bgfx/3rdparty/glslang/SPIRV/SpvBuilder.h

855 lines
38 KiB
C
Raw Normal View History

2016-12-16 01:19:54 +03:00
//
2017-01-12 07:33:31 +03:00
// Copyright (C) 2014-2015 LunarG, Inc.
2020-03-14 22:58:54 +03:00
// Copyright (C) 2015-2020 Google, Inc.
2018-03-11 02:03:31 +03:00
// Copyright (C) 2017 ARM Limited.
2020-03-29 02:10:04 +03:00
// Modifications Copyright (C) 2020 Advanced Micro Devices, Inc. All rights reserved.
2016-12-16 01:19:54 +03:00
//
2017-01-12 07:33:31 +03:00
// All rights reserved.
2016-12-16 01:19:54 +03:00
//
2017-01-12 07:33:31 +03:00
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions
// are met:
2016-12-16 01:19:54 +03:00
//
// Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
//
// Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following
// disclaimer in the documentation and/or other materials provided
// with the distribution.
//
// Neither the name of 3Dlabs Inc. Ltd. nor the names of its
// contributors may be used to endorse or promote products derived
// from this software without specific prior written permission.
//
2017-01-12 07:33:31 +03:00
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
// FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
// COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
// INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
// BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
// LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
// CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
// LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
// ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
// POSSIBILITY OF SUCH DAMAGE.
2016-12-16 01:19:54 +03:00
//
// "Builder" is an interface to fully build SPIR-V IR. Allocate one of
// these to build (a thread safe) internal SPIR-V representation (IR),
// and then dump it as a binary stream according to the SPIR-V specification.
//
// A Builder has a 1:1 relationship with a SPIR-V module.
//
#pragma once
#ifndef SpvBuilder_H
#define SpvBuilder_H
#include "Logger.h"
#include "spirv.hpp"
#include "spvIR.h"
#include <algorithm>
#include <map>
#include <memory>
#include <set>
#include <sstream>
#include <stack>
2018-02-28 09:52:56 +03:00
#include <unordered_map>
2018-12-31 19:47:04 +03:00
#include <map>
2016-12-16 01:19:54 +03:00
namespace spv {
2019-06-07 08:11:01 +03:00
typedef enum {
Spv_1_0 = (1 << 16),
Spv_1_1 = (1 << 16) | (1 << 8),
Spv_1_2 = (1 << 16) | (2 << 8),
Spv_1_3 = (1 << 16) | (3 << 8),
Spv_1_4 = (1 << 16) | (4 << 8),
2019-09-22 15:12:36 +03:00
Spv_1_5 = (1 << 16) | (5 << 8),
2019-06-07 08:11:01 +03:00
} SpvVersion;
2016-12-16 01:19:54 +03:00
class Builder {
public:
2018-02-03 06:03:03 +03:00
Builder(unsigned int spvVersion, unsigned int userNumber, SpvBuildLogger* logger);
2016-12-16 01:19:54 +03:00
virtual ~Builder();
static const int maxMatrixSize = 4;
2018-03-11 02:03:31 +03:00
unsigned int getSpvVersion() const { return spvVersion; }
2016-12-16 01:19:54 +03:00
void setSource(spv::SourceLanguage lang, int version)
{
source = lang;
sourceVersion = version;
}
2018-12-31 19:47:04 +03:00
spv::Id getStringId(const std::string& str)
2017-06-03 21:11:11 +03:00
{
2018-12-31 19:47:04 +03:00
auto sItr = stringIds.find(str);
if (sItr != stringIds.end())
return sItr->second;
spv::Id strId = getUniqueId();
Instruction* fileString = new Instruction(strId, NoType, OpString);
const char* file_c_str = str.c_str();
2018-12-09 03:38:05 +03:00
fileString->addStringOperand(file_c_str);
2017-06-03 21:11:11 +03:00
strings.push_back(std::unique_ptr<Instruction>(fileString));
2020-03-14 22:58:54 +03:00
module.mapInstruction(fileString);
2018-12-31 19:47:04 +03:00
stringIds[file_c_str] = strId;
return strId;
}
void setSourceFile(const std::string& file)
{
sourceFileStringId = getStringId(file);
2017-06-03 21:11:11 +03:00
}
void setSourceText(const std::string& text) { sourceText = text; }
2016-12-16 01:19:54 +03:00
void addSourceExtension(const char* ext) { sourceExtensions.push_back(ext); }
2017-08-26 05:42:26 +03:00
void addModuleProcessed(const std::string& p) { moduleProcesses.push_back(p.c_str()); }
2017-06-03 21:11:11 +03:00
void setEmitOpLines() { emitOpLines = true; }
2016-12-16 01:19:54 +03:00
void addExtension(const char* ext) { extensions.insert(ext); }
2019-10-12 06:18:23 +03:00
void removeExtension(const char* ext)
{
extensions.erase(ext);
}
2019-09-22 15:12:36 +03:00
void addIncorporatedExtension(const char* ext, SpvVersion incorporatedVersion)
{
if (getSpvVersion() < static_cast<unsigned>(incorporatedVersion))
addExtension(ext);
}
2019-10-12 06:18:23 +03:00
void promoteIncorporatedExtension(const char* baseExt, const char* promoExt, SpvVersion incorporatedVersion)
{
removeExtension(baseExt);
addIncorporatedExtension(promoExt, incorporatedVersion);
}
2018-12-31 19:47:04 +03:00
void addInclude(const std::string& name, const std::string& text)
{
spv::Id incId = getStringId(name);
includeFiles[incId] = &text;
}
2016-12-16 01:19:54 +03:00
Id import(const char*);
void setMemoryModel(spv::AddressingModel addr, spv::MemoryModel mem)
{
addressModel = addr;
memoryModel = mem;
}
void addCapability(spv::Capability cap) { capabilities.insert(cap); }
// To get a new <id> for anything needing a new one.
