Updated spirv-cross.

This commit is contained in:
Бранимир Караџић 2020-09-19 20:13:09 -07:00
parent 88fdc62d2b
commit 847d79dc11
5 changed files with 189 additions and 85 deletions

View File

@ -1652,6 +1652,148 @@ size_t Compiler::get_declared_struct_size_runtime_array(const SPIRType &type, si
return size;
}
uint32_t Compiler::evaluate_spec_constant_u32(const SPIRConstantOp &spec) const
{
auto &result_type = get<SPIRType>(spec.basetype);
if (result_type.basetype != SPIRType::UInt && result_type.basetype != SPIRType::Int && result_type.basetype != SPIRType::Boolean)
SPIRV_CROSS_THROW("Only 32-bit integers and booleans are currently supported when evaluating specialization constants.\n");
if (!is_scalar(result_type))
SPIRV_CROSS_THROW("Spec constant evaluation must be a scalar.\n");
uint32_t value = 0;
const auto eval_u32 = [&](uint32_t id) -> uint32_t {
auto &type = expression_type(id);
if (type.basetype != SPIRType::UInt && type.basetype != SPIRType::Int && type.basetype != SPIRType::Boolean)
SPIRV_CROSS_THROW("Only 32-bit integers and booleans are currently supported when evaluating specialization constants.\n");
if (!is_scalar(type))
SPIRV_CROSS_THROW("Spec constant evaluation must be a scalar.\n");
if (const auto *c = this->maybe_get<SPIRConstant>(id))
return c->scalar();
else
return evaluate_spec_constant_u32(this->get<SPIRConstantOp>(id));
};
#define binary_spec_op(op, binary_op) \
case Op##op: value = eval_u32(spec.arguments[0]) binary_op eval_u32(spec.arguments[1]); break
#define binary_spec_op_cast(op, binary_op, type) \
case Op##op: value = uint32_t(type(eval_u32(spec.arguments[0])) binary_op type(eval_u32(spec.arguments[1]))); break
// Support the basic opcodes which are typically used when computing array sizes.
switch (spec.opcode)
{
binary_spec_op(IAdd, +);
binary_spec_op(ISub, -);
binary_spec_op(IMul, *);
binary_spec_op(BitwiseAnd, &);
binary_spec_op(BitwiseOr, |);
binary_spec_op(BitwiseXor, ^);
binary_spec_op(LogicalAnd, &);
binary_spec_op(LogicalOr, |);
binary_spec_op(ShiftLeftLogical, <<);
binary_spec_op(ShiftRightLogical, >>);
binary_spec_op_cast(ShiftRightArithmetic, >>, int32_t);
binary_spec_op(LogicalEqual, ==);
binary_spec_op(LogicalNotEqual, !=);
binary_spec_op(IEqual, ==);
binary_spec_op(INotEqual, !=);
binary_spec_op(ULessThan, <);
binary_spec_op(ULessThanEqual, <=);
binary_spec_op(UGreaterThan, >);
binary_spec_op(UGreaterThanEqual, >=);
binary_spec_op_cast(SLessThan, <, int32_t);
binary_spec_op_cast(SLessThanEqual, <=, int32_t);
binary_spec_op_cast(SGreaterThan, >, int32_t);
binary_spec_op_cast(SGreaterThanEqual, >=, int32_t);
#undef binary_spec_op
#undef binary_spec_op_cast
case OpLogicalNot:
value = uint32_t(!eval_u32(spec.arguments[0]));
break;
case OpNot:
value = ~eval_u32(spec.arguments[0]);
break;
case OpSNegate:
value = -eval_u32(spec.arguments[0]);
break;
case OpSelect:
value = eval_u32(spec.arguments[0]) ? eval_u32(spec.arguments[1]) : eval_u32(spec.arguments[2]);
break;
case OpUMod:
{
uint32_t a = eval_u32(spec.arguments[0]);
uint32_t b = eval_u32(spec.arguments[1]);
if (b == 0)
SPIRV_CROSS_THROW("Undefined behavior in UMod, b == 0.\n");
value = a % b;
break;
}
case OpSRem:
{
auto a = int32_t(eval_u32(spec.arguments[0]));
auto b = int32_t(eval_u32(spec.arguments[1]));
if (b == 0)
SPIRV_CROSS_THROW("Undefined behavior in SRem, b == 0.\n");
value = a % b;
break;
}
case OpSMod:
{
auto a = int32_t(eval_u32(spec.arguments[0]));
auto b = int32_t(eval_u32(spec.arguments[1]));
if (b == 0)
SPIRV_CROSS_THROW("Undefined behavior in SMod, b == 0.\n");
auto v = a % b;
// Makes sure we match the sign of b, not a.
if ((b < 0 && v > 0) || (b > 0 && v < 0))
v += b;
value = v;
break;
}
case OpUDiv:
{
uint32_t a = eval_u32(spec.arguments[0]);
uint32_t b = eval_u32(spec.arguments[1]);
if (b == 0)
SPIRV_CROSS_THROW("Undefined behavior in UDiv, b == 0.\n");
value = a / b;
break;
}
case OpSDiv:
{
auto a = int32_t(eval_u32(spec.arguments[0]));
auto b = int32_t(eval_u32(spec.arguments[1]));
if (b == 0)
SPIRV_CROSS_THROW("Undefined behavior in SDiv, b == 0.\n");
value = a / b;
break;
}
default:
SPIRV_CROSS_THROW("Unsupported spec constant opcode for evaluation.\n");
}
return value;
}
uint32_t Compiler::evaluate_constant_u32(uint32_t id) const
{
if (const auto *c = maybe_get<SPIRConstant>(id))
return c->scalar();
else
return evaluate_spec_constant_u32(get<SPIRConstantOp>(id));
}
size_t Compiler::get_declared_struct_member_size(const SPIRType &struct_type, uint32_t index) const
{
if (struct_type.member_types.empty())
@ -1686,7 +1828,7 @@ size_t Compiler::get_declared_struct_member_size(const SPIRType &struct_type, ui
{
// For arrays, we can use ArrayStride to get an easy check.
bool array_size_literal = type.array_size_literal.back();
uint32_t array_size = array_size_literal ? type.array.back() : get<SPIRConstant>(type.array.back()).scalar();
uint32_t array_size = array_size_literal ? type.array.back() : evaluate_constant_u32(type.array.back());
return type_struct_member_array_stride(struct_type, index) * array_size;
}
else if (type.basetype == SPIRType::Struct)

