Updated meshoptimizer.
This commit is contained in:
parent
af49c5d264
commit
9e7273506a
542
3rdparty/meshoptimizer/src/clusterizer.cpp
vendored
542
3rdparty/meshoptimizer/src/clusterizer.cpp
vendored
@ -2,6 +2,7 @@
|
||||
#include "meshoptimizer.h"
|
||||
|
||||
#include <assert.h>
|
||||
#include <float.h>
|
||||
#include <math.h>
|
||||
#include <string.h>
|
||||
|
||||
@ -12,6 +13,62 @@
|
||||
namespace meshopt
|
||||
{
|
||||
|
||||
struct TriangleAdjacency2
|
||||
{
|
||||
unsigned int* counts;
|
||||
unsigned int* offsets;
|
||||
unsigned int* data;
|
||||
};
|
||||
|
||||
static void buildTriangleAdjacency(TriangleAdjacency2& adjacency, const unsigned int* indices, size_t index_count, size_t vertex_count, meshopt_Allocator& allocator)
|
||||
{
|
||||
size_t face_count = index_count / 3;
|
||||
|
||||
// allocate arrays
|
||||
adjacency.counts = allocator.allocate<unsigned int>(vertex_count);
|
||||
adjacency.offsets = allocator.allocate<unsigned int>(vertex_count);
|
||||
adjacency.data = allocator.allocate<unsigned int>(index_count);
|
||||
|
||||
// fill triangle counts
|
||||
memset(adjacency.counts, 0, vertex_count * sizeof(unsigned int));
|
||||
|
||||
for (size_t i = 0; i < index_count; ++i)
|
||||
{
|
||||
assert(indices[i] < vertex_count);
|
||||
|
||||
adjacency.counts[indices[i]]++;
|
||||
}
|
||||
|
||||
// fill offset table
|
||||
unsigned int offset = 0;
|
||||
|
||||
for (size_t i = 0; i < vertex_count; ++i)
|
||||
{
|
||||
adjacency.offsets[i] = offset;
|
||||
offset += adjacency.counts[i];
|
||||
}
|
||||
|
||||
assert(offset == index_count);
|
||||
|
||||
// fill triangle data
|
||||
for (size_t i = 0; i < face_count; ++i)
|
||||
{
|
||||
unsigned int a = indices[i * 3 + 0], b = indices[i * 3 + 1], c = indices[i * 3 + 2];
|
||||
|
||||
adjacency.data[adjacency.offsets[a]++] = unsigned(i);
|
||||
adjacency.data[adjacency.offsets[b]++] = unsigned(i);
|
||||
adjacency.data[adjacency.offsets[c]++] = unsigned(i);
|
||||
}
|
||||
|
||||
// fix offsets that have been disturbed by the previous pass
|
||||
for (size_t i = 0; i < vertex_count; ++i)
|
||||
{
|
||||
assert(adjacency.offsets[i] >= adjacency.counts[i]);
|
||||
|
||||
adjacency.offsets[i] -= adjacency.counts[i];
|
||||
}
|
||||
}
|
||||
|
||||
static void computeBoundingSphere(float result[4], const float points[][3], size_t count)
|
||||
{
|
||||
assert(count > 0);
|
||||
@ -82,63 +139,102 @@ static void computeBoundingSphere(float result[4], const float points[][3], size
|
||||
result[3] = radius;
|
||||
}
|
||||
|
||||
} // namespace meshopt
|
||||
|
||||
size_t meshopt_buildMeshletsBound(size_t index_count, size_t max_vertices, size_t max_triangles)
|
||||
struct Cone
|
||||
{
|
||||
assert(index_count % 3 == 0);
|
||||
assert(max_vertices >= 3);
|
||||
assert(max_triangles >= 1);
|
||||
float px, py, pz;
|
||||
float nx, ny, nz;
|
||||
};
|
||||
|
||||
// meshlet construction is limited by max vertices and max triangles per meshlet
|
||||
// the worst case is that the input is an unindexed stream since this equally stresses both limits
|
||||
// note that we assume that in the worst case, we leave 2 vertices unpacked in each meshlet - if we have space for 3 we can pack any triangle
|
||||
size_t max_vertices_conservative = max_vertices - 2;
|
||||
size_t meshlet_limit_vertices = (index_count + max_vertices_conservative - 1) / max_vertices_conservative;
|
||||
size_t meshlet_limit_triangles = (index_count / 3 + max_triangles - 1) / max_triangles;
|
||||
