bgfx/3rdparty/spirv-tools/source/opt/instrument_pass.h

327 lines
12 KiB
C
Raw Normal View History

2019-01-05 19:15:11 +03:00
// Copyright (c) 2018 The Khronos Group Inc.
// Copyright (c) 2018 Valve Corporation
// Copyright (c) 2018 LunarG Inc.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#ifndef LIBSPIRV_OPT_INSTRUMENT_PASS_H_
#define LIBSPIRV_OPT_INSTRUMENT_PASS_H_
#include <list>
#include <memory>
#include <vector>
#include "source/opt/ir_builder.h"
#include "source/opt/pass.h"
#include "spirv-tools/instrument.hpp"
// This is a base class to assist in the creation of passes which instrument
// shader modules. More specifically, passes which replace instructions with a
// larger and more capable set of instructions. Commonly, these new
// instructions will add testing of operands and execute different
// instructions depending on the outcome, including outputting of debug
// information into a buffer created especially for that purpose.
//
// This class contains helper functions to create an InstProcessFunction,
// which is the heart of any derived class implementing a specific
// instrumentation pass. It takes an instruction as an argument, decides
// if it should be instrumented, and generates code to replace it. This class
// also supplies function InstProcessEntryPointCallTree which applies the
// InstProcessFunction to every reachable instruction in a module and replaces
// the instruction with new instructions if generated.
//
// Chief among the helper functions are output code generation functions,
// used to generate code in the shader which writes data to output buffers
// associated with that validation. Currently one such function,
// GenDebugStreamWrite, exists. Other such functions may be added in the
// future. Each is accompanied by documentation describing the format of
// its output buffer.
//
// A validation pass may read or write multiple buffers. All such buffers
// are located in a single debug descriptor set whose index is passed at the
// creation of the instrumentation pass. The bindings of the buffers used by
2022-01-29 07:07:21 +03:00
// a validation pass are permanently assigned and fixed and documented by
2019-01-05 19:15:11 +03:00
// the kDebugOutput* static consts.
namespace spvtools {
namespace opt {
class InstrumentPass : public Pass {
using cbb_ptr = const BasicBlock*;
public:
2019-03-22 23:17:07 +03:00
using InstProcessFunction =
std::function<void(BasicBlock::iterator, UptrVectorIterator<BasicBlock>,
uint32_t, std::vector<std::unique_ptr<BasicBlock>>*)>;
2019-01-05 19:15:11 +03:00
~InstrumentPass() override = default;
IRContext::Analysis GetPreservedAnalyses() override {
2019-03-22 23:17:07 +03:00
return IRContext::kAnalysisDefUse | IRContext::kAnalysisDecorations |
IRContext::kAnalysisCombinators | IRContext::kAnalysisNameMap |
IRContext::kAnalysisBuiltinVarId | IRContext::kAnalysisConstants;
2019-01-05 19:15:11 +03:00
}
protected:
2019-06-07 08:02:38 +03:00
// Create instrumentation pass for |validation_id| which utilizes descriptor
// set |desc_set| for debug input and output buffers and writes |shader_id|
2020-09-20 06:12:57 +03:00
// into debug output records. |opt_direct_reads| indicates that the pass
// will see direct input buffer reads and should prepare to optimize them.
2023-12-23 05:15:36 +03:00
InstrumentPass(uint32_t desc_set, uint32_t shader_id, bool opt_direct_reads,
bool use_stage_info)
2020-02-05 08:33:12 +03:00
: Pass(),
desc_set_(desc_set),
shader_id_(shader_id),
2023-12-23 05:15:36 +03:00
opt_direct_reads_(opt_direct_reads),
use_stage_info_(use_stage_info) {}
2019-01-05 19:15:11 +03:00
2019-06-07 08:02:38 +03:00
// Initialize state for instrumentation of module.
2019-01-05 19:15:11 +03:00
void InitializeInstrument();
// Call |pfn| on all instructions in all functions in the call tree of the
// entry points in |module|. If code is generated for an instruction, replace
// the instruction's block with the new blocks that are generated. Continue
// processing at the top of the last new block.
bool InstProcessEntryPointCallTree(InstProcessFunction& pfn);
// Move all code in |ref_block_itr| preceding the instruction |ref_inst_itr|
// to be instrumented into block |new_blk_ptr|.
void MovePreludeCode(BasicBlock::iterator ref_inst_itr,
UptrVectorIterator<BasicBlock> ref_block_itr,
std::unique_ptr<BasicBlock>* new_blk_ptr);
// Move all code in |ref_block_itr| succeeding the instruction |ref_inst_itr|
// to be instrumented into block |new_blk_ptr|.