View File

@ -1060,6 +1060,9 @@ protected:
bool flush_phi_required(BlockID from, BlockID to) const;
uint32_t evaluate_spec_constant_u32(const SPIRConstantOp &spec) const;
uint32_t evaluate_constant_u32(uint32_t id) const;
private:
// Used only to implement the old deprecated get_entry_point() interface.
const SPIREntryPoint &get_first_entry_point(const std::string &name) const;

View File

@ -6755,7 +6755,7 @@ void CompilerGLSL::emit_subgroup_op(const Instruction &i)
uint32_t result_type = ops[0];
uint32_t id = ops[1];
auto scope = static_cast<Scope>(get<SPIRConstant>(ops[2]).scalar());
auto scope = static_cast<Scope>(evaluate_constant_u32(ops[2]));
if (scope != ScopeSubgroup)
SPIRV_CROSS_THROW("Only subgroup scope is supported.");
@ -6889,7 +6889,7 @@ case OpGroupNonUniform##op: \
case OpGroupNonUniformQuadSwap:
{
uint32_t direction = get<SPIRConstant>(ops[4]).scalar();
uint32_t direction = evaluate_constant_u32(ops[4]);
if (direction == 0)
emit_unary_func_op(result_type, id, ops[3], "subgroupQuadSwapHorizontal");
else if (direction == 1)
@ -7635,7 +7635,7 @@ string CompilerGLSL::access_chain_internal(uint32_t base, const uint32_t *indice
else if (type->basetype == SPIRType::Struct)
{
if (!is_literal)
index = get<SPIRConstant>(index).scalar();
index = evaluate_constant_u32(index);
if (index >= type->member_types.size())
SPIRV_CROSS_THROW("Member index is out of bounds!");
@ -8156,7 +8156,7 @@ std::pair<std::string, uint32_t> CompilerGLSL::flattened_access_chain_offset(
// We also check if this member is a builtin, since we then replace the entire expression with the builtin one.
else if (type->basetype == SPIRType::Struct)
{
index = get<SPIRConstant>(index).scalar();
index = evaluate_constant_u32(index);
if (index >= type->member_types.size())
SPIRV_CROSS_THROW("Member index is out of bounds!");
@ -8184,7 +8184,7 @@ std::pair<std::string, uint32_t> CompilerGLSL::flattened_access_chain_offset(
auto *constant = maybe_get<SPIRConstant>(index);
if (constant)
{
index = get<SPIRConstant>(index).scalar();
index = evaluate_constant_u32(index);
offset += index * (row_major_matrix_needs_conversion ? (type->width / 8) : matrix_stride);
}
else
@ -8213,7 +8213,7 @@ std::pair<std::string, uint32_t> CompilerGLSL::flattened_access_chain_offset(
auto *constant = maybe_get<SPIRConstant>(index);
if (constant)
{
index = get<SPIRConstant>(index).scalar();
index = evaluate_constant_u32(index);
offset += index * (row_major_matrix_needs_conversion ? matrix_stride : (type->width / 8));
}
else
@ -10805,14 +10805,14 @@ void CompilerGLSL::emit_instruction(const Instruction &instruction)
if (opcode == OpMemoryBarrier)
{
memory = get<SPIRConstant>(ops[0]).scalar();
semantics = get<SPIRConstant>(ops[1]).scalar();
memory = evaluate_constant_u32(ops[0]);
semantics = evaluate_constant_u32(ops[1]);
}
else
{
execution_scope = get<SPIRConstant>(ops[0]).scalar();
memory = get<SPIRConstant>(ops[1]).scalar();
semantics = get<SPIRConstant>(ops[2]).scalar();
execution_scope = evaluate_constant_u32(ops[0]);
memory = evaluate_constant_u32(ops[1]);
semantics = evaluate_constant_u32(ops[2]);
}
if (execution_scope == ScopeSubgroup || memory == ScopeSubgroup)
@ -10841,8 +10841,8 @@ void CompilerGLSL::emit_instruction(const Instruction &instruction)
if (next && next->op == OpControlBarrier)
{
auto *next_ops = stream(*next);
uint32_t next_memory = get<SPIRConstant>(next_ops[1]).scalar();