static float getMeshletScore(float distance2, float spread, float cone_weight, float expected_radius)
|
||||
{
|
||||
float cone = 1.f - spread * cone_weight;
|
||||
float cone_clamped = cone < 1e-3f ? 1e-3f : cone;
|
||||
|
||||
return meshlet_limit_vertices > meshlet_limit_triangles ? meshlet_limit_vertices : meshlet_limit_triangles;
|
||||
return (1 + sqrtf(distance2) / expected_radius * (1 - cone_weight)) * cone_clamped;
|
||||
}
|
||||
|
||||
size_t meshopt_buildMeshlets(meshopt_Meshlet* destination, const unsigned int* indices, size_t index_count, size_t vertex_count, size_t max_vertices, size_t max_triangles)
|
||||
static Cone getMeshletCone(const Cone& acc, unsigned int triangle_count)
|
||||
{
|
||||
assert(index_count % 3 == 0);
|
||||
assert(max_vertices >= 3);
|
||||
assert(max_triangles >= 1);
|
||||
Cone result = acc;
|
||||
|
||||
meshopt_Allocator allocator;
|
||||
float center_scale = triangle_count == 0 ? 0.f : 1.f / float(triangle_count);
|
||||
|
||||
meshopt_Meshlet meshlet;
|
||||
memset(&meshlet, 0, sizeof(meshlet));
|
||||
result.px *= center_scale;
|
||||
result.py *= center_scale;
|
||||
result.pz *= center_scale;
|
||||
|
||||
assert(max_vertices <= sizeof(meshlet.vertices) / sizeof(meshlet.vertices[0]));
|
||||
assert(max_triangles <= sizeof(meshlet.indices) / 3);
|
||||
float axis_length = result.nx * result.nx + result.ny * result.ny + result.nz * result.nz;
|
||||
float axis_scale = axis_length == 0.f ? 0.f : 1.f / sqrtf(axis_length);
|
||||
|
||||
// index of the vertex in the meshlet, 0xff if the vertex isn't used
|
||||
unsigned char* used = allocator.allocate<unsigned char>(vertex_count);
|
||||
memset(used, -1, vertex_count);
|
||||
result.nx *= axis_scale;
|
||||
result.ny *= axis_scale;
|
||||
result.nz *= axis_scale;
|
||||
|
||||
size_t offset = 0;
|
||||
return result;
|
||||
}
|
||||
|
||||
for (size_t i = 0; i < index_count; i += 3)
|
||||
static float computeTriangleCones(Cone* triangles, const unsigned int* indices, size_t index_count, const float* vertex_positions, size_t vertex_count, size_t vertex_positions_stride)
|
||||
{
|
||||
(void)vertex_count;
|
||||
|
||||
size_t vertex_stride_float = vertex_positions_stride / sizeof(float);
|
||||
size_t face_count = index_count / 3;
|
||||
|
||||
float mesh_area = 0;
|
||||
|
||||
for (size_t i = 0; i < face_count; ++i)
|
||||
{
|
||||
unsigned int a = indices[i + 0], b = indices[i + 1], c = indices[i + 2];
|
||||
unsigned int a = indices[i * 3 + 0], b = indices[i * 3 + 1], c = indices[i * 3 + 2];
|
||||
assert(a < vertex_count && b < vertex_count && c < vertex_count);
|
||||
|
||||
const float* p0 = vertex_positions + vertex_stride_float * a;
|
||||
const float* p1 = vertex_positions + vertex_stride_float * b;
|
||||
const float* p2 = vertex_positions + vertex_stride_float * c;
|
||||
|
||||
float p10[3] = {p1[0] - p0[0], p1[1] - p0[1], p1[2] - p0[2]};
|
||||
float p20[3] = {p2[0] - p0[0], p2[1] - p0[1], p2[2] - p0[2]};
|
||||
|
||||
float normalx = p10[1] * p20[2] - p10[2] * p20[1];
|
||||
float normaly = p10[2] * p20[0] - p10[0] * p20[2];
|
||||
float normalz = p10[0] * p20[1] - p10[1] * p20[0];
|
||||
|
||||
float area = sqrtf(normalx * normalx + normaly * normaly + normalz * normalz);
|
||||
float invarea = (area == 0.f) ? 0.f : 1.f / area;
|
||||
|
||||
triangles[i].px = (p0[0] + p1[0] + p2[0]) / 3.f;
|
||||
triangles[i].py = (p0[1] + p1[1] + p2[1]) / 3.f;
|
||||
triangles[i].pz = (p0[2] + p1[2] + p2[2]) / 3.f;
|
||||
|
||||
