Updated meshoptimizer.
This commit is contained in:
parent
c2125774c6
commit
030e86e290
146
3rdparty/meshoptimizer/src/clusterizer.cpp
vendored
146
3rdparty/meshoptimizer/src/clusterizer.cpp
vendored
@ -283,6 +283,79 @@ static bool appendMeshlet(meshopt_Meshlet& meshlet, unsigned int a, unsigned int
|
||||
return result;
|
||||
}
|
||||
|
||||
static unsigned int getNeighborTriangle(const meshopt_Meshlet& meshlet, const Cone* meshlet_cone, unsigned int* meshlet_vertices, const unsigned int* indices, const TriangleAdjacency2& adjacency, const Cone* triangles, const unsigned int* live_triangles, const unsigned char* used, float meshlet_expected_radius, float cone_weight, unsigned int* out_extra)
|
||||
{
|
||||
unsigned int best_triangle = ~0u;
|
||||
unsigned int best_extra = 5;
|
||||
float best_score = FLT_MAX;
|
||||
|
||||
for (size_t i = 0; i < meshlet.vertex_count; ++i)
|
||||
{
|
||||
unsigned int index = meshlet_vertices[meshlet.vertex_offset + i];
|
||||
|
||||
unsigned int* neighbors = &adjacency.data[0] + adjacency.offsets[index];
|
||||
size_t neighbors_size = adjacency.counts[index];
|
||||
|
||||
for (size_t j = 0; j < neighbors_size; ++j)
|
||||
{
|
||||
unsigned int triangle = neighbors[j];
|
||||
unsigned int a = indices[triangle * 3 + 0], b = indices[triangle * 3 + 1], c = indices[triangle * 3 + 2];
|
||||
|
||||
unsigned int extra = (used[a] == 0xff) + (used[b] == 0xff) + (used[c] == 0xff);
|
||||
|
||||
// triangles that don't add new vertices to meshlets are max. priority
|
||||
if (extra != 0)
|
||||
{
|
||||
// artificially increase the priority of dangling triangles as they're expensive to add to new meshlets
|
||||
if (live_triangles[a] == 1 || live_triangles[b] == 1 || live_triangles[c] == 1)
|
||||
extra = 0;
|
||||
|
||||
extra++;
|
||||
}
|
||||
|
||||
// since topology-based priority is always more important than the score, we can skip scoring in some cases
|
||||
if (extra > best_extra)
|
||||
continue;
|
||||
|
||||
float score = 0;
|
||||
|
||||
// caller selects one of two scoring functions: geometrical (based on meshlet cone) or topological (based on remaining triangles)
|
||||
if (meshlet_cone)
|
||||
{
|
||||
const Cone& tri_cone = triangles[triangle];
|
||||
|
||||
float distance2 =
|
||||
(tri_cone.px - meshlet_cone->px) * (tri_cone.px - meshlet_cone->px) +
|
||||
(tri_cone.py - meshlet_cone->py) * (tri_cone.py - meshlet_cone->py) +
|
||||
(tri_cone.pz - meshlet_cone->pz) * (tri_cone.pz - meshlet_cone->pz);
|
||||
|
||||
float spread = tri_cone.nx * meshlet_cone->nx + tri_cone.ny * meshlet_cone->ny + tri_cone.nz * meshlet_cone->nz;
|
||||
|
||||
score = getMeshletScore(distance2, spread, cone_weight, meshlet_expected_radius);
|
||||
}
|
||||
else
|
||||
{
|
||||
// each live_triangles entry is >= 1 since it includes the current triangle we're processing
|
||||
score = float(live_triangles[a] + live_triangles[b] + live_triangles[c] - 3);
|
||||
}
|
||||
|
||||
// note that topology-based priority is always more important than the score
|
||||
// this helps maintain reasonable effectiveness of meshlet data and reduces scoring cost
|
||||
if (extra < best_extra || score < best_score)
|
||||
{
|
||||
best_triangle = triangle;
|
||||
best_extra = extra;
|
||||
best_score = score;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
if (out_extra)
|
||||
*out_extra = best_extra;
|
||||
|
||||
return best_triangle;
|
||||
}
|
||||
|
||||
struct KDNode
|
||||
{
|
||||
union
|
||||
@ -471,6 +544,8 @@ size_t meshopt_buildMeshlets(meshopt_Meshlet* meshlets, unsigned int* meshlet_ve