uint32_t next_semantics = get<SPIRConstant>(next_ops[2]).scalar();
uint32_t next_memory = evaluate_constant_u32(next_ops[1]);
uint32_t next_semantics = evaluate_constant_u32(next_ops[2]);
next_semantics = mask_relevant_memory_semantics(next_semantics);
bool memory_scope_covered = false;
@ -11795,15 +11795,7 @@ uint32_t CompilerGLSL::to_array_size_literal(const SPIRType &type, uint32_t inde
{
// Use the default spec constant value.
// This is the best we can do.
uint32_t array_size_id = type.array[index];
// Explicitly check for this case. The error message you would get (bad cast) makes no sense otherwise.
if (ir.ids[array_size_id].get_type() == TypeConstantOp)
SPIRV_CROSS_THROW("An array size was found to be an OpSpecConstantOp. This is not supported since "
"SPIRV-Cross cannot deduce the actual size here.");
uint32_t array_size = get<SPIRConstant>(array_size_id).scalar();
return array_size;
return evaluate_constant_u32(type.array[index]);
}
}
@ -12740,64 +12732,37 @@ void CompilerGLSL::branch(BlockID from, uint32_t cond, BlockID true_block, Block
auto &from_block = get<SPIRBlock>(from);
BlockID merge_block = from_block.merge == SPIRBlock::MergeSelection ? from_block.next_block : BlockID(0);
// If we branch directly to a selection merge target, we don't need a code path.
// This covers both merge out of if () / else () as well as a break for switch blocks.
bool true_sub = !is_conditional(true_block);
bool false_sub = !is_conditional(false_block);
// If we branch directly to our selection merge target, we don't need a code path.
bool true_block_needs_code = true_block != merge_block || flush_phi_required(from, true_block);
bool false_block_needs_code = false_block != merge_block || flush_phi_required(from, false_block);
bool true_block_is_selection_merge = true_block == merge_block;
bool false_block_is_selection_merge = false_block == merge_block;
if (!true_block_needs_code && !false_block_needs_code)
return;
if (true_sub)
emit_block_hints(get<SPIRBlock>(from));
if (true_block_needs_code)
{
emit_block_hints(get<SPIRBlock>(from));
statement("if (", to_expression(cond), ")");
begin_scope();
branch(from, true_block);
end_scope();
// If we merge to continue, we handle that explicitly in emit_block_chain(),
// so there is no need to branch to it directly here.
// break; is required to handle ladder fallthrough cases, so keep that in for now, even
// if we could potentially handle it in emit_block_chain().
if (false_sub || (!false_block_is_selection_merge && is_continue(false_block)) || is_break(false_block))
if (false_block_needs_code)
{
statement("else");
begin_scope();
branch(from, false_block);
end_scope();
}
else if (flush_phi_required(from, false_block))
{
statement("else");
begin_scope();
flush_phi(from, false_block);
end_scope();
}
}
else if (false_sub)
else if (false_block_needs_code)
{
// Only need false path, use negative conditional.
emit_block_hints(get<SPIRBlock>(from));
statement("if (!", to_enclosed_expression(cond), ")");
begin_scope();
branch(from, false_block);
end_scope();
if ((!true_block_is_selection_merge && is_continue(true_block)) || is_break(true_block))
{
statement("else");
begin_scope();
branch(from, true_block);
end_scope();
}
else if (flush_phi_required(from, true_block))
{
statement("else");
begin_scope();
flush_phi(from, true_block);
end_scope();
}
}
}