triangles[i].nx = normalx * invarea;
|
||||
triangles[i].ny = normaly * invarea;
|
||||
triangles[i].nz = normalz * invarea;
|
||||
|
||||
mesh_area += area;
|
||||
}
|
||||
|
||||
return mesh_area;
|
||||
}
|
||||
|
||||
static bool appendMeshlet(meshopt_Meshlet& meshlet, unsigned int a, unsigned int b, unsigned int c, unsigned char* used, meshopt_Meshlet* destination, size_t offset, size_t max_vertices, size_t max_triangles)
|
||||
{
|
||||
unsigned char& av = used[a];
|
||||
unsigned char& bv = used[b];
|
||||
unsigned char& cv = used[c];
|
||||
|
||||
bool result = false;
|
||||
|
||||
unsigned int used_extra = (av == 0xff) + (bv == 0xff) + (cv == 0xff);
|
||||
|
||||
if (meshlet.vertex_count + used_extra > max_vertices || meshlet.triangle_count >= max_triangles)
|
||||
{
|
||||
destination[offset++] = meshlet;
|
||||
destination[offset] = meshlet;
|
||||
|
||||
for (size_t j = 0; j < meshlet.vertex_count; ++j)
|
||||
used[meshlet.vertices[j]] = 0xff;
|
||||
|
||||
memset(&meshlet, 0, sizeof(meshlet));
|
||||
|
||||
result = true;
|
||||
}
|
||||
|
||||
if (av == 0xff)
|
||||
@ -163,6 +259,394 @@ size_t meshopt_buildMeshlets(meshopt_Meshlet* destination, const unsigned int* i
|
||||
meshlet.indices[meshlet.triangle_count][1] = bv;
|
||||
meshlet.indices[meshlet.triangle_count][2] = cv;
|
||||
meshlet.triangle_count++;
|
||||
|
||||
return result;
|
||||
}
|
||||
|
||||
struct KDNode
|
||||
{
|
||||
union
|
||||
{
|
||||
float split;
|
||||
unsigned int index;
|
||||
};
|
||||
|
||||
// leaves: axis = 3, children = number of extra points after this one (0 if 'index' is the only point)
|
||||
// branches: axis != 3, left subtree = skip 1, right subtree = skip 1+children
|
||||
unsigned int axis : 2;
|
||||
unsigned int children : 30;
|
||||
};
|
||||
|
||||
static size_t kdtreePartition(unsigned int* indices, size_t count, const float* points, size_t stride, unsigned int axis, float pivot)
|
||||
{
|
||||
size_t m = 0;
|
||||
|
||||
// invariant: elements in range [0, m) are < pivot, elements in range [m, i) are >= pivot
|
||||
for (size_t i = 0; i < count; ++i)
|
||||
{
|
||||
float v = points[indices[i] * stride + axis];
|
||||
|
||||
// swap(m, i) unconditionally
|
||||
unsigned int t = indices[m];
|
||||
indices[m] = indices[i];
|
||||
indices[i] = t;
|
||||
|
||||
// when v >= pivot, we swap i with m without advancing it, preserving invariants
|
||||
m += v < pivot;
|
||||
}
|
||||
|
||||
return m;
|
||||
}
|
||||
|
||||
static size_t kdtreeBuildLeaf(size_t offset, KDNode* nodes, size_t node_count, unsigned int* indices, size_t count)
|
||||
{
|
||||
assert(offset + count <= node_count);
|
||||
(void)node_count;
|
||||
|
||||
KDNode& result = nodes[offset];
|
||||
|
||||
result.index = indices[0];
|
||||
result.axis = 3;
|
||||
result.children = unsigned(count - 1);
|
||||
|
||||
// all remaining points are stored in nodes immediately following the leaf
|
||||
for (size_t i = 1; i < count; ++i)
|
||||
{
|
||||
KDNode& tail = nodes[offset + i];
|
||||
|
||||
tail.index = indices[i];
|
||||
tail.axis = 3;
|
||||
tail.children = ~0u >> 2; // bogus value to prevent misuse
|
||||
}
|
||||
|
||||
return offset + count;
|
||||
}
|
||||
|
||||
static size_t kdtreeBuild(size_t offset, KDNode* nodes, size_t node_count, const float* points, size_t stride, unsigned int* indices, size_t count, size_t leaf_size)
|
||||
{
|
||||
assert(count > 0);
|
||||
assert(offset < node_count);
|
||||
|
||||
if (count <= leaf_size)
|
||||
