/* * Copyright 2011-2017 Branimir Karadzic. All rights reserved. * License: https://github.com/bkaradzic/bgfx#license-bsd-2-clause */ #include #include #include // Just hacking DDS loading code in here. #include "bgfx_p.h" #include "image.h" #include #include #include #include #include #include extern "C" { #include } #define LODEPNG_NO_COMPILE_ENCODER #define LODEPNG_NO_COMPILE_DISK #define LODEPNG_NO_COMPILE_ANCILLARY_CHUNKS #define LODEPNG_NO_COMPILE_ERROR_TEXT #define LODEPNG_NO_COMPILE_ALLOCATORS #define LODEPNG_NO_COMPILE_CPP #include void* lodepng_malloc(size_t _size) { return ::malloc(_size); } void* lodepng_realloc(void* _ptr, size_t _size) { return ::realloc(_ptr, _size); } void lodepng_free(void* _ptr) { ::free(_ptr); } BX_PRAGMA_DIAGNOSTIC_PUSH(); BX_PRAGMA_DIAGNOSTIC_IGNORED_CLANG_GCC("-Wmissing-field-initializers"); BX_PRAGMA_DIAGNOSTIC_IGNORED_CLANG_GCC("-Wshadow"); BX_PRAGMA_DIAGNOSTIC_IGNORED_CLANG_GCC("-Wint-to-pointer-cast") #define STBI_MALLOC(_size) lodepng_malloc(_size) #define STBI_REALLOC(_ptr, _size) lodepng_realloc(_ptr, _size) #define STBI_FREE(_ptr) lodepng_free(_ptr) #define STB_IMAGE_IMPLEMENTATION #include BX_PRAGMA_DIAGNOSTIC_POP(); BX_PRAGMA_DIAGNOSTIC_PUSH() BX_PRAGMA_DIAGNOSTIC_IGNORED_CLANG_GCC("-Wtype-limits") BX_PRAGMA_DIAGNOSTIC_IGNORED_CLANG_GCC("-Wunused-parameter") BX_PRAGMA_DIAGNOSTIC_IGNORED_CLANG_GCC("-Wunused-value") BX_PRAGMA_DIAGNOSTIC_IGNORED_MSVC(4100) // error C4100: '' : unreferenced formal parameter #define MINIZ_NO_STDIO #define TINYEXR_IMPLEMENTATION #include BX_PRAGMA_DIAGNOSTIC_POP() #if 0 # define BX_TRACE(_format, ...) fprintf(stderr, "" _format "\n", ##__VA_ARGS__) #endif // DEBUG #include #include #include #include namespace bgfx { const Memory* alloc(uint32_t _size) { Memory* mem = (Memory*)::realloc(NULL, sizeof(Memory) + _size); mem->size = _size; mem->data = (uint8_t*)mem + sizeof(Memory); return mem; } const Memory* makeRef(const void* _data, uint32_t _size, ReleaseFn _releaseFn, void* _userData) { BX_UNUSED(_releaseFn, _userData); Memory* mem = (Memory*)::realloc(NULL, sizeof(Memory) ); mem->size = _size; mem->data = (uint8_t*)_data; return mem; } void release(const Memory* _mem) { Memory* mem = const_cast(_mem); ::free(mem); } bool imageParse(ImageContainer& _imageContainer, const void* _data, uint32_t _size, void** _out) { *_out = NULL; bool loaded = imageParse(_imageContainer, _data, _size); if (!loaded) { bgfx::TextureFormat::Enum format = bgfx::TextureFormat::RGBA8; uint32_t bpp = 32; uint32_t width = 0; uint32_t height = 0; uint8_t* out = NULL; static uint8_t pngMagic[] = { 0x89, 0x50, 0x4E, 0x47, 0x0d, 0x0a }; if (0 == memcmp(_data, pngMagic, sizeof(pngMagic) ) ) { unsigned error; LodePNGState state; lodepng_state_init(&state); state.decoder.color_convert = 0; error = lodepng_decode(&out, &width, &height, &state, (uint8_t*)_data, _size); if (0 == error) { *_out = out; switch (state.info_raw.bitdepth) { case 8: switch (state.info_raw.colortype) { case LCT_GREY: format = bgfx::TextureFormat::R8; bpp = 8; break; case LCT_GREY_ALPHA: format = bgfx::TextureFormat::RG8; bpp = 16; break; case LCT_RGB: format = bgfx::TextureFormat::RGB8; bpp = 24; break; case LCT_RGBA: format = bgfx::TextureFormat::RGBA8; bpp = 32; break; case LCT_PALETTE: break; } break; case 16: switch (state.info_raw.colortype) { case LCT_GREY: for (uint32_t ii = 0, num = width*height; ii < num; ++ii) { uint16_t* rgba = (uint16_t*)out + ii; rgba[0] = bx::toHostEndian(rgba[0], false); } format = bgfx::TextureFormat::R16; bpp = 16; break; case LCT_GREY_ALPHA: for (uint32_t ii = 0, num = width*height; ii < num; ++ii) { uint16_t* rgba = (uint16_t*)out + ii*2; rgba[0] = bx::toHostEndian(rgba[0], false); rgba[1] = bx::toHostEndian(rgba[1], false); } format = bgfx::TextureFormat::RG16; bpp = 32; break; case LCT_RGBA: for (uint32_t ii = 0, num = width*height; ii < num; ++ii) { uint16_t* rgba = (uint16_t*)out + ii*4; rgba[0] = bx::toHostEndian(rgba[0], false); rgba[1] = bx::toHostEndian(rgba[1], false); rgba[2] = bx::toHostEndian(rgba[2], false); rgba[3] = bx::toHostEndian(rgba[3], false); } format = bgfx::TextureFormat::RGBA16; bpp = 64; break; case LCT_RGB: case LCT_PALETTE: break; } break; default: break; } } lodepng_state_cleanup(&state); } else { int comp = 0; *_out = stbi_load_from_memory( (uint8_t*)_data, _size, (int*)&width, (int*)&height, &comp, 4); } loaded = NULL != *_out; if (loaded) { _imageContainer.m_data = *_out; _imageContainer.m_size = width*height*bpp/8; _imageContainer.m_offset = 0; _imageContainer.m_width = width; _imageContainer.m_height = height; _imageContainer.m_depth = 1; _imageContainer.m_numLayers = 1; _imageContainer.m_format = format; _imageContainer.m_numMips = 1; _imageContainer.m_hasAlpha = true; _imageContainer.m_cubeMap = false; _imageContainer.m_ktx = false; _imageContainer.m_ktxLE = false; _imageContainer.m_srgb = false; } } return loaded; } bool imageEncodeFromRgba8(void* _dst, const void* _src, uint32_t _width, uint32_t _height, uint8_t _format) { TextureFormat::Enum format = TextureFormat::Enum(_format); switch (format) { case TextureFormat::BC1: case TextureFormat::BC2: case TextureFormat::BC3: case TextureFormat::BC4: case TextureFormat::BC5: squish::CompressImage( (const uint8_t*)_src, _width, _height, _dst , format == TextureFormat::BC2 ? squish::kDxt3 : format == TextureFormat::BC3 ? squish::kDxt5 : format == TextureFormat::BC4 ? squish::kBc4 : format == TextureFormat::BC5 ? squish::kBc5 : squish::kDxt1 ); return true; case TextureFormat::BC6H: nvtt::compressBC6H( (const uint8_t*)_src, _width, _height, 4, _dst); return true; case TextureFormat::BC7: nvtt::compressBC7( (const uint8_t*)_src, _width, _height, 4, _dst); return true; case TextureFormat::ETC1: etc1_encode_image( (const uint8_t*)_src, _width, _height, 4, _width*4, (uint8_t*)_dst); return true; case TextureFormat::ETC2: { const uint32_t blockWidth = (_width +3)/4; const uint32_t blockHeight = (_height+3)/4; const uint32_t pitch = _width*4; const uint8_t* src = (const uint8_t*)_src; uint64_t* dst = (uint64_t*)_dst; for (uint32_t yy = 0; yy < blockHeight; ++yy) { for (uint32_t xx = 0; xx < blockWidth; ++xx) { uint8_t block[4*4*4]; const uint8_t* ptr = &src[(yy*pitch+xx*4)*4]; for (uint32_t ii = 0; ii < 16; ++ii) { // BGRx memcpy(&block[ii*4], &ptr[(ii%4)*pitch + (ii&~3)], 4); bx::xchg(block[ii*4+0], block[ii*4+2]); } *dst++ = ProcessRGB_ETC2(block); } } } return true; case TextureFormat::PTC14: { using namespace Javelin; RgbaBitmap bmp; bmp.width = _width; bmp.height = _height; bmp.data = (uint8_t*)const_cast(_src); PvrTcEncoder::EncodeRgb4Bpp(_dst, bmp); bmp.data = NULL; } return true; case TextureFormat::PTC14A: { using namespace Javelin; RgbaBitmap bmp; bmp.width = _width; bmp.height = _height; bmp.data = (uint8_t*)const_cast(_src); PvrTcEncoder::EncodeRgba4Bpp(_dst, bmp); bmp.data = NULL; } return true; case TextureFormat::BGRA8: imageSwizzleBgra8(_dst, _width, _height, _width*4, _src); return true; case TextureFormat::RGBA8: memcpy(_dst, _src, _width*_height*4); return true; default: return imageConvert(_dst, format, _src, TextureFormat::RGBA8, _width, _height); } return false; } bool imageEncodeFromRgba32f(bx::AllocatorI* _allocator, void* _dst, const void* _src, uint32_t _width, uint32_t _height, uint8_t _format) { TextureFormat::Enum format = TextureFormat::Enum(_format); const uint8_t* src = (const uint8_t*)_src; switch (format) { case TextureFormat::RGBA8: { uint8_t* dst = (uint8_t*)_dst; for (uint32_t yy = 0; yy < _height; ++yy) { for (uint32_t xx = 0; xx < _width; ++xx) { const uint32_t offset = yy*_width + xx; const float* input = (const float*)&src[offset * 16]; uint8_t* output = &dst[offset * 4]; output[0] = uint8_t(input[0]*255.0f + 0.5f); output[1] = uint8_t(input[1]*255.0f + 0.5f); output[2] = uint8_t(input[2]*255.0f + 0.5f); output[3] = uint8_t(input[3]*255.0f + 0.5f); } } } return true; case TextureFormat::BC5: { uint8_t* temp = (uint8_t*)BX_ALLOC(_allocator, _width*_height*4); for (uint32_t yy = 0; yy < _height; ++yy) { for (uint32_t xx = 0; xx < _width; ++xx) { const uint32_t offset = yy*_width + xx; const float* input = (const float*)&src[offset * 16]; uint8_t* output = &temp[offset * 4]; output[0] = uint8_t(input[0]*255.0f + 0.5f); output[1] = uint8_t(input[1]*255.0f + 0.5f); output[2] = uint8_t(input[2]*255.0f + 0.5f); output[3] = uint8_t(input[3]*255.0f + 0.5f); } } imageEncodeFromRgba8(_dst, temp, _width, _height, _format); BX_FREE(_allocator, temp); } return true; default: return imageConvert(_dst, format, _src, TextureFormat::RGBA32F, _width, _height); } return false; } void imageRgba32f11to01(void* _dst, uint32_t _width, uint32_t _height, uint32_t _pitch, const void* _src) { const uint8_t* src = (const uint8_t*)_src; uint8_t* dst = (uint8_t*)_dst; for (uint32_t yy = 0; yy < _height; ++yy) { for (uint32_t xx = 0; xx < _width; ++xx) { const uint32_t offset = yy*_pitch + xx * 16; const float* input = (const float*)&src[offset]; float* output = (float*)&dst[offset]; output[0] = input[0]*0.5f + 0.5f; output[1] = input[1]*0.5f + 0.5f; output[2] = input[2]*0.5f + 0.5f; output[3] = input[3]*0.5f + 0.5f; } } } static void edtaa3(bx::AllocatorI* _allocator, double* _dst, uint32_t _width, uint32_t _height, double* _src) { const uint32_t numPixels = _width*_height; short* xdist = (short *)BX_ALLOC(_allocator, numPixels*sizeof(short) ); short* ydist = (short *)BX_ALLOC(_allocator, numPixels*sizeof(short) ); double* gx = (double*)BX_ALLOC(_allocator, numPixels*sizeof(double) ); double* gy = (double*)BX_ALLOC(_allocator, numPixels*sizeof(double) ); ::computegradient(_src, _width, _height, gx, gy); ::edtaa3(_src, gx, gy, _width, _height, xdist, ydist, _dst); for (uint32_t ii = 0; ii < numPixels; ++ii) { if (_dst[ii] < 0.0) { _dst[ii] = 