void MovePostludeCode(UptrVectorIterator<BasicBlock> ref_block_itr,
2019-03-22 23:17:07 +03:00
BasicBlock* new_blk_ptr);
2019-01-05 19:15:11 +03:00
2020-09-20 06:12:57 +03:00
// Return true if all instructions in |ids| are constants or spec constants.
bool AllConstant(const std::vector<uint32_t>& ids);
2023-06-24 19:55:06 +03:00
uint32_t GenReadFunctionCall(uint32_t return_id, uint32_t func_id,
2023-02-03 06:01:13 +03:00
const std::vector<uint32_t>& args,
InstructionBuilder* builder);
2020-11-02 08:41:43 +03:00
// Generate code to convert integer |value_id| to 32bit, if needed. Return
// an id to the 32bit equivalent.
uint32_t Gen32BitCvtCode(uint32_t value_id, InstructionBuilder* builder);
// Generate code to cast integer |value_id| to 32bit unsigned, if needed.
// Return an id to the Uint equivalent.
2019-01-05 19:15:11 +03:00
uint32_t GenUintCastCode(uint32_t value_id, InstructionBuilder* builder);
2023-02-03 06:01:13 +03:00
std::unique_ptr<Function> StartFunction(
uint32_t func_id, const analysis::Type* return_type,
const std::vector<const analysis::Type*>& param_types);
std::vector<uint32_t> AddParameters(
Function& func, const std::vector<const analysis::Type*>& param_types);
std::unique_ptr<Instruction> EndFunction();
2019-01-05 19:15:11 +03:00
// Return new label.
std::unique_ptr<Instruction> NewLabel(uint32_t label_id);
2022-10-03 08:56:58 +03:00
// Set the name function parameter or local variable
std::unique_ptr<Instruction> NewName(uint32_t id,
const std::string& name_str);
2019-01-05 19:15:11 +03:00
// Return id for 32-bit unsigned type
uint32_t GetUintId();
2020-03-14 23:21:05 +03:00
// Return id for 64-bit unsigned type
2019-08-23 06:01:58 +03:00
uint32_t GetUint64Id();
2020-03-14 23:21:05 +03:00
// Return id for 8-bit unsigned type
uint32_t GetUint8Id();
2019-01-05 19:15:11 +03:00
// Return id for 32-bit unsigned type
uint32_t GetBoolId();
// Return id for void type
uint32_t GetVoidId();
2023-02-03 06:01:13 +03:00
// Get registered type structures
analysis::Integer* GetInteger(uint32_t width, bool is_signed);
analysis::Struct* GetStruct(const std::vector<const analysis::Type*>& fields);
analysis::RuntimeArray* GetRuntimeArray(const analysis::Type* element);
2023-05-05 08:23:36 +03:00
analysis::Array* GetArray(const analysis::Type* element, uint32_t size);
2023-02-03 06:01:13 +03:00
analysis::Function* GetFunction(
const analysis::Type* return_val,
const std::vector<const analysis::Type*>& args);
2019-02-09 23:43:10 +03:00
// Return pointer to type for runtime array of uint
2023-02-03 06:01:13 +03:00
analysis::RuntimeArray* GetUintXRuntimeArrayType(
uint32_t width, analysis::RuntimeArray** rarr_ty);
2019-08-23 06:01:58 +03:00
// Return pointer to type for runtime array of uint
2023-02-03 06:01:13 +03:00
analysis::RuntimeArray* GetUintRuntimeArrayType(uint32_t width);
2019-02-09 23:43:10 +03:00
// Add storage buffer extension if needed
void AddStorageBufferExt();
2020-03-14 23:21:05 +03:00
// Return id for 32-bit float type
uint32_t GetFloatId();
2019-01-05 19:15:11 +03:00
// Return id for v4float type
uint32_t GetVec4FloatId();
2019-08-10 06:32:29 +03:00
// Return id for uint vector type of |length|
uint32_t GetVecUintId(uint32_t length);
2019-01-05 19:15:11 +03:00
// Return id for v4uint type
uint32_t GetVec4UintId();
2019-08-10 06:32:29 +03:00
// Return id for v3uint type
uint32_t GetVec3UintId();
2020-09-20 06:12:57 +03:00
// Split block |block_itr| into two new blocks where the second block
// contains |inst_itr| and place in |new_blocks|.
void SplitBlock(BasicBlock::iterator inst_itr,
UptrVectorIterator<BasicBlock> block_itr,
std::vector<std::unique_ptr<BasicBlock>>* new_blocks);
2019-01-05 19:15:11 +03:00
// Apply instrumentation function |pfn| to every instruction in |func|.