Id getUniqueId() { return ++uniqueId; }
// To get a set of new <id>s, e.g., for a set of function parameters
Id getUniqueIds(int numIds)
{
Id id = uniqueId + 1;
uniqueId += numIds;
return id;
}
2018-12-09 03:38:05 +03:00
// Generate OpLine for non-filename-based #line directives (ie no filename
// seen yet): Log the current line, and if different than the last one,
// issue a new OpLine using the new line and current source file name.
2017-06-03 21:11:11 +03:00
void setLine(int line);
2018-12-09 03:38:05 +03:00
// If filename null, generate OpLine for non-filename-based line directives,
// else do filename-based: Log the current line and file, and if different
// than the last one, issue a new OpLine using the new line and file
// name.
void setLine(int line, const char* filename);
2017-06-03 21:11:11 +03:00
// Low-level OpLine. See setLine() for a layered helper.
void addLine(Id fileName, int line, int column);
2016-12-16 01:19:54 +03:00
// For creating new types (will return old type if the requested one was already made).
Id makeVoidType();
Id makeBoolType();
2019-01-13 12:21:33 +03:00
Id makePointer(StorageClass, Id pointee);
Id makeForwardPointer(StorageClass);
Id makePointerFromForwardPointer(StorageClass, Id forwardPointerType, Id pointee);
2016-12-16 01:19:54 +03:00
Id makeIntegerType(int width, bool hasSign); // generic
Id makeIntType(int width) { return makeIntegerType(width, true); }
Id makeUintType(int width) { return makeIntegerType(width, false); }
Id makeFloatType(int width);
Id makeStructType(const std::vector<Id>& members, const char*);
Id makeStructResultType(Id type0, Id type1);
Id makeVectorType(Id component, int size);
Id makeMatrixType(Id component, int cols, int rows);
Id makeArrayType(Id element, Id sizeId, int stride); // 0 stride means no stride decoration
Id makeRuntimeArray(Id element);
Id makeFunctionType(Id returnType, const std::vector<Id>& paramTypes);
Id makeImageType(Id sampledType, Dim, bool depth, bool arrayed, bool ms, unsigned sampled, ImageFormat format);
Id makeSamplerType();
Id makeSampledImageType(Id imageType);
2019-03-03 06:06:06 +03:00
Id makeCooperativeMatrixType(Id component, Id scope, Id rows, Id cols);
2016-12-16 01:19:54 +03:00
2018-09-22 20:37:00 +03:00
// accelerationStructureNV type
2020-03-21 06:21:42 +03:00
Id makeAccelerationStructureType();
2020-03-29 02:10:04 +03:00
// rayQueryEXT type
Id makeRayQueryType();
2018-09-22 20:37:00 +03:00
2016-12-16 01:19:54 +03:00
// For querying about types.
Id getTypeId(Id resultId) const { return module.getTypeId(resultId); }
Id getDerefTypeId(Id resultId) const;
Op getOpCode(Id id) const { return module.getInstruction(id)->getOpCode(); }
Op getTypeClass(Id typeId) const { return getOpCode(typeId); }
Op getMostBasicTypeClass(Id typeId) const;
int getNumComponents(Id resultId) const { return getNumTypeComponents(getTypeId(resultId)); }
int getNumTypeConstituents(Id typeId) const;
int getNumTypeComponents(Id typeId) const { return getNumTypeConstituents(typeId); }
Id getScalarTypeId(Id typeId) const;
Id getContainedTypeId(Id typeId) const;
Id getContainedTypeId(Id typeId, int) const;
StorageClass getTypeStorageClass(Id typeId) const { return module.getStorageClass(typeId); }
2020-03-14 22:58:54 +03:00
ImageFormat getImageTypeFormat(Id typeId) const
{ return (ImageFormat)module.getInstruction(typeId)->getImmediateOperand(6); }
2016-12-16 01:19:54 +03:00
bool isPointer(Id resultId) const { return isPointerType(getTypeId(resultId)); }
bool isScalar(Id resultId) const { return isScalarType(getTypeId(resultId)); }
bool isVector(Id resultId) const { return isVectorType(getTypeId(resultId)); }
bool isMatrix(Id resultId) const { return isMatrixType(getTypeId(resultId)); }
2019-03-03 06:06:06 +03:00
bool isCooperativeMatrix(Id resultId)const { return isCooperativeMatrixType(getTypeId(resultId)); }
2016-12-16 01:19:54 +03:00
bool isAggregate(Id resultId) const { return isAggregateType(getTypeId(resultId)); }
bool isSampledImage(Id resultId) const { return isSampledImageType(getTypeId(resultId)); }
2020-03-14 22:58:54 +03:00
bool isBoolType(Id typeId)
{ return groupedTypes[OpTypeBool].size() > 0 && typeId == groupedTypes[OpTypeBool].back()->getResultId(); }
bool isIntType(Id typeId) const
{ return getTypeClass(typeId) == OpTypeInt && module.getInstruction(typeId)->getImmediateOperand(1) != 0; }
bool isUintType(Id typeId) const
{ return getTypeClass(typeId) == OpTypeInt && module.getInstruction(typeId)->getImmediateOperand(1) == 0; }
2017-04-01 05:51:51 +03:00
bool isFloatType(Id typeId) const { return getTypeClass(typeId) == OpTypeFloat; }
2016-12-16 01:19:54 +03:00
bool isPointerType(Id typeId) const { return getTypeClass(typeId) == OpTypePointer; }
2020-03-14 22:58:54 +03:00
bool isScalarType(Id typeId) const
{ return getTypeClass(typeId) == OpTypeFloat || getTypeClass(typeId) == OpTypeInt ||
getTypeClass(typeId) == OpTypeBool; }
2016-12-16 01:19:54 +03:00
bool isVectorType(Id typeId) const { return getTypeClass(typeId) == OpTypeVector; }
bool isMatrixType(Id typeId) const { return getTypeClass(typeId) == OpTypeMatrix; }