return kdtreeBuildLeaf(offset, nodes, node_count, indices, count);
|
||||
|
||||
float mean[3] = {};
|
||||
float vars[3] = {};
|
||||
float runc = 1, runs = 1;
|
||||
|
||||
// gather statistics on the points in the subtree using Welford's algorithm
|
||||
for (size_t i = 0; i < count; ++i, runc += 1.f, runs = 1.f / runc)
|
||||
{
|
||||
const float* point = points + indices[i] * stride;
|
||||
|
||||
for (int k = 0; k < 3; ++k)
|
||||
{
|
||||
float delta = point[k] - mean[k];
|
||||
mean[k] += delta * runs;
|
||||
vars[k] += delta * (point[k] - mean[k]);
|
||||
}
|
||||
}
|
||||
|
||||
// split axis is one where the variance is largest
|
||||
unsigned int axis = vars[0] >= vars[1] && vars[0] >= vars[2] ? 0 : vars[1] >= vars[2] ? 1 : 2;
|
||||
|
||||
float split = mean[axis];
|
||||
size_t middle = kdtreePartition(indices, count, points, stride, axis, split);
|
||||
|
||||
// when the partition is degenerate simply consolidate the points into a single node
|
||||
if (middle <= leaf_size / 2 || middle >= count - leaf_size / 2)
|
||||
return kdtreeBuildLeaf(offset, nodes, node_count, indices, count);
|
||||
|
||||
KDNode& result = nodes[offset];
|
||||
|
||||
result.split = split;
|
||||
result.axis = axis;
|
||||
|
||||
// left subtree is right after our node
|
||||
size_t next_offset = kdtreeBuild(offset + 1, nodes, node_count, points, stride, indices, middle, leaf_size);
|
||||
|
||||
// distance to the right subtree is represented explicitly
|
||||
result.children = unsigned(next_offset - offset - 1);
|
||||
|
||||
return kdtreeBuild(next_offset, nodes, node_count, points, stride, indices + middle, count - middle, leaf_size);
|
||||
}
|
||||
|
||||
static void kdtreeNearest(KDNode* nodes, unsigned int root, const float* points, size_t stride, const unsigned char* emitted_flags, const float* position, unsigned int& result, float& limit)
|
||||
{
|
||||
const KDNode& node = nodes[root];
|
||||
|
||||
if (node.axis == 3)
|
||||
{
|
||||
// leaf
|
||||
for (unsigned int i = 0; i <= node.children; ++i)
|
||||
{
|
||||
unsigned int index = nodes[root + i].index;
|
||||
|
||||
if (emitted_flags[index])
|
||||
continue;
|
||||
|
||||
const float* point = points + index * stride;
|
||||
|
||||
float distance2 =
|
||||
(point[0] - position[0]) * (point[0] - position[0]) +
|
||||
(point[1] - position[1]) * (point[1] - position[1]) +
|
||||
(point[2] - position[2]) * (point[2] - position[2]);
|
||||
float distance = sqrtf(distance2);
|
||||
|
||||
if (distance < limit)
|
||||
{
|
||||
result = index;
|
||||
limit = distance;
|
||||
}
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
// branch; we order recursion to process the node that search position is in first
|
||||
float delta = position[node.axis] - node.split;
|
||||
unsigned int first = (delta <= 0) ? 0 : node.children;
|
||||
unsigned int second = first ^ node.children;
|
||||
|
||||
kdtreeNearest(nodes, root + 1 + first, points, stride, emitted_flags, position, result, limit);
|
||||
|
||||
// only process the other node if it can have a match based on closest distance so far
|
||||
if (fabsf(delta) <= limit)
|
||||
kdtreeNearest(nodes, root + 1 + second, points, stride, emitted_flags, position, result, limit);
|
||||
}
|
||||
}
|
||||
|
||||
} // namespace meshopt
|
||||
|
||||
size_t meshopt_buildMeshletsBound(size_t index_count, size_t max_vertices, size_t max_triangles)
|
||||
{
|
||||
assert(index_count % 3 == 0);
|
||||
assert(max_vertices >= 3);
|
||||
assert(max_triangles >= 1);
|
||||
