/* * Copyright 2011-2020 Branimir Karadzic. All rights reserved. * License: https://github.com/bkaradzic/bgfx#license-bsd-2-clause */ #ifndef BGFX_P_H_HEADER_GUARD #define BGFX_P_H_HEADER_GUARD #include #ifndef BGFX_CONFIG_DEBUG # define BGFX_CONFIG_DEBUG 0 #endif // BGFX_CONFIG_DEBUG #if BGFX_CONFIG_DEBUG || BX_COMPILER_CLANG_ANALYZER # define BX_TRACE _BX_TRACE # define BX_WARN _BX_WARN # define BX_CHECK _BX_CHECK # define BX_CONFIG_ALLOCATOR_DEBUG 1 #endif // BGFX_CONFIG_DEBUG #include #include "config.h" #include // Check handle, cannot be bgfx::kInvalidHandle and must be valid. #define BGFX_CHECK_HANDLE(_desc, _handleAlloc, _handle) \ BX_CHECK(isValid(_handle) \ && _handleAlloc.isValid(_handle.idx) \ , "Invalid handle. %s handle: %d (max %d)" \ , _desc \ , _handle.idx \ , _handleAlloc.getMaxHandles() \ ) // Check handle, it's ok to be bgfx::kInvalidHandle or must be valid. #define BGFX_CHECK_HANDLE_INVALID_OK(_desc, _handleAlloc, _handle) \ BX_CHECK(!isValid(_handle) \ || _handleAlloc.isValid(_handle.idx) \ , "Invalid handle. %s handle: %d (max %d)" \ , _desc \ , _handle.idx \ , _handleAlloc.getMaxHandles() \ ) #if BGFX_CONFIG_MULTITHREADED # define BGFX_MUTEX_SCOPE(_mutex) bx::MutexScope BX_CONCATENATE(mutexScope, __LINE__)(_mutex) #else # define BGFX_MUTEX_SCOPE(_mutex) BX_NOOP() #endif // BGFX_CONFIG_MULTITHREADED #if BGFX_CONFIG_PROFILER # define BGFX_PROFILER_SCOPE(_name, _abgr) ProfilerScope BX_CONCATENATE(profilerScope, __LINE__)(_name, _abgr, __FILE__, uint16_t(__LINE__) ) # define BGFX_PROFILER_BEGIN(_name, _abgr) g_callback->profilerBegin(_name, _abgr, __FILE__, uint16_t(__LINE__) ) # define BGFX_PROFILER_BEGIN_LITERAL(_name, _abgr) g_callback->profilerBeginLiteral(_name, _abgr, __FILE__, uint16_t(__LINE__) ) # define BGFX_PROFILER_END() g_callback->profilerEnd() # define BGFX_PROFILER_SET_CURRENT_THREAD_NAME(_name) BX_NOOP() #else # define BGFX_PROFILER_SCOPE(_name, _abgr) BX_NOOP() # define BGFX_PROFILER_BEGIN(_name, _abgr) BX_NOOP() # define BGFX_PROFILER_BEGIN_LITERAL(_name, _abgr) BX_NOOP() # define BGFX_PROFILER_END() BX_NOOP() # define BGFX_PROFILER_SET_CURRENT_THREAD_NAME(_name) BX_NOOP() #endif // BGFX_PROFILER_SCOPE namespace bgfx { #if BX_COMPILER_CLANG_ANALYZER void __attribute__( (analyzer_noreturn) ) fatal(Fatal::Enum _code, const char* _format, ...); #else void fatal(const char* _filePath, uint16_t _line, Fatal::Enum _code, const char* _format, ...); #endif // BX_COMPILER_CLANG_ANALYZER void trace(const char* _filePath, uint16_t _line, const char* _format, ...); inline bool operator==(const VertexLayoutHandle& _lhs, const VertexLayoutHandle& _rhs) { return _lhs.idx == _rhs.idx; } inline bool operator==(const UniformHandle& _lhs, const UniformHandle& _rhs) { return _lhs.idx == _rhs.idx; } } #define _BX_TRACE(_format, ...) \ BX_MACRO_BLOCK_BEGIN \ bgfx::trace(__FILE__, uint16_t(__LINE__), "BGFX " _format "\n", ##__VA_ARGS__); \ BX_MACRO_BLOCK_END #define _BX_WARN(_condition, _format, ...) \ BX_MACRO_BLOCK_BEGIN \ if (!BX_IGNORE_C4127(_condition) ) \ { \ BX_TRACE("WARN " _format, ##__VA_ARGS__); \ } \ BX_MACRO_BLOCK_END #define _BX_CHECK(_condition, _format, ...) \ BX_MACRO_BLOCK_BEGIN \ if (!BX_IGNORE_C4127(_condition) ) \ { \ BX_TRACE("CHECK " _format, ##__VA_ARGS__); \ bgfx::fatal(__FILE__, uint16_t(__LINE__), bgfx::Fatal::DebugCheck, _format, ##__VA_ARGS__); \ } \ BX_MACRO_BLOCK_END #define BGFX_FATAL(_condition, _err, _format, ...) \ BX_MACRO_BLOCK_BEGIN \ if (!BX_IGNORE_C4127(_condition) ) \ { \ fatal(__FILE__, uint16_t(__LINE__), _err, _format, ##__VA_ARGS__); \ } \ BX_MACRO_BLOCK_END #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "shader.h" #include "vertexlayout.h" #define BGFX_CHUNK_MAGIC_TEX BX_MAKEFOURCC('T', 'E', 'X', 0x0) #define BGFX_CLEAR_COLOR_USE_PALETTE UINT16_C(0x8000) #define BGFX_CLEAR_MASK (0 \ | BGFX_CLEAR_COLOR \ | BGFX_CLEAR_DEPTH \ | BGFX_CLEAR_STENCIL \ | BGFX_CLEAR_COLOR_USE_PALETTE \ ) #if BGFX_CONFIG_USE_TINYSTL namespace bgfx { struct TinyStlAllocator { static void* static_allocate(size_t _bytes); static void static_deallocate(void* _ptr, size_t /*_bytes*/); }; } // namespace bgfx # define TINYSTL_ALLOCATOR bgfx::TinyStlAllocator # include # include # include # include namespace tinystl { template class list : public vector { public: void push_front(const T& _value) { this->insert(this->begin(), _value); } void pop_front() { this->erase(this->begin() ); } void sort() { bx::quickSort( this->begin() , uint32_t(this->end() - this->begin() ) , sizeof(T) , [](const void* _a, const void* _b) -> int32_t { const T& lhs = *(const T*)(_a); const T& rhs = *(const T*)(_b); return lhs < rhs ? -1 : 1; }); } }; } // namespace tinystl namespace stl = tinystl; #else # include # include # include # include # include namespace stl = std; #endif // BGFX_CONFIG_USE_TINYSTL #if BX_PLATFORM_ANDROID # include #elif BX_PLATFORM_WINDOWS # include #endif // BX_PLATFORM_* #define BGFX_MAX_COMPUTE_BINDINGS BGFX_CONFIG_MAX_TEXTURE_SAMPLERS #define BGFX_SAMPLER_INTERNAL_DEFAULT UINT32_C(0x10000000) #define BGFX_SAMPLER_INTERNAL_SHARED UINT32_C(0x20000000) #define BGFX_RESET_INTERNAL_FORCE UINT32_C(0x80000000) #define BGFX_STATE_INTERNAL_SCISSOR UINT64_C(0x2000000000000000) #define BGFX_STATE_INTERNAL_OCCLUSION_QUERY UINT64_C(0x4000000000000000) #define BGFX_SUBMIT_RESERVED_MASK UINT8_C(0xff) #define BGFX_SUBMIT_INTERNAL_OCCLUSION_VISIBLE UINT8_C(0x80) #define BGFX_RENDERER_DIRECT3D9_NAME "Direct3D 9" #define BGFX_RENDERER_DIRECT3D11_NAME "Direct3D 11" #define BGFX_RENDERER_DIRECT3D12_NAME "Direct3D 12" #define BGFX_RENDERER_GNM_NAME "GNM" #define BGFX_RENDERER_METAL_NAME "Metal" #define BGFX_RENDERER_NVN_NAME "NVN" #define BGFX_RENDERER_VULKAN_NAME "Vulkan" #define BGFX_RENDERER_NOOP_NAME "Noop" #if BGFX_CONFIG_RENDERER_OPENGL # if BGFX_CONFIG_RENDERER_OPENGL >= 31 && BGFX_CONFIG_RENDERER_OPENGL <= 33 # if BGFX_CONFIG_RENDERER_OPENGL == 31 # define BGFX_RENDERER_OPENGL_NAME "OpenGL 3.1" # elif BGFX_CONFIG_RENDERER_OPENGL == 32 # define BGFX_RENDERER_OPENGL_NAME "OpenGL 3.2" # else # define BGFX_RENDERER_OPENGL_NAME "OpenGL 3.3" # endif // 31+ # elif BGFX_CONFIG_RENDERER_OPENGL >= 40 && BGFX_CONFIG_RENDERER_OPENGL <= 46 # if BGFX_CONFIG_RENDERER_OPENGL == 40 # define BGFX_RENDERER_OPENGL_NAME "OpenGL 4.0" # elif BGFX_CONFIG_RENDERER_OPENGL == 41 # define BGFX_RENDERER_OPENGL_NAME "OpenGL 4.1" # elif BGFX_CONFIG_RENDERER_OPENGL == 42 # define BGFX_RENDERER_OPENGL_NAME "OpenGL 4.2" # elif BGFX_CONFIG_RENDERER_OPENGL == 43 # define BGFX_RENDERER_OPENGL_NAME "OpenGL 4.3" # elif BGFX_CONFIG_RENDERER_OPENGL == 44 # define BGFX_RENDERER_OPENGL_NAME "OpenGL 4.4" # elif BGFX_CONFIG_RENDERER_OPENGL == 45 # define BGFX_RENDERER_OPENGL_NAME "OpenGL 4.5" # else # define BGFX_RENDERER_OPENGL_NAME "OpenGL 4.6" # endif // 40+ # else # define BGFX_RENDERER_OPENGL_NAME "OpenGL 2.1" # endif // BGFX_CONFIG_RENDERER_OPENGL #elif BGFX_CONFIG_RENDERER_OPENGLES # if BGFX_CONFIG_RENDERER_OPENGLES == 30 # define BGFX_RENDERER_OPENGL_NAME "OpenGL ES 3.0" # elif BGFX_CONFIG_RENDERER_OPENGLES == 31 # define BGFX_RENDERER_OPENGL_NAME "OpenGL ES 3.1" # elif BGFX_CONFIG_RENDERER_OPENGLES >= 32 # define BGFX_RENDERER_OPENGL_NAME "OpenGL ES 3.2" # else # define BGFX_RENDERER_OPENGL_NAME "OpenGL ES 2.0" # endif // BGFX_CONFIG_RENDERER_OPENGLES #else # define BGFX_RENDERER_OPENGL_NAME "OpenGL" #endif // namespace bgfx { extern InternalData g_internalData; extern PlatformData g_platformData; extern bool g_platformDataChangedSinceReset; #if BGFX_CONFIG_MAX_DRAW_CALLS < (64<<10) typedef uint16_t RenderItemCount; #else typedef uint32_t RenderItemCount; #endif // BGFX_CONFIG_MAX_DRAW_CALLS < (64<<10) struct Handle { enum Enum { IndexBuffer, Shader, Texture, VertexBuffer, Count }; uint16_t type; uint16_t idx; }; #define CONVERT_HANDLE(_name) \ inline Handle convert(_name##Handle _handle) \ { \ Handle handle = { Handle::_name, _handle.idx }; \ return handle; \ } CONVERT_HANDLE(IndexBuffer); CONVERT_HANDLE(Shader); CONVERT_HANDLE(Texture); CONVERT_HANDLE(VertexBuffer); #undef CONVERT_HANDLE const char* getTypeName(Handle _handle); inline bool isValid(const VertexLayout& _layout) { return 0 != _layout.m_stride; } struct Condition { enum Enum { LessEqual, GreaterEqual, }; }; bool windowsVersionIs(Condition::Enum _op, uint32_t _version); constexpr bool isShaderType(uint32_t _magic, char _type) { return uint32_t(_type) == (_magic & BX_MAKEFOURCC(0xff, 0, 0, 0) ); } inline bool isShaderBin(uint32_t _magic) { return BX_MAKEFOURCC(0, 'S', 'H', 0) == (_magic & BX_MAKEFOURCC(0, 0xff, 0xff, 0) ) && (isShaderType(_magic, 'C') || isShaderType(_magic, 'F') || isShaderType(_magic, 'V') ) ; } inline bool isShaderVerLess(uint32_t _magic, uint8_t _version) { return (_magic & BX_MAKEFOURCC(0, 0, 0, 0xff) ) < BX_MAKEFOURCC(0, 0, 0, _version); } const char* getShaderTypeName(uint32_t _magic); struct Clear { void set(uint16_t _flags, uint32_t _rgba, float _depth, uint8_t _stencil) { m_flags = _flags; m_index[0] = uint8_t(_rgba>>24); m_index[1] = uint8_t(_rgba>>16); m_index[2] = uint8_t(_rgba>> 8); m_index[3] = uint8_t(_rgba>> 0); m_depth = _depth; m_stencil = _stencil; } void set(uint16_t _flags, float _depth, uint8_t _stencil, uint8_t _0, uint8_t _1, uint8_t _2, uint8_t _3, uint8_t _4, uint8_t _5, uint8_t _6, uint8_t _7) { m_flags = (_flags & ~BGFX_CLEAR_COLOR) | (0xff != (_0&_1&_2&_3&_4&_5&_6&_7) ? BGFX_CLEAR_COLOR|BGFX_CLEAR_COLOR_USE_PALETTE : 0) ; m_index[0] = _0; m_index[1] = _1; m_index[2] = _2; m_index[3] = _3; m_index[4] = _4; m_index[5] = _5; m_index[6] = _6; m_index[7] = _7; m_depth = _depth; m_stencil = _stencil; } uint8_t m_index[8]; float m_depth; uint8_t m_stencil; uint16_t m_flags; }; struct Rect { Rect() { } Rect(uint16_t _x, uint16_t _y, uint16_t _width, uint16_t _height) : m_x(_x) , m_y(_y) , m_width(_width) , m_height(_height) { } void clear() { m_x = m_y = m_width = m_height = 0; } bool isZero() const { uint64_t ui64 = *( (uint64_t*)this); return UINT64_C(0) == ui64; } bool isZeroArea() const { return 0 == m_width || 0 == m_height ; } void set(uint16_t _x, uint16_t _y, uint16_t _width, uint16_t _height) { m_x = _x; m_y = _y; m_width = _width; m_height = _height; } void setIntersect(const Rect& _a, const Rect& _b) { const uint16_t sx = bx::max(_a.m_x, _b.m_x); const uint16_t sy = bx::max(_a.m_y, _b.m_y); const uint16_t ex = bx::min(_a.m_x + _a.m_width, _b.m_x + _b.m_width ); const uint16_t ey = bx::min(_a.m_y + _a.m_height, _b.m_y + _b.m_height); m_x = sx; m_y = sy; m_width = (uint16_t)bx::uint32_satsub(ex, sx); m_height = (uint16_t)bx::uint32_satsub(ey, sy); } void intersect(const Rect& _a) { setIntersect(*this, _a); } uint16_t m_x; uint16_t m_y; uint16_t m_width; uint16_t m_height; }; struct TextureCreate { TextureFormat::Enum m_format; uint16_t m_width; uint16_t m_height; uint16_t m_depth; uint16_t m_numLayers; uint8_t m_numMips; bool m_cubeMap; const Memory* m_mem; }; extern const uint32_t g_uniformTypeSize[UniformType::Count+1]; extern CallbackI* g_callback; extern bx::AllocatorI* g_allocator; extern Caps g_caps; typedef bx::StringT<&g_allocator> String; struct ProfilerScope { ProfilerScope(const char* _name, uint32_t _abgr, const char* _filePath, uint16_t _line) { g_callback->profilerBeginLiteral(_name, _abgr, _filePath, _line); } ~ProfilerScope() { g_callback->profilerEnd(); } }; void setGraphicsDebuggerPresent(bool _present); bool isGraphicsDebuggerPresent(); void release(const Memory* _mem); const char* getAttribName(Attrib::Enum _attr); const char* getAttribNameShort(Attrib::Enum _attr); void getTextureSizeFromRatio(BackbufferRatio::Enum _ratio, uint16_t& _width, uint16_t& _height); TextureFormat::Enum getViableTextureFormat(const bimg::ImageContainer& _imageContainer); const char* getName(TextureFormat::Enum _fmt); const char* getName(UniformHandle _handle); const char* getName(Topology::Enum _topology); template inline void release(Ty) { } template<> inline void release(Memory* _mem) { release( (const Memory*)_mem); } inline uint32_t castfu(float _value) { union { float fl; uint32_t ui; } un; un.fl = _value; return un.ui; } inline uint64_t packStencil(uint32_t _fstencil, uint32_t _bstencil) { return (uint64_t(_bstencil)<<32)|uint64_t(_fstencil); } inline uint32_t unpackStencil(uint8_t _0or1, uint64_t _stencil) { return uint32_t( (_stencil >> (32*_0or1) ) ); } inline bool needBorderColor(uint64_t _flags) { return BGFX_SAMPLER_U_BORDER == (_flags & BGFX_SAMPLER_U_BORDER) || BGFX_SAMPLER_V_BORDER == (_flags & BGFX_SAMPLER_V_BORDER) || BGFX_SAMPLER_W_BORDER == (_flags & BGFX_SAMPLER_W_BORDER) ; } inline uint8_t calcNumMips(bool _hasMips, uint16_t _width, uint16_t _height, uint16_t _depth = 1) { if (_hasMips) { const uint32_t max = bx::max(_width, _height, _depth); const uint32_t num = 1 + uint32_t(bx::log2(max) ); return uint8_t(num); } return 1; } /// Dump vertex layout into debug output. void dump(const VertexLayout& _layout); struct TextVideoMem { TextVideoMem() : m_mem(NULL) , m_size(0) , m_width(0) , m_height(0) , m_small(false) { resize(false, 1, 1); clear(); } ~TextVideoMem() { BX_FREE(g_allocator, m_mem); } void resize(bool _small, uint32_t _width, uint32_t _height) { uint32_t width = bx::uint32_imax(1, _width/8); uint32_t height = bx::uint32_imax(1, _height/(_small ? 