao); bgfx::destroy(s_blurInput); bgfx::destroy(s_finalSSAO); bgfx::destroy(s_depthSource); bgfx::destroy(s_viewspaceDepthSource); bgfx::destroy(s_viewspaceDepthSourceMirror); bgfx::destroy(s_importanceMap); bgfx::destroy(m_loadCounter); destroyFramebuffers(); cameraDestroy(); imguiDestroy(); // Shutdown bgfx. bgfx::shutdown(); return 0; } bool update() override { if (!entry::processEvents(m_width, m_height, m_debug, m_reset, &m_mouseState)) { // Update frame timer int64_t now = bx::getHPCounter(); static int64_t last = now; const int64_t frameTime = now - last; last = now; const double freq = double(bx::getHPFrequency()); const float deltaTime = float(frameTime / freq); const bgfx::Caps* caps = bgfx::getCaps(); if (m_size[0] != (int32_t)m_width + 2*m_border || m_size[1] != (int32_t)m_height + 2*m_border || m_recreateFrameBuffers) { destroyFramebuffers(); createFramebuffers(); m_recreateFrameBuffers = false; } // Update camera cameraUpdate(deltaTime*0.15f, m_mouseState, ImGui::MouseOverArea() ); // Set up matrices for gbuffer cameraGetViewMtx(m_view); bx::mtxProj(m_proj, m_fovY, float(m_size[0]) / float(m_size[1]), 0.1f, 100.0f, bgfx::getCaps()->homogeneousDepth); bx::mtxProj(m_proj2, m_fovY, float(m_size[0]) / float(m_size[1]), 0.1f, 100.0f, false); bgfx::setViewRect(RENDER_PASS_GBUFFER, 0, 0, uint16_t(m_size[0]), uint16_t(m_size[1])); bgfx::setViewTransform(RENDER_PASS_GBUFFER, m_view, m_proj); // Make sure when we draw it goes into gbuffer and not backbuffer bgfx::setViewFrameBuffer(RENDER_PASS_GBUFFER, m_gbuffer); // Draw everything into g-buffer drawAllModels(RENDER_PASS_GBUFFER, m_gbufferProgram); // Set up transform matrix for fullscreen quad #if USE_ASSAO == 1 float orthoProj[16]; bx::mtxOrtho(orthoProj, 0.0f, 1.0f, 1.0f, 0.0f, 0.0f, 1.0f, 0.0f, caps->homogeneousDepth); bgfx::setViewTransform(RENDER_PASS_COMBINE, NULL, orthoProj); bgfx::setViewRect(RENDER_PASS_COMBINE, 0, 0, uint16_t(m_width), uint16_t(m_height)); // Bind vertex buffer and draw quad screenSpaceQuad((float)m_width, (float)m_height, m_texelHalf, caps->originBottomLeft); //bgfx::submit(RENDER_PASS_COMBINE, m_combineProgram); bgfx::touch(RENDER_PASS_COMBINE); BX_UNUSED(orthoProj, caps) #endif // ASSAO passes #if USE_ASSAO == 0 updateUniforms(0); bgfx::ViewId view = 2; bgfx::setViewName(view, "ASSAO"); { bgfx::setTexture(0, s_depthSource, bgfx::getTexture(m_gbuffer, GBUFFER_RT_DEPTH), SAMPLER_POINT_CLAMP); m_uniforms.submit(); if (m_settings.m_generateNormals) { bgfx::setImage(5, m_normals, 0, bgfx::Access::Write, bgfx::TextureFormat::RGBA8); } if (m_settings.m_qualityLevel < 0) { for (int32_t j = 0; j < 2; ++j) { bgfx::setImage((uint8_t)(j + 1), m_halfDepths[j == 0 ? 0 : 3], 0, bgfx::Access::Write, bgfx::TextureFormat::R16F); } bgfx::dispatch(view, m_settings.m_generateNormals ? m_prepareDepthsAndNormalsHalfProgram : m_prepareDepthsHalfProgram, (m_halfSize[0] + 7) / 8, (m_halfSize[1] + 7) / 8); } else { for(int32_t j = 0; j < 4; ++j) { bgfx::setImage((uint8_t)(j+1), m_halfDepths[j], 0, bgfx::Access::Write, bgfx::TextureFormat::R16F); } bgfx::dispatch(view, m_settings.m_generateNormals ? m_prepareDepthsAndNormalsProgram : m_prepareDepthsProgram, (m_halfSize[0] + 7) / 8, (m_halfSize[1] + 7) / 8); } } // only do mipmaps for higher quality levels (not beneficial on quality level 1, and detrimental on quality level 