Merge pull request #1739 from attilaz/14-shadowvolumes-common-loader

14-shadowvolumes uses common mesh loader
This commit is contained in:
Бранимир Караџић 2019-04-23 09:30:56 -07:00 committed by GitHub
commit 72f18b2727
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
4 changed files with 349 additions and 404 deletions

View File

@ -556,37 +556,6 @@ void touch(bgfx::ViewId _id)
::submit(_id, handle);
}
struct Aabb
{
float m_min[3];
float m_max[3];
};
struct Obb
{
float m_mtx[16];
};
struct Sphere
{
float m_center[3];
float m_radius;
};
struct Primitive
{
uint32_t m_startIndex;
uint32_t m_numIndices;
uint32_t m_startVertex;
uint32_t m_numVertices;
Sphere m_sphere;
Aabb m_aabb;
Obb m_obb;
};
typedef std::vector<Primitive> PrimitiveArray;
struct Face
{
uint16_t m_i[3];
@ -995,96 +964,37 @@ struct Mesh
void load(const char* _filePath)
{
#define BGFX_CHUNK_MAGIC_VB BX_MAKEFOURCC('V', 'B', ' ', 0x1)
#define BGFX_CHUNK_MAGIC_IB BX_MAKEFOURCC('I', 'B', ' ', 0x0)
#define BGFX_CHUNK_MAGIC_PRI BX_MAKEFOURCC('P', 'R', 'I', 0x0)
::Mesh* mesh = ::meshLoad(_filePath, true);
m_decl = mesh->m_decl;
uint16_t stride = m_decl.getStride();
bx::FileReaderI* reader = entry::getFileReader();
bx::open(reader, _filePath);
Group group;
uint32_t chunk;
while (4 == bx::read(reader, chunk) )
for (::GroupArray::iterator it = mesh->m_groups.begin(), itEnd = mesh->m_groups.end(); it != itEnd; ++it)
{
switch (chunk)
{
case BGFX_CHUNK_MAGIC_VB:
{
bx::read(reader, group.m_sphere);
bx::read(reader, group.m_aabb);
bx::read(reader, group.m_obb);
Group group;
group.m_numVertices = it->m_numVertices;
const uint32_t vertexSize = group.m_numVertices*stride;
group.m_vertices = (uint8_t*)malloc(vertexSize);
bx::memCopy(group.m_vertices, it->m_vertices, vertexSize);
bgfx::read(reader, m_decl);
uint16_t stride = m_decl.getStride();
const bgfx::Memory* mem = bgfx::makeRef(group.m_vertices, vertexSize);
group.m_vbh = bgfx::createVertexBuffer(mem, m_decl);
group.m_numIndices = it->m_numIndices;
const uint32_t indexSize = 2 * group.m_numIndices;
group.m_indices = (uint16_t*)malloc(indexSize);
bx::memCopy(group.m_indices, it->m_indices, indexSize);
mem = bgfx::makeRef(group.m_indices, indexSize);
group.m_ibh = bgfx::createIndexBuffer(mem);
bx::read(reader, group.m_numVertices);
const uint32_t size = group.m_numVertices*stride;
group.m_vertices = (uint8_t*)malloc(size);
bx::read(reader, group.m_vertices, size);
const bgfx::Memory* mem = bgfx::makeRef(group.m_vertices, size);
group.m_vbh = bgfx::createVertexBuffer(mem, m_decl);
}
break;
case BGFX_CHUNK_MAGIC_IB:
{
bx::read(reader, group.m_numIndices);
const uint32_t size = group.m_numIndices*2;
group.m_indices = (uint16_t*)malloc(size);
bx::read(reader, group.m_indices, size);
const bgfx::Memory* mem = bgfx::makeRef(group.m_indices, size);
group.m_ibh = bgfx::createIndexBuffer(mem);
}
break;
case BGFX_CHUNK_MAGIC_PRI:
{
uint16_t len;
bx::read(reader, len);
std::string material;
material.resize(len);
bx::read(reader, const_cast<char*>(material.c_str() ), len);
uint16_t num;
bx::read(reader, num);
for (uint32_t ii = 0; ii < num; ++ii)
{
bx::read(reader, len);