8 : 16) ); if (NULL == m_mem || m_width != width || m_height != height || m_small != _small) { m_small = _small; m_width = (uint16_t)width; m_height = (uint16_t)height; uint32_t size = m_size; m_size = m_width * m_height; m_mem = (MemSlot*)BX_REALLOC(g_allocator, m_mem, m_size * sizeof(MemSlot)); if (size < m_size) { bx::memSet(&m_mem[size], 0, (m_size-size) * sizeof(MemSlot)); } } } void clear(uint8_t _attr = 0) { MemSlot* mem = m_mem; bx::memSet(mem, 0, m_size * sizeof(MemSlot)); if (_attr != 0) { for (uint32_t ii = 0, num = m_size; ii < num; ++ii) { mem[ii].attribute = _attr; } } } void printfVargs(uint16_t _x, uint16_t _y, uint8_t _attr, const char* _format, va_list _argList); void printf(uint16_t _x, uint16_t _y, uint8_t _attr, const char* _format, ...) { va_list argList; va_start(argList, _format); printfVargs(_x, _y, _attr, _format, argList); va_end(argList); } void image(uint16_t _x, uint16_t _y, uint16_t _width, uint16_t _height, const void* _data, uint16_t _pitch) { if (_x < m_width && _y < m_height) { MemSlot* dst = &m_mem[_y*m_width+_x]; const uint8_t* src = (const uint8_t*)_data; const uint32_t width = bx::min(m_width, _width +_x)-_x; const uint32_t height = bx::min(m_height, _height+_y)-_y; const uint32_t dstPitch = m_width; for (uint32_t ii = 0; ii < height; ++ii) { for (uint32_t jj = 0; jj < width; ++jj) { dst[jj].character = src[jj*2]; dst[jj].attribute = src[jj*2+1]; } src += _pitch; dst += dstPitch; } } } struct MemSlot { uint8_t attribute; uint8_t character; }; MemSlot* m_mem; uint32_t m_size; uint16_t m_width; uint16_t m_height; bool m_small; }; struct TextVideoMemBlitter { void init(); void shutdown(); TextureHandle m_texture; TransientVertexBuffer* m_vb; TransientIndexBuffer* m_ib; VertexLayout m_layout; ProgramHandle m_program; }; struct RendererContextI; extern void blit(RendererContextI* _renderCtx, TextVideoMemBlitter& _blitter, const TextVideoMem& _mem); inline void blit(RendererContextI* _renderCtx, TextVideoMemBlitter& _blitter, const TextVideoMem* _mem) { blit(_renderCtx, _blitter, *_mem); } template struct UpdateBatchT { UpdateBatchT() : m_num(0) { } void add(uint32_t _key, uint32_t _value) { uint32_t num = m_num++; m_keys[num] = _key; m_values[num] = _value; } bool sort() { if (0 < m_num) { uint32_t* tempKeys = (uint32_t*)alloca(sizeof(m_keys) ); uint32_t* tempValues = (uint32_t*)alloca(sizeof(m_values) ); bx::radixSort(m_keys, tempKeys, m_values, tempValues, m_num); return true; } return false; } bool isFull() const { return m_num >= maxKeys; } void reset() { m_num = 0; } uint32_t m_num; uint32_t m_keys[maxKeys]; uint32_t m_values[maxKeys]; }; struct ClearQuad { ClearQuad() { for (uint32_t ii = 0; ii < BX_COUNTOF(m_program); ++ii) { m_program[ii].idx = kInvalidHandle; } } void init(); void shutdown(); VertexBufferHandle m_vb; VertexLayout m_layout; ProgramHandle m_program[BGFX_CONFIG_MAX_FRAME_BUFFER_ATTACHMENTS]; }; struct PredefinedUniform { enum Enum { ViewRect, ViewTexel, View, InvView, Proj, InvProj, ViewProj, InvViewProj, Model, ModelView, ModelViewProj, AlphaRef, Count }; uint32_t m_loc; uint16_t m_count; uint8_t m_type; }; const char* getUniformTypeName(UniformType::Enum _enum); UniformType::Enum nameToUniformTypeEnum(const char* _name); const char* getPredefinedUniformName(PredefinedUniform::Enum _enum); PredefinedUniform::Enum nameToPredefinedUniformEnum(const char* _name); class CommandBuffer { BX_CLASS(CommandBuffer , NO_COPY , NO_ASSIGNMENT ); public: CommandBuffer() : m_pos(0) , m_size(BGFX_CONFIG_MAX_COMMAND_BUFFER_SIZE) { finish(); } enum Enum { RendererInit, RendererShutdownBegin, CreateVertexLayout, CreateIndexBuffer, CreateVertexBuffer, CreateDynamicIndexBuffer, UpdateDynamicIndexBuffer, CreateDynamicVertexBuffer, UpdateDynamicVertexBuffer, CreateShader, CreateProgram, CreateTexture, UpdateTexture, ResizeTexture, CreateFrameBuffer, CreateUniform, UpdateViewName, InvalidateOcclusionQuery, SetName, End, RendererShutdownEnd, DestroyVertexLayout, DestroyIndexBuffer, DestroyVertexBuffer, DestroyDynamicIndexBuffer, DestroyDynamicVertexBuffer, DestroyShader, DestroyProgram, DestroyTexture, DestroyFrameBuffer, DestroyUniform, ReadTexture, RequestScreenShot, }; void write(const void* _data, uint32_t _size) { BX_CHECK(m_size == BGFX_CONFIG_MAX_COMMAND_BUFFER_SIZE, "Called write outside start/finish?"); BX_CHECK(m_pos + _size <= m_size , "CommandBuffer::write error (pos: %d-%d, size: %d)." , m_pos , m_pos + _size , m_size ); bx::memCopy(&m_buffer[m_pos], _data, _size); m_pos += _size; } template void write(const Type& _in) { align(BX_ALIGNOF(Type) ); write(reinterpret_cast(&_in), sizeof(Type) ); } void read(void* _data, uint32_t _size) { BX_CHECK(m_pos + _size <= m_size , "CommandBuffer::read error (pos: %d-%d, size: %d)." , m_pos , m_pos + _size , m_size ); bx::memCopy(_data, &m_buffer[m_pos], _size); m_pos += _size; } template void read(Type& _in) { align(BX_ALIGNOF(Type) ); read(reinterpret_cast(&_in), sizeof(Type) ); } const uint8_t* skip(uint32_t _size) { BX_CHECK(m_pos + _size <= m_size , "CommandBuffer::skip error (pos: %d-%d, size: %d)." , m_pos , m_pos + _size , m_size ); const uint8_t* result = &m_buffer[m_pos]; m_pos += _size; return result; } template void skip() { align(BX_ALIGNOF(Type) ); skip(sizeof(Type) ); } void align(uint32_t _alignment) { const uint32_t mask = _alignment-1; const uint32_t pos = (m_pos+mask) & (~mask); m_pos = pos; } void reset() { m_pos = 0; } void start() { m_pos = 0; m_size = BGFX_CONFIG_MAX_COMMAND_BUFFER_SIZE; } void finish() { uint8_t cmd = End; write(cmd); m_size = m_pos; m_pos = 0; } uint32_t m_pos; uint32_t m_size; uint8_t m_buffer[BGFX_CONFIG_MAX_COMMAND_BUFFER_SIZE]; }; // constexpr uint8_t kSortKeyViewNumBits = 10; constexpr uint8_t kSortKeyViewBitShift = 64-kSortKeyViewNumBits; constexpr uint64_t kSortKeyViewMask = uint64_t(BGFX_CONFIG_MAX_VIEWS-1)<> kSortKeyViewBitShift]; if (_key & kSortKeyDrawBit) { uint64_t type = _key & kSortKeyDrawTypeMask; if (type == kSortKeyDrawTypeDepth) { m_program.idx = uint16_t( (_key & kSortKeyDraw1ProgramMask) >> kSortKeyDraw1ProgramShift); return false; } else if (type == kSortKeyDrawTypeSequence) { m_program.idx = uint16_t( (_key & kSortKeyDraw2ProgramMask) >> kSortKeyDraw2ProgramShift); return false; } m_program.idx = uint16_t( (_key & kSortKeyDraw0ProgramMask) >> kSortKeyDraw0ProgramShift); return false; // draw } m_program.idx = uint16_t( (_key & kSortKeyComputeProgramMask) >> kSortKeyComputeProgramShift); return true; // compute } static ViewId decodeView(uint64_t _key) { return ViewId( (_key & kSortKeyViewMask) >> kSortKeyViewBitShift); } static uint64_t remapView(uint64_t _key, ViewId _viewRemap[BGFX_CONFIG_MAX_VIEWS]) { const ViewId oldView = decodeView(_key); const uint64_t view = uint64_t(_viewRemap[oldView]) << kSortKeyViewBitShift; const uint64_t key = (_key & ~kSortKeyViewMask) | view; return key; } void reset() { m_depth = 0; m_seq = 0; m_program = {0}; m_view = 0; m_trans = 0; } uint32_t m_depth; uint32_t m_seq; ProgramHandle m_program; ViewId m_view; uint8_t m_trans; }; #undef SORT_KEY_RENDER_DRAW struct BlitKey { uint32_t encode() { return 0 | (uint32_t(m_view) << 24) | uint32_t(m_item) ; } void decode(uint32_t _key) { m_item = uint16_t(_key & UINT16_MAX); m_view = ViewId(_key >> 24); } static uint32_t remapView(uint32_t _key, ViewId _viewRemap[BGFX_CONFIG_MAX_VIEWS]) { const ViewId oldView = ViewId(_key >> 24); const uint32_t view = uint32_t(_viewRemap[oldView]) << 24; const uint32_t key = (_key & ~UINT32_C(0xff000000) ) | view; return key; } uint16_t m_item; ViewId m_view; }; BX_ALIGN_DECL_16(struct) Srt { float rotate[4]; float translate[3]; float pad0; float scale[3]; float pad1; }; BX_ALIGN_DECL_16(struct) Matrix4 { union { float val[16]; bx::float4x4_t f4x4; } un; void setIdentity() { bx::memSet(un.val, 0, sizeof(un.val) ); un.val[0] = un.val[5] = un.val[10] = un.val[15] = 1.0f; } }; struct MatrixCache { MatrixCache() : m_num(1) { m_cache[0].setIdentity(); } void reset() { m_num = 1; } uint32_t reserve(uint16_t* _num) { uint32_t num = *_num; uint32_t first = bx::atomicFetchAndAddsat(&m_num, num, BGFX_CONFIG_MAX_MATRIX_CACHE - 1); BX_WARN(first+num < BGFX_CONFIG_MAX_MATRIX_CACHE, "Matrix cache overflow. %d (max: %d)", first+num, BGFX_CONFIG_MAX_MATRIX_CACHE); num = bx::min(num, BGFX_CONFIG_MAX_MATRIX_CACHE-1-first); *_num = (uint16_t)num; return first; } uint32_t add(const void* _mtx, uint16_t _num) { if (NULL != _mtx) { uint32_t first = reserve(&_num); bx::memCopy(&m_cache[first], _mtx, sizeof(Matrix4)*_num); return first; } return 0; } float* toPtr(uint32_t _cacheIdx) { BX_CHECK(_cacheIdx < BGFX_CONFIG_MAX_MATRIX_CACHE, "Matrix cache out of bounds index %d (max: %d)" , _cacheIdx , BGFX_CONFIG_MAX_MATRIX_CACHE ); return m_cache[_cacheIdx].un.val; } uint32_t fromPtr(const void* _ptr) const { return uint32_t( (const Matrix4*)_ptr - m_cache); } Matrix4 m_cache[BGFX_CONFIG_MAX_MATRIX_CACHE]; uint32_t m_num; }; struct RectCache { RectCache() : m_num(0) { } void reset() { m_num = 0; } uint32_t add(uint16_t _x, uint16_t _y, uint16_t _width, uint16_t _height) { const uint32_t first = bx::atomicFetchAndAddsat(&m_num, 1, BGFX_CONFIG_MAX_RECT_CACHE-1); BX_CHECK(first+1 < BGFX_CONFIG_MAX_RECT_CACHE, "Rect cache overflow. %d (max: %d)", first, BGFX_CONFIG_MAX_RECT_CACHE); Rect& rect = m_cache[first]; rect.m_x = _x; rect.m_y = _y; rect.m_width = _width; rect.m_height = _height; return first; } Rect m_cache[BGFX_CONFIG_MAX_RECT_CACHE]; uint32_t m_num; }; #define CONSTANT_OPCODE_TYPE_SHIFT 27 #define CONSTANT_OPCODE_TYPE_MASK UINT32_C(0xf8000000) #define CONSTANT_OPCODE_LOC_SHIFT 11 #define CONSTANT_OPCODE_LOC_MASK UINT32_C(0x07fff800) #define CONSTANT_OPCODE_NUM_SHIFT 1 #define CONSTANT_OPCODE_NUM_MASK UINT32_C(0x000007fe) #define CONSTANT_OPCODE_COPY_SHIFT 0 #define CONSTANT_OPCODE_COPY_MASK UINT32_C(0x00000001) #define BGFX_UNIFORM_FRAGMENTBIT UINT8_C(0x10) #define BGFX_UNIFORM_SAMPLERBIT UINT8_C(0x20) #define BGFX_UNIFORM_MASK (BGFX_UNIFORM_FRAGMENTBIT|BGFX_UNIFORM_SAMPLERBIT) class UniformBuffer { public: static UniformBuffer* create(uint32_t _size = 1<<20) { const uint32_t structSize = sizeof(UniformBuffer)-sizeof(UniformBuffer::m_buffer); uint32_t size = BX_ALIGN_16(_size); void* data = BX_ALLOC(g_allocator, size+structSize); return BX_PLACEMENT_NEW(data, UniformBuffer)(size); } static void destroy(UniformBuffer* _uniformBuffer) { _uniformBuffer->~UniformBuffer(); BX_FREE(g_allocator, _uniformBuffer); } static void update(UniformBuffer** _uniformBuffer, uint32_t _treshold = 64<<10, uint32_t _grow = 1<<20) { UniformBuffer* uniformBuffer = *_uniformBuffer; if (_treshold >= uniformBuffer->m_size - uniformBuffer->m_pos) { const uint32_t structSize = sizeof(UniformBuffer)-sizeof(UniformBuffer::m_buffer); uint32_t size = BX_ALIGN_16(uniformBuffer->m_size + _grow); void* data = BX_REALLOC(g_allocator, uniformBuffer, size+structSize); uniformBuffer = reinterpret_cast(data); uniformBuffer->m_size = size; *_uniformBuffer = uniformBuffer; } } static uint32_t encodeOpcode(UniformType::Enum _type, uint16_t _loc, uint16_t _num, uint16_t _copy) { const uint32_t type = _type << CONSTANT_OPCODE_TYPE_SHIFT; const uint32_t loc = _loc << CONSTANT_OPCODE_LOC_SHIFT; const uint32_t num = _num << CONSTANT_OPCODE_NUM_SHIFT; const uint32_t copy = _copy << CONSTANT_OPCODE_COPY_SHIFT; return type|loc|num|copy; } static void decodeOpcode(uint32_t _opcode, UniformType::Enum& _type, uint16_t& _loc, uint16_t& _num, uint16_t& _copy) { const uint32_t type = (_opcode&CONSTANT_OPCODE_TYPE_MASK) >> CONSTANT_OPCODE_TYPE_SHIFT; const uint32_t loc = (_opcode&CONSTANT_OPCODE_LOC_MASK ) >> CONSTANT_OPCODE_LOC_SHIFT; const uint32_t num = (_opcode&CONSTANT_OPCODE_NUM_MASK ) >> CONSTANT_OPCODE_NUM_SHIFT; const uint32_t copy = (_opcode&CONSTANT_OPCODE_COPY_MASK); // >> CONSTANT_OPCODE_COPY_SHIFT; _type = (UniformType::Enum)(type); _copy = (uint16_t)copy; _num = (uint16_t)num; _loc = (uint16_t)loc; } void write(const void* _data, uint32_t _size) { BX_CHECK(m_pos + _size < m_size, "Write would go out of bounds. pos %d + size %d > max size: %d).", m_pos, _size, m_size); if (m_pos + _size < m_size) { bx::memCopy(&m_buffer[m_pos], _data, _size); m_pos += _size; } } void write(uint32_t _value) { write(&_value, sizeof(uint32_t) ); } const char* read(uint32_t _size) { BX_CHECK(m_pos < m_size, "Out of bounds %d (size: %d).", m_pos, m_size); const char* result = &m_buffer[m_pos]; m_pos += _size; return result; } uint32_t read() { uint32_t result; bx::memCopy(&result, read(sizeof(uint32_t) ), sizeof(uint32_t) ); return result; } bool isEmpty() const { return 0 == m_pos; } uint32_t getPos() const { return m_pos; } void reset(uint32_t _pos = 0) { m_pos = _pos; } void finish() { write(UniformType::End); m_pos = 0; } void writeUniform(UniformType::Enum _type, uint16_t _loc, const void* _value, uint16_t _num = 1); void writeUniformHandle(UniformType::Enum _type, uint16_t _loc, UniformHandle _handle, uint16_t _num = 1); void writeMarker(const char* _marker); private: UniformBuffer(uint32_t _size) : m_size(_size) , m_pos(0) { finish(); } ~UniformBuffer() { } uint32_t m_size; uint32_t m_pos; char m_buffer[256<<20]; }; struct UniformRegInfo { UniformHandle m_handle; }; class UniformRegistry { public: UniformRegistry() { } ~UniformRegistry() { } const UniformRegInfo* find(const char* _name) const { uint16_t handle = m_uniforms.find(bx::hash(_name) ); if (kInvalidHandle != handle) { return &m_info[handle]; } return NULL; } const UniformRegInfo& add(UniformHandle _handle, const char* _name) { BX_CHECK(isValid(_handle), "Uniform handle is invalid (name: %s)!", _name); const uint32_t key = bx::hash(_name); m_uniforms.removeByKey(key); m_uniforms.insert(key, _handle.idx); UniformRegInfo& info = m_info[_handle.idx]; info.m_handle = _handle; return info; } void remove(UniformHandle _handle) { m_uniforms.removeByHandle(_handle.idx); } private: typedef bx::HandleHashMapT UniformHashMap; UniformHashMap m_uniforms; UniformRegInfo m_info[BGFX_CONFIG_MAX_UNIFORMS]; }; struct Binding { enum Enum { Image, IndexBuffer, VertexBuffer, Texture, Count }; uint32_t m_samplerFlags; uint16_t m_idx; uint8_t m_type; uint8_t m_format; uint8_t m_access; uint8_t m_mip; }; struct Stream { void clear() { m_startVertex = 0; m_handle.idx = kInvalidHandle; m_layoutHandle.idx = kInvalidHandle; } uint32_t m_startVertex; VertexBufferHandle m_handle; VertexLayoutHandle m_layoutHandle; }; BX_ALIGN_DECL_CACHE_LINE(struct) RenderBind { void clear(uint8_t _flags = BGFX_DISCARD_ALL) { if (0 != (_flags & BGFX_DISCARD_BINDINGS) ) { for (uint32_t ii = 0; ii < BGFX_CONFIG_MAX_TEXTURE_SAMPLERS; ++ii) { Binding& bind = m_bind[ii]; bind.m_idx = kInvalidHandle; bind.m_type = 0; bind.m_samplerFlags = 0; } } }; Binding m_bind[BGFX_CONFIG_MAX_TEXTURE_SAMPLERS]; }; BX_ALIGN_DECL_CACHE_LINE(struct) RenderDraw { void clear(uint8_t _flags = BGFX_DISCARD_ALL) { if (0 != (_flags & BGFX_DISCARD_STATE) ) { m_uniformBegin = 0; m_uniformEnd = 0; m_uniformIdx = UINT8_MAX; m_stateFlags = BGFX_STATE_DEFAULT; m_stencil = packStencil(BGFX_STENCIL_DEFAULT, BGFX_STENCIL_DEFAULT); m_rgba = 0; m_scissor = UINT16_MAX; } if (0 != (_flags & BGFX_DISCARD_TRANSFORM) ) { m_startMatrix = 0; m_numMatrices = 1; } if (0 != (_flags & BGFX_DISCARD_INSTANCE_DATA) ) { m_instanceDataOffset = 0; m_instanceDataStride = 0; m_numInstances = 