0) if (m_settings.m_qualityLevel > 1) { uint16_t mipWidth = (uint16_t)m_halfSize[0]; uint16_t mipHeight = (uint16_t)m_halfSize[1]; for (uint8_t i = 1; i < SSAO_DEPTH_MIP_LEVELS; i++) { mipWidth = (uint16_t)bx::max(1, mipWidth >> 1); mipHeight = (uint16_t)bx::max(1, mipHeight >> 1); for (uint8_t j = 0; j < 4; ++j) { bgfx::setImage(j, m_halfDepths[j], i-1, bgfx::Access::Read, bgfx::TextureFormat::R16F); bgfx::setImage(j + 4, m_halfDepths[j], i, bgfx::Access::Write, bgfx::TextureFormat::R16F); } m_uniforms.submit(); float rect[4] = { 0.0f, 0.0f, (float)mipWidth, (float)mipHeight }; bgfx::setUniform(u_rect, rect); bgfx::dispatch(view, m_prepareDepthMipProgram, (mipWidth + 7) / 8, (mipHeight + 7) / 8); } } // for adaptive quality, importance map pass for (int32_t ssaoPass = 0; ssaoPass < 2; ++ssaoPass) { if (ssaoPass == 0 && m_settings.m_qualityLevel < 3) { continue; } bool adaptiveBasePass = (ssaoPass == 0); BX_UNUSED(adaptiveBasePass); int32_t passCount = 4; int32_t halfResNumX = (m_halfResOutScissorRect[2] - m_halfResOutScissorRect[0] + 7) / 8; int32_t halfResNumY = (m_halfResOutScissorRect[3] - m_halfResOutScissorRect[1] + 7) / 8; float halfResRect[4] = { (float)m_halfResOutScissorRect[0], (float)m_halfResOutScissorRect[1], (float)m_halfResOutScissorRect[2], (float)m_halfResOutScissorRect[3] }; for (int32_t pass = 0; pass < passCount; pass++) { if (m_settings.m_qualityLevel < 0 && (pass == 1 || pass == 2) ) { continue; } int32_t blurPasses = m_settings.m_blurPassCount; blurPasses = bx::min(blurPasses, cMaxBlurPassCount); if (m_settings.m_qualityLevel == 3) { // if adaptive, at least one blur pass needed as the first pass needs to read the final texture results - kind of awkward if (adaptiveBasePass) { blurPasses = 0; } else { blurPasses = bx::max(1, blurPasses); } } else if (m_settings.m_qualityLevel <= 0) { // just one blur pass allowed for minimum quality blurPasses = bx::min(1, m_settings.m_blurPassCount); } updateUniforms(pass); bgfx::TextureHandle pPingRT = m_pingPongHalfResultA; bgfx::TextureHandle pPongRT = m_pingPongHalfResultB; // Generate { bgfx::setImage(6, blurPasses == 0 ? m_finalResults : pPingRT, 0, bgfx::Access::Write, bgfx::TextureFormat::RG8); bgfx::setUniform(u_rect, halfResRect); bgfx::setTexture(0, s_viewspaceDepthSource, m_halfDepths[pass], SAMPLER_POINT_CLAMP); bgfx::setTexture(1, s_viewspaceDepthSourceMirror, m_halfDepths[pass], SAMPLER_POINT_MIRROR); if (m_settings.m_generateNormals) bgfx::setImage(2, m_normals,0, bgfx::Access::Read, bgfx::TextureFormat::RGBA8); else bgfx::setImage(2, bgfx::getTexture(m_gbuffer, GBUFFER_RT_NORMAL), 0, bgfx::Access::Read, bgfx::TextureFormat::RGBA8); if (!adaptiveBasePass && (m_settings.m_qualityLevel == 3)) { bgfx::setBuffer(3, m_loadCounter, bgfx::Access::Read); bgfx::setTexture(4, s_importanceMap, m_importanceMap, SAMPLER_LINEAR_CLAMP); bgfx::setImage(5, m_finalResults, 0, bgfx::Access::Read, bgfx::TextureFormat::RG8); } bgfx::ProgramHandle programs[5] = { m_generateQ0Program, m_generateQ1Program , m_generateQ2Program , m_generateQ3Program , m_generateQ3BaseProgram }; int32_t programIndex = bx::max(0, (!adaptiveBasePass) ? (m_settings.m_qualityLevel) : (4)); m_uniforms.m_layer = blurPasses == 0 ? (float)pass : 0.0f; m_uniforms.submit(); bgfx::dispatch(view, programs[programIndex], halfResNumX, halfResNumY); } // Blur if (blurPasses > 0) { int32_t wideBlursRemaining = bx::max(0, blurPasses - 2); for (int32_t i = 0; i < blurPasses; i++) { bgfx::setViewFrameBuffer(view, BGFX_INVALID_HANDLE); bgfx::touch(view); m_uniforms.m_layer = ((i == (blurPasses - 1)) ? (float)pass : 0.0f); m_uniforms.submit(); bgfx::setUniform(u_rect, halfResRect); bgfx::setImage(0, i == (blurPasses - 1) ? m_finalResults : pPongRT, 0, bgfx::Access::Write, bgfx::TextureFormat::RG8); bgfx::setTexture(1, s_blurInput, pPingRT, m_settings.m_qualityLevel > 0 ? SAMPLER_POINT_MIRROR : SAMPLER_LINEAR_CLAMP); if (m_settings.m_qualityLevel > 0) { if (wideBlursRemaining > 0) { bgfx::dispatch(view, m_smartBlurWideProgram, halfResNumX, halfResNumY); wideBlursRemaining--; } else { bgfx::dispatch(view, m_smartBlurProgram, halfResNumX, halfResNumY); } } else { bgfx::dispatch(view, m_nonSmartBlurProgram, halfResNumX, halfResNumY); // just for quality level 0 (and -1) } bgfx::TextureHandle temp = pPingRT; pPingRT = pPongRT; pPongRT = temp; } } } if (ssaoPass == 0 && m_settings.m_qualityLevel == 3) { // Generate importance map m_uniforms.submit(); bgfx::setImage(0, m_importanceMap, 0, bgfx::Access::Write, bgfx::TextureFormat::R8); bgfx::setTexture(1, s_finalSSAO, m_finalResults, SAMPLER_POINT_CLAMP); bgfx::dispatch(view, m_generateImportanceMapProgram, (m_quarterSize[0] + 7) / 8, (m_quarterSize[1] + 7) / 8); m_uniforms.submit(); bgfx::setImage(0, m_importanceMapPong, 0, bgfx::Access::Write, bgfx::TextureFormat::R8); bgfx::setTexture(1, s_importanceMap, m_importanceMap); bgfx::dispatch(view, m_postprocessImportanceMapAProgram, (m_quarterSize[0] + 7) / 8, (m_quarterSize[1] + 7) / 8); bgfx::setBuffer(0, m_loadCounter, bgfx::Access::ReadWrite); bgfx::dispatch(view, m_loadCounterClearProgram, 1,1); m_uniforms.submit(); bgfx::setImage(0, m_importanceMap, 0, bgfx::Access::Write, bgfx::TextureFormat::R8); bgfx::setTexture(1, s_importanceMap, m_importanceMapPong); bgfx::setBuffer(2, m_loadCounter, bgfx::Access::ReadWrite); bgfx::dispatch(view, m_postprocessImportanceMapBProgram, (m_quarterSize[0]+7) / 8, (m_quarterSize[1]+7) / 8); ++view; } } // Apply { // select 4 deinterleaved AO textures (texture array) bgfx::setImage(0, m_aoMap, 0, bgfx::Access::Write, bgfx::TextureFormat::R8); bgfx::setTexture(1, s_finalSSAO, m_finalResults); m_uniforms.submit(); float rect[4] = {(float)m_fullResOutScissorRect[0], (float)m_fullResOutScissorRect[1], (float)m_fullResOutScissorRect[2], (float)m_fullResOutScissorRect[3] }; bgfx::setUniform(u_rect, rect); bgfx::ProgramHandle program; if (m_settings.m_qualityLevel < 0) program = m_nonSmartHalfApplyProgram; else if (m_settings.m_qualityLevel == 0) program = m_nonSmartApplyProgram; else program = m_applyProgram; bgfx::dispatch(view, program, (m_fullResOutScissorRect[2]- m_fullResOutScissorRect[0] + 7) / 8, (m_fullResOutScissorRect[3] - m_fullResOutScissorRect[1] + 7) / 8); ++view; } { // combine bgfx::setViewFrameBuffer(view, BGFX_INVALID_HANDLE); bgfx::setViewName(view, "Combine"); bgfx::setViewRect(view, 0, 0, (uint16_t)m_width, (uint16_t)m_height); float orthoProj[16]; bx::mtxOrtho(orthoProj, 0.0f, 1.0f, 1.0f, 0.0f, 0.0f, 1.0f, 0.0f, caps->homogeneousDepth); bgfx::setViewTransform(view, NULL, orthoProj); bgfx::setTexture(0, s_color, bgfx::getTexture(m_gbuffer, GBUFFER_RT_COLOR), SAMPLER_POINT_CLAMP); bgfx::setTexture(1, s_normal, bgfx::getTexture(m_gbuffer, GBUFFER_RT_NORMAL), SAMPLER_POINT_CLAMP); bgfx::setTexture(2, s_ao, m_aoMap, SAMPLER_POINT_CLAMP); m_uniforms.submit(); float combineParams[8] = { m_enableTexturing ? 