bool isStructType(Id typeId) const { return getTypeClass(typeId) == OpTypeStruct; }
bool isArrayType(Id typeId) const { return getTypeClass(typeId) == OpTypeArray; }
2019-08-23 05:50:36 +03:00
#ifdef GLSLANG_WEB
bool isCooperativeMatrixType(Id typeId)const { return false; }
#else
2019-03-03 06:06:06 +03:00
bool isCooperativeMatrixType(Id typeId)const { return getTypeClass(typeId) == OpTypeCooperativeMatrixNV; }
2019-08-23 05:50:36 +03:00
#endif
2020-03-14 22:58:54 +03:00
bool isAggregateType(Id typeId) const
{ return isArrayType(typeId) || isStructType(typeId) || isCooperativeMatrixType(typeId); }
2016-12-16 01:19:54 +03:00
bool isImageType(Id typeId) const { return getTypeClass(typeId) == OpTypeImage; }
bool isSamplerType(Id typeId) const { return getTypeClass(typeId) == OpTypeSampler; }
bool isSampledImageType(Id typeId) const { return getTypeClass(typeId) == OpTypeSampledImage; }
2018-10-02 06:01:14 +03:00
bool containsType(Id typeId, Op typeOp, unsigned int width) const;
2019-01-13 12:21:33 +03:00
bool containsPhysicalStorageBufferOrArray(Id typeId) const;
2016-12-16 01:19:54 +03:00
bool isConstantOpCode(Op opcode) const;
bool isSpecConstantOpCode(Op opcode) const;
bool isConstant(Id resultId) const { return isConstantOpCode(getOpCode(resultId)); }
bool isConstantScalar(Id resultId) const { return getOpCode(resultId) == OpConstant; }
bool isSpecConstant(Id resultId) const { return isSpecConstantOpCode(getOpCode(resultId)); }
2020-03-14 22:58:54 +03:00
unsigned int getConstantScalar(Id resultId) const
{ return module.getInstruction(resultId)->getImmediateOperand(0); }
2016-12-16 01:19:54 +03:00
StorageClass getStorageClass(Id resultId) const { return getTypeStorageClass(getTypeId(resultId)); }
2020-07-18 06:06:45 +03:00
bool isVariableOpCode(Op opcode) const { return opcode == OpVariable; }
bool isVariable(Id resultId) const { return isVariableOpCode(getOpCode(resultId)); }
bool isGlobalStorage(Id resultId) const { return getStorageClass(resultId) != StorageClassFunction; }
bool isGlobalVariable(Id resultId) const { return isVariable(resultId) && isGlobalStorage(resultId); }
// See if a resultId is valid for use as an initializer.
bool isValidInitializer(Id resultId) const { return isConstant(resultId) || isGlobalVariable(resultId); }
2017-04-01 05:51:51 +03:00
int getScalarTypeWidth(Id typeId) const
{
Id scalarTypeId = getScalarTypeId(typeId);
assert(getTypeClass(scalarTypeId) == OpTypeInt || getTypeClass(scalarTypeId) == OpTypeFloat);
return module.getInstruction(scalarTypeId)->getImmediateOperand(0);
}
2016-12-16 01:19:54 +03:00
int getTypeNumColumns(Id typeId) const
{
assert(isMatrixType(typeId));
return getNumTypeConstituents(typeId);
}
int getNumColumns(Id resultId) const { return getTypeNumColumns(getTypeId(resultId)); }
int getTypeNumRows(Id typeId) const
{
assert(isMatrixType(typeId));
return getNumTypeComponents(getContainedTypeId(typeId));
}
int getNumRows(Id resultId) const { return getTypeNumRows(getTypeId(resultId)); }
Dim getTypeDimensionality(Id typeId) const
{
assert(isImageType(typeId));
return (Dim)module.getInstruction(typeId)->getImmediateOperand(1);
}
Id getImageType(Id resultId) const
{
Id typeId = getTypeId(resultId);
assert(isImageType(typeId) || isSampledImageType(typeId));
return isSampledImageType(typeId) ? module.getInstruction(typeId)->getIdOperand(0) : typeId;
}
bool isArrayedImageType(Id typeId) const
{
assert(isImageType(typeId));
return module.getInstruction(typeId)->getImmediateOperand(3) != 0;
}
// For making new constants (will return old constant if the requested one was already made).
Id makeBoolConstant(bool b, bool specConstant = false);
2020-03-14 22:58:54 +03:00
Id makeInt8Constant(int i, bool specConstant = false)
{ return makeIntConstant(makeIntType(8), (unsigned)i, specConstant); }
Id makeUint8Constant(unsigned u, bool specConstant = false)
{ return makeIntConstant(makeUintType(8), u, specConstant); }
Id makeInt16Constant(int i, bool specConstant = false)
{ return makeIntConstant(makeIntType(16), (unsigned)i, specConstant); }
Id makeUint16Constant(unsigned u, bool specConstant = false)
{ return makeIntConstant(makeUintType(16), u, specConstant); }
Id makeIntConstant(int i, bool specConstant = false)
{ return makeIntConstant(makeIntType(32), (unsigned)i, specConstant); }
Id makeUintConstant(unsigned u, bool specConstant = false)
{ return makeIntConstant(makeUintType(32), u, specConstant); }
Id makeInt64Constant(long long i, bool specConstant = false)
{ return makeInt64Constant(makeIntType(64), (unsigned long long)i, specConstant); }
Id makeUint64Constant(unsigned long long u, bool specConstant = false)
{ return makeInt64Constant(makeUintType(64), u, specConstant); }
2016-12-16 01:19:54 +03:00
Id makeFloatConstant(float f, bool specConstant = false);
Id makeDoubleConstant(double d, bool specConstant = false);
Id makeFloat16Constant(float f16, bool specConstant = false);
2018-03-17 19:19:04 +03:00
Id makeFpConstant(Id type, double d, bool specConstant = false);
2016-12-16 01:19:54 +03:00
// Turn the array of constants into a proper spv constant of the requested type.