1; m_instanceDataBuffer.idx = kInvalidHandle; } if (0 != (_flags & BGFX_DISCARD_VERTEX_STREAMS) ) { m_numVertices = UINT32_MAX; m_streamMask = 0; m_stream[0].clear(); } if (0 != (_flags & BGFX_DISCARD_INDEX_BUFFER) ) { m_startIndex = 0; m_numIndices = UINT32_MAX; m_indexBuffer.idx = kInvalidHandle; } m_submitFlags = 0; m_startIndirect = 0; m_numIndirect = UINT16_MAX; m_indirectBuffer.idx = kInvalidHandle; m_occlusionQuery.idx = kInvalidHandle; } bool setStreamBit(uint8_t _stream, VertexBufferHandle _handle) { const uint8_t bit = 1<<_stream; const uint8_t mask = m_streamMask & ~bit; const uint8_t tmp = isValid(_handle) ? bit : 0; m_streamMask = mask | tmp; return 0 != tmp; } Stream m_stream[BGFX_CONFIG_MAX_VERTEX_STREAMS]; uint64_t m_stateFlags; uint64_t m_stencil; uint32_t m_rgba; uint32_t m_uniformBegin; uint32_t m_uniformEnd; uint32_t m_startMatrix; uint32_t m_startIndex; uint32_t m_numIndices; uint32_t m_numVertices; uint32_t m_instanceDataOffset; uint32_t m_numInstances; uint16_t m_instanceDataStride; uint16_t m_startIndirect; uint16_t m_numIndirect; uint16_t m_numMatrices; uint16_t m_scissor; uint8_t m_submitFlags; uint8_t m_streamMask; uint8_t m_uniformIdx; IndexBufferHandle m_indexBuffer; VertexBufferHandle m_instanceDataBuffer; IndirectBufferHandle m_indirectBuffer; OcclusionQueryHandle m_occlusionQuery; }; BX_ALIGN_DECL_CACHE_LINE(struct) RenderCompute { void clear(uint8_t _flags) { if (0 != (_flags & BGFX_DISCARD_STATE) ) { m_uniformBegin = 0; m_uniformEnd = 0; m_uniformIdx = UINT8_MAX; } if (0 != (_flags & BGFX_DISCARD_TRANSFORM) ) { m_startMatrix = 0; m_numMatrices = 0; } m_numX = 0; m_numY = 0; m_numZ = 0; m_submitFlags = 0; m_indirectBuffer.idx = kInvalidHandle; m_startIndirect = 0; m_numIndirect = UINT16_MAX; } uint32_t m_uniformBegin; uint32_t m_uniformEnd; uint32_t m_startMatrix; IndirectBufferHandle m_indirectBuffer; uint32_t m_numX; uint32_t m_numY; uint32_t m_numZ; uint16_t m_startIndirect; uint16_t m_numIndirect; uint16_t m_numMatrices; uint8_t m_submitFlags; uint8_t m_uniformIdx; }; union RenderItem { RenderDraw draw; RenderCompute compute; }; BX_ALIGN_DECL_CACHE_LINE(struct) BlitItem { uint16_t m_srcX; uint16_t m_srcY; uint16_t m_srcZ; uint16_t m_dstX; uint16_t m_dstY; uint16_t m_dstZ; uint16_t m_width; uint16_t m_height; uint16_t m_depth; uint8_t m_srcMip; uint8_t m_dstMip; TextureHandle m_src; TextureHandle m_dst; }; struct IndexBuffer { String m_name; uint32_t m_size; }; struct VertexBuffer { String m_name; uint32_t m_size; uint16_t m_stride; }; struct DynamicIndexBuffer { IndexBufferHandle m_handle; uint32_t m_offset; uint32_t m_size; uint32_t m_startIndex; uint16_t m_flags; }; struct DynamicVertexBuffer { VertexBufferHandle m_handle; uint32_t m_offset; uint32_t m_size; uint32_t m_startVertex; uint32_t m_numVertices; uint16_t m_stride; VertexLayoutHandle m_layoutHandle; uint16_t m_flags; }; struct ShaderRef { UniformHandle* m_uniforms; String m_name; uint32_t m_hashIn; uint32_t m_hashOut; uint16_t m_num; int16_t m_refCount; }; struct ProgramRef { ShaderHandle m_vsh; ShaderHandle m_fsh; int16_t m_refCount; }; struct UniformRef { String m_name; UniformType::Enum m_type; uint16_t m_num; int16_t m_refCount; }; struct TextureRef { void init( BackbufferRatio::Enum _ratio , TextureFormat::Enum _format , uint32_t _storageSize , uint8_t _numMips , uint16_t _numLayers , bool _ptrPending , bool _immutable , bool _rt ) { m_ptr = _ptrPending ? (void*)UINTPTR_MAX : NULL; m_storageSize = _storageSize; m_refCount = 1; m_bbRatio = uint8_t(_ratio); m_format = uint8_t(_format); m_numMips = _numMips; m_numLayers = _numLayers; m_owned = false; m_immutable = _immutable; m_rt = _rt; } String m_name; void* m_ptr; uint32_t m_storageSize; int16_t m_refCount; uint8_t m_bbRatio; uint8_t m_format; uint8_t m_numMips; uint16_t m_numLayers; bool m_owned; bool m_immutable; bool m_rt; }; struct FrameBufferRef { String m_name; union un { TextureHandle m_th[BGFX_CONFIG_MAX_FRAME_BUFFER_ATTACHMENTS]; void* m_nwh; } un; bool m_window; }; BX_ALIGN_DECL_CACHE_LINE(struct) View { void reset() { setRect(0, 0, 1, 1); setScissor(0, 0, 0, 0); setClear(BGFX_CLEAR_NONE, 0, 0.0f, 0); setMode(ViewMode::Default); setFrameBuffer(BGFX_INVALID_HANDLE); setTransform(NULL, NULL); } void setRect(uint16_t _x, uint16_t _y, uint16_t _width, uint16_t _height) { m_rect.m_x = uint16_t(bx::max(int16_t(_x), 0) ); m_rect.m_y = uint16_t(bx::max(int16_t(_y), 0) ); m_rect.m_width = bx::max(_width, 1); m_rect.m_height = bx::max(_height, 1); } void setScissor(uint16_t _x, uint16_t _y, uint16_t _width, uint16_t _height) { m_scissor.m_x = _x; m_scissor.m_y = _y; m_scissor.m_width = _width; m_scissor.m_height = _height; } void setClear(uint16_t _flags, uint32_t _rgba, float _depth, uint8_t _stencil) { m_clear.set(_flags, _rgba, _depth, _stencil); } void setClear(uint16_t _flags, float _depth, uint8_t _stencil, uint8_t _0, uint8_t _1, uint8_t _2, uint8_t _3, uint8_t _4, uint8_t _5, uint8_t _6, uint8_t _7) { m_clear.set(_flags, _depth, _stencil, _0, _1, _2, _3, _4, _5, _6, _7); } void setMode(ViewMode::Enum _mode) { m_mode = uint8_t(_mode); } void setFrameBuffer(FrameBufferHandle _handle) { m_fbh = _handle; } void setTransform(const void* _view, const void* _proj) { if (NULL != _view) { bx::memCopy(m_view.un.val, _view, sizeof(Matrix4) ); } else { m_view.setIdentity(); } if (NULL != _proj) { bx::memCopy(m_proj.un.val, _proj, sizeof(Matrix4) ); } else { m_proj.setIdentity(); } } Clear m_clear; Rect m_rect; Rect m_scissor; Matrix4 m_view; Matrix4 m_proj; FrameBufferHandle m_fbh; uint8_t m_mode; }; struct FrameCache { void reset() { m_matrixCache.reset(); m_rectCache.reset(); } bool isZeroArea(const Rect& _rect, uint16_t _scissor) const { if (UINT16_MAX != _scissor) { Rect scissorRect; scissorRect.setIntersect(_rect, m_rectCache.m_cache[_scissor]); return scissorRect.isZeroArea(); } return false; } MatrixCache m_matrixCache; RectCache m_rectCache; }; BX_ALIGN_DECL_CACHE_LINE(struct) Frame { Frame() : m_waitSubmit(0) , m_waitRender(0) , m_capture(false) { SortKey term; term.reset(); term.m_program = BGFX_INVALID_HANDLE; m_sortKeys[BGFX_CONFIG_MAX_DRAW_CALLS] = term.encodeDraw(SortKey::SortProgram); m_sortValues[BGFX_CONFIG_MAX_DRAW_CALLS] = BGFX_CONFIG_MAX_DRAW_CALLS; bx::memSet(m_occlusion, 0xff, sizeof(m_occlusion) ); m_perfStats.viewStats = m_viewStats; } ~Frame() { } void create() { { const uint32_t num = g_caps.limits.maxEncoders; m_uniformBuffer = (UniformBuffer**)BX_ALLOC(g_allocator, sizeof(UniformBuffer*)*num); for (uint32_t ii = 0; ii < num; ++ii) { m_uniformBuffer[ii] = UniformBuffer::create(); } } reset(); start(); m_textVideoMem = BX_NEW(g_allocator, TextVideoMem); } void destroy() { for (uint32_t ii = 0, num = g_caps.limits.maxEncoders; ii < num; ++ii) { UniformBuffer::destroy(m_uniformBuffer[ii]); } BX_FREE(g_allocator, m_uniformBuffer); BX_DELETE(g_allocator, m_textVideoMem); } void reset() { start(); finish(); resetFreeHandles(); } void start() { m_perfStats.transientVbUsed = m_vboffset; m_perfStats.transientIbUsed = m_iboffset; m_frameCache.reset(); m_numRenderItems = 0; m_numBlitItems = 0; m_iboffset = 0; m_vboffset = 0; m_cmdPre.start(); m_cmdPost.start(); m_capture = false; } void finish() { m_cmdPre.finish(); m_cmdPost.finish(); // if (0 < m_numDropped) // { // BX_TRACE("Too many draw calls: %d, dropped %d (max: %d)" // , m_numRenderItems+m_numDropped // , m_numDropped // , BGFX_CONFIG_MAX_DRAW_CALLS // ); // } } void sort(); uint32_t getAvailTransientIndexBuffer(uint32_t _num) { uint32_t offset = bx::strideAlign(m_iboffset, sizeof(uint16_t) ); uint32_t iboffset = offset + _num*sizeof(uint16_t); iboffset = bx::min(iboffset, g_caps.limits.transientIbSize); uint32_t num = (iboffset-offset)/sizeof(uint16_t); return num; } uint32_t allocTransientIndexBuffer(uint32_t& _num) { uint32_t offset = bx::strideAlign(m_iboffset, sizeof(uint16_t) ); uint32_t num = getAvailTransientIndexBuffer(_num); m_iboffset = offset + num*sizeof(uint16_t); _num = num; return offset; } uint32_t getAvailTransientVertexBuffer(uint32_t _num, uint16_t _stride) { uint32_t offset = bx::strideAlign(m_vboffset, _stride); uint32_t vboffset = offset + _num * _stride; vboffset = bx::min(vboffset, g_caps.limits.transientVbSize); uint32_t num = (vboffset-offset)/_stride; return num; } uint32_t allocTransientVertexBuffer(uint32_t& _num, uint16_t _stride) { uint32_t offset = bx::strideAlign(m_vboffset, _stride); uint32_t num = getAvailTransientVertexBuffer(_num, _stride); m_vboffset = offset + num * _stride; _num = num; return offset; } bool free(IndexBufferHandle _handle) { return m_freeIndexBuffer.queue(_handle); } bool free(VertexLayoutHandle _handle) { return m_freeVertexLayout.queue(_handle); } bool free(VertexBufferHandle _handle) { return m_freeVertexBuffer.queue(_handle); } bool free(ShaderHandle _handle) { return m_freeShader.queue(_handle); } bool free(ProgramHandle _handle) { return m_freeProgram.queue(_handle); } bool free(TextureHandle _handle) { return m_freeTexture.queue(_handle); } bool free(FrameBufferHandle _handle) { return m_freeFrameBuffer.queue(_handle); } bool free(UniformHandle _handle) { return m_freeUniform.queue(_handle); } void resetFreeHandles() { m_freeIndexBuffer.reset(); m_freeVertexLayout.reset(); m_freeVertexBuffer.reset(); m_freeShader.reset(); m_freeProgram.reset(); m_freeTexture.reset(); m_freeFrameBuffer.reset(); m_freeUniform.reset(); } ViewId m_viewRemap[BGFX_CONFIG_MAX_VIEWS]; float m_colorPalette[BGFX_CONFIG_MAX_COLOR_PALETTE][4]; View m_view[BGFX_CONFIG_MAX_VIEWS]; int32_t m_occlusion[BGFX_CONFIG_MAX_OCCLUSION_QUERIES]; uint64_t m_sortKeys[BGFX_CONFIG_MAX_DRAW_CALLS+1]; RenderItemCount m_sortValues[BGFX_CONFIG_MAX_DRAW_CALLS+1]; RenderItem m_renderItem[BGFX_CONFIG_MAX_DRAW_CALLS+1]; RenderBind m_renderItemBind[BGFX_CONFIG_MAX_DRAW_CALLS + 1]; uint32_t m_blitKeys[BGFX_CONFIG_MAX_BLIT_ITEMS+1]; BlitItem m_blitItem[BGFX_CONFIG_MAX_BLIT_ITEMS+1]; FrameCache m_frameCache; UniformBuffer** m_uniformBuffer; uint32_t m_numRenderItems; uint16_t m_numBlitItems; uint32_t m_iboffset; uint32_t m_vboffset; TransientIndexBuffer* m_transientIb; TransientVertexBuffer* m_transientVb; Resolution m_resolution; uint32_t m_debug; CommandBuffer m_cmdPre; CommandBuffer m_cmdPost; template struct FreeHandle { FreeHandle() : m_num(0) { } bool isQueued(Ty _handle) { for (uint32_t ii = 0, num = m_num; ii < num; ++ii) { if (m_queue[ii].idx == _handle.idx) { return true; } } return false; } bool queue(Ty _handle) { if (BX_ENABLED(BGFX_CONFIG_DEBUG) ) { if (isQueued(_handle) ) { return false; } } m_queue[m_num] = _handle; ++m_num; return true; } void reset() { m_num = 0; } Ty get(uint16_t _idx) const { return m_queue[_idx]; } uint16_t getNumQueued() const { return m_num; } Ty m_queue[Max]; uint16_t m_num; }; FreeHandle m_freeIndexBuffer; FreeHandle m_freeVertexLayout; FreeHandle m_freeVertexBuffer; FreeHandle m_freeShader; FreeHandle m_freeProgram; FreeHandle m_freeTexture; FreeHandle m_freeFrameBuffer; FreeHandle m_freeUniform; TextVideoMem* m_textVideoMem; Stats m_perfStats; ViewStats m_viewStats[BGFX_CONFIG_MAX_VIEWS]; int64_t m_waitSubmit; int64_t m_waitRender; bool m_capture; }; BX_ALIGN_DECL_CACHE_LINE(struct) EncoderImpl { EncoderImpl() { discard(BGFX_DISCARD_ALL); } void begin(Frame* _frame, uint8_t _idx) { m_frame = _frame; m_cpuTimeBegin = bx::getHPCounter(); m_uniformIdx = _idx; m_uniformBegin = 0; m_uniformEnd = 0; UniformBuffer* uniformBuffer = m_frame->m_uniformBuffer[m_uniformIdx]; uniformBuffer->reset(); m_numSubmitted = 0; m_numDropped = 0; } void end(bool _finalize) { if (_finalize) { UniformBuffer* uniformBuffer = m_frame->m_uniformBuffer[m_uniformIdx]; uniformBuffer->finish(); m_cpuTimeEnd = bx::getHPCounter(); } if (BX_ENABLED(BGFX_CONFIG_DEBUG_OCCLUSION) ) { m_occlusionQuerySet.clear(); } if (BX_ENABLED(BGFX_CONFIG_DEBUG_UNIFORM) ) { m_uniformSet.clear(); } } void setMarker(const char* _name) { UniformBuffer* uniformBuffer = m_frame->m_uniformBuffer[m_uniformIdx]; uniformBuffer->writeMarker(_name); } void setUniform(UniformType::Enum _type, UniformHandle _handle, const void* _value, uint16_t _num) { if (BX_ENABLED(BGFX_CONFIG_DEBUG_UNIFORM) ) { BX_CHECK(m_uniformSet.end() == m_uniformSet.find(_handle.idx) , "Uniform %d (%s) was already set for this draw call." , _handle.idx , getName(_handle) ); m_uniformSet.insert(_handle.idx); } UniformBuffer::update(&m_frame->m_uniformBuffer[m_uniformIdx]); UniformBuffer* uniformBuffer = m_frame->m_uniformBuffer[m_uniformIdx]; uniformBuffer->writeUniform(_type, _handle.idx, _value, _num); } void setState(uint64_t _state, uint32_t _rgba) { uint8_t blend = ( (_state&BGFX_STATE_BLEND_MASK)>>BGFX_STATE_BLEND_SHIFT)&0xff; uint8_t alphaRef = ( (_state&BGFX_STATE_ALPHA_REF_MASK)>>BGFX_STATE_ALPHA_REF_SHIFT)&0xff; // transparency sort order table m_key.m_trans = "\x0\x2\x2\x3\x3\x2\x3\x2\x3\x2\x2\x2\x2\x2\x2\x2\x2\x2\x2"[( (blend)&0xf) + (!!blend)] + !!alphaRef; m_draw.m_stateFlags = _state; m_draw.m_rgba = _rgba; } void setCondition(OcclusionQueryHandle _handle, bool _visible) { m_draw.m_occlusionQuery = _handle; m_draw.m_submitFlags |= _visible ? BGFX_SUBMIT_INTERNAL_OCCLUSION_VISIBLE : 0; } void setStencil(uint32_t _fstencil, uint32_t _bstencil) { m_draw.m_stencil = packStencil(_fstencil, _bstencil); } uint16_t setScissor(uint16_t _x, uint16_t _y, uint16_t _width, uint16_t _height) { uint16_t scissor = (uint16_t)m_frame->m_frameCache.m_rectCache.add(_x, _y, _width, _height); m_draw.m_scissor = scissor; return scissor; } void setScissor(uint16_t _cache) { m_draw.m_scissor = _cache; } uint32_t setTransform(const void* _mtx, uint16_t _num) { m_draw.m_startMatrix = m_frame->m_frameCache.m_matrixCache.add(_mtx, _num); m_draw.m_numMatrices = _num; return m_draw.m_startMatrix; } uint32_t allocTransform(Transform* _transform, uint16_t _num) { uint32_t first = m_frame->m_frameCache.m_matrixCache.reserve(&_num); _transform->data = m_frame->m_frameCache.m_matrixCache.toPtr(first); _transform->num = _num; return first; } void setTransform(uint32_t _cache, uint16_t _num) { BX_CHECK(_cache < BGFX_CONFIG_MAX_MATRIX_CACHE, "Matrix cache out of bounds index %d (max: %d)" , _cache , BGFX_CONFIG_MAX_MATRIX_CACHE ); m_draw.m_startMatrix = _cache; m_draw.m_numMatrices = uint16_t(bx::min(_cache+_num, BGFX_CONFIG_MAX_MATRIX_CACHE-1) - _cache); } void setIndexBuffer(IndexBufferHandle _handle, uint32_t _firstIndex, uint32_t _numIndices) { BX_CHECK(UINT8_MAX != m_draw.m_streamMask, ""); m_draw.m_startIndex = _firstIndex; m_draw.m_numIndices = _numIndices; m_draw.m_indexBuffer = _handle; } void setIndexBuffer(const DynamicIndexBuffer& _dib, uint32_t _firstIndex, uint32_t _numIndices) { BX_CHECK(UINT8_MAX != m_draw.m_streamMask, ""); const uint32_t indexSize = 0 == (_dib.m_flags & BGFX_BUFFER_INDEX32) ? 