std::string name;
name.resize(len);
bx::read(reader, const_cast<char*>(name.c_str() ), len);
Primitive prim;
bx::read(reader, prim.m_startIndex);
bx::read(reader, prim.m_numIndices);
bx::read(reader, prim.m_startVertex);
bx::read(reader, prim.m_numVertices);
bx::read(reader, prim.m_sphere);
bx::read(reader, prim.m_aabb);
bx::read(reader, prim.m_obb);
group.m_prims.push_back(prim);
}
m_groups.push_back(group);
group.reset();
}
break;
default:
DBG("%08x at %d", chunk, bx::seek(reader) );
abort();
break;
}
group.m_sphere = it->m_sphere;
group.m_aabb = it->m_aabb;
group.m_obb = it->m_obb;
group.m_prims = it->m_prims;
m_groups.push_back(group);
}
bx::close(reader);
::meshUnload(mesh);
for (GroupArray::iterator it = m_groups.begin(), itEnd = m_groups.end(); it != itEnd; ++it)
{
@ -1774,17 +1684,17 @@ bool clipTest(const float* _planes, uint8_t _planeNum, const Mesh& _mesh, const
const Group& group = *it;
Sphere sphere = group.m_sphere;
sphere.m_center[0] = sphere.m_center[0] * scale + _translate[0];
sphere.m_center[1] = sphere.m_center[1] * scale + _translate[1];
sphere.m_center[2] = sphere.m_center[2] * scale + _translate[2];
sphere.m_radius *= (scale+0.4f);
sphere.center.x = sphere.center.x * scale + _translate[0];
sphere.center.y = sphere.center.y * scale + _translate[1];
sphere.center.z = sphere.center.z * scale + _translate[2];
sphere.radius *= (scale+0.4f);
bool isInside = true;
for (uint8_t ii = 0; ii < _planeNum; ++ii)
{
const float* plane = volumePlanes[ii];
float positiveSide = bx::dot(bx::load<bx::Vec3>(plane), bx::load<bx::Vec3>(sphere.m_center) ) + plane[3] + sphere.m_radius;
float positiveSide = bx::dot(bx::load<bx::Vec3>(plane), sphere.center ) + plane[3] + sphere.radius;
if (positiveSide < 0.0f)
{

View File

@ -355,304 +355,292 @@ void calcTangents(void* _vertices, uint16_t _numVertices, bgfx::VertexDecl _decl
delete [] tangents;
}
struct Aabb
Group::Group()
{
float m_min[3];
float m_max[3];
};
reset();
}
struct Obb
void Group::reset()
{
float m_mtx[16];
};
struct Sphere
{
float m_center[3];
float m_radius;
};
struct Primitive
{
uint32_t m_startIndex;
uint32_t m_numIndices;
uint32_t m_startVertex;
uint32_t m_numVertices;
Sphere m_sphere;
Aabb m_aabb;
Obb m_obb;
};
typedef stl::vector<Primitive> PrimitiveArray;
struct Group
{
Group()
{
reset();
}
void reset()
{
m_vbh.idx = bgfx::kInvalidHandle;
m_ibh.idx = bgfx::kInvalidHandle;
m_prims.clear();
}
bgfx::VertexBufferHandle m_vbh;
bgfx::IndexBufferHandle m_ibh;
Sphere m_sphere;
Aabb m_aabb;
Obb m_obb;
PrimitiveArray m_prims;
};
m_vbh.idx = bgfx::kInvalidHandle;
m_ibh.idx = bgfx::kInvalidHandle;
m_numVertices = 0;
m_vertices = NULL;
m_numIndices = 0;
m_indices = NULL;
m_prims.clear();
}
namespace bgfx
{
int32_t read(bx::ReaderI* _reader, bgfx::VertexDecl& _decl, bx::Error* _err = NULL);
}
struct Mesh
void Mesh::load(bx::ReaderSeekerI* _reader, bool _ramcopy)
{
void load(bx::ReaderSeekerI* _reader)
{
#define BGFX_CHUNK_MAGIC_VB BX_MAKEFOURCC('V', 'B', ' ', 0x1)
#define BGFX_CHUNK_MAGIC_VBC BX_MAKEFOURCC('V', 'B', 'C', 0x0)
#define BGFX_CHUNK_MAGIC_IB BX_MAKEFOURCC('I', 'B', ' ', 0x0)