|
||||
// meshlet construction is limited by max vertices and max triangles per meshlet
|
||||
// the worst case is that the input is an unindexed stream since this equally stresses both limits
|
||||
// note that we assume that in the worst case, we leave 2 vertices unpacked in each meshlet - if we have space for 3 we can pack any triangle
|
||||
size_t max_vertices_conservative = max_vertices - 2;
|
||||
size_t meshlet_limit_vertices = (index_count + max_vertices_conservative - 1) / max_vertices_conservative;
|
||||
size_t meshlet_limit_triangles = (index_count / 3 + max_triangles - 1) / max_triangles;
|
||||
|
||||
return meshlet_limit_vertices > meshlet_limit_triangles ? meshlet_limit_vertices : meshlet_limit_triangles;
|
||||
}
|
||||
|
||||
size_t meshopt_buildMeshlets(meshopt_Meshlet* destination, const unsigned int* indices, size_t index_count, const float* vertex_positions, size_t vertex_count, size_t vertex_positions_stride, size_t max_vertices, size_t max_triangles, float cone_weight)
|
||||
{
|
||||
using namespace meshopt;
|
||||
|
||||
assert(index_count % 3 == 0);
|
||||
assert(max_vertices >= 3);
|
||||
assert(max_triangles >= 1);
|
||||
assert(vertex_positions_stride > 0 && vertex_positions_stride <= 256);
|
||||
assert(vertex_positions_stride % sizeof(float) == 0);
|
||||
|
||||
meshopt_Allocator allocator;
|
||||
|
||||
meshopt_Meshlet meshlet;
|
||||
memset(&meshlet, 0, sizeof(meshlet));
|
||||
|
||||
assert(max_vertices <= sizeof(meshlet.vertices) / sizeof(meshlet.vertices[0]));
|
||||
assert(max_vertices <= 255);
|
||||
assert(max_triangles <= sizeof(meshlet.indices) / 3);
|
||||
|
||||
TriangleAdjacency2 adjacency = {};
|
||||
buildTriangleAdjacency(adjacency, indices, index_count, vertex_count, allocator);
|
||||
|
||||
unsigned int* live_triangles = allocator.allocate<unsigned int>(vertex_count);
|
||||
memcpy(live_triangles, adjacency.counts, vertex_count * sizeof(unsigned int));
|
||||
|
||||
size_t face_count = index_count / 3;
|
||||
|
||||
unsigned char* emitted_flags = allocator.allocate<unsigned char>(face_count);
|
||||
memset(emitted_flags, 0, face_count);
|
||||
|
||||
// for each triangle, precompute centroid & normal to use for scoring
|
||||
Cone* triangles = allocator.allocate<Cone>(face_count);
|
||||
float mesh_area = computeTriangleCones(triangles, indices, index_count, vertex_positions, vertex_count, vertex_positions_stride);
|
||||
|
||||
// assuming each meshlet is a square patch, expected radius is sqrt(expected area)
|
||||
float triangle_area_avg = face_count == 0 ? 0.f : mesh_area / float(face_count) * 0.5f;
|
||||
float meshlet_expected_radius = sqrtf(triangle_area_avg * max_triangles) * 0.5f;
|
||||
|
||||
// build a kd-tree for nearest neighbor lookup
|
||||
unsigned int* kdindices = allocator.allocate<unsigned int>(face_count);
|
||||
for (size_t i = 0; i < face_count; ++i)
|
||||
kdindices[i] = unsigned(i);
|
||||
|
||||
KDNode* nodes = allocator.allocate<KDNode>(face_count * 2);
|
||||
kdtreeBuild(0, nodes, face_count * 2, &triangles[0].px, sizeof(Cone) / sizeof(float), kdindices, face_count, /* leaf_size= */ 8);
|
||||
|
||||
// index of the vertex in the meshlet, 0xff if the vertex isn't used
|
||||
unsigned char* used = allocator.allocate<unsigned char>(vertex_count);
|
||||
memset(used, -1, vertex_count);
|
||||
|
||||
size_t offset = 0;
|
||||
|
||||
Cone meshlet_cone_acc = {};
|
||||
|
||||
for (;;)
|
||||
{
|
||||
unsigned int best_triangle = ~0u;
|
||||