2017-02-04 06:32:35 +03:00
Id makeCompositeConstant(Id type, const std::vector<Id>& comps, bool specConst = false);
2016-12-16 01:19:54 +03:00
// Methods for adding information outside the CFG.
Instruction* addEntryPoint(ExecutionModel, Function*, const char* name);
void addExecutionMode(Function*, ExecutionMode mode, int value1 = -1, int value2 = -1, int value3 = -1);
2020-09-20 06:12:22 +03:00
void addExecutionMode(Function*, ExecutionMode mode, const std::vector<unsigned>& literals);
void addExecutionModeId(Function*, ExecutionMode mode, const std::vector<Id>& operandIds);
2016-12-16 01:19:54 +03:00
void addName(Id, const char* name);
void addMemberName(Id, int member, const char* name);
void addDecoration(Id, Decoration, int num = -1);
2018-03-17 19:19:04 +03:00
void addDecoration(Id, Decoration, const char*);
2020-09-20 06:12:22 +03:00
void addDecoration(Id, Decoration, const std::vector<unsigned>& literals);
void addDecoration(Id, Decoration, const std::vector<const char*>& strings);
2018-03-17 19:19:04 +03:00
void addDecorationId(Id id, Decoration, Id idDecoration);
2020-09-20 06:12:22 +03:00
void addDecorationId(Id id, Decoration, const std::vector<Id>& operandIds);
2016-12-16 01:19:54 +03:00
void addMemberDecoration(Id, unsigned int member, Decoration, int num = -1);
2018-03-17 19:19:04 +03:00
void addMemberDecoration(Id, unsigned int member, Decoration, const char*);
2020-09-20 06:12:22 +03:00
void addMemberDecoration(Id, unsigned int member, Decoration, const std::vector<unsigned>& literals);
void addMemberDecoration(Id, unsigned int member, Decoration, const std::vector<const char*>& strings);
2016-12-16 01:19:54 +03:00
// At the end of what block do the next create*() instructions go?
void setBuildPoint(Block* bp) { buildPoint = bp; }
Block* getBuildPoint() const { return buildPoint; }
// Make the entry-point function. The returned pointer is only valid
// for the lifetime of this builder.
Function* makeEntryPoint(const char*);
// Make a shader-style function, and create its entry block if entry is non-zero.
// Return the function, pass back the entry.
// The returned pointer is only valid for the lifetime of this builder.
2020-03-14 22:58:54 +03:00
Function* makeFunctionEntry(Decoration precision, Id returnType, const char* name,
const std::vector<Id>& paramTypes, const std::vector<std::vector<Decoration>>& precisions, Block **entry = 0);
2016-12-16 01:19:54 +03:00
// Create a return. An 'implicit' return is one not appearing in the source
// code. In the case of an implicit return, no post-return block is inserted.
void makeReturn(bool implicit, Id retVal = 0);
// Generate all the code needed to finish up a function.
void leaveFunction();
// Create a discard.
void makeDiscard();
// Create a global or function local or IO variable.
2020-07-04 04:29:05 +03:00
Id createVariable(Decoration precision, StorageClass, Id type, const char* name = nullptr,
Id initializer = NoResult);
2016-12-16 01:19:54 +03:00
// Create an intermediate with an undefined value.
Id createUndefined(Id type);
// Store into an Id and return the l-value
2020-03-14 22:58:54 +03:00
void createStore(Id rValue, Id lValue, spv::MemoryAccessMask memoryAccess = spv::MemoryAccessMaskNone,
spv::Scope scope = spv::ScopeMax, unsigned int alignment = 0);
2016-12-16 01:19:54 +03:00
// Load from an Id and return it
2020-07-04 04:29:05 +03:00
Id createLoad(Id lValue, spv::Decoration precision,
spv::MemoryAccessMask memoryAccess = spv::MemoryAccessMaskNone,
2020-03-14 22:58:54 +03:00
spv::Scope scope = spv::ScopeMax, unsigned int alignment = 0);
2016-12-16 01:19:54 +03:00
// Create an OpAccessChain instruction
2017-02-04 06:32:35 +03:00
Id createAccessChain(StorageClass, Id base, const std::vector<Id>& offsets);
2016-12-16 01:19:54 +03:00
// Create an OpArrayLength instruction
Id createArrayLength(Id base, unsigned int member);
2019-03-03 06:06:06 +03:00
// Create an OpCooperativeMatrixLengthNV instruction
Id createCooperativeMatrixLength(Id type);
2016-12-16 01:19:54 +03:00
// Create an OpCompositeExtract instruction
Id createCompositeExtract(Id composite, Id typeId, unsigned index);
2017-02-04 06:32:35 +03:00
Id createCompositeExtract(Id composite, Id typeId, const std::vector<unsigned>& indexes);
2016-12-16 01:19:54 +03:00
Id createCompositeInsert(Id object, Id composite, Id typeId, unsigned index);
2017-02-04 06:32:35 +03:00
Id createCompositeInsert(Id object, Id composite, Id typeId, const std::vector<unsigned>& indexes);
2016-12-16 01:19:54 +03:00
Id createVectorExtractDynamic(Id vector, Id typeId, Id componentIndex);
Id createVectorInsertDynamic(Id vector, Id typeId, Id component, Id componentIndex);
void createNoResultOp(Op);
void createNoResultOp(Op, Id operand);
2018-09-08 20:25:27 +03:00
void createNoResultOp(Op, const std::vector<Id>& operands);
2018-08-18 07:20:54 +03:00
void createNoResultOp(Op, const std::vector<IdImmediate>& operands);
2016-12-16 01:19:54 +03:00
void createControlBarrier(Scope execution, Scope memory, MemorySemanticsMask);
void createMemoryBarrier(unsigned executionScope, unsigned memorySemantics);
Id createUnaryOp(Op, Id typeId, Id operand);
Id createBinOp(Op, Id typeId, Id operand1, Id operand2);
Id createTriOp(Op, Id typeId, Id operand1, Id operand2, Id operand3);
Id createOp(Op, Id typeId, const std::vector<Id>& operands);
2018-08-18 07:20:54 +03:00
Id createOp(Op, Id typeId, const std::vector<IdImmediate>& operands);
2017-02-04 06:32:35 +03:00
Id createFunctionCall(spv::Function*, const std::vector<spv::Id>&);
2016-12-16 01:19:54 +03:00
Id createSpecConstantOp(Op, Id typeId, const std::vector<spv::Id>& operands, const std::vector<unsigned>& literals);
// Take an rvalue (source) and a set of channels to extract from it to
// make a new rvalue, which is returned.