1.0f : 0.0f, m_enableSSAO ? 1.0f : 0.0f, 0.0f,0.0f, (float)(m_size[0]-2*m_border) / (float)m_size[0], (float)(m_size[1] - 2 * m_border) / (float)m_size[1], (float)m_border / (float)m_size[0], (float)m_border / (float)m_size[1] }; bgfx::setUniform(u_combineParams, combineParams, 2); screenSpaceQuad((float)m_width, (float)m_height, m_texelHalf, caps->originBottomLeft); bgfx::setState(BGFX_STATE_WRITE_RGB | BGFX_STATE_WRITE_A | BGFX_STATE_DEPTH_TEST_ALWAYS); bgfx::submit(view, m_combineProgram); ++view; } #endif // Draw UI imguiBeginFrame(m_mouseState.m_mx , m_mouseState.m_my , (m_mouseState.m_buttons[entry::MouseButton::Left] ? IMGUI_MBUT_LEFT : 0) | (m_mouseState.m_buttons[entry::MouseButton::Right] ? IMGUI_MBUT_RIGHT : 0) | (m_mouseState.m_buttons[entry::MouseButton::Middle] ? IMGUI_MBUT_MIDDLE : 0) , m_mouseState.m_mz , uint16_t(m_width) , uint16_t(m_height) ); showExampleDialog(this); ImGui::SetNextWindowPos( ImVec2(m_width - m_width / 4.0f - 10.0f, 10.0f) , ImGuiCond_FirstUseEver ); ImGui::SetNextWindowSize( ImVec2(m_width / 4.0f, m_height / 1.3f) , ImGuiCond_FirstUseEver ); ImGui::Begin("Settings" , NULL , 0 ); ImGui::PushItemWidth(ImGui::GetWindowWidth() * 0.5f); ImGui::Checkbox("Enable SSAO", &m_enableSSAO); ImGui::Checkbox("Enable Texturing & Lighting", &m_enableTexturing); ImGui::Separator(); int32_t quality = m_settings.m_qualityLevel + 1; if (ImGui::Combo("Quality Level", &quality, "Lowest (Half Resolution)\0Low\0Medium\0High\0Adaptive\0\0")) { m_settings.m_qualityLevel = quality - 1; } ImGui::Checkbox("Generate Normals", &m_settings.m_generateNormals); if (ImGui::Checkbox("Framebuffer Gutter", &m_framebufferGutter)) { m_recreateFrameBuffers = true; } ImGui::SliderFloat("Effect Radius", &m_settings.m_radius, 0.0f, 4.0f); ImGui::SliderFloat("Effect Strength", &m_settings.m_shadowMultiplier, 0.0f, 5.0f); ImGui::SliderFloat("Effect Power", &m_settings.m_shadowPower, 0.5f, 4.0f); ImGui::SliderFloat("Effect Max Limit", &m_settings.m_shadowClamp, 0.0f, 1.0f); ImGui::SliderFloat("Horizon Angle Threshold", &m_settings.m_horizonAngleThreshold, 0.0f, 0.2f); ImGui::SliderFloat("Fade Out From", &m_settings.m_fadeOutFrom, 0.0f, 100.0f); ImGui::SliderFloat("Fade Out To", &m_settings.m_fadeOutTo, 0.0f, 300.0f); if (m_settings.m_qualityLevel == 3) { ImGui::SliderFloat("Adaptive Quality Limit", &m_settings.m_adaptiveQualityLimit, 0.0f, 1.0f); } ImGui::SliderInt("Blur Pass Count", &m_settings.m_blurPassCount, 0, 6); ImGui::SliderFloat("Sharpness", &m_settings.m_sharpness, 0.0f, 1.0f); ImGui::SliderFloat("Temporal Supersampling Angle Offset", &m_settings.m_temporalSupersamplingAngleOffset, 0.0f, bx::kPi); ImGui::SliderFloat("Temporal Supersampling Radius Offset", &m_settings.m_temporalSupersamplingRadiusOffset, 0.0f, 2.0f); ImGui::SliderFloat("Detail Shadow Strength", &m_settings.m_detailShadowStrength, 0.0f, 4.0f); ImGui::End(); imguiEndFrame(); // Advance to next frame. Rendering thread will be kicked to // process submitted rendering primitives. m_currFrame = bgfx::frame(); return true; } return false; } void drawAllModels(uint8_t _pass, bgfx::ProgramHandle _program) { for (uint32_t ii = 