#define BGFX_CHUNK_MAGIC_IBC BX_MAKEFOURCC('I', 'B', 'C', 0x1)
#define BGFX_CHUNK_MAGIC_PRI BX_MAKEFOURCC('P', 'R', 'I', 0x0)
using namespace bx;
using namespace bgfx;
Group group;
bx::AllocatorI* allocator = entry::getAllocator();
uint32_t chunk;
bx::Error err;
while (4 == bx::read(_reader, chunk, &err)
&& err.isOk() )
using namespace bx;
using namespace bgfx;
Group group;
bx::AllocatorI* allocator = entry::getAllocator();
uint32_t chunk;
bx::Error err;
while (4 == bx::read(_reader, chunk, &err)
&& err.isOk() )
{
switch (chunk)
{
switch (chunk)
{
case BGFX_CHUNK_MAGIC_VB:
{
read(_reader, group.m_sphere);
read(_reader, group.m_aabb);
read(_reader, group.m_obb);
read(_reader, m_decl);
uint16_t stride = m_decl.getStride();
read(_reader, group.m_numVertices);
const bgfx::Memory* mem = bgfx::alloc(group.m_numVertices*stride);
read(_reader, mem->data, mem->size);
if ( _ramcopy )
{
read(_reader, group.m_sphere);
read(_reader, group.m_aabb);
read(_reader, group.m_obb);
read(_reader, m_decl);
uint16_t stride = m_decl.getStride();
uint16_t numVertices;
read(_reader, numVertices);
const bgfx::Memory* mem = bgfx::alloc(numVertices*stride);
read(_reader, mem->data, mem->size);
group.m_vbh = bgfx::createVertexBuffer(mem, m_decl);
group.m_vertices = (uint8_t*)BX_ALLOC(allocator, group.m_numVertices*stride);
bx::memCopy(group.m_vertices, mem->data, mem->size);
}
group.m_vbh = bgfx::createVertexBuffer(mem, m_decl);
}
break;
case BGFX_CHUNK_MAGIC_VBC:
{
read(_reader, group.m_sphere);
read(_reader, group.m_aabb);
read(_reader, group.m_obb);
read(_reader, m_decl);
uint16_t stride = m_decl.getStride();
read(_reader, group.m_numVertices);
const bgfx::Memory* mem = bgfx::alloc(group.m_numVertices*stride);
uint32_t compressedSize;
bx::read(_reader, compressedSize);
void* compressedVertices = BX_ALLOC(allocator, compressedSize);
bx::read(_reader, compressedVertices, compressedSize);
meshopt_decodeVertexBuffer(mem->data, group.m_numVertices, stride, (uint8_t*)compressedVertices, compressedSize);
BX_FREE(allocator, compressedVertices);
if ( _ramcopy )
{
read(_reader, group.m_sphere);
read(_reader, group.m_aabb);
read(_reader, group.m_obb);
read(_reader, m_decl);
uint16_t stride = m_decl.getStride();
uint16_t numVertices;
read(_reader, numVertices);
const bgfx::Memory* mem = bgfx::alloc(numVertices*stride);
uint32_t compressedSize;
bx::read(_reader, compressedSize);
void* compressedVertices = BX_ALLOC(allocator, compressedSize);
bx::read(_reader, compressedVertices, compressedSize);
meshopt_decodeVertexBuffer(mem->data, numVertices, stride, (uint8_t*)compressedVertices, compressedSize);
BX_FREE(allocator, compressedVertices);
group.m_vbh = bgfx::createVertexBuffer(mem, m_decl);
group.m_vertices = (uint8_t*)BX_ALLOC(allocator, group.m_numVertices*stride);
bx::memCopy(group.m_vertices, mem->data, mem->size);
}
group.m_vbh = bgfx::createVertexBuffer(mem, m_decl);
}
break;
case BGFX_CHUNK_MAGIC_IB:
{
read(_reader, group.m_numIndices);
const bgfx::Memory* mem = bgfx::alloc(group.m_numIndices*2);
read(_reader, mem->data, mem->size);
if ( _ramcopy )
{
uint32_t numIndices;
read(_reader, numIndices);