2017-02-04 06:32:35 +03:00
Id createRvalueSwizzle(Decoration precision, Id typeId, Id source, const std::vector<unsigned>& channels);
2016-12-16 01:19:54 +03:00
// Take a copy of an lvalue (target) and a source of components, and set the
// source components into the lvalue where the 'channels' say to put them.
// An updated version of the target is returned.
// (No true lvalue or stores are used.)
2017-02-04 06:32:35 +03:00
Id createLvalueSwizzle(Id typeId, Id target, Id source, const std::vector<unsigned>& channels);
2016-12-16 01:19:54 +03:00
// If both the id and precision are valid, the id
// gets tagged with the requested precision.
// The passed in id is always the returned id, to simplify use patterns.
Id setPrecision(Id id, Decoration precision)
{
if (precision != NoPrecision && id != NoResult)
addDecoration(id, precision);
return id;
}
// Can smear a scalar to a vector for the following forms:
// - promoteScalar(scalar, vector) // smear scalar to width of vector
// - promoteScalar(vector, scalar) // smear scalar to width of vector
// - promoteScalar(pointer, scalar) // smear scalar to width of what pointer points to
// - promoteScalar(scalar, scalar) // do nothing
// Other forms are not allowed.
//
// Generally, the type of 'scalar' does not need to be the same type as the components in 'vector'.
// The type of the created vector is a vector of components of the same type as the scalar.
//
2018-03-11 02:03:31 +03:00
// Note: One of the arguments will change, with the result coming back that way rather than
2016-12-16 01:19:54 +03:00
// through the return value.
void promoteScalar(Decoration precision, Id& left, Id& right);
// Make a value by smearing the scalar to fill the type.
// vectorType should be the correct type for making a vector of scalarVal.
// (No conversions are done.)
Id smearScalar(Decoration precision, Id scalarVal, Id vectorType);
// Create a call to a built-in function.
2017-02-04 06:32:35 +03:00
Id createBuiltinCall(Id resultType, Id builtins, int entryPoint, const std::vector<Id>& args);
2016-12-16 01:19:54 +03:00
// List of parameters used to create a texture operation
struct TextureParameters {
Id sampler;
Id coords;
Id bias;
Id lod;
Id Dref;
Id offset;
Id offsets;
Id gradX;
Id gradY;
Id sample;
Id component;
Id texelOut;
Id lodClamp;
2018-09-22 20:37:00 +03:00
Id granularity;
Id coarse;
2018-09-08 20:25:27 +03:00
bool nonprivate;
bool volatil;
2016-12-16 01:19:54 +03:00
};
// Select the correct texture operation based on all inputs, and emit the correct instruction
2019-06-07 08:11:01 +03:00
Id createTextureCall(Decoration precision, Id resultType, bool sparse, bool fetch, bool proj, bool gather,
bool noImplicit, const TextureParameters&, ImageOperandsMask);
2016-12-16 01:19:54 +03:00
// Emit the OpTextureQuery* instruction that was passed in.
// Figure out the right return value and type, and return it.
2017-03-12 00:55:30 +03:00
Id createTextureQueryCall(Op, const TextureParameters&, bool isUnsignedResult);
2016-12-16 01:19:54 +03:00
Id createSamplePositionCall(Decoration precision, Id, Id);
Id createBitFieldExtractCall(Decoration precision, Id, Id, Id, bool isSigned);
Id createBitFieldInsertCall(Decoration precision, Id, Id, Id, Id);
// Reduction comparison for composites: For equal and not-equal resulting in a scalar.