0; ii < BX_COUNTOF(m_models); ++ii) { const Model& model = m_models[ii]; // Set up transform matrix for each model float scale = s_meshScale[model.mesh]; float mtx[16]; bx::mtxSRT(mtx , scale , scale , scale , 0.0f , 0.0f , 0.0f , model.position[0] , model.position[1] , model.position[2] ); // Submit mesh to gbuffer bgfx::setTexture(0, s_albedo, m_modelTexture); meshSubmit(m_meshes[model.mesh], _pass, _program, mtx); } // Draw ground float mtxScale[16]; const float scale = 10.0f; bx::mtxScale(mtxScale, scale, scale, scale); float mtxTrans[16]; bx::mtxTranslate(mtxTrans , 0.0f , -10.0f , 0.0f ); float mtx[16]; bx::mtxMul(mtx, mtxScale, mtxTrans); bgfx::setTexture(0, s_albedo, m_groundTexture); meshSubmit(m_ground, _pass, _program, mtx); } void createFramebuffers() { // update resolution and camera FOV if there's border expansion const int32_t drawResolutionBorderExpansionFactor = 12; // will be expanded by Height / expansionFactor const float fovY = 60.0f; m_border = 0; if (m_framebufferGutter) { m_border = (bx::min(m_width, m_height) / drawResolutionBorderExpansionFactor) / 2 * 2; int32_t expandedSceneResolutionY = m_height + m_border * 2; float yScaleDueToBorder = (expandedSceneResolutionY * 0.5f) / (float)(m_height * 0.5f); float nonExpandedTan = bx::tan(bx::toRad(fovY / 2.0f)); m_fovY = bx::toDeg(bx::atan(nonExpandedTan * yScaleDueToBorder) * 2.0f); } else { m_fovY = fovY; } m_size[0] = m_width + 2 * m_border; m_size[1] = m_height + 2 * m_border; m_halfSize[0] = (m_size[0] + 1) / 2; m_halfSize[1] = (m_size[1] + 1) / 2; m_quarterSize[0] = (m_halfSize[0] + 1) / 2; m_quarterSize[1] = (m_halfSize[1] + 1) / 2; vec4iSet(m_fullResOutScissorRect, m_border, m_border, m_width + m_border, m_height + m_border); vec4iSet(m_halfResOutScissorRect, m_fullResOutScissorRect[0] / 2, m_fullResOutScissorRect[1] / 2, (m_fullResOutScissorRect[2] + 1) / 2, (m_fullResOutScissorRect[3] + 1) / 2); int32_t blurEnlarge = cMaxBlurPassCount + bx::max(0, cMaxBlurPassCount - 2); // +1 for max normal blurs, +2 for wide blurs vec4iSet(m_halfResOutScissorRect, bx::max(0, m_halfResOutScissorRect[0] - blurEnlarge), bx::max(0, m_halfResOutScissorRect[1] - blurEnlarge), bx::min(m_halfSize[0], m_halfResOutScissorRect[2] + blurEnlarge), bx::min(m_halfSize[1], m_halfResOutScissorRect[3] + blurEnlarge)); // Make gbuffer and related textures const uint64_t tsFlags = 0 | BGFX_TEXTURE_RT | BGFX_SAMPLER_MIN_POINT | BGFX_SAMPLER_MAG_POINT | BGFX_SAMPLER_MIP_POINT | BGFX_SAMPLER_U_CLAMP | BGFX_SAMPLER_V_CLAMP ; bgfx::TextureHandle gbufferTex[3]; gbufferTex[GBUFFER_RT_NORMAL] = bgfx::createTexture2D(uint16_t(m_size[0]), uint16_t(m_size[1]), false, 1, bgfx::TextureFormat::BGRA8, tsFlags); gbufferTex[GBUFFER_RT_COLOR] = bgfx::createTexture2D(uint16_t(m_size[0]), uint16_t(m_size[1]), false, 1, bgfx::TextureFormat::BGRA8, tsFlags); gbufferTex[GBUFFER_RT_DEPTH] = bgfx::createTexture2D(uint16_t(m_size[0]), uint16_t(m_size[1]), false, 1, bgfx::TextureFormat::D32F, tsFlags); m_gbuffer = bgfx::createFrameBuffer(BX_COUNTOF(gbufferTex), gbufferTex, true); for (int32_t i = 0; i < 4; i++) { m_halfDepths[i] = bgfx::createTexture2D(uint16_t(m_halfSize[0]), uint16_t(m_halfSize[1]), true, 1, bgfx::TextureFormat::R16F, BGFX_TEXTURE_COMPUTE_WRITE | SAMPLER_POINT_CLAMP); } m_pingPongHalfResultA = bgfx::createTexture2D(uint16_t(m_halfSize[0]), uint16_t(m_halfSize[1]), false, 