|
||||
assert(max_triangles >= 1 && max_triangles <= kMeshletMaxTriangles);
|
||||
assert(max_triangles % 4 == 0); // ensures the caller will compute output space properly as index data is 4b aligned
|
||||
|
||||
assert(cone_weight >= 0 && cone_weight <= 1);
|
||||
|
||||
meshopt_Allocator allocator;
|
||||
|
||||
TriangleAdjacency2 adjacency = {};
|
||||
@ -511,65 +586,18 @@ size_t meshopt_buildMeshlets(meshopt_Meshlet* meshlets, unsigned int* meshlet_ve
|
||||
|
||||
for (;;)
|
||||
{
|
||||
unsigned int best_triangle = ~0u;
|
||||
unsigned int best_extra = 5;
|
||||
float best_score = FLT_MAX;
|
||||
|
||||
Cone meshlet_cone = getMeshletCone(meshlet_cone_acc, meshlet.triangle_count);
|
||||
|
||||
for (size_t i = 0; i < meshlet.vertex_count; ++i)
|
||||
unsigned int best_extra = 0;
|
||||
unsigned int best_triangle = getNeighborTriangle(meshlet, &meshlet_cone, meshlet_vertices, indices, adjacency, triangles, live_triangles, used, meshlet_expected_radius, cone_weight, &best_extra);
|
||||
|
||||
// if the best triangle doesn't fit into current meshlet, the spatial scoring we've used is not very meaningful, so we re-select using topological scoring
|
||||
if (best_triangle != ~0u && (meshlet.vertex_count + best_extra > max_vertices || meshlet.triangle_count >= max_triangles))
|
||||
{
|
||||
unsigned int index = meshlet_vertices[meshlet.vertex_offset + i];
|
||||
|
||||
unsigned int* neighbours = &adjacency.data[0] + adjacency.offsets[index];
|
||||
size_t neighbours_size = adjacency.counts[index];
|
||||
|
||||
for (size_t j = 0; j < neighbours_size; ++j)
|
||||
{
|
||||
unsigned int triangle = neighbours[j];
|
||||
assert(!emitted_flags[triangle]);
|
||||
|
||||
unsigned int a = indices[triangle * 3 + 0], b = indices[triangle * 3 + 1], c = indices[triangle * 3 + 2];
|
||||
assert(a < vertex_count && b < vertex_count && c < vertex_count);
|
||||
|
||||
unsigned int extra = (used[a] == 0xff) + (used[b] == 0xff) + (used[c] == 0xff);
|
||||
|
||||
// triangles that don't add new vertices to meshlets are max. priority
|
||||
if (extra != 0)
|
||||
{
|
||||
// artificially increase the priority of dangling triangles as they're expensive to add to new meshlets
|
||||
if (live_triangles[a] == 1 || live_triangles[b] == 1 || live_triangles[c] == 1)
|
||||
extra = 0;
|
||||
|
||||
extra++;
|
||||
}
|
||||
|
||||
// since topology-based priority is always more important than the score, we can skip scoring in some cases
|
||||
if (extra > best_extra)
|
||||
continue;
|
||||
|
||||
const Cone& tri_cone = triangles[triangle];
|
||||
|
||||
float distance2 =
|
||||
(tri_cone.px - meshlet_cone.px) * (tri_cone.px - meshlet_cone.px) +
|
||||
(tri_cone.py - meshlet_cone.py) * (tri_cone.py - meshlet_cone.py) +
|
||||
(tri_cone.pz - meshlet_cone.pz) * (tri_cone.pz - meshlet_cone.pz);
|
||||
|
||||
float spread = tri_cone.nx * meshlet_cone.nx + tri_cone.ny * meshlet_cone.ny + tri_cone.nz * meshlet_cone.nz;
|
||||
|
||||
float score = getMeshletScore(distance2, spread, cone_weight, meshlet_expected_radius);
|
||||
|
||||
// note that topology-based priority is always more important than the score
|
||||
// this helps maintain reasonable effectiveness of meshlet data and reduces scoring cost
|
||||
if (extra < best_extra || score < best_score)
|
||||
{
|
||||
best_triangle = triangle;
|
||||
best_extra = extra;
|
||||
best_score = score;
|
||||
}
|
||||
}
|
||||
best_triangle = getNeighborTriangle(meshlet, NULL, meshlet_vertices, indices, adjacency, triangles, live_triangles, used, meshlet_expected_radius, 0.f, NULL);