2 : 4; m_draw.m_startIndex = _dib.m_startIndex + _firstIndex; m_draw.m_numIndices = bx::min(_numIndices, _dib.m_size/indexSize); m_draw.m_indexBuffer = _dib.m_handle; } void setIndexBuffer(const TransientIndexBuffer* _tib, uint32_t _firstIndex, uint32_t _numIndices) { BX_CHECK(UINT8_MAX != m_draw.m_streamMask, ""); const uint32_t numIndices = bx::min(_numIndices, _tib->size/2); m_draw.m_indexBuffer = _tib->handle; m_draw.m_startIndex = _tib->startIndex + _firstIndex; m_draw.m_numIndices = numIndices; m_discard = 0 == numIndices; } void setVertexBuffer( uint8_t _stream , VertexBufferHandle _handle , uint32_t _startVertex , uint32_t _numVertices , VertexLayoutHandle _layoutHandle ) { BX_CHECK(UINT8_MAX != m_draw.m_streamMask, ""); BX_CHECK(_stream < BGFX_CONFIG_MAX_VERTEX_STREAMS, "Invalid stream %d (max %d).", _stream, BGFX_CONFIG_MAX_VERTEX_STREAMS); if (m_draw.setStreamBit(_stream, _handle) ) { Stream& stream = m_draw.m_stream[_stream]; stream.m_startVertex = _startVertex; stream.m_handle = _handle; stream.m_layoutHandle = _layoutHandle; m_numVertices[_stream] = _numVertices; } } void setVertexBuffer( uint8_t _stream , const DynamicVertexBuffer& _dvb , uint32_t _startVertex , uint32_t _numVertices , VertexLayoutHandle _layoutHandle ) { BX_CHECK(UINT8_MAX != m_draw.m_streamMask, ""); BX_CHECK(_stream < BGFX_CONFIG_MAX_VERTEX_STREAMS, "Invalid stream %d (max %d).", _stream, BGFX_CONFIG_MAX_VERTEX_STREAMS); if (m_draw.setStreamBit(_stream, _dvb.m_handle) ) { Stream& stream = m_draw.m_stream[_stream]; stream.m_startVertex = _dvb.m_startVertex + _startVertex; stream.m_handle = _dvb.m_handle; stream.m_layoutHandle = isValid(_layoutHandle) ? _layoutHandle : _dvb.m_layoutHandle; m_numVertices[_stream] = bx::min(bx::uint32_imax(0, _dvb.m_numVertices - _startVertex), _numVertices) ; } } void setVertexBuffer( uint8_t _stream , const TransientVertexBuffer* _tvb , uint32_t _startVertex , uint32_t _numVertices , VertexLayoutHandle _layoutHandle ) { BX_CHECK(UINT8_MAX != m_draw.m_streamMask, ""); BX_CHECK(_stream < BGFX_CONFIG_MAX_VERTEX_STREAMS, "Invalid stream %d (max %d).", _stream, BGFX_CONFIG_MAX_VERTEX_STREAMS); if (m_draw.setStreamBit(_stream, _tvb->handle) ) { Stream& stream = m_draw.m_stream[_stream]; stream.m_startVertex = _tvb->startVertex + _startVertex; stream.m_handle = _tvb->handle; stream.m_layoutHandle = isValid(_layoutHandle) ? _layoutHandle : _tvb->layoutHandle; m_numVertices[_stream] = bx::min(bx::uint32_imax(0, _tvb->size/_tvb->stride - _startVertex), _numVertices); } } void setVertexCount(uint32_t _numVertices) { BX_CHECK(0 == m_draw.m_streamMask, "Vertex buffer already set."); m_draw.m_streamMask = UINT8_MAX; Stream& stream = m_draw.m_stream[0]; stream.m_startVertex = 0; stream.m_handle.idx = kInvalidHandle; stream.m_layoutHandle.idx = kInvalidHandle; m_numVertices[0] = _numVertices; } void setInstanceDataBuffer(const InstanceDataBuffer* _idb, uint32_t _start, uint32_t _num) { const uint32_t start = bx::min(_start, _idb->num); const uint32_t num = bx::min(_idb->num - start, _num); m_draw.m_instanceDataOffset = _idb->offset + start*_idb->stride; m_draw.m_instanceDataStride = _idb->stride; m_draw.m_numInstances = num; m_draw.m_instanceDataBuffer = _idb->handle; } void setInstanceDataBuffer(VertexBufferHandle _handle, uint32_t _startVertex, uint32_t _num, uint16_t _stride) { m_draw.m_instanceDataOffset = _startVertex * _stride; m_draw.m_instanceDataStride = _stride; m_draw.m_numInstances = _num; m_draw.m_instanceDataBuffer = _handle; } void setInstanceCount(uint32_t _numInstances) { BX_CHECK(!isValid(m_draw.m_instanceDataBuffer), "Instance buffer already set."); m_draw.m_numInstances = _numInstances; } void setTexture(uint8_t _stage, UniformHandle _sampler, TextureHandle _handle, uint32_t _flags) { Binding& bind = m_bind.m_bind[_stage]; bind.m_idx = _handle.idx; bind.m_type = uint8_t(Binding::Texture); bind.m_samplerFlags = (_flags&BGFX_SAMPLER_INTERNAL_DEFAULT) ? BGFX_SAMPLER_INTERNAL_DEFAULT : _flags ; if (isValid(_sampler) ) { uint32_t stage = _stage; setUniform(UniformType::Sampler, _sampler, &stage, 1); } } void setBuffer(uint8_t _stage, IndexBufferHandle _handle, Access::Enum _access) { Binding& bind = m_bind.m_bind[_stage]; bind.m_idx = _handle.idx; bind.m_type = uint8_t(Binding::IndexBuffer); bind.m_format = 0; bind.m_access = uint8_t(_access); bind.m_mip = 0; } void setBuffer(uint8_t _stage, VertexBufferHandle _handle, Access::Enum _access) { Binding& bind = m_bind.m_bind[_stage]; bind.m_idx = _handle.idx; bind.m_type = uint8_t(Binding::VertexBuffer); bind.m_format = 0; bind.m_access = uint8_t(_access); bind.m_mip = 0; } void setImage(uint8_t _stage, TextureHandle _handle, uint8_t _mip, Access::Enum _access, TextureFormat::Enum _format) { Binding& bind = m_bind.m_bind[_stage]; bind.m_idx = _handle.idx; bind.m_type = uint8_t(Binding::Image); bind.m_format = uint8_t(_format); bind.m_access = uint8_t(_access); bind.m_mip = _mip; } void discard(uint8_t _flags) { if (BX_ENABLED(BGFX_CONFIG_DEBUG_UNIFORM) ) { m_uniformSet.clear(); } m_discard = false; m_draw.clear(_flags); m_compute.clear(_flags); m_bind.clear(_flags); } void submit(ViewId _id, ProgramHandle _program, OcclusionQueryHandle _occlusionQuery, uint32_t _depth, uint8_t _flags); void submit(ViewId _id, ProgramHandle _program, IndirectBufferHandle _indirectHandle, uint16_t _start, uint16_t _num, uint32_t _depth, uint8_t _flags) { m_draw.m_startIndirect = _start; m_draw.m_numIndirect = _num; m_draw.m_indirectBuffer = _indirectHandle; OcclusionQueryHandle handle = BGFX_INVALID_HANDLE; submit(_id, _program, handle, _depth, _flags); } void dispatch(ViewId _id, ProgramHandle _handle, uint32_t _ngx, uint32_t _ngy, uint32_t _ngz, uint8_t _flags); void dispatch(ViewId _id, ProgramHandle _handle, IndirectBufferHandle _indirectHandle, uint16_t _start, uint16_t _num, uint8_t _flags) { m_compute.m_indirectBuffer = _indirectHandle; m_compute.m_startIndirect = _start; m_compute.m_numIndirect = _num; dispatch(_id, _handle, 0, 0, 0, _flags); } void blit(ViewId _id, TextureHandle _dst, uint8_t _dstMip, uint16_t _dstX, uint16_t _dstY, uint16_t _dstZ, TextureHandle _src, uint8_t _srcMip, uint16_t _srcX, uint16_t _srcY, uint16_t _srcZ, uint16_t _width, uint16_t _height, uint16_t _depth); Frame* m_frame; SortKey m_key; RenderDraw m_draw; RenderCompute m_compute; RenderBind m_bind; uint32_t m_numSubmitted; uint32_t m_numDropped; uint32_t m_uniformBegin; uint32_t m_uniformEnd; uint32_t m_numVertices[BGFX_CONFIG_MAX_VERTEX_STREAMS]; uint8_t m_uniformIdx; bool m_discard; typedef stl::unordered_set HandleSet; HandleSet m_uniformSet; HandleSet m_occlusionQuerySet; int64_t m_cpuTimeBegin; int64_t m_cpuTimeEnd; }; struct VertexLayoutRef { VertexLayoutRef() { } void init() { bx::memSet(m_layoutRef, 0, sizeof(m_layoutRef) ); bx::memSet(m_vertexBufferRef, 0xff, sizeof(m_vertexBufferRef) ); bx::memSet(m_dynamicVertexBufferRef, 0xff, sizeof(m_dynamicVertexBufferRef) ); } template void shutdown(bx::HandleAllocT& _handleAlloc) { for (uint16_t ii = 0, num = _handleAlloc.getNumHandles(); ii < num; ++ii) { VertexLayoutHandle handle = { _handleAlloc.getHandleAt(ii) }; m_layoutRef[handle.idx] = 0; m_layoutMap.removeByHandle(handle.idx); _handleAlloc.free(handle.idx); } m_layoutMap.reset(); } VertexLayoutHandle find(uint32_t _hash) { VertexLayoutHandle handle = { m_layoutMap.find(_hash) }; return handle; } void add(VertexLayoutHandle _layoutHandle, uint32_t _hash) { m_layoutRef[_layoutHandle.idx]++; m_layoutMap.insert(_hash, _layoutHandle.idx); } void add(VertexBufferHandle _handle, VertexLayoutHandle _layoutHandle, uint32_t _hash) { BX_CHECK(m_vertexBufferRef[_handle.idx].idx == kInvalidHandle, ""); m_vertexBufferRef[_handle.idx] = _layoutHandle; m_layoutRef[_layoutHandle.idx]++; m_layoutMap.insert(_hash, _layoutHandle.idx); } void add(DynamicVertexBufferHandle _handle, VertexLayoutHandle _layoutHandle, uint32_t _hash) { BX_CHECK(m_dynamicVertexBufferRef[_handle.idx].idx == kInvalidHandle, ""); m_dynamicVertexBufferRef[_handle.idx] = _layoutHandle; m_layoutRef[_layoutHandle.idx]++; m_layoutMap.insert(_hash, _layoutHandle.idx); } VertexLayoutHandle release(VertexLayoutHandle _layoutHandle) { if (isValid(_layoutHandle) ) { m_layoutRef[_layoutHandle.idx]--; if (0 == m_layoutRef[_layoutHandle.idx]) { m_layoutMap.removeByHandle(_layoutHandle.idx); return _layoutHandle; } } return BGFX_INVALID_HANDLE; } VertexLayoutHandle release(VertexBufferHandle _handle) { VertexLayoutHandle layoutHandle = m_vertexBufferRef[_handle.idx]; layoutHandle = release(layoutHandle); m_vertexBufferRef[_handle.idx].idx = kInvalidHandle; return layoutHandle; } VertexLayoutHandle release(DynamicVertexBufferHandle _handle) { VertexLayoutHandle layoutHandle = m_dynamicVertexBufferRef[_handle.idx]; layoutHandle = release(layoutHandle); m_dynamicVertexBufferRef[_handle.idx].idx = kInvalidHandle; return layoutHandle; } typedef bx::HandleHashMapT VertexLayoutMap; VertexLayoutMap m_layoutMap; uint16_t m_layoutRef[BGFX_CONFIG_MAX_VERTEX_LAYOUTS]; VertexLayoutHandle m_vertexBufferRef[BGFX_CONFIG_MAX_VERTEX_BUFFERS]; VertexLayoutHandle m_dynamicVertexBufferRef[BGFX_CONFIG_MAX_DYNAMIC_VERTEX_BUFFERS]; }; // First-fit non-local allocator. class NonLocalAllocator { public: static const uint64_t kInvalidBlock = UINT64_MAX; NonLocalAllocator() { } ~NonLocalAllocator() { } void reset() { m_free.clear(); m_used.clear(); } void add(uint64_t _ptr, uint32_t _size) { m_free.push_back(Free(_ptr, _size) ); } uint64_t remove() { BX_CHECK(0 == m_used.size(), ""); if (0 < m_free.size() ) { Free freeBlock = m_free.front(); m_free.pop_front(); return freeBlock.m_ptr; } return 0; } uint64_t alloc(uint32_t _size) { _size = bx::max(_size, 16u); for (FreeList::iterator it = m_free.begin(), itEnd = m_free.end(); it != itEnd; ++it) { if (it->m_size >= _size) { uint64_t ptr = it->m_ptr; m_used.insert(stl::make_pair(ptr, _size) ); if (it->m_size != _size) { it->m_size -= _size; it->m_ptr += _size; } else { m_free.erase(it); } return ptr; } } // there is no block large enough. return kInvalidBlock; } void free(uint64_t _block) { UsedList::iterator it = m_used.find(_block); if (it != m_used.end() ) { m_free.push_front(Free(it->first, it->second) ); m_used.erase(it); } } bool compact() { m_free.sort(); for (FreeList::iterator it = m_free.begin(), next = it, itEnd = m_free.end(); next != itEnd;) { if ( (it->m_ptr + it->m_size) == next->m_ptr) { it->m_size += next->m_size; next = m_free.erase(next); } else { it = next; ++next; } } return 0 == m_used.size(); } private: struct Free { Free(uint64_t _ptr, uint32_t _size) : m_ptr(_ptr) , m_size(_size) { } bool operator<(const Free& rhs) const { return m_ptr < rhs.m_ptr; } uint64_t m_ptr; uint32_t m_size; }; typedef stl::list FreeList; FreeList m_free; typedef stl::unordered_map UsedList; UsedList m_used; }; struct BX_NO_VTABLE RendererContextI { virtual ~RendererContextI() = 0; virtual RendererType::Enum getRendererType() const = 0; virtual const char* getRendererName() const = 0; virtual bool isDeviceRemoved() = 0; virtual void flip() = 0; virtual void createIndexBuffer(IndexBufferHandle _handle, const Memory* _mem, uint16_t _flags) = 0; virtual void destroyIndexBuffer(IndexBufferHandle _handle) = 0; virtual void createVertexLayout(VertexLayoutHandle _handle, const VertexLayout& _layout) = 0; virtual void destroyVertexLayout(VertexLayoutHandle _handle) = 0; virtual void createVertexBuffer(VertexBufferHandle _handle, const Memory* _mem, VertexLayoutHandle _layoutHandle, uint16_t _flags) = 0; virtual void destroyVertexBuffer(VertexBufferHandle _handle) = 0; virtual void createDynamicIndexBuffer(IndexBufferHandle _handle, uint32_t _size, uint16_t _flags) = 0; virtual void updateDynamicIndexBuffer(IndexBufferHandle _handle, uint32_t _offset, uint32_t _size, const Memory* _mem) = 0; virtual void destroyDynamicIndexBuffer(IndexBufferHandle _handle) = 0; virtual void createDynamicVertexBuffer(VertexBufferHandle _handle, uint32_t _size, uint16_t _flags) = 0; virtual void updateDynamicVertexBuffer(VertexBufferHandle _handle, uint32_t _offset, uint32_t _size, const Memory* _mem) = 0; virtual void destroyDynamicVertexBuffer(VertexBufferHandle _handle) = 0; virtual void createShader(ShaderHandle _handle, const Memory* _mem) = 0; virtual void destroyShader(ShaderHandle _handle) = 0; virtual void createProgram(ProgramHandle _handle, ShaderHandle _vsh, ShaderHandle _fsh) = 0; virtual void destroyProgram(ProgramHandle _handle) = 0; virtual void* createTexture(TextureHandle _handle, const Memory* _mem, uint64_t _flags, uint8_t _skip) = 0; virtual void updateTextureBegin(TextureHandle _handle, uint8_t _side, uint8_t _mip) = 0; virtual void updateTexture(TextureHandle _handle, uint8_t _side, uint8_t _mip, const Rect& _rect, uint16_t _z, uint16_t _depth, uint16_t _pitch, const Memory* _mem) = 0; virtual void updateTextureEnd() = 0; virtual void readTexture(TextureHandle _handle, void* _data, uint8_t _mip) = 0; virtual void resizeTexture(TextureHandle _handle, uint16_t _width, uint16_t _height, uint8_t _numMips, uint16_t _numLayers) = 0; virtual void overrideInternal(TextureHandle _handle, uintptr_t _ptr) = 0; virtual uintptr_t getInternal(TextureHandle _handle) = 0; virtual void destroyTexture(TextureHandle _handle) = 0; virtual void createFrameBuffer(FrameBufferHandle _handle, uint8_t _num, const Attachment* _attachment) = 0; virtual void createFrameBuffer(FrameBufferHandle _handle, void* _nwh, uint32_t _width, uint32_t _height, TextureFormat::Enum _format, TextureFormat::Enum _depthFormat) = 0; virtual void destroyFrameBuffer(FrameBufferHandle _handle) = 0; virtual void createUniform(UniformHandle _handle, UniformType::Enum _type, uint16_t _num, const char* _name) = 0; virtual void destroyUniform(UniformHandle _handle) = 0; virtual void requestScreenShot(FrameBufferHandle _handle, const char* _filePath) = 0; virtual void updateViewName(ViewId _id, const char* _name) = 0; virtual void updateUniform(uint16_t _loc, const void* _data, uint32_t _size) = 0; virtual void invalidateOcclusionQuery(OcclusionQueryHandle _handle) = 0; virtual void setMarker(const char* _marker, uint16_t _len) = 0; virtual void setName(Handle _handle, const char* _name, uint16_t _len) = 0; virtual void submit(Frame* _render, ClearQuad& _clearQuad, TextVideoMemBlitter& _textVideoMemBlitter) = 0; virtual void blitSetup(TextVideoMemBlitter& _blitter) = 0; virtual void blitRender(TextVideoMemBlitter& _blitter, uint32_t _numIndices) = 0; }; inline RendererContextI::~RendererContextI() { } void rendererUpdateUniforms(RendererContextI* _renderCtx, UniformBuffer* _uniformBuffer, uint32_t _begin, uint32_t _end); #if BGFX_CONFIG_DEBUG # define BGFX_API_FUNC(_func) BX_NO_INLINE _func #else # define BGFX_API_FUNC(_func) _func #endif // BGFX_CONFIG_DEBUG struct Context { static constexpr uint32_t kAlignment = 64; Context() : m_render(&m_frame[0]) , m_submit(&m_frame[BGFX_CONFIG_MULTITHREADED ? 