2, bgfx::TextureFormat::RG8, BGFX_TEXTURE_COMPUTE_WRITE); m_pingPongHalfResultB = bgfx::createTexture2D(uint16_t(m_halfSize[0]), uint16_t(m_halfSize[1]), false, 2, bgfx::TextureFormat::RG8, BGFX_TEXTURE_COMPUTE_WRITE); m_finalResults = bgfx::createTexture2D(uint16_t(m_halfSize[0]), uint16_t(m_halfSize[1]), false, 4, bgfx::TextureFormat::RG8, BGFX_TEXTURE_COMPUTE_WRITE | SAMPLER_LINEAR_CLAMP); m_normals = bgfx::createTexture2D(uint16_t(m_size[0]), uint16_t(m_size[1]), false, 1, bgfx::TextureFormat::RGBA8, BGFX_TEXTURE_COMPUTE_WRITE); m_importanceMap = bgfx::createTexture2D(uint16_t(m_quarterSize[0]), uint16_t(m_quarterSize[1]), false, 1, bgfx::TextureFormat::R8, BGFX_TEXTURE_COMPUTE_WRITE | SAMPLER_LINEAR_CLAMP); m_importanceMapPong = bgfx::createTexture2D(uint16_t(m_quarterSize[0]), uint16_t(m_quarterSize[1]), false, 1, bgfx::TextureFormat::R8, BGFX_TEXTURE_COMPUTE_WRITE | SAMPLER_LINEAR_CLAMP); m_aoMap = bgfx::createTexture2D(uint16_t(m_size[0]), uint16_t(m_size[1]), false, 1, bgfx::TextureFormat::R8, BGFX_TEXTURE_COMPUTE_WRITE | SAMPLER_POINT_CLAMP); } void destroyFramebuffers() { bgfx::destroy(m_gbuffer); for (uint32_t ii = 0; ii < BX_COUNTOF(m_halfDepths); ++ii) { bgfx::destroy(m_halfDepths[ii]); } bgfx::destroy(m_pingPongHalfResultA); bgfx::destroy(m_pingPongHalfResultB); bgfx::destroy(m_finalResults); bgfx::destroy(m_normals); bgfx::destroy(m_aoMap); bgfx::destroy(m_importanceMap); bgfx::destroy(m_importanceMapPong); } void updateUniforms(int32_t _pass) { vec2Set(m_uniforms.m_viewportPixelSize, 1.0f / (float)m_size[0], 1.0f / (float)m_size[1]); vec2Set(m_uniforms.m_halfViewportPixelSize, 1.0f / (float)m_halfSize[0], 1.0f / (float)m_halfSize[1]); vec2Set(m_uniforms.m_viewport2xPixelSize, m_uniforms.m_viewportPixelSize[0] * 2.0f, m_uniforms.m_viewportPixelSize[1] * 2.0f); vec2Set(m_uniforms.m_viewport2xPixelSize_x_025, m_uniforms.m_viewport2xPixelSize[0] * 0.25f, m_uniforms.m_viewport2xPixelSize[1] * 0.25f); float depthLinearizeMul = -m_proj2[3*4+2]; // float depthLinearizeMul = ( clipFar * clipNear ) / ( clipFar - clipNear ); float depthLinearizeAdd = m_proj2[2*4+2]; // float depthLinearizeAdd = clipFar / ( clipFar - clipNear ); // correct the handedness issue. need to make sure this below is correct, but I think it is. if (depthLinearizeMul * depthLinearizeAdd < 0) { depthLinearizeAdd = -depthLinearizeAdd; } vec2Set(m_uniforms.m_depthUnpackConsts, depthLinearizeMul, depthLinearizeAdd); float tanHalfFOVY = 1.0f / m_proj2[1*4+1]; // = tanf( drawContext.Camera.GetYFOV( ) * 0.5f ); float tanHalfFOVX = 1.0F / m_proj2[0]; // = tanHalfFOVY * drawContext.Camera.GetAspect( ); if (bgfx::getRendererType() == bgfx::RendererType::OpenGL) { vec2Set(m_uniforms.m_ndcToViewMul, tanHalfFOVX * 2.0f, tanHalfFOVY * 2.0f); vec2Set(m_uniforms.m_ndcToViewAdd, tanHalfFOVX * -1.0f, tanHalfFOVY * -1.0f); } else { vec2Set(m_uniforms.m_ndcToViewMul, tanHalfFOVX * 2.0f, tanHalfFOVY * -2.0f); vec2Set(m_uniforms.m_ndcToViewAdd, tanHalfFOVX * -1.0f, tanHalfFOVY * 1.0f); } m_uniforms.m_effectRadius = bx::clamp(m_settings.m_radius, 0.0f, 100000.0f); m_uniforms.m_effectShadowStrength = bx::clamp(m_settings.m_shadowMultiplier * 4.3f, 0.0f, 10.0f); m_uniforms.m_effectShadowPow = bx::clamp(m_settings.m_shadowPower, 0.0f, 10.0f); m_uniforms.m_effectShadowClamp = bx::clamp(m_settings.m_shadowClamp, 