View File

@ -790,7 +790,7 @@ uint32_t CompilerHLSL::type_to_consumed_locations(const SPIRType &type) const
if (type.array_size_literal[i])
array_multiplier *= type.array[i];
else
array_multiplier *= get<SPIRConstant>(type.array[i]).scalar();
array_multiplier *= evaluate_constant_u32(type.array[i]);
}
elements += array_multiplier * type.columns;
}
@ -2860,7 +2860,7 @@ void CompilerHLSL::emit_texture_op(const Instruction &i, bool sparse)
}
else if (gather)
{
uint32_t comp_num = get<SPIRConstant>(comp).scalar();
uint32_t comp_num = evaluate_constant_u32(comp);
if (hlsl_options.shader_model >= 50)
{
switch (comp_num)
@ -4454,7 +4454,7 @@ void CompilerHLSL::emit_subgroup_op(const Instruction &i)
uint32_t result_type = ops[0];
uint32_t id = ops[1];
auto scope = static_cast<Scope>(get<SPIRConstant>(ops[2]).scalar());
auto scope = static_cast<Scope>(evaluate_constant_u32(ops[2]));
if (scope != ScopeSubgroup)
SPIRV_CROSS_THROW("Only subgroup scope is supported.");
@ -4611,7 +4611,7 @@ case OpGroupNonUniform##op: \
case OpGroupNonUniformQuadSwap:
{
uint32_t direction = get<SPIRConstant>(ops[4]).scalar();
uint32_t direction = evaluate_constant_u32(ops[4]);
if (direction == 0)
emit_unary_func_op(result_type, id, ops[3], "QuadReadAcrossX");
else if (direction == 1)
@ -5269,13 +5269,13 @@ void CompilerHLSL::emit_instruction(const Instruction &instruction)
if (opcode == OpMemoryBarrier)
{
memory = get<SPIRConstant>(ops[0]).scalar();
semantics = get<SPIRConstant>(ops[1]).scalar();
memory = evaluate_constant_u32(ops[0]);
semantics = evaluate_constant_u32(ops[1]);
}
else
{
memory = get<SPIRConstant>(ops[1]).scalar();
semantics = get<SPIRConstant>(ops[2]).scalar();
memory = evaluate_constant_u32(ops[1]);
semantics = evaluate_constant_u32(ops[2]);
}
if (memory == ScopeSubgroup)
@ -5295,8 +5295,8 @@ void CompilerHLSL::emit_instruction(const Instruction &instruction)
if (next && next->op == OpControlBarrier)
{
auto *next_ops = stream(*next);
uint32_t next_memory = get<SPIRConstant>(next_ops[1]).scalar();
uint32_t next_semantics = get<SPIRConstant>(next_ops[2]).scalar();
uint32_t next_memory = evaluate_constant_u32(next_ops[1]);
uint32_t next_semantics = evaluate_constant_u32(next_ops[2]);
next_semantics = mask_relevant_memory_semantics(next_semantics);
// There is no "just execution barrier" in HLSL.