|
||||
}
|
||||
|
||||
// when we run out of neighboring triangles we need to switch to spatial search; we currently just pick the closest triangle irrespective of connectivity
|
||||
if (best_triangle == ~0u)
|
||||
{
|
||||
float position[3] = {meshlet_cone.px, meshlet_cone.py, meshlet_cone.pz};
|
||||
@ -604,16 +632,16 @@ size_t meshopt_buildMeshlets(meshopt_Meshlet* meshlets, unsigned int* meshlet_ve
|
||||
{
|
||||
unsigned int index = indices[best_triangle * 3 + k];
|
||||
|
||||
unsigned int* neighbours = &adjacency.data[0] + adjacency.offsets[index];
|
||||
size_t neighbours_size = adjacency.counts[index];
|
||||
unsigned int* neighbors = &adjacency.data[0] + adjacency.offsets[index];
|
||||
size_t neighbors_size = adjacency.counts[index];
|
||||
|
||||
for (size_t i = 0; i < neighbours_size; ++i)
|
||||
for (size_t i = 0; i < neighbors_size; ++i)
|
||||
{
|
||||
unsigned int tri = neighbours[i];
|
||||
unsigned int tri = neighbors[i];
|
||||
|
||||
if (tri == best_triangle)
|
||||
{
|
||||
neighbours[i] = neighbours[neighbours_size - 1];
|
||||
neighbors[i] = neighbors[neighbors_size - 1];
|
||||
adjacency.counts[index]--;
|
||||
break;
|
||||
}
|
||||
|
4
3rdparty/meshoptimizer/src/meshoptimizer.h
vendored
4
3rdparty/meshoptimizer/src/meshoptimizer.h
vendored
@ -332,7 +332,7 @@ enum
|
||||
*
|
||||
* destination must contain enough space for the target index buffer, worst case is index_count elements (*not* target_index_count)!
|
||||
* vertex_positions should have float3 position in the first 12 bytes of each vertex
|
||||
* target_error represents the error relative to mesh extents that can be tolerated, e.g. 0.01 = 1% deformation
|
||||
* target_error represents the error relative to mesh extents that can be tolerated, e.g. 0.01 = 1% deformation; value range [0..1]
|
||||
* options must be a bitmask composed of meshopt_SimplifyX options; 0 is a safe default
|
||||
* result_error can be NULL; when it's not NULL, it will contain the resulting (relative) error after simplification
|
||||
*/
|
||||
@ -348,7 +348,7 @@ MESHOPTIMIZER_API size_t meshopt_simplify(unsigned int* destination, const unsig
|
||||
*
|
||||
* destination must contain enough space for the target index buffer, worst case is index_count elements (*not* target_index_count)!
|
||||
* vertex_positions should have float3 position in the first 12 bytes of each vertex
|
||||
* target_error represents the error relative to mesh extents that can be tolerated, e.g. 0.01 = 1% deformation
|
||||
* target_error represents the error relative to mesh extents that can be tolerated, e.g. 0.01 = 1% deformation; value range [0..1]
|
||||
* result_error can be NULL; when it's not NULL, it will contain the resulting (relative) error after simplification
|
||||
*/
|
||||
MESHOPTIMIZER_EXPERIMENTAL size_t meshopt_simplifySloppy(unsigned int* destination, const unsigned int* indices, size_t index_count, const float* vertex_positions, size_t vertex_count, size_t vertex_positions_stride, size_t target_index_count, float target_error, float* result_error);
|
||||
|
28
3rdparty/meshoptimizer/src/vcacheoptimizer.cpp
vendored
28
3rdparty/meshoptimizer/src/vcacheoptimizer.cpp
vendored
@ -110,7 +110,7 @@ static unsigned int getNextVertexDeadEnd(const unsigned int* dead_end, unsigned
|
||||
return ~0u;
|
||||
}
|
||||
|
||||
static unsigned int getNextVertexNeighbour(const unsigned int* next_candidates_begin, const unsigned int* next_candidates_end, const unsigned int* live_triangles, const unsigned int* cache_timestamps, unsigned int timestamp, unsigned int cache_size)