Id createCompositeCompare(Decoration precision, Id, Id, bool /* true if for equal, false if for not-equal */);
// OpCompositeConstruct
2017-02-04 06:32:35 +03:00
Id createCompositeConstruct(Id typeId, const std::vector<Id>& constituents);
2016-12-16 01:19:54 +03:00
// vector or scalar constructor
Id createConstructor(Decoration precision, const std::vector<Id>& sources, Id resultTypeId);
// matrix constructor
Id createMatrixConstructor(Decoration precision, const std::vector<Id>& sources, Id constructee);
// Helper to use for building nested control flow with if-then-else.
class If {
public:
2017-07-08 07:19:36 +03:00
If(Id condition, unsigned int ctrl, Builder& builder);
2016-12-16 01:19:54 +03:00
~If() {}
void makeBeginElse();
void makeEndIf();
private:
If(const If&);
If& operator=(If&);
Builder& builder;
Id condition;
2017-07-08 07:19:36 +03:00
unsigned int control;
2016-12-16 01:19:54 +03:00
Function* function;
Block* headerBlock;
Block* thenBlock;
Block* elseBlock;
Block* mergeBlock;
};
// Make a switch statement. A switch has 'numSegments' of pieces of code, not containing
// any case/default labels, all separated by one or more case/default labels. Each possible
// case value v is a jump to the caseValues[v] segment. The defaultSegment is also in this
// number space. How to compute the value is given by 'condition', as in switch(condition).
//
// The SPIR-V Builder will maintain the stack of post-switch merge blocks for nested switches.
//
// Use a defaultSegment < 0 if there is no default segment (to branch to post switch).
//
// Returns the right set of basic blocks to start each code segment with, so that the caller's
// recursion stack can hold the memory for it.
//
2017-07-08 07:19:36 +03:00
void makeSwitch(Id condition, unsigned int control, int numSegments, const std::vector<int>& caseValues,
2020-03-14 22:58:54 +03:00
const std::vector<int>& valueToSegment, int defaultSegment, std::vector<Block*>& segmentBB);
2016-12-16 01:19:54 +03:00
// Add a branch to the innermost switch's merge block.
void addSwitchBreak();
// Move to the next code segment, passing in the return argument in makeSwitch()
void nextSwitchSegment(std::vector<Block*>& segmentBB, int segment);
// Finish off the innermost switch.
void endSwitch(std::vector<Block*>& segmentBB);
struct LoopBlocks {
LoopBlocks(Block& head, Block& body, Block& merge, Block& continue_target) :
head(head), body(body), merge(merge), continue_target(continue_target) { }
Block &head, &body, &merge, &continue_target;
private:
LoopBlocks();
2020-02-05 08:36:48 +03:00
LoopBlocks& operator=(const LoopBlocks&) = delete;
2016-12-16 01:19:54 +03:00
};
// Start a new loop and prepare the builder to generate code for it. Until
// closeLoop() is called for this loop, createLoopContinue() and
// createLoopExit() will target its corresponding blocks.
LoopBlocks& makeNewLoop();
// Create a new block in the function containing the build point. Memory is
// owned by the function object.
Block& makeNewBlock();
// Add a branch to the continue_target of the current (innermost) loop.
void createLoopContinue();
// Add an exit (e.g. "break") from the innermost loop that we're currently
// in.
void createLoopExit();
// Close the innermost loop that you're in
void closeLoop();
//
// Access chain design for an R-Value vs. L-Value:
//
// There is a single access chain the builder is building at
// any particular time. Such a chain can be used to either to a load or
// a store, when desired.
//
// Expressions can be r-values, l-values, or both, or only r-values:
// a[b.c].d = .... // l-value
// ... = a[b.c].d; // r-value, that also looks like an l-value
// ++a[b.c].d; // r-value and l-value
// (x + y)[2]; // r-value only, can't possibly be l-value
//
// Computing an r-value means generating code. Hence,
// r-values should only be computed when they are needed, not speculatively.
//
// Computing an l-value means saving away information for later use in the compiler,
// no code is generated until the l-value is later dereferenced. It is okay
// to speculatively generate an l-value, just not okay to speculatively dereference it.
//
// The base of the access chain (the left-most variable or expression
// from which everything is based) can be set either as an l-value
// or as an r-value. Most efficient would be to set an l-value if one
// is available. If an expression was evaluated, the resulting r-value
// can be set as the chain base.
//
// The users of this single access chain can save and restore if they
// want to nest or manage multiple chains.
//
struct AccessChain {
Id base; // for l-values, pointer to the base object, for r-values, the base object
std::vector<Id> indexChain;
Id instr; // cache the instruction that generates this access chain
std::vector<unsigned> swizzle; // each std::vector element selects the next GLSL component number
2020-03-14 22:58:54 +03:00
Id component; // a dynamic component index, can coexist with a swizzle,
// done after the swizzle, NoResult if not present
Id preSwizzleBaseType; // dereferenced type, before swizzle or component is applied;
// NoType unless a swizzle or component is present
2016-12-16 01:19:54 +03:00
bool isRValue; // true if 'base' is an r-value, otherwise, base is an l-value
2020-03-14 22:58:54 +03:00
unsigned int alignment; // bitwise OR of alignment values passed in. Accumulates worst alignment.
// Only tracks base and (optional) component selection alignment.
2018-09-08 20:25:27 +03:00
// Accumulate whether anything in the chain of structures has coherent decorations.