const bgfx::Memory* mem = bgfx::alloc(numIndices*2);
read(_reader, mem->data, mem->size);
group.m_ibh = bgfx::createIndexBuffer(mem);
group.m_indices = (uint16_t*)BX_ALLOC(allocator, group.m_numIndices*2);
bx::memCopy(group.m_indices, mem->data, mem->size);
}
break;
group.m_ibh = bgfx::createIndexBuffer(mem);
}
break;
case BGFX_CHUNK_MAGIC_IBC:
{
bx::read(_reader, group.m_numIndices);
const bgfx::Memory* mem = bgfx::alloc(group.m_numIndices*2);
uint32_t compressedSize;
bx::read(_reader, compressedSize);
void* compressedIndices = BX_ALLOC(allocator, compressedSize);
bx::read(_reader, compressedIndices, compressedSize);
meshopt_decodeIndexBuffer(mem->data, group.m_numIndices, 2, (uint8_t*)compressedIndices, compressedSize);
BX_FREE(allocator, compressedIndices);
if ( _ramcopy )
{
uint32_t numIndices;
bx::read(_reader, numIndices);
const bgfx::Memory* mem = bgfx::alloc(numIndices*2);
uint32_t compressedSize;
bx::read(_reader, compressedSize);
void* compressedIndices = BX_ALLOC(allocator, compressedSize);
bx::read(_reader, compressedIndices, compressedSize);
meshopt_decodeIndexBuffer(mem->data, numIndices, 2, (uint8_t*)compressedIndices, compressedSize);
BX_FREE(allocator, compressedIndices);
group.m_ibh = bgfx::createIndexBuffer(mem);
group.m_indices = (uint16_t*)BX_ALLOC(allocator, group.m_numIndices*2);
bx::memCopy(group.m_indices, mem->data, mem->size);
}
group.m_ibh = bgfx::createIndexBuffer(mem);
}
break;
case BGFX_CHUNK_MAGIC_PRI:
{
uint16_t len;
read(_reader, len);
stl::string material;
material.resize(len);
read(_reader, const_cast<char*>(material.c_str() ), len);
uint16_t num;
read(_reader, num);
for (uint32_t ii = 0; ii < num; ++ii)
{
uint16_t len;
read(_reader, len);
stl::string material;
material.resize(len);
read(_reader, const_cast<char*>(material.c_str() ), len);
uint16_t num;
read(_reader, num);
for (uint32_t ii = 0; ii < num; ++ii)
{
read(_reader, len);
stl::string name;
name.resize(len);
read(_reader, const_cast<char*>(name.c_str() ), len);
Primitive prim;
read(_reader, prim.m_startIndex);
read(_reader, prim.m_numIndices);
read(_reader, prim.m_startVertex);
read(_reader, prim.m_numVertices);
read(_reader, prim.m_sphere);
read(_reader, prim.m_aabb);
read(_reader, prim.m_obb);
group.m_prims.push_back(prim);
}
m_groups.push_back(group);
group.reset();
stl::string name;
name.resize(len);
read(_reader, const_cast<char*>(name.c_str() ), len);
Primitive prim;
read(_reader, prim.m_startIndex);
read(_reader, prim.m_numIndices);
read(_reader, prim.m_startVertex);
read(_reader, prim.m_numVertices);
read(_reader, prim.m_sphere);
read(_reader, prim.m_aabb);
read(_reader, prim.m_obb);
group.m_prims.push_back(prim);
}
m_groups.push_back(group);
group.reset();
}
break;
default:
DBG("%08x at %d", chunk, bx::skip(_reader, 0) );
break;
}
}
}
}
void unload()
void Mesh::unload()
{
bx::AllocatorI* allocator = entry::getAllocator();
for (GroupArray::const_iterator it = m_groups.begin(), itEnd = m_groups.end(); it != itEnd; ++it)
{
const Group& group = *it;
bgfx::destroy(group.m_vbh);
if (bgfx::isValid(group.m_ibh) )
{
bgfx::destroy(group.m_ibh);
}
if ( NULL != group.m_vertices )
{