0.0; } } BX_FREE(_allocator, xdist); BX_FREE(_allocator, ydist); BX_FREE(_allocator, gx); BX_FREE(_allocator, gy); } inline double min(double _a, double _b) { return _a > _b ? _b : _a; } inline double max(double _a, double _b) { return _a > _b ? _a : _b; } inline double clamp(double _val, double _min, double _max) { return max(min(_val, _max), _min); } void imageMakeDist(bx::AllocatorI* _allocator, void* _dst, uint32_t _width, uint32_t _height, uint32_t _pitch, float _edge, const void* _src) { const uint32_t numPixels = _width*_height; double* imgIn = (double*)BX_ALLOC(_allocator, numPixels*sizeof(double) ); double* outside = (double*)BX_ALLOC(_allocator, numPixels*sizeof(double) ); double* inside = (double*)BX_ALLOC(_allocator, numPixels*sizeof(double) ); for (uint32_t yy = 0; yy < _height; ++yy) { const uint8_t* src = (const uint8_t*)_src + yy*_pitch; double* dst = &imgIn[yy*_width]; for (uint32_t xx = 0; xx < _width; ++xx) { dst[xx] = double(src[xx])/255.0; } } edtaa3(_allocator, outside, _width, _height, imgIn); for (uint32_t ii = 0; ii < numPixels; ++ii) { imgIn[ii] = 1.0 - imgIn[ii]; } edtaa3(_allocator, inside, _width, _height, imgIn); BX_FREE(_allocator, imgIn); uint8_t* dst = (uint8_t*)_dst; double edgeOffset = _edge*0.5; double invEdge = 1.0/_edge; for (uint32_t ii = 0; ii < numPixels; ++ii) { double dist = clamp( ( (outside[ii] - inside[ii])+edgeOffset) * invEdge, 0.0, 1.0); dst[ii] = 255-uint8_t(dist * 255.0); } BX_FREE(_allocator, inside); BX_FREE(_allocator, outside); } } // namespace bgfx void help(const char* _error = NULL) { if (NULL != _error) { fprintf(stderr, "Error:\n%s\n\n", _error); } fprintf(stderr , "texturec, bgfx texture compiler tool\n" "Copyright 2011-2017 Branimir Karadzic. All rights reserved.\n" "License: https://github.com/bkaradzic/bgfx#license-bsd-2-clause\n\n" ); fprintf(stderr , "Usage: texturec -f -o [-t ]\n" "\n" "Supported input file types:\n" " *.png Portable Network Graphics\n" " *.tga Targa\n" " *.dds Direct Draw Surface\n" " *.ktx Khronos Texture\n" " *.pvr PowerVR\n" "\n" "Options:\n" " -f Input file path.\n" " -o Output file path (file will be written in KTX format).\n" " -t Output format type (BC1/2/3/4/5, ETC1, PVR14, etc.).\n" " -m, --mips Generate mip-maps.\n" " -n, --normalmap Input texture is normal map.\n" " --sdf Compute SDF texture.\n" " --iqa Image Quality Assesment\n" "\n" "For additional information, see https://github.com/bkaradzic/bgfx\n" ); } int main(int _argc, const char* _argv[]) { bx::CommandLine cmdLine(_argc, _argv); if (cmdLine.hasArg('h', "help") ) { help(); return EXIT_FAILURE; } const char* inputFileName = cmdLine.findOption('f'); if (NULL == inputFileName) { help("Input file must be specified."); return EXIT_FAILURE; } const char* outputFileName = cmdLine.findOption('o'); if (NULL == outputFileName) { help("Output file must be specified."); return EXIT_FAILURE; } bool sdf = false; double edge = 16.0; const char* edgeOpt = cmdLine.findOption("sdf"); if (NULL != edgeOpt) { sdf = true; edge = atof(edgeOpt); } BX_UNUSED(sdf, edge); bx::CrtFileReader reader; if (!bx::open(&reader, inputFileName) ) { help("Failed to open input file."); return EXIT_FAILURE; } const bool mips = cmdLine.hasArg('m', "mips"); const bool normalMap = cmdLine.hasArg('n', "normalmap"); const bool iqa = cmdLine.hasArg('\0', "iqa"); const bgfx::Memory* mem; { uint32_t size = (uint32_t)bx::getSize(&reader); mem = bgfx::alloc(size); bx::read(&reader, mem->data, mem->size); bx::close(&reader); } { using namespace bgfx; uint8_t* decodedImage = NULL; ImageContainer imageContainer; bool loaded = imageParse(imageContainer, mem->data, mem->size, (void**)&decodedImage); if (NULL != decodedImage) { release(mem); mem = makeRef(imageContainer.m_data, imageContainer.m_size); } if (loaded) { const char* type = cmdLine.findOption('t'); bgfx::TextureFormat::Enum format = imageContainer.m_format; if (NULL != type) { format = bgfx::getFormat(type); if (!isValid(format) ) { help("Invalid format specified."); return EXIT_FAILURE; } } bx::CrtAllocator allocator; const Memory* output = NULL; ImageMip mip; if (imageGetRawData(imageContainer, 0, 0, mem->data, mem->size, mip) ) { uint8_t numMips = mips ? imageGetNumMips(format, mip.m_width, mip.m_height) : 1 ; void* temp = NULL; if (normalMap) { output = imageAlloc(imageContainer, format, mip.m_width, mip.m_height, 0, 1, false, mips); ImageMip dstMip; imageGetRawData(imageContainer, 0, 0, NULL, 0, dstMip); if (mip.m_width != dstMip.m_width && mip.m_height != dstMip.m_height) { printf("Invalid input image size %dx%d, it must be at least %dx%d to be converted to %s format.\n" , mip.m_width , mip.m_height , dstMip.m_width , dstMip.m_height , getName(format) ); return EXIT_FAILURE; } uint32_t size = imageGetSize(TextureFormat::RGBA32F, dstMip.m_width, dstMip.m_height); temp = BX_ALLOC(&allocator, size); float* rgba = (float*)temp; float* rgbaDst = (float*)BX_ALLOC(&allocator, size); imageDecodeToRgba32f(&allocator , rgba , mip.m_data , mip.m_width , mip.m_height , mip.m_width*mip.m_bpp/8 , mip.m_format ); if (TextureFormat::BC5 != mip.m_format) { for (uint32_t yy = 0; yy < mip.m_height; ++yy) { for (uint32_t xx = 0; xx < mip.m_width; ++xx) { const uint32_t offset = (yy*mip.m_width + xx) * 4; float* inout = &rgba[offset]; inout[0] = inout[0] * 2.0f - 1.0f; inout[1] = inout[1] * 2.0f - 1.0f; inout[2] = inout[2] * 2.0f - 1.0f; inout[3] = inout[3] * 2.0f - 1.0f; } } } imageRgba32f11to01(rgbaDst, dstMip.m_width, dstMip.m_height, dstMip.m_width*16, rgba); imageEncodeFromRgba32f(&allocator, output->data, rgbaDst, dstMip.m_width, dstMip.m_height, format); for (uint8_t lod = 1; lod < numMips; ++lod) { imageRgba32fDownsample2x2NormalMap(rgba, dstMip.m_width, dstMip.m_height, dstMip.m_width*16, rgba); imageRgba32f11to01(rgbaDst, dstMip.m_width, dstMip.m_height, dstMip.m_width*16, rgba); imageGetRawData(imageContainer, 0, lod, output->data, output->size, dstMip); uint8_t* data = const_cast(dstMip.m_data); imageEncodeFromRgba32f(&allocator, data, rgbaDst, dstMip.m_width, dstMip.m_height, format); } BX_FREE(&allocator, rgbaDst); } else if (8 != getBlockInfo(imageContainer.m_format).rBits) { output = imageAlloc(imageContainer, format, mip.m_width, mip.m_height, 0, 1, false, mips); ImageMip dstMip; imageGetRawData(imageContainer, 0, 0, NULL, 0, dstMip); if (mip.m_width != dstMip.m_width && mip.m_height != dstMip.m_height) { printf("Invalid input image size %dx%d, it must be at least %dx%d to be converted to %s format.