unsigned int best_extra = 5;
|
||||
float best_score = FLT_MAX;
|
||||
|
||||
Cone meshlet_cone = getMeshletCone(meshlet_cone_acc, meshlet.triangle_count);
|
||||
|
||||
for (size_t i = 0; i < meshlet.vertex_count; ++i)
|
||||
{
|
||||
unsigned int index = meshlet.vertices[i];
|
||||
|
||||
unsigned int* neighbours = &adjacency.data[0] + adjacency.offsets[index];
|
||||
size_t neighbours_size = adjacency.counts[index];
|
||||
|
||||
for (size_t j = 0; j < neighbours_size; ++j)
|
||||
{
|
||||
unsigned int triangle = neighbours[j];
|
||||
assert(!emitted_flags[triangle]);
|
||||
|
||||
unsigned int a = indices[triangle * 3 + 0], b = indices[triangle * 3 + 1], c = indices[triangle * 3 + 2];
|
||||
assert(a < vertex_count && b < vertex_count && c < vertex_count);
|
||||
|
||||
unsigned int extra = (used[a] == 0xff) + (used[b] == 0xff) + (used[c] == 0xff);
|
||||
|
||||
// triangles that don't add new vertices to meshlets are max. priority
|
||||
if (extra != 0)
|
||||
{
|
||||
// artificially increase the priority of dangling triangles as they're expensive to add to new meshlets
|
||||
if (live_triangles[a] == 1 || live_triangles[b] == 1 || live_triangles[c] == 1)
|
||||
extra = 0;
|
||||
|
||||
extra++;
|
||||
}
|
||||
|
||||
// since topology-based priority is always more important than the score, we can skip scoring in some cases
|
||||
if (extra > best_extra)
|
||||
continue;
|
||||
|
||||
const Cone& tri_cone = triangles[triangle];
|
||||
|
||||
float distance2 =
|
||||
(tri_cone.px - meshlet_cone.px) * (tri_cone.px - meshlet_cone.px) +
|
||||
(tri_cone.py - meshlet_cone.py) * (tri_cone.py - meshlet_cone.py) +
|
||||
(tri_cone.pz - meshlet_cone.pz) * (tri_cone.pz - meshlet_cone.pz);
|
||||
|
||||
float spread = tri_cone.nx * meshlet_cone.nx + tri_cone.ny * meshlet_cone.ny + tri_cone.nz * meshlet_cone.nz;
|
||||
|
||||
float score = getMeshletScore(distance2, spread, cone_weight, meshlet_expected_radius);
|
||||
|
||||
// note that topology-based priority is always more important than the score
|
||||
// this helps maintain reasonable effectiveness of meshlet data and reduces scoring cost
|
||||
if (extra < best_extra || score < best_score)
|
||||
{
|
||||
best_triangle = triangle;
|
||||
best_extra = extra;
|
||||
best_score = score;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
if (best_triangle == ~0u)
|
||||
{
|
||||
float position[3] = {meshlet_cone.px, meshlet_cone.py, meshlet_cone.pz};
|
||||
unsigned int index = ~0u;
|
||||
float limit = FLT_MAX;
|
||||
|
||||
kdtreeNearest(nodes, 0, &triangles[0].px, sizeof(Cone) / sizeof(float), emitted_flags, position, index, limit);
|
||||
|
||||
best_triangle = index;
|
||||
}
|
||||
|
||||
if (best_triangle == ~0u)
|
||||
break;
|
||||
|
||||
unsigned int a = indices[best_triangle * 3 + 0], b = indices[best_triangle * 3 + 1], c = indices[best_triangle * 3 + 2];
|
||||
assert(a < vertex_count && b < vertex_count && c < vertex_count);
|
||||
|
||||
// add meshlet to the output; when the current meshlet is full we reset the accumulated bounds
|
||||
if (appendMeshlet(meshlet, a, b, c, used, destination, offset, max_vertices, max_triangles))
|
||||
{
|
||||
offset++;
|
||||
memset(&meshlet_cone_acc, 0, sizeof(meshlet_cone_acc));
|
||||
}
|
||||
|
||||
live_triangles[a]--;
|
||||
live_triangles[b]--;
|
||||
live_triangles[c]--;
|
||||
|
||||
// remove emitted triangle from adjacency data
|
||||
// this makes sure that we spend less time traversing these lists on subsequent iterations
|
||||