|
||||
static unsigned int getNextVertexNeighbor(const unsigned int* next_candidates_begin, const unsigned int* next_candidates_end, const unsigned int* live_triangles, const unsigned int* cache_timestamps, unsigned int timestamp, unsigned int cache_size)
|
||||
{
|
||||
unsigned int best_candidate = ~0u;
|
||||
int best_priority = -1;
|
||||
@ -281,16 +281,16 @@ void meshopt_optimizeVertexCacheTable(unsigned int* destination, const unsigned
|
||||
{
|
||||
unsigned int index = indices[current_triangle * 3 + k];
|
||||
|
||||
unsigned int* neighbours = &adjacency.data[0] + adjacency.offsets[index];
|
||||
size_t neighbours_size = adjacency.counts[index];
|
||||
unsigned int* neighbors = &adjacency.data[0] + adjacency.offsets[index];
|
||||
size_t neighbors_size = adjacency.counts[index];
|
||||
|
||||
for (size_t i = 0; i < neighbours_size; ++i)
|
||||
for (size_t i = 0; i < neighbors_size; ++i)
|
||||
{
|
||||
unsigned int tri = neighbours[i];
|
||||
unsigned int tri = neighbors[i];
|
||||
|
||||
if (tri == current_triangle)
|
||||
{
|
||||
neighbours[i] = neighbours[neighbours_size - 1];
|
||||
neighbors[i] = neighbors[neighbors_size - 1];
|
||||
adjacency.counts[index]--;
|
||||
break;
|
||||
}
|
||||
@ -314,10 +314,10 @@ void meshopt_optimizeVertexCacheTable(unsigned int* destination, const unsigned
|
||||
vertex_scores[index] = score;
|
||||
|
||||
// update scores of vertex triangles
|
||||
const unsigned int* neighbours_begin = &adjacency.data[0] + adjacency.offsets[index];
|
||||
const unsigned int* neighbours_end = neighbours_begin + adjacency.counts[index];
|
||||
const unsigned int* neighbors_begin = &adjacency.data[0] + adjacency.offsets[index];
|
||||
const unsigned int* neighbors_end = neighbors_begin + adjacency.counts[index];
|
||||
|
||||
for (const unsigned int* it = neighbours_begin; it != neighbours_end; ++it)
|
||||
for (const unsigned int* it = neighbors_begin; it != neighbors_end; ++it)
|
||||
{
|
||||
unsigned int tri = *it;
|
||||
assert(!emitted_flags[tri]);
|
||||
@ -412,11 +412,11 @@ void meshopt_optimizeVertexCacheFifo(unsigned int* destination, const unsigned i
|
||||
{
|
||||
const unsigned int* next_candidates_begin = &dead_end[0] + dead_end_top;
|
||||
|
||||
// emit all vertex neighbours
|
||||
const unsigned int* neighbours_begin = &adjacency.data[0] + adjacency.offsets[current_vertex];
|
||||
const unsigned int* neighbours_end = neighbours_begin + adjacency.counts[current_vertex];
|
||||
// emit all vertex neighbors
|
||||
const unsigned int* neighbors_begin = &adjacency.data[0] + adjacency.offsets[current_vertex];
|
||||
const unsigned int* neighbors_end = neighbors_begin + adjacency.counts[current_vertex];
|
||||
|
||||
for (const unsigned int* it = neighbours_begin; it != neighbours_end; ++it)
|
||||
for (const unsigned int* it = neighbors_begin; it != neighbors_end; ++it)
|
||||
{
|
||||
unsigned int triangle = *it;
|
||||
|
||||
@ -461,7 +461,7 @@ void meshopt_optimizeVertexCacheFifo(unsigned int* destination, const unsigned i
|
||||
const unsigned int* next_candidates_end = &dead_end[0] + dead_end_top;
|
||||
|
||||
// get next vertex
|
||||
current_vertex = getNextVertexNeighbour(next_candidates_begin, next_candidates_end, &live_triangles[0], &cache_timestamps[0], timestamp, cache_size);
|
||||
current_vertex = getNextVertexNeighbor(next_candidates_begin, next_candidates_end, &live_triangles[0], &cache_timestamps[0], timestamp, cache_size);
|
||||
|
||||
if (current_vertex == ~0u)
|
||||
{
|
||||
|
Loading…
Reference in New Issue
Block a user