View File

@ -7175,8 +7175,8 @@ void CompilerMSL::emit_barrier(uint32_t id_exe_scope, uint32_t id_mem_scope, uin
if (get_execution_model() != ExecutionModelGLCompute && get_execution_model() != ExecutionModelTessellationControl)
return;
uint32_t exe_scope = id_exe_scope ? get<SPIRConstant>(id_exe_scope).scalar() : uint32_t(ScopeInvocation);
uint32_t mem_scope = id_mem_scope ? get<SPIRConstant>(id_mem_scope).scalar() : uint32_t(ScopeInvocation);
uint32_t exe_scope = id_exe_scope ? evaluate_constant_u32(id_exe_scope) : uint32_t(ScopeInvocation);
uint32_t mem_scope = id_mem_scope ? evaluate_constant_u32(id_mem_scope) : uint32_t(ScopeInvocation);
// Use the wider of the two scopes (smaller value)
exe_scope = min(exe_scope, mem_scope);
@ -7187,7 +7187,7 @@ void CompilerMSL::emit_barrier(uint32_t id_exe_scope, uint32_t id_mem_scope, uin
bar_stmt = "threadgroup_barrier";
bar_stmt += "(";
uint32_t mem_sem = id_mem_sem ? get<SPIRConstant>(id_mem_sem).scalar() : uint32_t(MemorySemanticsMaskNone);
uint32_t mem_sem = id_mem_sem ? evaluate_constant_u32(id_mem_sem) : uint32_t(MemorySemanticsMaskNone);
// Use the | operator to combine flags if we can.
if (msl_options.supports_msl_version(1, 2))
@ -8534,13 +8534,7 @@ string CompilerMSL::round_fp_tex_coords(string tex_coords, bool coord_is_fp)
// The ID must be a scalar constant.
string CompilerMSL::to_component_argument(uint32_t id)
{
if (ir.ids[id].get_type() != TypeConstant)
{
SPIRV_CROSS_THROW("ID " + to_string(id) + " is not an OpConstant.");
return "component::x";
}
uint32_t component_index = get<SPIRConstant>(id).scalar();
uint32_t component_index = evaluate_constant_u32(id);
switch (component_index)
{
case 0:
@ -11820,7 +11814,7 @@ void CompilerMSL::emit_subgroup_op(const Instruction &i)
uint32_t result_type = ops[0];
uint32_t id = ops[1];
auto scope = static_cast<Scope>(get<SPIRConstant>(ops[2]).scalar());
auto scope = static_cast<Scope>(evaluate_constant_u32(ops[2]));
if (scope != ScopeSubgroup)
SPIRV_CROSS_THROW("Only subgroup scope is supported.");
@ -11920,7 +11914,7 @@ case OpGroupNonUniform##op: \
else if (operation == GroupOperationClusteredReduce) \
{ \
/* Only cluster sizes of 4 are supported. */ \
uint32_t cluster_size = get<SPIRConstant>(ops[5]).scalar(); \
uint32_t cluster_size = evaluate_constant_u32(ops[5]); \
if (cluster_size != 4) \
SPIRV_CROSS_THROW("Metal only supports quad ClusteredReduce."); \
emit_unary_func_op(result_type, id, ops[4], "quad_" #msl_op); \
@ -11949,7 +11943,7 @@ case OpGroupNonUniform##op: \
else if (operation == GroupOperationClusteredReduce) \
{ \
/* Only cluster sizes of 4 are supported. */ \
uint32_t cluster_size = get<SPIRConstant>(ops[5]).scalar(); \
uint32_t cluster_size = evaluate_constant_u32(ops[5]); \
if (cluster_size != 4) \
SPIRV_CROSS_THROW("Metal only supports quad ClusteredReduce."); \
emit_unary_func_op(result_type, id, ops[4], "quad_" #msl_op); \
@ -11972,7 +11966,7 @@ case OpGroupNonUniform##op: \
else if (operation == GroupOperationClusteredReduce) \
{ \
/* Only cluster sizes of 4 are supported. */ \
uint32_t cluster_size = get<SPIRConstant>(ops[5]).scalar(); \
uint32_t cluster_size = evaluate_constant_u32(ops[5]); \
if (cluster_size != 4) \
SPIRV_CROSS_THROW("Metal only supports quad ClusteredReduce."); \
emit_unary_func_op_cast(result_type, id, ops[4], "quad_" #msl_op, type, type); \
@ -12010,7 +12004,7 @@ case OpGroupNonUniform##op: \
// n 2 | 3 0 1
// e 3 | 2 1 0
// Notice that target = source ^ (direction + 1).
uint32_t mask = get<SPIRConstant>(ops[4]).scalar() + 1;
uint32_t mask = evaluate_constant_u32(ops[4]) + 1;
uint32_t mask_id = ir.increase_bound_by(1);
set<SPIRConstant>(mask_id, expression_type_id(ops[4]), mask, false);
emit_binary_func_op(result_type, id, ops[3], mask_id, "quad_shuffle_xor");