for (size_t k = 0; k < 3; ++k)
|
||||
{
|
||||
unsigned int index = indices[best_triangle * 3 + k];
|
||||
|
||||
unsigned int* neighbours = &adjacency.data[0] + adjacency.offsets[index];
|
||||
size_t neighbours_size = adjacency.counts[index];
|
||||
|
||||
for (size_t i = 0; i < neighbours_size; ++i)
|
||||
{
|
||||
unsigned int tri = neighbours[i];
|
||||
|
||||
if (tri == best_triangle)
|
||||
{
|
||||
neighbours[i] = neighbours[neighbours_size - 1];
|
||||
adjacency.counts[index]--;
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// update aggregated meshlet cone data for scoring subsequent triangles
|
||||
meshlet_cone_acc.px += triangles[best_triangle].px;
|
||||
meshlet_cone_acc.py += triangles[best_triangle].py;
|
||||
meshlet_cone_acc.pz += triangles[best_triangle].pz;
|
||||
meshlet_cone_acc.nx += triangles[best_triangle].nx;
|
||||
meshlet_cone_acc.ny += triangles[best_triangle].ny;
|
||||
meshlet_cone_acc.nz += triangles[best_triangle].nz;
|
||||
|
||||
emitted_flags[best_triangle] = 1;
|
||||
}
|
||||
|
||||
if (meshlet.triangle_count)
|
||||
destination[offset++] = meshlet;
|
||||
|
||||
assert(offset <= meshopt_buildMeshletsBound(index_count, max_vertices, max_triangles));
|
||||
|
||||
return offset;
|
||||
}
|
||||
|
||||
size_t meshopt_buildMeshletsScan(meshopt_Meshlet* destination, const unsigned int* indices, size_t index_count, size_t vertex_count, size_t max_vertices, size_t max_triangles)
|
||||
{
|
||||
using namespace meshopt;
|
||||
|
||||
assert(index_count % 3 == 0);
|
||||
assert(max_vertices >= 3);
|
||||
assert(max_triangles >= 1);
|
||||
|
||||
meshopt_Allocator allocator;
|
||||
|
||||
meshopt_Meshlet meshlet;
|
||||
memset(&meshlet, 0, sizeof(meshlet));
|
||||
|
||||
assert(max_vertices <= sizeof(meshlet.vertices) / sizeof(meshlet.vertices[0]));
|
||||
assert(max_vertices <= 255);
|
||||
assert(max_triangles <= sizeof(meshlet.indices) / 3);
|
||||
|
||||
// index of the vertex in the meshlet, 0xff if the vertex isn't used
|
||||
unsigned char* used = allocator.allocate<unsigned char>(vertex_count);
|
||||
memset(used, -1, vertex_count);
|
||||
|
||||
size_t offset = 0;
|
||||
|
||||
for (size_t i = 0; i < index_count; i += 3)
|
||||
{
|
||||
unsigned int a = indices[i + 0], b = indices[i + 1], c = indices[i + 2];
|
||||
assert(a < vertex_count && b < vertex_count && c < vertex_count);
|
||||
|
||||
// appends triangle to the meshlet and writes previous meshlet to the output if full
|
||||
offset += appendMeshlet(meshlet, a, b, c, used, destination, offset, max_vertices, max_triangles);
|
||||
}
|
||||
|
||||
if (meshlet.triangle_count)
|
||||
|
24
3rdparty/meshoptimizer/src/meshoptimizer.h
vendored
24
3rdparty/meshoptimizer/src/meshoptimizer.h
vendored
@ -383,12 +383,16 @@ struct meshopt_Meshlet
|
||||
* Experimental: Meshlet builder
|
||||
* Splits the mesh into a set of meshlets where each meshlet has a micro index buffer indexing into meshlet vertices that refer to the original vertex buffer
|
||||
* The resulting data can be used to render meshes using NVidia programmable mesh shading pipeline, or in other cluster-based renderers.
|
||||
* For maximum efficiency the index buffer being converted has to be optimized for vertex cache first.
|
||||
* When using buildMeshlets, vertex positions need to be provided to minimize the size of the resulting clusters.
|
||||
* When using buildMeshletsScan, for maximum efficiency the index buffer being converted has to be optimized for vertex cache first.