BX_FREE(allocator, group.m_vertices);
}
if ( NULL != group.m_indices )
{
BX_FREE(allocator, group.m_indices);
}
}
m_groups.clear();
}
void Mesh::submit(bgfx::ViewId _id, bgfx::ProgramHandle _program, const float* _mtx, uint64_t _state) const
{
if (BGFX_STATE_MASK == _state)
{
_state = 0
| BGFX_STATE_WRITE_RGB
| BGFX_STATE_WRITE_A
| BGFX_STATE_WRITE_Z
| BGFX_STATE_DEPTH_TEST_LESS
| BGFX_STATE_CULL_CCW
| BGFX_STATE_MSAA
;
}
bgfx::setTransform(_mtx);
bgfx::setState(_state);
for (GroupArray::const_iterator it = m_groups.begin(), itEnd = m_groups.end(); it != itEnd; ++it)
{
const Group& group = *it;
bgfx::setIndexBuffer(group.m_ibh);
bgfx::setVertexBuffer(0, group.m_vbh);
bgfx::submit(_id, _program, 0, it != itEnd-1);
}
}
void Mesh::submit(const MeshState*const* _state, uint8_t _numPasses, const float* _mtx, uint16_t _numMatrices) const
{
uint32_t cached = bgfx::setTransform(_mtx, _numMatrices);
for (uint32_t pass = 0; pass < _numPasses; ++pass)
{
bgfx::setTransform(cached, _numMatrices);
const MeshState& state = *_state[pass];
bgfx::setState(state.m_state);
for (uint8_t tex = 0; tex < state.m_numTextures; ++tex)
{
const MeshState::Texture& texture = state.m_textures[tex];
bgfx::setTexture(texture.m_stage
, texture.m_sampler
, texture.m_texture
, texture.m_flags
);
}
for (GroupArray::const_iterator it = m_groups.begin(), itEnd = m_groups.end(); it != itEnd; ++it)
{
const Group& group = *it;
bgfx::destroy(group.m_vbh);
if (bgfx::isValid(group.m_ibh) )
{
bgfx::destroy(group.m_ibh);
}
}
m_groups.clear();
}
void submit(bgfx::ViewId _id, bgfx::ProgramHandle _program, const float* _mtx, uint64_t _state) const
{
if (BGFX_STATE_MASK == _state)
{
_state = 0
| BGFX_STATE_WRITE_RGB
| BGFX_STATE_WRITE_A
| BGFX_STATE_WRITE_Z
| BGFX_STATE_DEPTH_TEST_LESS
| BGFX_STATE_CULL_CCW
| BGFX_STATE_MSAA
;
}
bgfx::setTransform(_mtx);
bgfx::setState(_state);
for (GroupArray::const_iterator it = m_groups.begin(), itEnd = m_groups.end(); it != itEnd; ++it)
{
const Group& group = *it;
bgfx::setIndexBuffer(group.m_ibh);
bgfx::setVertexBuffer(0, group.m_vbh);
bgfx::submit(_id, _program, 0, it != itEnd-1);
bgfx::submit(state.m_viewId, state.m_program, 0, it != itEnd-1);
}
}
}
void submit(const MeshState*const* _state, uint8_t _numPasses, const float* _mtx, uint16_t _numMatrices) const
{
uint32_t cached = bgfx::setTransform(_mtx, _numMatrices);
for (uint32_t pass = 0; pass < _numPasses; ++pass)
{
bgfx::setTransform(cached, _numMatrices);
const MeshState& state = *_state[pass];
bgfx::setState(state.m_state);
for (uint8_t tex = 0; tex < state.m_numTextures; ++tex)
{
const MeshState::Texture& texture = state.m_textures[tex];
bgfx::setTexture(texture.m_stage
, texture.m_sampler
, texture.m_texture
, texture.m_flags
);
}
for (GroupArray::const_iterator it = m_groups.begin(), itEnd = m_groups.end(); it != itEnd; ++it)
{
const Group& group = *it;
bgfx::setIndexBuffer(group.m_ibh);
bgfx::setVertexBuffer(0, group.m_vbh);
bgfx::submit(state.m_viewId, state.m_program, 0, it != itEnd-1);
}
}
}
bgfx::VertexDecl m_decl;
typedef stl::vector<Group> GroupArray;
GroupArray m_groups;
};
Mesh* meshLoad(bx::ReaderSeekerI* _reader)