\n" , mip.m_width , mip.m_height , dstMip.m_width , dstMip.m_height , getName(format) ); return EXIT_FAILURE; } uint32_t size = imageGetSize(TextureFormat::RGBA32F, dstMip.m_width, dstMip.m_height); temp = BX_ALLOC(&allocator, size); float* rgba = (float*)temp; float* rgbaDst = (float*)BX_ALLOC(&allocator, size); imageDecodeToRgba32f(&allocator , rgba , mip.m_data , mip.m_width , mip.m_height , mip.m_width*mip.m_bpp/8 , mip.m_format ); imageEncodeFromRgba32f(&allocator, output->data, rgba, dstMip.m_width, dstMip.m_height, format); imageRgba32fToLinear(rgba , mip.m_width , mip.m_height , mip.m_width*mip.m_bpp/8 , rgba ); for (uint8_t lod = 1; lod < numMips; ++lod) { imageRgba32fLinearDownsample2x2(rgba, dstMip.m_width, dstMip.m_height, dstMip.m_width*16, rgba); imageGetRawData(imageContainer, 0, lod, output->data, output->size, dstMip); uint8_t* data = const_cast(dstMip.m_data); imageRgba32fToGamma(rgbaDst , mip.m_width , mip.m_height , mip.m_width*mip.m_bpp/8 , rgba ); imageEncodeFromRgba32f(&allocator, data, rgbaDst, dstMip.m_width, dstMip.m_height, format); } BX_FREE(&allocator, rgbaDst); } else { output = imageAlloc(imageContainer, format, mip.m_width, mip.m_height, 0, 1, false, mips); ImageMip dstMip; imageGetRawData(imageContainer, 0, 0, NULL, 0, dstMip); if (mip.m_width != dstMip.m_width && mip.m_height != dstMip.m_height) { printf("Invalid input image size %dx%d, it must be at least %dx%d to be converted to %s format.\n" , mip.m_width , mip.m_height , dstMip.m_width , dstMip.m_height , getName(format) ); return EXIT_FAILURE; } uint32_t size = imageGetSize(TextureFormat::RGBA8, dstMip.m_width, dstMip.m_height); temp = BX_ALLOC(&allocator, size); memset(temp, 0, size); uint8_t* rgba = (uint8_t*)temp; imageDecodeToRgba8(rgba , mip.m_data , mip.m_width , mip.m_height , mip.m_width*mip.m_bpp/8 , mip.m_format ); void* ref = NULL; if (iqa) { ref = BX_ALLOC(&allocator, size); memcpy(ref, rgba, size); } imageEncodeFromRgba8(output->data, rgba, dstMip.m_width, dstMip.m_height, format); for (uint8_t lod = 1; lod < numMips; ++lod) { imageRgba8Downsample2x2(rgba, dstMip.m_width, dstMip.m_height, dstMip.m_width*4, rgba); imageGetRawData(imageContainer, 0, lod, output->data, output->size, dstMip); uint8_t* data = const_cast(dstMip.m_data); imageEncodeFromRgba8(data, rgba, dstMip.m_width, dstMip.m_height, format); } if (NULL != ref) { imageDecodeToRgba8(rgba , output->data , mip.m_width , mip.m_height , mip.m_width*mip.m_bpp/8 , format ); static const iqa_ssim_args args = { 0.39f, // alpha 0.731f, // beta 1.12f, // gamma 187, // L 0.025987f, // K1 0.0173f, // K2 1 // factor }; float result = iqa_ssim( (uint8_t*)ref , rgba , mip.m_width , mip.m_height , mip.m_width*mip.m_bpp/8 , 0 , &args ); printf("%f\n", result); BX_FREE(&allocator, ref); } } BX_FREE(&allocator, temp); } if (NULL != output) { bx::CrtFileWriter writer; if (bx::open(&writer, outputFileName) ) { if (NULL != bx::stristr(outputFileName, ".ktx") ) { imageWriteKtx(&writer, imageContainer, output->data, output->size); } bx::close(&writer); } else { help("Failed to open output file."); return EXIT_FAILURE; } imageFree(output); } else { help("No output generated."); return EXIT_FAILURE; } } else { help("Failed to load input file."); return EXIT_FAILURE; } release(mem); } return EXIT_SUCCESS; }