1 : 0]) , m_numFreeDynamicIndexBufferHandles(0) , m_numFreeDynamicVertexBufferHandles(0) , m_numFreeOcclusionQueryHandles(0) , m_colorPaletteDirty(0) , m_frames(0) , m_debug(BGFX_DEBUG_NONE) , m_rtMemoryUsed(0) , m_textureMemoryUsed(0) , m_renderCtx(NULL) , m_renderMain(NULL) , m_renderNoop(NULL) , m_rendererInitialized(false) , m_exit(false) , m_flipAfterRender(false) , m_singleThreaded(false) { } ~Context() { } static int32_t renderThread(bx::Thread* /*_self*/, void* /*_userData*/) { BX_TRACE("render thread start"); BGFX_PROFILER_SET_CURRENT_THREAD_NAME("bgfx - Render Thread"); while (RenderFrame::Exiting != bgfx::renderFrame() ) {}; BX_TRACE("render thread exit"); return bx::kExitSuccess; } // game thread bool init(const Init& _init); void shutdown(); CommandBuffer& getCommandBuffer(CommandBuffer::Enum _cmd) { CommandBuffer& cmdbuf = _cmd < CommandBuffer::End ? m_submit->m_cmdPre : m_submit->m_cmdPost; uint8_t cmd = (uint8_t)_cmd; cmdbuf.write(cmd); return cmdbuf; } BGFX_API_FUNC(void reset(uint32_t _width, uint32_t _height, uint32_t _flags, TextureFormat::Enum _format) ) { BX_WARN(g_caps.limits.maxTextureSize >= _width && g_caps.limits.maxTextureSize >= _height , "Frame buffer resolution width or height can't be larger than limits.maxTextureSize %d (width %d, height %d)." , g_caps.limits.maxTextureSize , _width , _height ); m_init.resolution.format = TextureFormat::Count != _format ? _format : m_init.resolution.format; m_init.resolution.width = bx::clamp(_width, 1u, g_caps.limits.maxTextureSize); m_init.resolution.height = bx::clamp(_height, 1u, g_caps.limits.maxTextureSize); m_init.resolution.reset = 0 | _flags | (g_platformDataChangedSinceReset ? BGFX_RESET_INTERNAL_FORCE : 0) ; g_platformDataChangedSinceReset = false; m_flipAfterRender = !!(_flags & BGFX_RESET_FLIP_AFTER_RENDER); for (uint32_t ii = 0; ii < BGFX_CONFIG_MAX_VIEWS; ++ii) { m_view[ii].setFrameBuffer(BGFX_INVALID_HANDLE); } for (uint16_t ii = 0, num = m_textureHandle.getNumHandles(); ii < num; ++ii) { uint16_t textureIdx = m_textureHandle.getHandleAt(ii); const TextureRef& textureRef = m_textureRef[textureIdx]; if (BackbufferRatio::Count != textureRef.m_bbRatio) { TextureHandle handle = { textureIdx }; resizeTexture(handle , uint16_t(m_init.resolution.width) , uint16_t(m_init.resolution.height) , textureRef.m_numMips , textureRef.m_numLayers ); m_init.resolution.reset |= BGFX_RESET_INTERNAL_FORCE; } } } BGFX_API_FUNC(void setDebug(uint32_t _debug) ) { m_debug = _debug; } BGFX_API_FUNC(void dbgTextClear(uint8_t _attr, bool _small) ) { BGFX_MUTEX_SCOPE(m_resourceApiLock); m_submit->m_textVideoMem->resize(_small, (uint16_t)m_init.resolution.width, (uint16_t)m_init.resolution.height); m_submit->m_textVideoMem->clear(_attr); } BGFX_API_FUNC(void dbgTextPrintfVargs(uint16_t _x, uint16_t _y, uint8_t _attr, const char* _format, va_list _argList) ) { BGFX_MUTEX_SCOPE(m_resourceApiLock); m_submit->m_textVideoMem->printfVargs(_x, _y, _attr, _format, _argList); } BGFX_API_FUNC(void dbgTextImage(uint16_t _x, uint16_t _y, uint16_t _width, uint16_t _height, const void* _data, uint16_t _pitch) ) { BGFX_MUTEX_SCOPE(m_resourceApiLock); m_submit->m_textVideoMem->image(_x, _y, _width, _height, _data, _pitch); } BGFX_API_FUNC(const Stats* getPerfStats() ) { BGFX_MUTEX_SCOPE(m_resourceApiLock); Stats& stats = m_submit->m_perfStats; const Resolution& resolution = m_submit->m_resolution; stats.width = uint16_t(resolution.width); stats.height = uint16_t(resolution.height); const TextVideoMem* tvm = m_submit->m_textVideoMem; stats.textWidth = tvm->m_width; stats.textHeight = tvm->m_height; stats.encoderStats = m_encoderStats; stats.numDynamicIndexBuffers = m_dynamicIndexBufferHandle.getNumHandles(); stats.numDynamicVertexBuffers = m_dynamicVertexBufferHandle.getNumHandles(); stats.numFrameBuffers = m_frameBufferHandle.getNumHandles(); stats.numIndexBuffers = m_indexBufferHandle.getNumHandles(); stats.numOcclusionQueries = m_occlusionQueryHandle.getNumHandles(); stats.numPrograms = m_programHandle.getNumHandles(); stats.numShaders = m_shaderHandle.getNumHandles(); stats.numTextures = m_textureHandle.getNumHandles(); stats.numUniforms = m_uniformHandle.getNumHandles(); stats.numVertexBuffers = m_vertexBufferHandle.getNumHandles(); stats.numVertexLayouts = m_layoutHandle.getNumHandles(); stats.textureMemoryUsed = m_textureMemoryUsed; stats.rtMemoryUsed = m_rtMemoryUsed; return &stats; } BGFX_API_FUNC(IndexBufferHandle createIndexBuffer(const Memory* _mem, uint16_t _flags) ) { BGFX_MUTEX_SCOPE(m_resourceApiLock); IndexBufferHandle handle = { m_indexBufferHandle.alloc() }; BX_WARN(isValid(handle), "Failed to allocate index buffer handle."); if (isValid(handle) ) { IndexBuffer& ib = m_indexBuffers[handle.idx]; ib.m_size = _mem->size; CommandBuffer& cmdbuf = getCommandBuffer(CommandBuffer::CreateIndexBuffer); cmdbuf.write(handle); cmdbuf.write(_mem); cmdbuf.write(_flags); setDebugName(convert(handle) ); } else { release(_mem); } return handle; } BGFX_API_FUNC(void setName(IndexBufferHandle _handle, const bx::StringView& _name) ) { BGFX_MUTEX_SCOPE(m_resourceApiLock); BGFX_CHECK_HANDLE("setName", m_indexBufferHandle, _handle); IndexBuffer& ref = m_indexBuffers[_handle.idx]; ref.m_name.set(_name); setName(convert(_handle), _name); } BGFX_API_FUNC(void destroyIndexBuffer(IndexBufferHandle _handle) ) { BGFX_MUTEX_SCOPE(m_resourceApiLock); BGFX_CHECK_HANDLE("destroyIndexBuffer", m_indexBufferHandle, _handle); bool ok = m_submit->free(_handle); BX_UNUSED(ok); BX_CHECK(ok, "Index buffer handle %d is already destroyed!", _handle.idx); IndexBuffer& ref = m_indexBuffers[_handle.idx]; ref.m_name.clear(); CommandBuffer& cmdbuf = getCommandBuffer(CommandBuffer::DestroyIndexBuffer); cmdbuf.write(_handle); } VertexLayoutHandle findVertexLayout(const VertexLayout& _layout) { VertexLayoutHandle layoutHandle = m_vertexLayoutRef.find(_layout.m_hash); if (!isValid(layoutHandle) ) { layoutHandle.idx = m_layoutHandle.alloc(); if (!isValid(layoutHandle) ) { return layoutHandle; } CommandBuffer& cmdbuf = getCommandBuffer(CommandBuffer::CreateVertexLayout); cmdbuf.write(layoutHandle); cmdbuf.write(_layout); } return layoutHandle; } BGFX_API_FUNC(VertexLayoutHandle createVertexLayout(const VertexLayout& _layout) ) { BGFX_MUTEX_SCOPE(m_resourceApiLock); VertexLayoutHandle handle = findVertexLayout(_layout); if (!isValid(handle) ) { BX_TRACE("WARNING: Failed to allocate vertex layout handle (BGFX_CONFIG_MAX_VERTEX_LAYOUTS, max: %d).", BGFX_CONFIG_MAX_VERTEX_LAYOUTS); return BGFX_INVALID_HANDLE; } m_vertexLayoutRef.add(handle, _layout.m_hash); return handle; } BGFX_API_FUNC(void destroyVertexLayout(VertexLayoutHandle _handle) ) { BGFX_MUTEX_SCOPE(m_resourceApiLock); m_vertexLayoutRef.release(_handle); } BGFX_API_FUNC(VertexBufferHandle createVertexBuffer(const Memory* _mem, const VertexLayout& _layout, uint16_t _flags) ) { BGFX_MUTEX_SCOPE(m_resourceApiLock); VertexBufferHandle handle = { m_vertexBufferHandle.alloc() }; if (isValid(handle) ) { VertexLayoutHandle layoutHandle = findVertexLayout(_layout); if (!isValid(layoutHandle) ) { BX_TRACE("WARNING: Failed to allocate vertex layout handle (BGFX_CONFIG_MAX_VERTEX_LAYOUTS, max: %d).", BGFX_CONFIG_MAX_VERTEX_LAYOUTS); m_vertexBufferHandle.free(handle.idx); return BGFX_INVALID_HANDLE; } m_vertexLayoutRef.add(handle, layoutHandle, _layout.m_hash); VertexBuffer& vb = m_vertexBuffers[handle.idx]; vb.m_size = _mem->size; vb.m_stride = _layout.m_stride; CommandBuffer& cmdbuf = getCommandBuffer(CommandBuffer::CreateVertexBuffer); cmdbuf.write(handle); cmdbuf.write(_mem); cmdbuf.write(layoutHandle); cmdbuf.write(_flags); setDebugName(convert(handle) ); return handle; } BX_TRACE("WARNING: Failed to allocate vertex buffer handle (BGFX_CONFIG_MAX_VERTEX_BUFFERS, max: %d).", BGFX_CONFIG_MAX_VERTEX_BUFFERS); release(_mem); return BGFX_INVALID_HANDLE; } BGFX_API_FUNC(void setName(VertexBufferHandle _handle, const bx::StringView& _name) ) { BGFX_MUTEX_SCOPE(m_resourceApiLock); BGFX_CHECK_HANDLE("setName", m_vertexBufferHandle, _handle); VertexBuffer& ref = m_vertexBuffers[_handle.idx]; ref.m_name.set(_name); setName(convert(_handle), _name); } BGFX_API_FUNC(void destroyVertexBuffer(VertexBufferHandle _handle) ) { BGFX_MUTEX_SCOPE(m_resourceApiLock); BGFX_CHECK_HANDLE("destroyVertexBuffer", m_vertexBufferHandle, _handle); bool ok = m_submit->free(_handle); BX_UNUSED(ok); BX_CHECK(ok, "Vertex buffer handle %d is already destroyed!", _handle.idx); VertexBuffer& ref = m_vertexBuffers[_handle.idx]; ref.m_name.clear(); CommandBuffer& cmdbuf = getCommandBuffer(CommandBuffer::DestroyVertexBuffer); cmdbuf.write(_handle); } void destroyVertexBufferInternal(VertexBufferHandle _handle) { VertexLayoutHandle layoutHandle = m_vertexLayoutRef.release(_handle); if (isValid(layoutHandle) ) { CommandBuffer& cmdbuf = getCommandBuffer(CommandBuffer::DestroyVertexLayout); cmdbuf.write(layoutHandle); m_render->free(layoutHandle); } m_vertexBufferHandle.free(_handle.idx); } uint64_t allocDynamicIndexBuffer(uint32_t _size, uint16_t _flags) { uint64_t ptr = m_dynIndexBufferAllocator.alloc(_size); if (ptr == NonLocalAllocator::kInvalidBlock) { IndexBufferHandle indexBufferHandle = { m_indexBufferHandle.alloc() }; BX_WARN(isValid(indexBufferHandle), "Failed to allocate index buffer handle."); if (!isValid(indexBufferHandle) ) { return NonLocalAllocator::kInvalidBlock; } const uint32_t allocSize = bx::max(BGFX_CONFIG_DYNAMIC_INDEX_BUFFER_SIZE, _size); IndexBuffer& ib = m_indexBuffers[indexBufferHandle.idx]; ib.m_size = allocSize; CommandBuffer& cmdbuf = getCommandBuffer(CommandBuffer::CreateDynamicIndexBuffer); cmdbuf.write(indexBufferHandle); cmdbuf.write(allocSize); cmdbuf.write(_flags); m_dynIndexBufferAllocator.add(uint64_t(indexBufferHandle.idx) << 32, allocSize); ptr = m_dynIndexBufferAllocator.alloc(_size); } return ptr; } BGFX_API_FUNC(DynamicIndexBufferHandle createDynamicIndexBuffer(uint32_t _num, uint16_t _flags) ) { BGFX_MUTEX_SCOPE(m_resourceApiLock); DynamicIndexBufferHandle handle = { m_dynamicIndexBufferHandle.alloc() }; BX_WARN(isValid(handle), "Failed to allocate dynamic index buffer handle."); if (!isValid(handle) ) { return handle; } const uint32_t indexSize = 0 == (_flags & BGFX_BUFFER_INDEX32) ? 2 : 4; uint32_t size = BX_ALIGN_16(_num*indexSize); uint64_t ptr = 0; if (0 != (_flags & BGFX_BUFFER_COMPUTE_READ_WRITE) ) { IndexBufferHandle indexBufferHandle = { m_indexBufferHandle.alloc() }; if (!isValid(indexBufferHandle) ) { m_dynamicIndexBufferHandle.free(handle.idx); return BGFX_INVALID_HANDLE; } IndexBuffer& ib = m_indexBuffers[indexBufferHandle.idx]; ib.m_size = size; CommandBuffer& cmdbuf = getCommandBuffer(CommandBuffer::CreateDynamicIndexBuffer); cmdbuf.write(indexBufferHandle); cmdbuf.write(size); cmdbuf.write(_flags); setDebugName(convert(indexBufferHandle), "Dynamic Index Buffer"); ptr = uint64_t(indexBufferHandle.idx) << 32; } else { ptr = allocDynamicIndexBuffer(size, _flags); if (ptr == NonLocalAllocator::kInvalidBlock) { m_dynamicIndexBufferHandle.free(handle.idx); return BGFX_INVALID_HANDLE; } } DynamicIndexBuffer& dib = m_dynamicIndexBuffers[handle.idx]; dib.m_handle.idx = uint16_t(ptr>>32); dib.m_offset = uint32_t(ptr); dib.m_size = _num * indexSize; dib.m_startIndex = bx::strideAlign(dib.m_offset, indexSize)/indexSize; dib.m_flags = _flags; return handle; } BGFX_API_FUNC(DynamicIndexBufferHandle createDynamicIndexBuffer(const Memory* _mem, uint16_t _flags) ) { BGFX_MUTEX_SCOPE(m_resourceApiLock); BX_CHECK(0 == (_flags & BGFX_BUFFER_COMPUTE_READ_WRITE), "Cannot initialize compute buffer from CPU."); const uint32_t indexSize = 0 == (_flags & BGFX_BUFFER_INDEX32) ? 2 : 4; DynamicIndexBufferHandle handle = createDynamicIndexBuffer(_mem->size/indexSize, _flags); if (!isValid(handle) ) { release(_mem); return BGFX_INVALID_HANDLE; } update(handle, 0, _mem); return handle; } BGFX_API_FUNC(void update(DynamicIndexBufferHandle _handle, uint32_t _startIndex, const Memory* _mem) ) { BGFX_MUTEX_SCOPE(m_resourceApiLock); BGFX_CHECK_HANDLE("updateDynamicIndexBuffer", m_dynamicIndexBufferHandle, _handle); DynamicIndexBuffer& dib = m_dynamicIndexBuffers[_handle.idx]; BX_CHECK(0 == (dib.m_flags & BGFX_BUFFER_COMPUTE_WRITE), "Can't update GPU buffer from CPU."); const uint32_t indexSize = 0 == (dib.m_flags & BGFX_BUFFER_INDEX32) ? 