Mesh* meshLoad(bx::ReaderSeekerI* _reader, bool _ramcopy)
{
Mesh* mesh = new Mesh;
mesh->load(_reader);
mesh->load(_reader, _ramcopy);
return mesh;
}
Mesh* meshLoad(const char* _filePath)
Mesh* meshLoad(const char* _filePath, bool _ramcopy)
{
bx::FileReaderI* reader = entry::getFileReader();
if (bx::open(reader, _filePath) )
{
Mesh* mesh = meshLoad(reader);
Mesh* mesh = meshLoad(reader, _ramcopy);
bx::close(reader);
return mesh;
}

View File

@ -9,6 +9,12 @@
#include <bx/pixelformat.h>
#include <bgfx/bgfx.h>
#include <bimg/bimg.h>
#include "bounds.h"
#include <tinystl/allocator.h>
#include <tinystl/vector.h>
namespace stl = tinystl;
///
void* load(const char* _filePath, uint32_t* _size = NULL);
@ -78,10 +84,51 @@ struct MeshState
bgfx::ViewId m_viewId;
};
struct Mesh;
struct Primitive
{
uint32_t m_startIndex;
uint32_t m_numIndices;
uint32_t m_startVertex;
uint32_t m_numVertices;
Sphere m_sphere;
Aabb m_aabb;
Obb m_obb;
};
typedef stl::vector<Primitive> PrimitiveArray;
struct Group
{
Group();
void reset();
bgfx::VertexBufferHandle m_vbh;
bgfx::IndexBufferHandle m_ibh;
uint16_t m_numVertices;
uint8_t* m_vertices;
uint32_t m_numIndices;
uint16_t* m_indices;
Sphere m_sphere;
Aabb m_aabb;
Obb m_obb;
PrimitiveArray m_prims;
};
typedef stl::vector<Group> GroupArray;
struct Mesh
{
void load(bx::ReaderSeekerI* _reader, bool _ramcopy);
void unload();
void submit(bgfx::ViewId _id, bgfx::ProgramHandle _program, const float* _mtx, uint64_t _state) const;
void submit(const MeshState*const* _state, uint8_t _numPasses, const float* _mtx, uint16_t _numMatrices) const;
bgfx::VertexDecl m_decl;
GroupArray m_groups;
};
///
Mesh* meshLoad(const char* _filePath);
Mesh* meshLoad(const char* _filePath, bool _ramcopy = false);
///
void meshUnload(Mesh* _mesh);

View File

@ -528,7 +528,7 @@ struct Program
};
};
struct Mesh
struct DebugMesh
{
enum Enum
{
@ -640,8 +640,8 @@ struct DebugDrawShared
s_texColor = bgfx::createUniform("s_texColor", bgfx::UniformType::Sampler);
m_texture = bgfx::createTexture2D(SPRITE_TEXTURE_SIZE, SPRITE_TEXTURE_SIZE, false, 1, bgfx::TextureFormat::BGRA8);
void* vertices[Mesh::Count] = {};
uint16_t* indices[Mesh::Count] = {};
void* vertices[DebugMesh::Count] = {};
uint16_t* indices[DebugMesh::Count] = {};
uint16_t stride = DebugShapeVertex::ms_decl.getStride();
uint32_t startVertex = 0;
@ -649,7 +649,7 @@ struct DebugDrawShared
for (uint32_t mesh = 0; mesh < 4; ++mesh)
{
Mesh::Enum id = Mesh::Enum(Mesh::Sphere0+mesh);
DebugMesh::Enum id = DebugMesh::Enum(DebugMesh::Sphere0+mesh);
const uint8_t tess = uint8_t(3-mesh);
const uint32_t numVertices = genSphere(tess);
@ -701,7 +701,7 @@ struct DebugDrawShared
for (uint32_t mesh = 0; mesh < 4; ++mesh)
{
Mesh::Enum id = Mesh::Enum(Mesh::Cone0+mesh);
DebugMesh::Enum id = DebugMesh::Enum(DebugMesh::Cone0+mesh);
const uint32_t num = getCircleLod(uint8_t(mesh) );
const float step = bx::kPi * 2.0f / num;
@ -762,7 +762,7 @@ struct DebugDrawShared
for (uint32_t mesh = 0; mesh < 4; ++mesh)
{
Mesh::Enum id = Mesh::Enum(Mesh::Cylinder0+mesh);
DebugMesh::Enum id = DebugMesh::Enum(DebugMesh::Cylinder0+mesh);
const uint32_t num = getCircleLod(uint8_t(mesh) );