|
||||
*
|
||||
* destination must contain enough space for all meshlets, worst case size can be computed with meshopt_buildMeshletsBound
|
||||
* vertex_positions should have float3 position in the first 12 bytes of each vertex - similar to glVertexPointer
|
||||
* max_vertices and max_triangles can't exceed limits statically declared in meshopt_Meshlet (max_vertices <= 64, max_triangles <= 126)
|
||||
* cone_weight should be set to 0 when cone culling is not used, and a value between 0 and 1 otherwise to balance between cluster size and cone culling efficiency
|
||||
*/
|
||||
MESHOPTIMIZER_EXPERIMENTAL size_t meshopt_buildMeshlets(struct meshopt_Meshlet* destination, const unsigned int* indices, size_t index_count, size_t vertex_count, size_t max_vertices, size_t max_triangles);
|
||||
MESHOPTIMIZER_EXPERIMENTAL size_t meshopt_buildMeshlets(struct meshopt_Meshlet* destination, const unsigned int* indices, size_t index_count, const float* vertex_positions, size_t vertex_count, size_t vertex_positions_stride, size_t max_vertices, size_t max_triangles, float cone_weight);
|
||||
MESHOPTIMIZER_EXPERIMENTAL size_t meshopt_buildMeshletsScan(struct meshopt_Meshlet* destination, const unsigned int* indices, size_t index_count, size_t vertex_count, size_t max_vertices, size_t max_triangles);
|
||||
MESHOPTIMIZER_EXPERIMENTAL size_t meshopt_buildMeshletsBound(size_t index_count, size_t max_vertices, size_t max_triangles);
|
||||
|
||||
struct meshopt_Bounds
|
||||
@ -547,7 +551,9 @@ inline meshopt_OverdrawStatistics meshopt_analyzeOverdraw(const T* indices, size
|
||||
template <typename T>
|
||||
inline meshopt_VertexFetchStatistics meshopt_analyzeVertexFetch(const T* indices, size_t index_count, size_t vertex_count, size_t vertex_size);
|
||||
template <typename T>
|
||||
inline size_t meshopt_buildMeshlets(meshopt_Meshlet* destination, const T* indices, size_t index_count, size_t vertex_count, size_t max_vertices, size_t max_triangles);
|
||||
inline size_t meshopt_buildMeshlets(meshopt_Meshlet* destination, const T* indices, size_t index_count, const float* vertex_positions, size_t vertex_count, size_t vertex_positions_stride, size_t max_vertices, size_t max_triangles, float cone_weight);
|
||||
template <typename T>
|
||||
inline size_t meshopt_buildMeshletsScan(meshopt_Meshlet* destination, const T* indices, size_t index_count, size_t vertex_count, size_t max_vertices, size_t max_triangles);
|
||||
template <typename T>
|
||||
inline meshopt_Bounds meshopt_computeClusterBounds(const T* indices, size_t index_count, const float* vertex_positions, size_t vertex_count, size_t vertex_positions_stride);
|
||||
template <typename T>
|
||||
@ -908,11 +914,19 @@ inline meshopt_VertexFetchStatistics meshopt_analyzeVertexFetch(const T* indices
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
inline size_t meshopt_buildMeshlets(meshopt_Meshlet* destination, const T* indices, size_t index_count, size_t vertex_count, size_t max_vertices, size_t max_triangles)
|
||||
inline size_t meshopt_buildMeshlets(meshopt_Meshlet* destination, const T* indices, size_t index_count, const float* vertex_positions, size_t vertex_count, size_t vertex_positions_stride, size_t max_vertices, size_t max_triangles, float cone_weight)
|
||||
{
|
||||
meshopt_IndexAdapter<T> in(0, indices, index_count);
|
||||
|
||||
return meshopt_buildMeshlets(destination, in.data, index_count, vertex_count, max_vertices, max_triangles);
|
||||
return meshopt_buildMeshlets(destination, in.data, index_count, vertex_positions, vertex_count, vertex_positions_stride, max_vertices, max_triangles, cone_weight);
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
inline size_t meshopt_buildMeshletsScan(meshopt_Meshlet* destination, const T* indices, size_t index_count, size_t vertex_count, size_t max_vertices, size_t max_triangles)
|
||||
{
|
||||
meshopt_IndexAdapter<T> in(0, indices, index_count);
|
||||
|
||||
return meshopt_buildMeshletsScan(destination, in.data, index_count, vertex_count, max_vertices, max_triangles);
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
|
Loading…
Reference in New Issue
Block a user