2 : 4; if (dib.m_size < _mem->size && 0 != (dib.m_flags & BGFX_BUFFER_ALLOW_RESIZE) ) { m_dynIndexBufferAllocator.free(uint64_t(dib.m_handle.idx)<<32 | dib.m_offset); m_dynIndexBufferAllocator.compact(); uint64_t ptr = allocDynamicIndexBuffer(_mem->size, dib.m_flags); dib.m_handle.idx = uint16_t(ptr>>32); dib.m_offset = uint32_t(ptr); dib.m_size = _mem->size; dib.m_startIndex = bx::strideAlign(dib.m_offset, indexSize)/indexSize; } const uint32_t offset = (dib.m_startIndex + _startIndex)*indexSize; const uint32_t size = bx::min(offset + bx::min(bx::uint32_satsub(dib.m_size, _startIndex*indexSize), _mem->size) , m_indexBuffers[dib.m_handle.idx].m_size) - offset ; BX_CHECK(_mem->size <= size, "Truncating dynamic index buffer update (size %d, mem size %d)." , size , _mem->size ); CommandBuffer& cmdbuf = getCommandBuffer(CommandBuffer::UpdateDynamicIndexBuffer); cmdbuf.write(dib.m_handle); cmdbuf.write(offset); cmdbuf.write(size); cmdbuf.write(_mem); } BGFX_API_FUNC(void destroyDynamicIndexBuffer(DynamicIndexBufferHandle _handle) ) { BGFX_MUTEX_SCOPE(m_resourceApiLock); BGFX_CHECK_HANDLE("destroyDynamicIndexBuffer", m_dynamicIndexBufferHandle, _handle); m_freeDynamicIndexBufferHandle[m_numFreeDynamicIndexBufferHandles++] = _handle; } void destroyDynamicIndexBufferInternal(DynamicIndexBufferHandle _handle) { DynamicIndexBuffer& dib = m_dynamicIndexBuffers[_handle.idx]; if (0 != (dib.m_flags & BGFX_BUFFER_COMPUTE_READ_WRITE) ) { destroyIndexBuffer(dib.m_handle); } else { m_dynIndexBufferAllocator.free(uint64_t(dib.m_handle.idx)<<32 | dib.m_offset); if (m_dynIndexBufferAllocator.compact() ) { for (uint64_t ptr = m_dynIndexBufferAllocator.remove(); 0 != ptr; ptr = m_dynIndexBufferAllocator.remove() ) { IndexBufferHandle handle = { uint16_t(ptr>>32) }; destroyIndexBuffer(handle); } } } m_dynamicIndexBufferHandle.free(_handle.idx); } uint64_t allocDynamicVertexBuffer(uint32_t _size, uint16_t _flags) { uint64_t ptr = m_dynVertexBufferAllocator.alloc(_size); if (ptr == NonLocalAllocator::kInvalidBlock) { VertexBufferHandle vertexBufferHandle = { m_vertexBufferHandle.alloc() }; BX_WARN(isValid(vertexBufferHandle), "Failed to allocate dynamic vertex buffer handle."); if (!isValid(vertexBufferHandle) ) { return NonLocalAllocator::kInvalidBlock; } const uint32_t allocSize = bx::max(BGFX_CONFIG_DYNAMIC_VERTEX_BUFFER_SIZE, _size); VertexBuffer& vb = m_vertexBuffers[vertexBufferHandle.idx]; vb.m_size = allocSize; vb.m_stride = 0; CommandBuffer& cmdbuf = getCommandBuffer(CommandBuffer::CreateDynamicVertexBuffer); cmdbuf.write(vertexBufferHandle); cmdbuf.write(allocSize); cmdbuf.write(_flags); m_dynVertexBufferAllocator.add(uint64_t(vertexBufferHandle.idx) << 32, allocSize); ptr = m_dynVertexBufferAllocator.alloc(_size); } return ptr; } BGFX_API_FUNC(DynamicVertexBufferHandle createDynamicVertexBuffer(uint32_t _num, const VertexLayout& _layout, uint16_t _flags) ) { BGFX_MUTEX_SCOPE(m_resourceApiLock); VertexLayoutHandle layoutHandle = findVertexLayout(_layout); if (!isValid(layoutHandle) ) { BX_TRACE("WARNING: Failed to allocate vertex layout handle (BGFX_CONFIG_MAX_VERTEX_LAYOUTS, max: %d).", BGFX_CONFIG_MAX_VERTEX_LAYOUTS); return BGFX_INVALID_HANDLE; } DynamicVertexBufferHandle handle = { m_dynamicVertexBufferHandle.alloc() }; if (!isValid(handle) ) { BX_TRACE("WARNING: Failed to allocate dynamic vertex buffer handle (BGFX_CONFIG_MAX_DYNAMIC_VERTEX_BUFFERS, max: %d).", BGFX_CONFIG_MAX_DYNAMIC_VERTEX_BUFFERS); return BGFX_INVALID_HANDLE; } const uint32_t size = bx::strideAlign<16>(_num*_layout.m_stride, _layout.m_stride)+_layout.m_stride; uint64_t ptr = 0; if (0 != (_flags & BGFX_BUFFER_COMPUTE_READ_WRITE) ) { VertexBufferHandle vertexBufferHandle = { m_vertexBufferHandle.alloc() }; if (!isValid(vertexBufferHandle) ) { m_dynamicVertexBufferHandle.free(handle.idx); BX_TRACE("WARNING: Failed to allocate vertex buffer handle (BGFX_CONFIG_MAX_VERTEX_BUFFERS, max: %d).", BGFX_CONFIG_MAX_VERTEX_BUFFERS); return BGFX_INVALID_HANDLE; } VertexBuffer& vb = m_vertexBuffers[vertexBufferHandle.idx]; vb.m_size = size; vb.m_stride = 0; CommandBuffer& cmdbuf = getCommandBuffer(CommandBuffer::CreateDynamicVertexBuffer); cmdbuf.write(vertexBufferHandle); cmdbuf.write(size); cmdbuf.write(_flags); setDebugName(convert(vertexBufferHandle), "Dynamic Vertex Buffer"); ptr = uint64_t(vertexBufferHandle.idx)<<32; } else { ptr = allocDynamicVertexBuffer(size, _flags); if (ptr == NonLocalAllocator::kInvalidBlock) { m_dynamicVertexBufferHandle.free(handle.idx); return BGFX_INVALID_HANDLE; } } DynamicVertexBuffer& dvb = m_dynamicVertexBuffers[handle.idx]; dvb.m_handle.idx = uint16_t(ptr>>32); dvb.m_offset = uint32_t(ptr); dvb.m_size = _num * _layout.m_stride; dvb.m_startVertex = bx::strideAlign(dvb.m_offset, _layout.m_stride)/_layout.m_stride; dvb.m_numVertices = _num; dvb.m_stride = _layout.m_stride; dvb.m_layoutHandle = layoutHandle; dvb.m_flags = _flags; m_vertexLayoutRef.add(handle, layoutHandle, _layout.m_hash); return handle; } BGFX_API_FUNC(DynamicVertexBufferHandle createDynamicVertexBuffer(const Memory* _mem, const VertexLayout& _layout, uint16_t _flags) ) { BGFX_MUTEX_SCOPE(m_resourceApiLock); uint32_t numVertices = _mem->size/_layout.m_stride; DynamicVertexBufferHandle handle = createDynamicVertexBuffer(numVertices, _layout, _flags); if (!isValid(handle) ) { release(_mem); return BGFX_INVALID_HANDLE; } update(handle, 0, _mem); return handle; } BGFX_API_FUNC(void update(DynamicVertexBufferHandle _handle, uint32_t _startVertex, const Memory* _mem) ) { BGFX_MUTEX_SCOPE(m_resourceApiLock); BGFX_CHECK_HANDLE("updateDynamicVertexBuffer", m_dynamicVertexBufferHandle, _handle); DynamicVertexBuffer& dvb = m_dynamicVertexBuffers[_handle.idx]; BX_CHECK(0 == (dvb.m_flags & BGFX_BUFFER_COMPUTE_WRITE), "Can't update GPU write buffer from CPU."); if (dvb.m_size < _mem->size && 0 != (dvb.m_flags & BGFX_BUFFER_ALLOW_RESIZE) ) { m_dynVertexBufferAllocator.free(uint64_t(dvb.m_handle.idx)<<32 | dvb.m_offset); m_dynVertexBufferAllocator.compact(); const uint32_t size = bx::strideAlign<16>(_mem->size, dvb.m_stride)+dvb.m_stride; const uint64_t ptr = allocDynamicVertexBuffer(size, dvb.m_flags); dvb.m_handle.idx = uint16_t(ptr>>32); dvb.m_offset = uint32_t(ptr); dvb.m_size = size; dvb.m_numVertices = _mem->size / dvb.m_stride; dvb.m_startVertex = bx::strideAlign(dvb.m_offset, dvb.m_stride)/dvb.m_stride; } const uint32_t offset = (dvb.m_startVertex + _startVertex)*dvb.m_stride; const uint32_t size = bx::min(offset + bx::min(bx::uint32_satsub(dvb.m_size, _startVertex*dvb.m_stride), _mem->size) , m_vertexBuffers[dvb.m_handle.idx].m_size) - offset ; BX_CHECK(_mem->size <= size, "Truncating dynamic vertex buffer update (size %d, mem size %d)." , size , _mem->size ); CommandBuffer& cmdbuf = getCommandBuffer(CommandBuffer::UpdateDynamicVertexBuffer); cmdbuf.write(dvb.m_handle); cmdbuf.write(offset); cmdbuf.write(size); cmdbuf.write(_mem); } BGFX_API_FUNC(void destroyDynamicVertexBuffer(DynamicVertexBufferHandle _handle) ) { BGFX_MUTEX_SCOPE(m_resourceApiLock); BGFX_CHECK_HANDLE("destroyDynamicVertexBuffer", m_dynamicVertexBufferHandle, _handle); m_freeDynamicVertexBufferHandle[m_numFreeDynamicVertexBufferHandles++] = _handle; } void destroyDynamicVertexBufferInternal(DynamicVertexBufferHandle _handle) { VertexLayoutHandle layoutHandle = m_vertexLayoutRef.release(_handle); BGFX_CHECK_HANDLE_INVALID_OK("destroyDynamicVertexBufferInternal", m_layoutHandle, layoutHandle); if (isValid(layoutHandle) ) { CommandBuffer& cmdbuf = getCommandBuffer(CommandBuffer::DestroyVertexLayout); cmdbuf.write(layoutHandle); m_render->free(layoutHandle); } DynamicVertexBuffer& dvb = m_dynamicVertexBuffers[_handle.idx]; if (0 != (dvb.m_flags & BGFX_BUFFER_COMPUTE_READ_WRITE) ) { destroyVertexBuffer(dvb.m_handle); } else { m_dynVertexBufferAllocator.free(uint64_t(dvb.m_handle.idx)<<32 | dvb.m_offset); if (m_dynVertexBufferAllocator.compact() ) { for (uint64_t ptr = m_dynVertexBufferAllocator.remove(); 0 != ptr; ptr = m_dynVertexBufferAllocator.remove() ) { VertexBufferHandle handle = { uint16_t(ptr>>32) }; destroyVertexBuffer(handle); } } } m_dynamicVertexBufferHandle.free(_handle.idx); } BGFX_API_FUNC(uint32_t getAvailTransientIndexBuffer(uint32_t _num) ) { BGFX_MUTEX_SCOPE(m_resourceApiLock); return m_submit->getAvailTransientIndexBuffer(_num); } BGFX_API_FUNC(uint32_t getAvailTransientVertexBuffer(uint32_t _num, uint16_t _stride) ) { BGFX_MUTEX_SCOPE(m_resourceApiLock); return m_submit->getAvailTransientVertexBuffer(_num, _stride); } TransientIndexBuffer* createTransientIndexBuffer(uint32_t _size) { TransientIndexBuffer* tib = NULL; IndexBufferHandle handle = { m_indexBufferHandle.alloc() }; BX_WARN(isValid(handle), "Failed to allocate transient index buffer handle."); if (isValid(handle) ) { CommandBuffer& cmdbuf = getCommandBuffer(CommandBuffer::CreateDynamicIndexBuffer); cmdbuf.write(handle); cmdbuf.write(_size); uint16_t flags = BGFX_BUFFER_NONE; cmdbuf.write(flags); const uint32_t size = BX_ALIGN_16(sizeof(TransientIndexBuffer) ) + BX_ALIGN_16(_size); tib = (TransientIndexBuffer*)BX_ALIGNED_ALLOC(g_allocator, size, 16); tib->data = (uint8_t *)tib + BX_ALIGN_16(sizeof(TransientIndexBuffer) ); tib->size = _size; tib->handle = handle; setDebugName(convert(handle), "Transient Index Buffer"); } return tib; } void destroyTransientIndexBuffer(TransientIndexBuffer* _tib) { CommandBuffer& cmdbuf = getCommandBuffer(CommandBuffer::DestroyDynamicIndexBuffer); cmdbuf.write(_tib->handle); m_submit->free(_tib->handle); BX_ALIGNED_FREE(g_allocator, _tib, 16); } BGFX_API_FUNC(void allocTransientIndexBuffer(TransientIndexBuffer* _tib, uint32_t _num) ) { BGFX_MUTEX_SCOPE(m_resourceApiLock); uint32_t offset = m_submit->allocTransientIndexBuffer(_num); TransientIndexBuffer& tib = *m_submit->m_transientIb; _tib->data = &tib.data[offset]; _tib->size = _num * 2; _tib->handle = tib.handle; _tib->startIndex = bx::strideAlign(offset, 2)/2; } TransientVertexBuffer* createTransientVertexBuffer(uint32_t _size, const VertexLayout* _layout = NULL) { TransientVertexBuffer* tvb = NULL; VertexBufferHandle handle = { m_vertexBufferHandle.alloc() }; BX_WARN(isValid(handle), "Failed to allocate transient vertex buffer handle."); if (isValid(handle) ) { uint16_t stride = 0; VertexLayoutHandle layoutHandle = BGFX_INVALID_HANDLE; if (NULL != _layout) { layoutHandle = findVertexLayout(*_layout); m_vertexLayoutRef.add(handle, layoutHandle, _layout->m_hash); stride = _layout->m_stride; } CommandBuffer& cmdbuf = getCommandBuffer(CommandBuffer::CreateDynamicVertexBuffer); cmdbuf.write(handle); cmdbuf.write(_size); uint16_t flags = BGFX_BUFFER_NONE; cmdbuf.write(flags); const uint32_t size = BX_ALIGN_16(sizeof(TransientVertexBuffer) ) + BX_ALIGN_16(_size); tvb = (TransientVertexBuffer*)BX_ALIGNED_ALLOC(g_allocator, size, 16); tvb->data = (uint8_t *)tvb + BX_ALIGN_16(sizeof(TransientVertexBuffer) ); tvb->size = _size; tvb->startVertex = 0; tvb->stride = stride; tvb->handle = handle; tvb->layoutHandle = layoutHandle; setDebugName(convert(handle), "Transient Vertex Buffer"); } return tvb; } void destroyTransientVertexBuffer(TransientVertexBuffer* _tvb) { CommandBuffer& cmdbuf = getCommandBuffer(CommandBuffer::DestroyDynamicVertexBuffer); cmdbuf.write(_tvb->handle); m_submit->free(_tvb->handle); BX_ALIGNED_FREE(g_allocator, _tvb, 16); } BGFX_API_FUNC(void allocTransientVertexBuffer(TransientVertexBuffer* _tvb, uint32_t _num, const VertexLayout& _layout) ) { BGFX_MUTEX_SCOPE(m_resourceApiLock); VertexLayoutHandle layoutHandle = m_vertexLayoutRef.find(_layout.m_hash); TransientVertexBuffer& dvb = *m_submit->m_transientVb; if (!isValid(layoutHandle) ) { VertexLayoutHandle temp = { m_layoutHandle.alloc() }; layoutHandle = temp; CommandBuffer& cmdbuf = getCommandBuffer(CommandBuffer::CreateVertexLayout); cmdbuf.write(layoutHandle); cmdbuf.write(_layout); m_vertexLayoutRef.add(layoutHandle, _layout.m_hash); } uint32_t offset = m_submit->allocTransientVertexBuffer(_num, _layout.m_stride); _tvb->data = &dvb.data[offset]; _tvb->size = _num * _layout.m_stride; _tvb->startVertex = bx::strideAlign(offset, _layout.m_stride)/_layout.m_stride; _tvb->stride = _layout.m_stride; _tvb->handle = dvb.handle; _tvb->layoutHandle = layoutHandle; } BGFX_API_FUNC(void allocInstanceDataBuffer(InstanceDataBuffer* _idb, uint32_t _num, uint16_t _stride) ) { BGFX_MUTEX_SCOPE(m_resourceApiLock); uint16_t stride = BX_ALIGN_16(_stride); uint32_t offset = m_submit->allocTransientVertexBuffer(_num, stride); TransientVertexBuffer& dvb = *m_submit->m_transientVb; _idb->data = &dvb.data[offset]; _idb->size = _num * stride; _idb->offset = offset; _idb->num = _num; _idb->stride = stride; _idb->handle = dvb.handle; } IndirectBufferHandle createIndirectBuffer(uint32_t _num) { BX_UNUSED(_num); IndirectBufferHandle handle = { m_vertexBufferHandle.alloc() }; BX_WARN(isValid(handle), "Failed to allocate draw indirect buffer handle."); if (isValid(handle) ) { uint32_t size = _num * BGFX_CONFIG_DRAW_INDIRECT_STRIDE; uint16_t flags = BGFX_BUFFER_DRAW_INDIRECT; CommandBuffer& cmdbuf = getCommandBuffer(CommandBuffer::CreateDynamicVertexBuffer); cmdbuf.write(handle); cmdbuf.write(size); cmdbuf.write(flags); } return handle; } void destroyIndirectBuffer(IndirectBufferHandle _handle) { VertexBufferHandle handle = { _handle.idx }; BGFX_CHECK_HANDLE("destroyDrawIndirectBuffer", m_vertexBufferHandle, handle); CommandBuffer& cmdbuf = getCommandBuffer(CommandBuffer::DestroyDynamicVertexBuffer); cmdbuf.write(handle); m_submit->free(handle); } BGFX_API_FUNC(ShaderHandle createShader(const Memory* _mem) ) { BGFX_MUTEX_SCOPE(m_resourceApiLock); bx::MemoryReader reader(_mem->data, _mem->size); bx::Error err; uint32_t magic; bx::read(&reader, magic, &err); if (!err.isOk() ) { BX_TRACE("Couldn't read shader signature!"); release(_mem); return BGFX_INVALID_HANDLE; } if (!isShaderBin(magic) ) { BX_TRACE("Invalid shader signature! %c%c%c%d." , ( (uint8_t*)&magic)[0] , ( (uint8_t*)&magic)[1] , ( (uint8_t*)&magic)[2] , ( (uint8_t*)&magic)[3] ); release(_mem); return BGFX_INVALID_HANDLE; } if (isShaderType(magic, 'C') && 0 == (g_caps.supported & BGFX_CAPS_COMPUTE) ) { BX_TRACE("Creating compute shader but compute is not supported!"); release(_mem); return BGFX_INVALID_HANDLE; } if ( (isShaderType(magic, 'C') && isShaderVerLess(magic, 3) ) || (isShaderType(magic, 'F') && isShaderVerLess(magic, 5) ) || (isShaderType(magic, 'V') && isShaderVerLess(magic, 5) ) ) { BX_TRACE("Unsupported shader binary version."); release(_mem); return BGFX_INVALID_HANDLE; } const uint32_t shaderHash = bx::hash(_mem->data, _mem->size); const uint16_t idx = m_shaderHashMap.find(shaderHash); if (kInvalidHandle != idx) { ShaderHandle handle = { idx }; shaderIncRef(handle); release(_mem); return handle; } uint32_t hashIn; bx::read(&reader, hashIn, &err); uint32_t hashOut; if (isShaderVerLess(magic, 6) ) { hashOut = hashIn; } else { bx::read(&reader, hashOut, &err); } uint16_t count; bx::read(&reader, count, &err); if (!err.isOk() ) { BX_TRACE("Corrupted shader binary!"); release(_mem); return BGFX_INVALID_HANDLE; } ShaderHandle handle = { m_shaderHandle.alloc() }; if (!isValid(handle) ) { BX_TRACE("Failed to allocate shader handle."); release(_mem); return BGFX_INVALID_HANDLE; } bool ok = m_shaderHashMap.insert(shaderHash, handle.idx); BX_CHECK(ok, "Shader already exists!"); BX_UNUSED(ok); ShaderRef& sr = m_shaderRef[handle.idx]; sr.m_refCount = 1; sr.m_hashIn = hashIn; sr.m_hashOut = hashOut; sr.m_num = 0; sr.m_uniforms = NULL; UniformHandle* uniforms = (UniformHandle*)alloca(count*sizeof(UniformHandle) ); for (uint32_t ii = 0; ii < count; ++ii) { uint8_t nameSize = 0; bx::read(&reader, nameSize, &err); char name[256]; bx::read(&reader, &name, nameSize, &err); name[nameSize] = '\0'; uint8_t type = 0; bx::read(&reader, type, &err); type &= ~BGFX_UNIFORM_MASK; uint8_t num; bx::read(&reader, num, &err); uint16_t regIndex; bx::read(&reader, regIndex, &err); uint16_t regCount; bx::read(&reader, regCount, &err); PredefinedUniform::Enum predefined = nameToPredefinedUniformEnum(name); if (PredefinedUniform::Count == predefined && UniformType::End != UniformType::Enum(type)) { uniforms[sr.m_num] = createUniform(name, UniformType::Enum(type), regCount); sr.m_num++; } } if (0 != sr.m_num) { uint32_t size = sr.m_num*sizeof(UniformHandle); sr.m_uniforms = (UniformHandle*)BX_ALLOC(g_allocator, size); bx::memCopy(sr.m_uniforms, uniforms, size); } CommandBuffer& cmdbuf = getCommandBuffer(CommandBuffer::CreateShader); cmdbuf.write(handle); cmdbuf.write(_mem); setDebugName(convert(handle) ); return handle; } BGFX_API_FUNC(uint16_t getShaderUniforms(ShaderHandle _handle, UniformHandle* _uniforms, uint16_t _max) ) { BGFX_MUTEX_SCOPE(m_resourceApiLock); if (!isValid(_handle) ) { BX_WARN(false, "Passing invalid shader handle to bgfx::getShaderUniforms."); return 0; } ShaderRef& sr = m_shaderRef[_handle.idx]; if (NULL != _uniforms) { bx::memCopy(_uniforms, sr.m_uniforms, bx::min(_max, sr.m_num)*sizeof(UniformHandle) ); } return sr.m_num; } void setName(Handle _handle, const bx::StringView& _name) { char tmp[1024]; uint16_t len = 1+(uint16_t)bx::snprintf(tmp, BX_COUNTOF(tmp), "%sH %d: %.