struct CoherentFlags {
2019-08-23 05:50:36 +03:00
CoherentFlags() { clear(); }
#ifdef GLSLANG_WEB
void clear() { }
bool isVolatile() const { return false; }
CoherentFlags operator |=(const CoherentFlags &other) { return *this; }
#else
bool isVolatile() const { return volatil; }
2020-03-21 06:21:42 +03:00
bool anyCoherent() const {
return coherent || devicecoherent || queuefamilycoherent || workgroupcoherent ||
subgroupcoherent || shadercallcoherent;
}
2019-08-23 05:50:36 +03:00
2018-09-08 20:25:27 +03:00
unsigned coherent : 1;
unsigned devicecoherent : 1;
unsigned queuefamilycoherent : 1;
unsigned workgroupcoherent : 1;
unsigned subgroupcoherent : 1;
2020-03-21 06:21:42 +03:00
unsigned shadercallcoherent : 1;
2018-09-08 20:25:27 +03:00
unsigned nonprivate : 1;
unsigned volatil : 1;
unsigned isImage : 1;
void clear() {
coherent = 0;
devicecoherent = 0;
queuefamilycoherent = 0;
workgroupcoherent = 0;
subgroupcoherent = 0;
2020-03-21 06:21:42 +03:00
shadercallcoherent = 0;
2018-09-08 20:25:27 +03:00
nonprivate = 0;
volatil = 0;
isImage = 0;
}
CoherentFlags operator |=(const CoherentFlags &other) {
coherent |= other.coherent;
devicecoherent |= other.devicecoherent;
queuefamilycoherent |= other.queuefamilycoherent;
workgroupcoherent |= other.workgroupcoherent;
subgroupcoherent |= other.subgroupcoherent;
2020-03-21 06:21:42 +03:00
shadercallcoherent |= other.shadercallcoherent;
2018-09-08 20:25:27 +03:00
nonprivate |= other.nonprivate;
volatil |= other.volatil;
isImage |= other.isImage;
return *this;
}
2019-08-23 05:50:36 +03:00
#endif
2018-09-08 20:25:27 +03:00
};
CoherentFlags coherentFlags;
2016-12-16 01:19:54 +03:00
};
//
// the SPIR-V builder maintains a single active chain that
// the following methods operate on
//
// for external save and restore
AccessChain getAccessChain() { return accessChain; }
void setAccessChain(AccessChain newChain) { accessChain = newChain; }
// clear accessChain
void clearAccessChain();
// set new base as an l-value base
void setAccessChainLValue(Id lValue)
{
assert(isPointer(lValue));
accessChain.base = lValue;
}
// set new base value as an r-value
void setAccessChainRValue(Id rValue)
{
accessChain.isRValue = true;
accessChain.base = rValue;
}
// push offset onto the end of the chain
2019-01-13 12:21:33 +03:00
void accessChainPush(Id offset, AccessChain::CoherentFlags coherentFlags, unsigned int alignment)
2016-12-16 01:19:54 +03:00
{
accessChain.indexChain.push_back(offset);
2018-09-08 20:25:27 +03:00
accessChain.coherentFlags |= coherentFlags;
2019-01-13 12:21:33 +03:00
accessChain.alignment |= alignment;
2016-12-16 01:19:54 +03:00
}
// push new swizzle onto the end of any existing swizzle, merging into a single swizzle
2020-03-14 22:58:54 +03:00
void accessChainPushSwizzle(std::vector<unsigned>& swizzle, Id preSwizzleBaseType,
AccessChain::CoherentFlags coherentFlags, unsigned int alignment);
2016-12-16 01:19:54 +03:00
2018-02-10 03:29:00 +03:00
// push a dynamic component selection onto the access chain, only applicable with a
// non-trivial swizzle or no swizzle
2020-03-14 22:58:54 +03:00
void accessChainPushComponent(Id component, Id preSwizzleBaseType, AccessChain::CoherentFlags coherentFlags,
unsigned int alignment)
2016-12-16 01:19:54 +03:00
{
2018-02-10 03:29:00 +03:00
if (accessChain.swizzle.size() != 1) {
accessChain.component = component;
if (accessChain.preSwizzleBaseType == NoType)
accessChain.preSwizzleBaseType = preSwizzleBaseType;
}
2019-01-13 12:21:33 +03:00
accessChain.coherentFlags |= coherentFlags;
accessChain.alignment |= alignment;
2016-12-16 01:19:54 +03:00
}
// use accessChain and swizzle to store value
2020-03-14 22:58:54 +03:00
void accessChainStore(Id rvalue, spv::MemoryAccessMask memoryAccess = spv::MemoryAccessMaskNone,
spv::Scope scope = spv::ScopeMax, unsigned int alignment = 0);
2016-12-16 01:19:54 +03:00
// use accessChain and swizzle to load an r-value
2020-03-14 22:58:54 +03:00
Id accessChainLoad(Decoration precision, Decoration nonUniform, Id ResultType,
spv::MemoryAccessMask memoryAccess = spv::MemoryAccessMaskNone, spv::Scope scope = spv::ScopeMax,
unsigned int alignment = 0);
// Return whether or not the access chain can be represented in SPIR-V
// as an l-value.
// E.g., a[3].yx cannot be, while a[3].y and a[3].y[x] can be.
bool isSpvLvalue() const { return accessChain.swizzle.size() <= 1; }
2016-12-16 01:19:54 +03:00
// get the direct pointer for an l-value
Id accessChainGetLValue();
// Get the inferred SPIR-V type of the result of the current access chain,
// based on the type of the base and the chain of dereferences.
Id accessChainGetInferredType();
2019-11-05 07:03:31 +03:00
// Add capabilities, extensions, remove unneeded decorations, etc.,
2018-08-18 07:20:54 +03:00
// based on the resulting SPIR-V.
void postProcess();
2019-11-09 07:06:35 +03:00
// Prune unreachable blocks in the CFG and remove unneeded decorations.
void postProcessCFG();
#ifndef GLSLANG_WEB
// Add capabilities, extensions based on instructions in the module.
void postProcessFeatures();
2018-08-18 07:20:54 +03:00
// Hook to visit each instruction in a block in a function
2019-01-13 12:21:33 +03:00
void postProcess(Instruction&);
2018-08-18 07:20:54 +03:00
// Hook to visit each non-32-bit sized float/int operation in a block.