0.0f, 1.0f); m_uniforms.m_effectFadeOutMul = -1.0f / (m_settings.m_fadeOutTo - m_settings.m_fadeOutFrom); m_uniforms.m_effectFadeOutAdd = m_settings.m_fadeOutFrom / (m_settings.m_fadeOutTo - m_settings.m_fadeOutFrom) + 1.0f; m_uniforms.m_effectHorizonAngleThreshold = bx::clamp(m_settings.m_horizonAngleThreshold, 0.0f, 1.0f); // 1.2 seems to be around the best trade off - 1.0 means on-screen radius will stop/slow growing when the camera is at 1.0 distance, so, depending on FOV, basically filling up most of the screen // This setting is viewspace-dependent and not screen size dependent intentionally, so that when you change FOV the effect stays (relatively) similar. float effectSamplingRadiusNearLimit = (m_settings.m_radius * 1.2f); // if the depth precision is switched to 32bit float, this can be set to something closer to 1 (0.9999 is fine) m_uniforms.m_depthPrecisionOffsetMod = 0.9992f; // used to get average load per pixel; 9.0 is there to compensate for only doing every 9th InterlockedAdd in PSPostprocessImportanceMapB for performance reasons m_uniforms.m_loadCounterAvgDiv = 9.0f / (float)(m_quarterSize[0] * m_quarterSize[1] * 255.0); // Special settings for lowest quality level - just nerf the effect a tiny bit if (m_settings.m_qualityLevel <= 0) { effectSamplingRadiusNearLimit *= 1.50f; if (m_settings.m_qualityLevel < 0) { m_uniforms.m_effectRadius *= 0.8f; } } effectSamplingRadiusNearLimit /= tanHalfFOVY; // to keep the effect same regardless of FOV m_uniforms.m_effectSamplingRadiusNearLimitRec = 1.0f / effectSamplingRadiusNearLimit; m_uniforms.m_adaptiveSampleCountLimit = m_settings.m_adaptiveQualityLimit; m_uniforms.m_negRecEffectRadius = -1.0f / m_uniforms.m_effectRadius; if (bgfx::getCaps()->originBottomLeft) { vec2Set(m_uniforms.m_perPassFullResCoordOffset, (float)(_pass % 2), 1.0f-(float)(_pass / 2)); vec2Set(m_uniforms.m_perPassFullResUVOffset, ((_pass % 2) - 0.0f) / m_size[0], (1.0f-((_pass / 2) - 0.0f)) / m_size[1]); } else { vec2Set(m_uniforms.m_perPassFullResCoordOffset, (float)(_pass % 2), (float)(_pass / 2)); vec2Set(m_uniforms.m_perPassFullResUVOffset, ((_pass % 2) - 0.0f) / m_size[0], ((_pass / 2) - 0.0f) / m_size[1]); } m_uniforms.m_invSharpness = bx::clamp(1.0f - m_settings.m_sharpness, 0.0f, 1.0f); m_uniforms.m_passIndex = (float)_pass; vec2Set(m_uniforms.m_quarterResPixelSize, 1.0f / (float)m_quarterSize[0], 1.0f / (float)m_quarterSize[1]); float additionalAngleOffset = m_settings.m_temporalSupersamplingAngleOffset; // if using temporal supersampling approach (like "Progressive Rendering Using Multi-frame Sampling" from GPU Pro 7, etc.) float additionalRadiusScale = m_settings.m_temporalSupersamplingRadiusOffset; // if using temporal supersampling approach (like "Progressive Rendering Using Multi-frame Sampling" from GPU Pro 7, etc.) const int32_t subPassCount = 5; for (int32_t subPass = 0; subPass < subPassCount; subPass++) { int32_t a = _pass; int32_t b = subPass; int32_t spmap[5]{ 0, 1, 4, 3, 2 }; b = spmap[subPass]; float ca, sa; float angle0 = ((float)a + (float)b / (float)subPassCount) * (3.1415926535897932384626433832795f) * 0.5f; angle0 += additionalAngleOffset; ca = bx::cos(angle0); sa = bx::sin(angle0); float scale = 1.0f + (a - 1.5f + (b - (subPassCount - 1.0f) * 0.5f) / (float)subPassCount) * 0.07f; scale *= additionalRadiusScale; vec4Set(m_uniforms.m_patternRotScaleMatrices[subPass], scale * ca, scale * -sa, -scale * sa, -scale * ca); } m_uniforms.m_normalsUnpackMul = 2.0f; m_uniforms.m_normalsUnpackAdd = -1.0f; m_uniforms.m_detailAOStrength = m_settings.m_detailShadowStrength; if (m_settings.m_generateNormals) { bx::mtxIdentity(m_uniforms.m_normalsWorldToViewspaceMatrix); } else { bx::mtxTranspose(m_uniforms.m_normalsWorldToViewspaceMatrix, m_view); } } uint32_t m_width; uint32_t m_height; uint32_t m_debug; uint32_t m_reset; entry::MouseState m_mouseState; Uniforms m_uniforms; // Resource handles bgfx::ProgramHandle m_gbufferProgram; bgfx::ProgramHandle m_combineProgram; bgfx::ProgramHandle m_prepareDepthsProgram; bgfx::ProgramHandle m_prepareDepthsAndNormalsProgram; bgfx::ProgramHandle m_prepareDepthsHalfProgram; bgfx::ProgramHandle m_prepareDepthsAndNormalsHalfProgram; bgfx::ProgramHandle m_prepareDepthMipProgram; bgfx::ProgramHandle m_generateQ0Program; bgfx::ProgramHandle m_generateQ1Program; bgfx::ProgramHandle m_generateQ2Program; bgfx::ProgramHandle m_generateQ3Program; bgfx::ProgramHandle m_generateQ3BaseProgram; bgfx::ProgramHandle m_smartBlurProgram; bgfx::ProgramHandle m_smartBlurWideProgram; bgfx::ProgramHandle m_nonSmartBlurProgram; bgfx::ProgramHandle m_applyProgram; bgfx::ProgramHandle m_nonSmartApplyProgram; bgfx::ProgramHandle m_nonSmartHalfApplyProgram; bgfx::ProgramHandle m_generateImportanceMapProgram; bgfx::ProgramHandle m_postprocessImportanceMapAProgram; bgfx::ProgramHandle m_postprocessImportanceMapBProgram; bgfx::ProgramHandle m_loadCounterClearProgram; bgfx::FrameBufferHandle m_gbuffer; // Shader uniforms bgfx::UniformHandle u_rect; bgfx::UniformHandle u_combineParams; // Uniforms to identify texture samples bgfx::UniformHandle s_normal; bgfx::UniformHandle s_depth; bgfx::UniformHandle s_color; bgfx::UniformHandle s_albedo; bgfx::UniformHandle s_ao; bgfx::UniformHandle s_blurInput; bgfx::UniformHandle s_finalSSAO; bgfx::UniformHandle s_depthSource; bgfx::UniformHandle s_viewspaceDepthSource; bgfx::UniformHandle s_viewspaceDepthSourceMirror; bgfx::UniformHandle s_importanceMap; // Various render targets bgfx::TextureHandle m_halfDepths[4]; bgfx::TextureHandle m_pingPongHalfResultA; bgfx::TextureHandle m_pingPongHalfResultB; bgfx::TextureHandle m_finalResults; bgfx::TextureHandle m_aoMap; bgfx::TextureHandle m_normals; // Only needed for quality level 3 (adaptive quality) bgfx::TextureHandle m_importanceMap; bgfx::TextureHandle m_importanceMapPong; bgfx::DynamicIndexBufferHandle m_loadCounter; struct Model { uint32_t mesh; // Index of mesh in m_meshes float position[3]; }; Model m_models[MODEL_COUNT]; Mesh* m_meshes[BX_COUNTOF(s_meshPaths)]; Mesh* m_ground; bgfx::TextureHandle m_groundTexture; bgfx::TextureHandle m_modelTexture; uint32_t m_currFrame; // UI Settings m_settings; bool m_enableSSAO; bool m_enableTexturing; float m_texelHalf; float m_fovY; bool m_framebufferGutter; bool m_recreateFrameBuffers; float m_view[16]; float m_proj[16]; float m_proj2[16]; int32_t m_size[2]; int32_t m_halfSize[2]; int32_t m_quarterSize[2]; int32_t m_fullResOutScissorRect[4]; int32_t m_halfResOutScissorRect[4]; int32_t m_border; }; } // namespace ENTRY_IMPLEMENT_MAIN( ExampleASSAO , "39-assao" , "Adaptive Screen Space Ambient Occlusion." , "https://bkaradzic.github.io/bgfx/examples.html#assao" );