*s", getTypeName(_handle), _handle.idx, _name.getLength(), _name.getPtr() ); CommandBuffer& cmdbuf = getCommandBuffer(CommandBuffer::SetName); cmdbuf.write(_handle); cmdbuf.write(len); cmdbuf.write(tmp, len); } void setDebugName(Handle _handle, const bx::StringView& _name = "") { if (BX_ENABLED(BGFX_CONFIG_DEBUG) ) { setName(_handle, _name); } } BGFX_API_FUNC(void setName(ShaderHandle _handle, const bx::StringView& _name) ) { BGFX_MUTEX_SCOPE(m_resourceApiLock); BGFX_CHECK_HANDLE("setName", m_shaderHandle, _handle); ShaderRef& sr = m_shaderRef[_handle.idx]; sr.m_name.set(_name); setName(convert(_handle), _name); } BGFX_API_FUNC(void destroyShader(ShaderHandle _handle) ) { BGFX_MUTEX_SCOPE(m_resourceApiLock); BGFX_CHECK_HANDLE("destroyShader", m_shaderHandle, _handle); if (!isValid(_handle) ) { BX_WARN(false, "Passing invalid shader handle to bgfx::destroyShader."); return; } shaderDecRef(_handle); } void shaderTakeOwnership(ShaderHandle _handle) { shaderDecRef(_handle); } void shaderIncRef(ShaderHandle _handle) { ShaderRef& sr = m_shaderRef[_handle.idx]; ++sr.m_refCount; } void shaderDecRef(ShaderHandle _handle) { ShaderRef& sr = m_shaderRef[_handle.idx]; int32_t refs = --sr.m_refCount; if (0 == refs) { bool ok = m_submit->free(_handle); BX_UNUSED(ok); BX_CHECK(ok, "Shader handle %d is already destroyed!", _handle.idx); CommandBuffer& cmdbuf = getCommandBuffer(CommandBuffer::DestroyShader); cmdbuf.write(_handle); if (0 != sr.m_num) { for (uint32_t ii = 0, num = sr.m_num; ii < num; ++ii) { destroyUniform(sr.m_uniforms[ii]); } BX_FREE(g_allocator, sr.m_uniforms); sr.m_uniforms = NULL; sr.m_num = 0; } m_shaderHashMap.removeByHandle(_handle.idx); } } BGFX_API_FUNC(ProgramHandle createProgram(ShaderHandle _vsh, ShaderHandle _fsh, bool _destroyShaders) ) { BGFX_MUTEX_SCOPE(m_resourceApiLock); if (!isValid(_vsh) || !isValid(_fsh) ) { BX_TRACE("Vertex/fragment shader is invalid (vsh %d, fsh %d).", _vsh.idx, _fsh.idx); return BGFX_INVALID_HANDLE; } ProgramHandle handle = { m_programHashMap.find(uint32_t(_fsh.idx<<16)|_vsh.idx) }; if (isValid(handle) ) { ProgramRef& pr = m_programRef[handle.idx]; ++pr.m_refCount; shaderIncRef(pr.m_vsh); shaderIncRef(pr.m_fsh); } else { const ShaderRef& vsr = m_shaderRef[_vsh.idx]; const ShaderRef& fsr = m_shaderRef[_fsh.idx]; if (vsr.m_hashOut != fsr.m_hashIn) { BX_TRACE("Vertex shader output doesn't match fragment shader input."); return BGFX_INVALID_HANDLE; } handle.idx = m_programHandle.alloc(); BX_WARN(isValid(handle), "Failed to allocate program handle."); if (isValid(handle) ) { shaderIncRef(_vsh); shaderIncRef(_fsh); ProgramRef& pr = m_programRef[handle.idx]; pr.m_vsh = _vsh; pr.m_fsh = _fsh; pr.m_refCount = 1; const uint32_t key = uint32_t(_fsh.idx<<16)|_vsh.idx; bool ok = m_programHashMap.insert(key, handle.idx); BX_CHECK(ok, "Program already exists (key: %x, handle: %3d)!", key, handle.idx); BX_UNUSED(ok); CommandBuffer& cmdbuf = getCommandBuffer(CommandBuffer::CreateProgram); cmdbuf.write(handle); cmdbuf.write(_vsh); cmdbuf.write(_fsh); } } if (_destroyShaders) { shaderTakeOwnership(_vsh); shaderTakeOwnership(_fsh); } return handle; } BGFX_API_FUNC(ProgramHandle createProgram(ShaderHandle _vsh, bool _destroyShader) ) { BGFX_MUTEX_SCOPE(m_resourceApiLock); if (!isValid(_vsh) ) { BX_WARN(false, "Compute shader is invalid (vsh %d).", _vsh.idx); return BGFX_INVALID_HANDLE; } ProgramHandle handle = { m_programHashMap.find(_vsh.idx) }; if (isValid(handle) ) { ProgramRef& pr = m_programRef[handle.idx]; ++pr.m_refCount; shaderIncRef(pr.m_vsh); } else { handle.idx = m_programHandle.alloc(); BX_WARN(isValid(handle), "Failed to allocate program handle."); if (isValid(handle) ) { shaderIncRef(_vsh); ProgramRef& pr = m_programRef[handle.idx]; pr.m_vsh = _vsh; ShaderHandle fsh = BGFX_INVALID_HANDLE; pr.m_fsh = fsh; pr.m_refCount = 1; const uint32_t key = uint32_t(_vsh.idx); bool ok = m_programHashMap.insert(key, handle.idx); BX_CHECK(ok, "Program already exists (key: %x, handle: %3d)!", key, handle.idx); BX_UNUSED(ok); CommandBuffer& cmdbuf = getCommandBuffer(CommandBuffer::CreateProgram); cmdbuf.write(handle); cmdbuf.write(_vsh); cmdbuf.write(fsh); } } if (_destroyShader) { shaderTakeOwnership(_vsh); } return handle; } BGFX_API_FUNC(void destroyProgram(ProgramHandle _handle) ) { BGFX_MUTEX_SCOPE(m_resourceApiLock); BGFX_CHECK_HANDLE("destroyProgram", m_programHandle, _handle); ProgramRef& pr = m_programRef[_handle.idx]; shaderDecRef(pr.m_vsh); if (isValid(pr.m_fsh) ) { shaderDecRef(pr.m_fsh); } int32_t refs = --pr.m_refCount; if (0 == refs) { bool ok = m_submit->free(_handle); BX_UNUSED(ok); BX_CHECK(ok, "Program handle %d is already destroyed!", _handle.idx); CommandBuffer& cmdbuf = getCommandBuffer(CommandBuffer::DestroyProgram); cmdbuf.write(_handle); m_programHashMap.removeByHandle(_handle.idx); } } BGFX_API_FUNC(TextureHandle createTexture(const Memory* _mem, uint64_t _flags, uint8_t _skip, TextureInfo* _info, BackbufferRatio::Enum _ratio, bool _immutable) ) { BGFX_MUTEX_SCOPE(m_resourceApiLock); TextureInfo ti; if (NULL == _info) { _info = &ti; } bimg::ImageContainer imageContainer; if (bimg::imageParse(imageContainer, _mem->data, _mem->size) ) { calcTextureSize(*_info , (uint16_t)imageContainer.m_width , (uint16_t)imageContainer.m_height , (uint16_t)imageContainer.m_depth , imageContainer.m_cubeMap , imageContainer.m_numMips > 1 , imageContainer.m_numLayers , TextureFormat::Enum(imageContainer.m_format) ); } else { _info->format = TextureFormat::Unknown; _info->storageSize = 0; _info->width = 0; _info->height = 0; _info->depth = 0; _info->numMips = 0; _info->bitsPerPixel = 0; _info->cubeMap = false; return BGFX_INVALID_HANDLE; } _flags |= imageContainer.m_srgb ? BGFX_TEXTURE_SRGB : 0; TextureHandle handle = { m_textureHandle.alloc() }; BX_WARN(isValid(handle), "Failed to allocate texture handle."); if (!isValid(handle) ) { release(_mem); return BGFX_INVALID_HANDLE; } TextureRef& ref = m_textureRef[handle.idx]; ref.init( _ratio , _info->format , _info->storageSize , imageContainer.m_numMips , imageContainer.m_numLayers , 0 != (g_caps.supported & BGFX_CAPS_TEXTURE_DIRECT_ACCESS) , _immutable , 0 != (_flags & BGFX_TEXTURE_RT_MASK) ); if (ref.m_rt) { m_rtMemoryUsed += int64_t(ref.m_storageSize); } else { m_textureMemoryUsed += int64_t(ref.m_storageSize); } CommandBuffer& cmdbuf = getCommandBuffer(CommandBuffer::CreateTexture); cmdbuf.write(handle); cmdbuf.write(_mem); cmdbuf.write(_flags); cmdbuf.write(_skip); setDebugName(convert(handle) ); return handle; } BGFX_API_FUNC(void setName(TextureHandle _handle, const bx::StringView& _name) ) { BGFX_MUTEX_SCOPE(m_resourceApiLock); BGFX_CHECK_HANDLE("setName", m_textureHandle, _handle); TextureRef& ref = m_textureRef[_handle.idx]; ref.m_name.set(_name); setName(convert(_handle), _name); } void setDirectAccessPtr(TextureHandle _handle, void* _ptr) { TextureRef& ref = m_textureRef[_handle.idx]; ref.m_ptr = _ptr; } BGFX_API_FUNC(void* getDirectAccessPtr(TextureHandle _handle) ) { BGFX_MUTEX_SCOPE(m_resourceApiLock); BGFX_CHECK_HANDLE("getDirectAccessPtr", m_textureHandle, _handle); TextureRef& ref = m_textureRef[_handle.idx]; return ref.m_ptr; } BGFX_API_FUNC(void destroyTexture(TextureHandle _handle) ) { BGFX_MUTEX_SCOPE(m_resourceApiLock); BGFX_CHECK_HANDLE("destroyTexture", m_textureHandle, _handle); if (!isValid(_handle) ) { BX_WARN(false, "Passing invalid texture handle to bgfx::destroyTexture"); return; } textureDecRef(_handle); } BGFX_API_FUNC(uint32_t readTexture(TextureHandle _handle, void* _data, uint8_t _mip) ) { BGFX_MUTEX_SCOPE(m_resourceApiLock); BGFX_CHECK_HANDLE("readTexture", m_textureHandle, _handle); const TextureRef& ref = m_textureRef[_handle.idx]; BX_CHECK(_mip < ref.m_numMips, "Invalid mip: %d num mips:", _mip, ref.m_numMips); BX_UNUSED(ref); CommandBuffer& cmdbuf = getCommandBuffer(CommandBuffer::ReadTexture); cmdbuf.write(_handle); cmdbuf.write(_data); cmdbuf.write(_mip); return m_frames + 2; } void resizeTexture(TextureHandle _handle, uint16_t _width, uint16_t _height, uint8_t _numMips, uint16_t _numLayers) { const TextureRef& textureRef = m_textureRef[_handle.idx]; BX_CHECK(BackbufferRatio::Count != textureRef.m_bbRatio, ""); getTextureSizeFromRatio(BackbufferRatio::Enum(textureRef.m_bbRatio), _width, _height); _numMips = calcNumMips(1 < _numMips, _width, _height); BX_TRACE("Resize %3d: %4dx%d %s" , _handle.idx , _width , _height , bimg::getName(bimg::TextureFormat::Enum(textureRef.m_format) ) ); CommandBuffer& cmdbuf = getCommandBuffer(CommandBuffer::ResizeTexture); cmdbuf.write(_handle); cmdbuf.write(_width); cmdbuf.write(_height); cmdbuf.write(_numMips); cmdbuf.write(_numLayers); } void textureTakeOwnership(TextureHandle _handle) { TextureRef& ref = m_textureRef[_handle.idx]; if (!ref.m_owned) { ref.m_owned = true; textureDecRef(_handle); } } void textureIncRef(TextureHandle _handle) { TextureRef& ref = m_textureRef[_handle.idx]; ++ref.m_refCount; } void textureDecRef(TextureHandle _handle) { TextureRef& ref = m_textureRef[_handle.idx]; int32_t refs = --ref.m_refCount; if (0 == refs) { ref.m_name.clear(); if (ref.m_rt) { m_rtMemoryUsed -= int64_t(ref.m_storageSize); } else { m_textureMemoryUsed -= int64_t(ref.m_storageSize); } bool ok = m_submit->free(_handle); BX_UNUSED(ok); BX_CHECK(ok, "Texture handle %d is already destroyed!", _handle.idx); CommandBuffer& cmdbuf = getCommandBuffer(CommandBuffer::DestroyTexture); cmdbuf.write(_handle); } } BGFX_API_FUNC(void updateTexture( TextureHandle _handle , uint8_t _side , uint8_t _mip , uint16_t _x , uint16_t _y , uint16_t _z , uint16_t _width , uint16_t _height , uint16_t _depth , uint16_t _pitch , const Memory* _mem ) ) { BGFX_MUTEX_SCOPE(m_resourceApiLock); const TextureRef& textureRef = m_textureRef[_handle.idx]; if (textureRef.m_immutable) { BX_WARN(false, "Can't update immutable texture."); release(_mem); return; } CommandBuffer& cmdbuf = getCommandBuffer(CommandBuffer::UpdateTexture); cmdbuf.write(_handle); cmdbuf.write(_side); cmdbuf.write(_mip); Rect rect; rect.m_x = _x; rect.m_y = _y; rect.m_width = _width; rect.m_height = _height; cmdbuf.write(rect); cmdbuf.write(_z); cmdbuf.write(_depth); cmdbuf.write(_pitch); cmdbuf.write(_mem); } bool checkFrameBuffer(uint8_t _num, const Attachment* _attachment) const { uint8_t color = 0; uint8_t depth = 0; for (uint32_t ii = 0; ii < _num; ++ii) { TextureHandle texHandle = _attachment[ii].handle; if (bimg::isDepth(bimg::TextureFormat::Enum(m_textureRef[texHandle.idx].m_format))) { ++depth; } else { ++color; } } return color <= g_caps.limits.maxFBAttachments && depth <= 1 ; } BGFX_API_FUNC(FrameBufferHandle createFrameBuffer(uint8_t _num, const Attachment* _attachment, bool _destroyTextures) ) { BGFX_MUTEX_SCOPE(m_resourceApiLock); BX_CHECK(checkFrameBuffer(_num, _attachment) , "Too many frame buffer attachments (num attachments: %d, max color attachments %d)!" , _num , g_caps.limits.maxFBAttachments ); FrameBufferHandle handle = { m_frameBufferHandle.alloc() }; BX_WARN(isValid(handle), "Failed to allocate frame buffer handle."); if (isValid(handle) ) { CommandBuffer& cmdbuf = getCommandBuffer(CommandBuffer::CreateFrameBuffer); cmdbuf.write(handle); cmdbuf.write(false); cmdbuf.write(_num); FrameBufferRef& ref = m_frameBufferRef[handle.idx]; ref.m_window = false; bx::memSet(ref.un.m_th, 0xff, sizeof(ref.un.m_th) ); BackbufferRatio::Enum bbRatio = BackbufferRatio::Enum(m_textureRef[_attachment[0].handle.idx].m_bbRatio); for (uint32_t ii = 0; ii < _num; ++ii) { TextureHandle texHandle = _attachment[ii].handle; BGFX_CHECK_HANDLE("createFrameBuffer texture", m_textureHandle, texHandle); BX_CHECK(bbRatio == m_textureRef[texHandle.idx].m_bbRatio, "Mismatch in texture back-buffer ratio."); BX_UNUSED(bbRatio); ref.un.m_th[ii] = texHandle; textureIncRef(texHandle); } cmdbuf.write(_attachment, sizeof(Attachment) * _num); } if (_destroyTextures) { for (uint32_t ii = 0; ii < _num; ++ii) { textureTakeOwnership(_attachment[ii].handle); } } return handle; } BGFX_API_FUNC(FrameBufferHandle createFrameBuffer(void* _nwh, uint16_t _width, uint16_t _height, TextureFormat::Enum _format, TextureFormat::Enum _depthFormat) ) { BGFX_MUTEX_SCOPE(m_resourceApiLock); FrameBufferHandle handle = { m_frameBufferHandle.alloc() }; BX_WARN(isValid(handle), "Failed