void postProcessType(const Instruction&, spv::Id typeId);
2019-11-09 07:06:35 +03:00
#endif
2018-08-18 07:20:54 +03:00
2016-12-16 01:19:54 +03:00
void dump(std::vector<unsigned int>&) const;
void createBranch(Block* block);
void createConditionalBranch(Id condition, Block* thenBlock, Block* elseBlock);
2020-03-14 22:58:54 +03:00
void createLoopMerge(Block* mergeBlock, Block* continueBlock, unsigned int control,
const std::vector<unsigned int>& operands);
2016-12-16 01:19:54 +03:00
// Sets to generate opcode for specialization constants.
void setToSpecConstCodeGenMode() { generatingOpCodeForSpecConst = true; }
// Sets to generate opcode for non-specialization constants (normal mode).
void setToNormalCodeGenMode() { generatingOpCodeForSpecConst = false; }
// Check if the builder is generating code for spec constants.
bool isInSpecConstCodeGenMode() { return generatingOpCodeForSpecConst; }
protected:
Id makeIntConstant(Id typeId, unsigned value, bool specConstant);
Id makeInt64Constant(Id typeId, unsigned long long value, bool specConstant);
2018-02-28 09:52:56 +03:00
Id findScalarConstant(Op typeClass, Op opcode, Id typeId, unsigned value);
Id findScalarConstant(Op typeClass, Op opcode, Id typeId, unsigned v1, unsigned v2);
2019-03-03 06:06:06 +03:00
Id findCompositeConstant(Op typeClass, Id typeId, const std::vector<Id>& comps);
2018-02-28 09:52:56 +03:00
Id findStructConstant(Id typeId, const std::vector<Id>& comps);
2016-12-16 01:19:54 +03:00
Id collapseAccessChain();
2018-02-10 03:29:00 +03:00
void remapDynamicSwizzle();
2016-12-16 01:19:54 +03:00
void transferAccessChainSwizzle(bool dynamic);
void simplifyAccessChainSwizzle();
void createAndSetNoPredecessorBlock(const char*);
void createSelectionMerge(Block* mergeBlock, unsigned int control);
2017-06-03 21:11:11 +03:00
void dumpSourceInstructions(std::vector<unsigned int>&) const;
2018-12-31 19:47:04 +03:00
void dumpSourceInstructions(const spv::Id fileId, const std::string& text, std::vector<unsigned int>&) const;
2016-12-16 01:19:54 +03:00
void dumpInstructions(std::vector<unsigned int>&, const std::vector<std::unique_ptr<Instruction> >&) const;
2017-08-26 05:42:26 +03:00
void dumpModuleProcesses(std::vector<unsigned int>&) const;
2020-03-14 22:58:54 +03:00
spv::MemoryAccessMask sanitizeMemoryAccessForStorageClass(spv::MemoryAccessMask memoryAccess, StorageClass sc)
const;
2016-12-16 01:19:54 +03:00
2018-02-03 06:03:03 +03:00
unsigned int spvVersion; // the version of SPIR-V to emit in the header
2016-12-16 01:19:54 +03:00
SourceLanguage source;
int sourceVersion;
2017-06-03 21:11:11 +03:00
spv::Id sourceFileStringId;
std::string sourceText;
int currentLine;
2018-12-09 03:38:05 +03:00
const char* currentFile;
2017-06-03 21:11:11 +03:00
bool emitOpLines;
2017-01-20 22:14:16 +03:00
std::set<std::string> extensions;
2016-12-16 01:19:54 +03:00
std::vector<const char*> sourceExtensions;
2017-08-26 05:42:26 +03:00
std::vector<const char*> moduleProcesses;
2016-12-16 01:19:54 +03:00
AddressingModel addressModel;
MemoryModel memoryModel;
std::set<spv::Capability> capabilities;
int builderNumber;
Module module;
Block* buildPoint;
Id uniqueId;
2016-12-17 23:38:22 +03:00
Function* entryPointFunction;
2016-12-16 01:19:54 +03:00
bool generatingOpCodeForSpecConst;
AccessChain accessChain;
// special blocks of instructions for output
2017-06-03 21:11:11 +03:00
std::vector<std::unique_ptr<Instruction> > strings;
2016-12-16 01:19:54 +03:00
std::vector<std::unique_ptr<Instruction> > imports;
std::vector<std::unique_ptr<Instruction> > entryPoints;
std::vector<std::unique_ptr<Instruction> > executionModes;
std::vector<std::unique_ptr<Instruction> > names;
std::vector<std::unique_ptr<Instruction> > decorations;
std::vector<std::unique_ptr<Instruction> > constantsTypesGlobals;
std::vector<std::unique_ptr<Instruction> > externals;
std::vector<std::unique_ptr<Function> > functions;
2020-03-14 22:58:54 +03:00
// not output, internally used for quick & dirty canonical (unique) creation
// map type opcodes to constant inst.
std::unordered_map<unsigned int, std::vector<Instruction*>> groupedConstants;
// map struct-id to constant instructions
std::unordered_map<unsigned int, std::vector<Instruction*>> groupedStructConstants;
// map type opcodes to type instructions
std::unordered_map<unsigned int, std::vector<Instruction*>> groupedTypes;
2016-12-16 01:19:54 +03:00
// stack of switches
std::stack<Block*> switchMerges;
// Our loop stack.
std::stack<LoopBlocks> loops;
2018-12-09 03:38:05 +03:00
// map from strings to their string ids
std::unordered_map<std::string, spv::Id> stringIds;
2018-12-31 19:47:04 +03:00
// map from include file name ids to their contents
std::map<spv::Id, const std::string*> includeFiles;
2017-06-03 21:11:11 +03:00
// The stream for outputting warnings and errors.
2016-12-16 01:19:54 +03:00
SpvBuildLogger* logger;
}; // end Builder class
}; // end spv namespace
#endif // SpvBuilder_H