const float step = bx::kPi * 2.0f / num;
@ -832,7 +832,7 @@ struct DebugDrawShared
for (uint32_t mesh = 0; mesh < 4; ++mesh)
{
Mesh::Enum id = Mesh::Enum(Mesh::Capsule0+mesh);
DebugMesh::Enum id = DebugMesh::Enum(DebugMesh::Capsule0+mesh);
const uint32_t num = getCircleLod(uint8_t(mesh) );
const float step = bx::kPi * 2.0f / num;
@ -900,30 +900,30 @@ struct DebugDrawShared
startIndex += numIndices + numLineListIndices;
}
m_mesh[Mesh::Quad].m_startVertex = startVertex;
m_mesh[Mesh::Quad].m_numVertices = BX_COUNTOF(s_quadVertices);
m_mesh[Mesh::Quad].m_startIndex[0] = startIndex;
m_mesh[Mesh::Quad].m_numIndices[0] = BX_COUNTOF(s_quadIndices);
m_mesh[Mesh::Quad].m_startIndex[1] = 0;
m_mesh[Mesh::Quad].m_numIndices[1] = 0;
m_mesh[DebugMesh::Quad].m_startVertex = startVertex;
m_mesh[DebugMesh::Quad].m_numVertices = BX_COUNTOF(s_quadVertices);
m_mesh[DebugMesh::Quad].m_startIndex[0] = startIndex;
m_mesh[DebugMesh::Quad].m_numIndices[0] = BX_COUNTOF(s_quadIndices);
m_mesh[DebugMesh::Quad].m_startIndex[1] = 0;
m_mesh[DebugMesh::Quad].m_numIndices[1] = 0;
startVertex += BX_COUNTOF(s_quadVertices);
startIndex += BX_COUNTOF(s_quadIndices);
m_mesh[Mesh::Cube].m_startVertex = startVertex;
m_mesh[Mesh::Cube].m_numVertices = BX_COUNTOF(s_cubeVertices);
m_mesh[Mesh::Cube].m_startIndex[0] = startIndex;
m_mesh[Mesh::Cube].m_numIndices[0] = BX_COUNTOF(s_cubeIndices);
m_mesh[Mesh::Cube].m_startIndex[1] = 0;
m_mesh[Mesh::Cube].m_numIndices[1] = 0;
startVertex += m_mesh[Mesh::Cube].m_numVertices;
startIndex += m_mesh[Mesh::Cube].m_numIndices[0];
m_mesh[DebugMesh::Cube].m_startVertex = startVertex;
m_mesh[DebugMesh::Cube].m_numVertices = BX_COUNTOF(s_cubeVertices);
m_mesh[DebugMesh::Cube].m_startIndex[0] = startIndex;
m_mesh[DebugMesh::Cube].m_numIndices[0] = BX_COUNTOF(s_cubeIndices);
m_mesh[DebugMesh::Cube].m_startIndex[1] = 0;
m_mesh[DebugMesh::Cube].m_numIndices[1] = 0;
startVertex += m_mesh[DebugMesh::Cube].m_numVertices;
startIndex += m_mesh[DebugMesh::Cube].m_numIndices[0];
const bgfx::Memory* vb = bgfx::alloc(startVertex*stride);
const bgfx::Memory* ib = bgfx::alloc(startIndex*sizeof(uint16_t) );
for (uint32_t mesh = Mesh::Sphere0; mesh < Mesh::Quad; ++mesh)
for (uint32_t mesh = DebugMesh::Sphere0; mesh < DebugMesh::Quad; ++mesh)
{
Mesh::Enum id = Mesh::Enum(mesh);
DebugMesh::Enum id = DebugMesh::Enum(mesh);
bx::memCopy(&vb->data[m_mesh[id].m_startVertex * stride]
, vertices[id]
, m_mesh[id].m_numVertices*stride
@ -938,22 +938,22 @@ struct DebugDrawShared
BX_FREE(m_allocator, indices[id]);
}
bx::memCopy(&vb->data[m_mesh[Mesh::Quad].m_startVertex * stride]
bx::memCopy(&vb->data[m_mesh[DebugMesh::Quad].m_startVertex * stride]
, s_quadVertices
, sizeof(s_quadVertices)
);
bx::memCopy(&ib->data[m_mesh[Mesh::Quad].m_startIndex[0] * sizeof(uint16_t)]
bx::memCopy(&ib->data[m_mesh[DebugMesh::Quad].m_startIndex[0] * sizeof(uint16_t)]
, s_quadIndices
, sizeof(s_quadIndices)
);
bx::memCopy(&vb->data[m_mesh[Mesh::Cube].m_startVertex * stride]
bx::memCopy(&vb->data[m_mesh[DebugMesh::Cube].m_startVertex * stride]
, s_cubeVertices
, sizeof(s_cubeVertices)
);