to allocate frame buffer handle."); if (isValid(handle) ) { CommandBuffer& cmdbuf = getCommandBuffer(CommandBuffer::CreateFrameBuffer); cmdbuf.write(handle); cmdbuf.write(true); cmdbuf.write(_nwh); cmdbuf.write(_width); cmdbuf.write(_height); cmdbuf.write(_format); cmdbuf.write(_depthFormat); FrameBufferRef& ref = m_frameBufferRef[handle.idx]; ref.m_window = true; ref.un.m_nwh = _nwh; } return handle; } BGFX_API_FUNC(void setName(FrameBufferHandle _handle, const bx::StringView& _name) ) { BGFX_MUTEX_SCOPE(m_resourceApiLock); BGFX_CHECK_HANDLE("setName", m_frameBufferHandle, _handle); FrameBufferRef& ref = m_frameBufferRef[_handle.idx]; ref.m_name.set(_name); // setName(convert(_handle), _name); } BGFX_API_FUNC(TextureHandle getTexture(FrameBufferHandle _handle, uint8_t _attachment) ) { BGFX_MUTEX_SCOPE(m_resourceApiLock); BGFX_CHECK_HANDLE("getTexture", m_frameBufferHandle, _handle); const FrameBufferRef& ref = m_frameBufferRef[_handle.idx]; if (!ref.m_window) { const uint32_t attachment = bx::min(_attachment, BGFX_CONFIG_MAX_FRAME_BUFFER_ATTACHMENTS); return ref.un.m_th[attachment]; } return BGFX_INVALID_HANDLE; } BGFX_API_FUNC(void destroyFrameBuffer(FrameBufferHandle _handle) ) { BGFX_MUTEX_SCOPE(m_resourceApiLock); BGFX_CHECK_HANDLE("destroyFrameBuffer", m_frameBufferHandle, _handle); bool ok = m_submit->free(_handle); BX_UNUSED(ok); BX_CHECK(ok, "Frame buffer handle %d is already destroyed!", _handle.idx); CommandBuffer& cmdbuf = getCommandBuffer(CommandBuffer::DestroyFrameBuffer); cmdbuf.write(_handle); FrameBufferRef& ref = m_frameBufferRef[_handle.idx]; ref.m_name.clear(); if (!ref.m_window) { for (uint32_t ii = 0; ii < BX_COUNTOF(ref.un.m_th); ++ii) { TextureHandle th = ref.un.m_th[ii]; if (isValid(th) ) { textureDecRef(th); } } } } BGFX_API_FUNC(UniformHandle createUniform(const char* _name, UniformType::Enum _type, uint16_t _num) ) { BGFX_MUTEX_SCOPE(m_resourceApiLock); if (PredefinedUniform::Count != nameToPredefinedUniformEnum(_name) ) { BX_TRACE("%s is predefined uniform name.", _name); return BGFX_INVALID_HANDLE; } _num = bx::max(1, _num); uint16_t idx = m_uniformHashMap.find(bx::hash(_name) ); if (kInvalidHandle != idx) { UniformHandle handle = { idx }; UniformRef& uniform = m_uniformRef[handle.idx]; BX_CHECK(uniform.m_type == _type , "Uniform type mismatch (type: %d, expected %d)." , _type , uniform.m_type ); uint32_t oldsize = g_uniformTypeSize[uniform.m_type]; uint32_t newsize = g_uniformTypeSize[_type]; if (oldsize < newsize || uniform.m_num < _num) { uniform.m_type = oldsize < newsize ? _type : uniform.m_type; uniform.m_num = bx::max(uniform.m_num, _num); CommandBuffer& cmdbuf = getCommandBuffer(CommandBuffer::CreateUniform); cmdbuf.write(handle); cmdbuf.write(uniform.m_type); cmdbuf.write(uniform.m_num); uint8_t len = (uint8_t)bx::strLen(_name)+1; cmdbuf.write(len); cmdbuf.write(_name, len); } ++uniform.m_refCount; return handle; } UniformHandle handle = { m_uniformHandle.alloc() }; if (!isValid(handle) ) { BX_TRACE("Failed to allocate uniform handle."); return BGFX_INVALID_HANDLE; } BX_TRACE("Creating uniform (handle %3d) %s", handle.idx, _name); UniformRef& uniform = m_uniformRef[handle.idx]; uniform.m_name.set(_name); uniform.m_refCount = 1; uniform.m_type = _type; uniform.m_num = _num; bool ok = m_uniformHashMap.insert(bx::hash(_name), handle.idx); BX_CHECK(ok, "Uniform already exists (name: %s)!", _name); BX_UNUSED(ok); CommandBuffer& cmdbuf = getCommandBuffer(CommandBuffer::CreateUniform); cmdbuf.write(handle); cmdbuf.write(_type); cmdbuf.write(_num); uint8_t len = (uint8_t)bx::strLen(_name)+1; cmdbuf.write(len); cmdbuf.write(_name, len); return handle; } BGFX_API_FUNC(void getUniformInfo(UniformHandle _handle, UniformInfo& _info) ) { BGFX_MUTEX_SCOPE(m_resourceApiLock); BGFX_CHECK_HANDLE("getUniformInfo", m_uniformHandle, _handle); UniformRef& uniform = m_uniformRef[_handle.idx]; bx::strCopy(_info.name, sizeof(_info.name), uniform.m_name.getPtr() ); _info.type = uniform.m_type; _info.num = uniform.m_num; } BGFX_API_FUNC(void destroyUniform(UniformHandle _handle) ) { BGFX_MUTEX_SCOPE(m_resourceApiLock); BGFX_CHECK_HANDLE("destroyUniform", m_uniformHandle, _handle); UniformRef& uniform = m_uniformRef[_handle.idx]; BX_CHECK(uniform.m_refCount > 0, "Destroying already destroyed uniform %d.", _handle.idx); int32_t refs = --uniform.m_refCount; if (0 == refs) { bool ok = m_submit->free(_handle); BX_UNUSED(ok); BX_CHECK(ok, "Uniform handle %d is already destroyed!", _handle.idx); uniform.m_name.clear(); m_uniformHashMap.removeByHandle(_handle.idx); CommandBuffer& cmdbuf = getCommandBuffer(CommandBuffer::DestroyUniform); cmdbuf.write(_handle); } } BGFX_API_FUNC(OcclusionQueryHandle createOcclusionQuery() ) { BGFX_MUTEX_SCOPE(m_resourceApiLock); OcclusionQueryHandle handle = { m_occlusionQueryHandle.alloc() }; if (isValid(handle) ) { m_submit->m_occlusion[handle.idx] = INT32_MIN; CommandBuffer& cmdbuf = getCommandBuffer(CommandBuffer::InvalidateOcclusionQuery); cmdbuf.write(handle); } return handle; } BGFX_API_FUNC(OcclusionQueryResult::Enum getResult(OcclusionQueryHandle _handle, int32_t* _result) ) { BGFX_MUTEX_SCOPE(m_resourceApiLock); BGFX_CHECK_HANDLE("getResult", m_occlusionQueryHandle, _handle); switch (m_submit->m_occlusion[_handle.idx]) { case 0: return OcclusionQueryResult::Invisible; case INT32_MIN: return OcclusionQueryResult::NoResult; default: break; } if (NULL != _result) { *_result = m_submit->m_occlusion[_handle.idx]; } return OcclusionQueryResult::Visible; } BGFX_API_FUNC(void destroyOcclusionQuery(OcclusionQueryHandle _handle) ) { BGFX_MUTEX_SCOPE(m_resourceApiLock); BGFX_CHECK_HANDLE("destroyOcclusionQuery", m_occlusionQueryHandle, _handle); m_freeOcclusionQueryHandle[m_numFreeOcclusionQueryHandles++] = _handle; } BGFX_API_FUNC(void requestScreenShot(FrameBufferHandle _handle, const char* _filePath) ) { BGFX_MUTEX_SCOPE(m_resourceApiLock); BGFX_CHECK_HANDLE_INVALID_OK("requestScreenShot", m_frameBufferHandle, _handle); if (isValid(_handle) ) { FrameBufferRef& ref = m_frameBufferRef[_handle.idx]; if (!ref.m_window) { BX_TRACE("requestScreenShot can be done only for window frame buffer handles (handle: %d).", _handle.idx); return; } } CommandBuffer& cmdbuf = getCommandBuffer(CommandBuffer::RequestScreenShot); uint16_t len = (uint16_t)bx::strLen(_filePath)+1; cmdbuf.write(_handle); cmdbuf.write(len); cmdbuf.write(_filePath, len); } BGFX_API_FUNC(void setPaletteColor(uint8_t _index, const float _rgba[4]) ) { BGFX_MUTEX_SCOPE(m_resourceApiLock); BX_CHECK(_index < BGFX_CONFIG_MAX_COLOR_PALETTE, "Color palette index out of bounds %d (max: %d)." , _index , BGFX_CONFIG_MAX_COLOR_PALETTE ); bx::memCopy(&m_clearColor[_index][0], _rgba, 16); m_colorPaletteDirty = 2; } BGFX_API_FUNC(void setViewName(ViewId _id, const char* _name) ) { BGFX_MUTEX_SCOPE(m_resourceApiLock); CommandBuffer& cmdbuf = getCommandBuffer(CommandBuffer::UpdateViewName); cmdbuf.write(_id); uint16_t len = (uint16_t)bx::strLen(_name)+1; cmdbuf.write(len); cmdbuf.write(_name, len); } BGFX_API_FUNC(void setViewRect(ViewId _id, uint16_t _x, uint16_t _y, uint16_t _width, uint16_t _height) ) { m_view[_id].setRect(_x, _y, _width, _height); } BGFX_API_FUNC(void setViewScissor(ViewId _id, uint16_t _x, uint16_t _y, uint16_t _width, uint16_t _height) ) { m_view[_id].setScissor(_x, _y, _width, _height); } BGFX_API_FUNC(void setViewClear(ViewId _id, uint16_t _flags, uint32_t _rgba, float _depth, uint8_t _stencil) ) { BX_CHECK(bx::equal(_depth, bx::clamp(_depth, 0.0f, 1.0f), 0.0001f) , "Clear depth value must be between 0.0 and 1.0 (_depth %f)." , _depth ); m_view[_id].setClear(_flags, _rgba, _depth, _stencil); } BGFX_API_FUNC(void setViewClear(ViewId _id, uint16_t _flags, float _depth, uint8_t _stencil, uint8_t _0, uint8_t _1, uint8_t _2, uint8_t _3, uint8_t _4, uint8_t _5, uint8_t _6, uint8_t _7) ) { BX_CHECK(bx::equal(_depth, bx::clamp(_depth, 0.0f, 1.0f), 0.0001f) , "Clear depth value must be between 0.0 and 1.0 (_depth %f)." , _depth ); m_view[_id].setClear(_flags, _depth, _stencil, _0, _1, _2, _3, _4, _5, _6, _7); } BGFX_API_FUNC(void setViewMode(ViewId _id, ViewMode::Enum _mode) ) { m_view[_id].setMode(_mode); } BGFX_API_FUNC(void setViewFrameBuffer(ViewId _id, FrameBufferHandle _handle) ) { BGFX_CHECK_HANDLE_INVALID_OK("setViewFrameBuffer", m_frameBufferHandle, _handle); m_view[_id].setFrameBuffer(_handle); } BGFX_API_FUNC(void setViewTransform(ViewId _id, const void* _view, const void* _proj) ) { m_view[_id].setTransform(_view, _proj); } BGFX_API_FUNC(void resetView(ViewId _id) ) { m_view[_id].reset(); } BGFX_API_FUNC(void setViewOrder(ViewId _id, uint16_t _num, const ViewId* _order) ) { const uint32_t num = bx::min(_id + _num, BGFX_CONFIG_MAX_VIEWS) - _id; if (NULL == _order) { for (uint32_t ii = 0; ii < num; ++ii) { ViewId id = ViewId(ii+_id); m_viewRemap[id] = id; } } else { bx::memCopy(&m_viewRemap[_id], _order, num*sizeof(ViewId) ); } } BGFX_API_FUNC(Encoder* begin(bool _forThread) ); BGFX_API_FUNC(void end(Encoder* _encoder) ); BGFX_API_FUNC(uint32_t frame(bool _capture = false) ); uint32_t getSeqIncr(ViewId _id) { return bx::atomicFetchAndAdd(&m_seq[_id], 1); } void dumpViewStats(); void freeDynamicBuffers(); void freeAllHandles(Frame* _frame); void frameNoRenderWait(); void swap(); // render thread void flip(); RenderFrame::Enum renderFrame(int32_t _msecs = -1); void flushTextureUpdateBatch(CommandBuffer& _cmdbuf); void rendererExecCommands(CommandBuffer& _cmdbuf); #if BGFX_CONFIG_MULTITHREADED void apiSemPost() { if (!m_singleThreaded) { m_apiSem.post(); } } bool apiSemWait(int32_t _msecs = -1) { if (m_singleThreaded) { return true; } BGFX_PROFILER_SCOPE("bgfx/API thread wait", 0xff2040ff); int64_t start = bx::getHPCounter(); bool ok = m_apiSem.wait(_msecs); if (ok) { m_render->m_waitSubmit = bx::getHPCounter()-start; m_submit->m_perfStats.waitSubmit = m_submit->m_waitSubmit; return true; } return false; } void renderSemPost() { if (!m_singleThreaded) { m_renderSem.post(); } } void renderSemWait() { if (!m_singleThreaded) { BGFX_PROFILER_SCOPE("bgfx/Render thread wait", 0xff2040ff); int64_t start = bx::getHPCounter(); bool ok = m_renderSem.wait(); BX_CHECK(ok, "Semaphore wait failed."); BX_UNUSED(ok); m_submit->m_waitRender = bx::getHPCounter() - start; m_submit->m_perfStats.waitRender = m_submit->m_waitRender; } } void encoderApiWait() { uint16_t numEncoders = m_encoderHandle->getNumHandles(); for (uint16_t ii = 1; ii < numEncoders; ++ii) { m_encoderEndSem.wait(); } for (uint16_t ii = 0; ii < numEncoders; ++ii) { uint16_t idx = m_encoderHandle->getHandleAt(ii); m_encoderStats[ii].cpuTimeBegin = m_encoder[idx].m_cpuTimeBegin; m_encoderStats[ii].cpuTimeEnd = m_encoder[idx].m_cpuTimeEnd; } m_submit->m_perfStats.numEncoders = uint8_t(numEncoders); m_encoderHandle->reset(); uint16_t idx = m_encoderHandle->alloc(); BX_CHECK(0 == idx, "Internal encoder handle is not 0 (idx %d).", idx); BX_UNUSED(idx); } bx::Semaphore m_renderSem; bx::Semaphore m_apiSem; bx::Semaphore m_encoderEndSem; bx::Mutex m_encoderApiLock; bx::Mutex m_resourceApiLock; bx::Thread m_thread; #else void apiSemPost() { } bool apiSemWait(int32_t _msecs = -1) { BX_UNUSED(_msecs); return true; } void renderSemPost() { } void renderSemWait() { } void encoderApiWait() { m_encoderStats[0].cpuTimeBegin = m_encoder[0].m_cpuTimeBegin; m_encoderStats[0].cpuTimeEnd = m_encoder[0].m_cpuTimeEnd; m_submit->m_perfStats.numEncoders = 1; } #endif // BGFX_CONFIG_MULTITHREADED EncoderStats* m_encoderStats; Encoder* m_encoder0; EncoderImpl* m_encoder; uint32_t m_numEncoders; bx::HandleAlloc* m_encoderHandle; Frame m_frame[1+(BGFX_CONFIG_MULTITHREADED ? 1 : 0)]; Frame* m_render; Frame* m_submit; uint64_t m_tempKeys[BGFX_CONFIG_MAX_DRAW_CALLS]; RenderItemCount m_tempValues[BGFX_CONFIG_MAX_DRAW_CALLS]; IndexBuffer m_indexBuffers[BGFX_CONFIG_MAX_INDEX_BUFFERS]; VertexBuffer m_vertexBuffers[BGFX_CONFIG_MAX_VERTEX_BUFFERS]; DynamicIndexBuffer m_dynamicIndexBuffers[BGFX_CONFIG_MAX_DYNAMIC_INDEX_BUFFERS]; DynamicVertexBuffer m_dynamicVertexBuffers[BGFX_CONFIG_MAX_DYNAMIC_VERTEX_BUFFERS]; uint16_t m_numFreeDynamicIndexBufferHandles; uint16_t m_numFreeDynamicVertexBufferHandles; uint16_t m_numFreeOcclusionQueryHandles; DynamicIndexBufferHandle m_freeDynamicIndexBufferHandle[BGFX_CONFIG_MAX_DYNAMIC_INDEX_BUFFERS]; DynamicVertexBufferHandle m_freeDynamicVertexBufferHandle[BGFX_CONFIG_MAX_DYNAMIC_VERTEX_BUFFERS]; OcclusionQueryHandle m_freeOcclusionQueryHandle[BGFX_CONFIG_MAX_OCCLUSION_QUERIES]; NonLocalAllocator m_dynIndexBufferAllocator; bx::HandleAllocT m_dynamicIndexBufferHandle; NonLocalAllocator m_dynVertexBufferAllocator; bx::HandleAllocT m_dynamicVertexBufferHandle; bx::HandleAllocT m_indexBufferHandle; bx::HandleAllocT m_layoutHandle; bx::HandleAllocT m_vertexBufferHandle; bx::HandleAllocT m_shaderHandle; bx::HandleAllocT m_programHandle; bx::HandleAllocT m_textureHandle; bx::HandleAllocT m_frameBufferHandle; bx::HandleAllocT m_uniformHandle; bx::HandleAllocT m_occlusionQueryHandle; typedef bx::HandleHashMapT UniformHashMap; UniformHashMap m_uniformHashMap; UniformRef m_uniformRef[BGFX_CONFIG_MAX_UNIFORMS]; typedef bx::HandleHashMapT ShaderHashMap; ShaderHashMap m_shaderHashMap; ShaderRef m_shaderRef[BGFX_CONFIG_MAX_SHADERS]; typedef bx::HandleHashMapT ProgramHashMap; ProgramHashMap m_programHashMap; ProgramRef m_programRef[BGFX_CONFIG_MAX_PROGRAMS]; TextureRef m_textureRef[BGFX_CONFIG_MAX_TEXTURES]; FrameBufferRef m_frameBufferRef[BGFX_CONFIG_MAX_FRAME_BUFFERS]; VertexLayoutRef m_vertexLayoutRef; ViewId m_viewRemap[BGFX_CONFIG_MAX_VIEWS]; uint32_t m_seq[BGFX_CONFIG_MAX_VIEWS]; View m_view[BGFX_CONFIG_MAX_VIEWS]; float m_clearColor[BGFX_CONFIG_MAX_COLOR_PALETTE][4]; uint8_t m_colorPaletteDirty; Init m_init; int64_t m_frameTimeLast; uint32_t m_frames; uint32_t m_debug; int64_t m_rtMemoryUsed; int64_t m_textureMemoryUsed; TextVideoMemBlitter m_textVideoMemBlitter; ClearQuad m_clearQuad; RendererContextI* m_renderCtx; RendererContextI* m_renderMain; RendererContextI* m_renderNoop; bool m_rendererInitialized; bool m_exit; bool m_flipAfterRender; bool m_singleThreaded; bool m_flipped; typedef UpdateBatchT<256> TextureUpdateBatch; BX_ALIGN_DECL_CACHE_LINE(TextureUpdateBatch m_textureUpdateBatch); }; #undef BGFX_API_FUNC } // namespace bgfx #endif // BGFX_P_H_HEADER_GUARD