bx::memCopy(&ib->data[m_mesh[Mesh::Cube].m_startIndex[0] * sizeof(uint16_t)]
bx::memCopy(&ib->data[m_mesh[DebugMesh::Cube].m_startIndex[0] * sizeof(uint16_t)]
, s_cubeIndices
, sizeof(s_cubeIndices)
);
@ -1017,7 +1017,7 @@ struct DebugDrawShared
Sprite m_sprite;
Geometry m_geometry;
Mesh m_mesh[Mesh::Count];
DebugMesh m_mesh[DebugMesh::Count];
bgfx::UniformHandle s_texColor;
bgfx::TextureHandle m_texture;
@ -1432,7 +1432,7 @@ struct DebugDrawEncoderImpl
{
Obb obb;
toObb(obb, _aabb);
draw(Mesh::Cube, obb.mtx, 1, false);
draw(DebugMesh::Cube, obb.mtx, 1, false);
}
}
@ -1481,7 +1481,7 @@ struct DebugDrawEncoderImpl
}
else
{
draw(Mesh::Cube, _obb.mtx, 1, false);
draw(DebugMesh::Cube, _obb.mtx, 1, false);
}
}
@ -1500,11 +1500,11 @@ struct DebugDrawEncoderImpl
, _sphere.center.y
, _sphere.center.z
);
uint8_t lod = attrib.m_lod > Mesh::SphereMaxLod
? uint8_t(Mesh::SphereMaxLod)
uint8_t lod = attrib.m_lod > DebugMesh::SphereMaxLod
? uint8_t(DebugMesh::SphereMaxLod)
: attrib.m_lod
;
draw(Mesh::Enum(Mesh::Sphere0 + lod), mtx, 1, attrib.m_wireframe);
draw(DebugMesh::Enum(DebugMesh::Sphere0 + lod), mtx, 1, attrib.m_wireframe);
}
void draw(const Triangle& _triangle)
@ -1855,7 +1855,7 @@ struct DebugDrawEncoderImpl
{
float mtx[16];
bx::mtxFromNormal(mtx, _normal, _size*0.5f, _center, attrib.m_spin);
draw(Mesh::Quad, mtx, 1, false);
draw(DebugMesh::Quad, mtx, 1, false);
}
}
@ -1941,11 +1941,11 @@ struct DebugDrawEncoderImpl
mtx[1][13] = _to.y;
mtx[1][14] = _to.z;
uint8_t lod = attrib.m_lod > Mesh::ConeMaxLod
? uint8_t(Mesh::ConeMaxLod)
uint8_t lod = attrib.m_lod > DebugMesh::ConeMaxLod
? uint8_t(DebugMesh::ConeMaxLod)
: attrib.m_lod
;
draw(Mesh::Enum(Mesh::Cone0 + lod), mtx[0], 2, attrib.m_wireframe);
draw(DebugMesh::Enum(DebugMesh::Cone0 + lod), mtx[0], 2, attrib.m_wireframe);
}
void drawCylinder(const bx::Vec3& _from, const bx::Vec3& _to, float _radius, bool _capsule)
@ -1963,11 +1963,11 @@ struct DebugDrawEncoderImpl
if (_capsule)
{
uint8_t lod = attrib.m_lod > Mesh::CapsuleMaxLod
? uint8_t(Mesh::CapsuleMaxLod)
uint8_t lod = attrib.m_lod > DebugMesh::CapsuleMaxLod
? uint8_t(DebugMesh::CapsuleMaxLod)
: attrib.m_lod
;
draw(Mesh::Enum(Mesh::Capsule0 + lod), mtx[0], 2, attrib.m_wireframe);
draw(DebugMesh::Enum(DebugMesh::Capsule0 + lod), mtx[0], 2, attrib.m_wireframe);
Sphere sphere;
sphere.center = _from;
@ -1979,11 +1979,11 @@ struct DebugDrawEncoderImpl
}
else
{
uint8_t lod = attrib.m_lod > Mesh::CylinderMaxLod
? uint8_t(Mesh::CylinderMaxLod)
uint8_t lod = attrib.m_lod > DebugMesh::CylinderMaxLod
? uint8_t(DebugMesh::CylinderMaxLod)
: attrib.m_lod
;
draw(Mesh::Enum(Mesh::Cylinder0 + lod), mtx[0], 2, attrib.m_wireframe);
draw(DebugMesh::Enum(DebugMesh::Cylinder0 + lod), mtx[0], 2, attrib.m_wireframe);
}
}
@ -2125,11 +2125,11 @@ struct DebugDrawEncoderImpl
pop();
}
void draw(Mesh::Enum _mesh, const float* _mtx, uint16_t _num, bool _wireframe)
void draw(DebugMesh::Enum _mesh, const float* _mtx, uint16_t _num, bool _wireframe)
{
pushTransform(_mtx, _num, false /* flush */);
const Mesh& mesh = s_dds.m_mesh[_mesh];
const DebugMesh& mesh = s_dds.m_mesh[_mesh];
if (0 != mesh.m_numIndices[_wireframe])
{