// If code is generated for an instruction, replace the instruction's
// block with the new blocks that are generated. Continue processing at the
// top of the last new block.
2023-05-05 08:23:36 +03:00
virtual bool InstrumentFunction(Function* func, uint32_t stage_idx,
InstProcessFunction& pfn);
2019-01-05 19:15:11 +03:00
// Call |pfn| on all functions in the call tree of the function
// ids in |roots|.
bool InstProcessCallTreeFromRoots(InstProcessFunction& pfn,
std::queue<uint32_t>* roots,
uint32_t stage_idx);
2019-06-07 08:02:38 +03:00
// Generate instructions into |builder| which will load |var_id| and return
// its result id.
uint32_t GenVarLoad(uint32_t var_id, InstructionBuilder* builder);
2023-06-24 19:55:06 +03:00
uint32_t GenStageInfo(uint32_t stage_idx, InstructionBuilder* builder);
2019-01-05 19:15:11 +03:00
// Return true if instruction must be in the same block that its result
// is used.
bool IsSameBlockOp(const Instruction* inst) const;
// Clone operands which must be in same block as consumer instructions.
// Look in same_blk_pre for instructions that need cloning. Look in
// same_blk_post for instructions already cloned. Add cloned instruction
// to same_blk_post.
void CloneSameBlockOps(
std::unique_ptr<Instruction>* inst,
std::unordered_map<uint32_t, uint32_t>* same_blk_post,
std::unordered_map<uint32_t, Instruction*>* same_blk_pre,
2019-03-22 23:17:07 +03:00
BasicBlock* block_ptr);
2019-01-05 19:15:11 +03:00
// Update phis in succeeding blocks to point to new last block
void UpdateSucceedingPhis(
std::vector<std::unique_ptr<BasicBlock>>& new_blocks);
// Debug descriptor set index
uint32_t desc_set_;
// Shader module ID written into output record
uint32_t shader_id_;
// Map from function id to function pointer.
std::unordered_map<uint32_t, Function*> id2function_;
// Map from block's label id to block. TODO(dnovillo): This is superfluous wrt
// CFG. It has functionality not present in CFG. Consolidate.
std::unordered_map<uint32_t, BasicBlock*> id2block_;
2019-03-22 23:17:07 +03:00
// Map from instruction's unique id to offset in original file.
std::unordered_map<uint32_t, uint32_t> uid2offset_;
2019-01-05 19:15:11 +03:00
// id for debug output function
2020-03-14 23:21:05 +03:00
std::unordered_map<uint32_t, uint32_t> param2output_func_id_;
2019-01-05 19:15:11 +03:00
2019-03-22 23:17:07 +03:00
// ids for debug input functions
std::unordered_map<uint32_t, uint32_t> param2input_func_id_;
2020-03-14 23:21:05 +03:00
// id for 32-bit float type
2023-11-04 03:50:15 +03:00
uint32_t float_id_{0};
2020-03-14 23:21:05 +03:00
2019-01-05 19:15:11 +03:00
// id for v4float type
2023-11-04 03:50:15 +03:00
uint32_t v4float_id_{0};
2019-01-05 19:15:11 +03:00
2019-08-10 06:32:29 +03:00
// id for v4uint type
2023-11-04 03:50:15 +03:00
uint32_t v4uint_id_{0};
2019-01-05 19:15:11 +03:00
2019-08-10 06:32:29 +03:00
// id for v3uint type
2023-11-04 03:50:15 +03:00
uint32_t v3uint_id_{0};
2019-08-10 06:32:29 +03:00
2019-01-05 19:15:11 +03:00
// id for 32-bit unsigned type
2023-11-04 03:50:15 +03:00
uint32_t uint_id_{0};
2019-01-05 19:15:11 +03:00
2020-03-14 23:21:05 +03:00
// id for 64-bit unsigned type
2023-11-04 03:50:15 +03:00
uint32_t uint64_id_{0};
2019-08-23 06:01:58 +03:00
2020-03-14 23:21:05 +03:00
// id for 8-bit unsigned type
2023-11-04 03:50:15 +03:00
uint32_t uint8_id_{0};
2020-03-14 23:21:05 +03:00
2019-01-05 19:15:11 +03:00
// id for bool type
2023-11-04 03:50:15 +03:00
uint32_t bool_id_{0};
2019-01-05 19:15:11 +03:00
// id for void type
2023-11-04 03:50:15 +03:00
uint32_t void_id_{0};
2019-01-05 19:15:11 +03:00
2019-02-09 23:43:10 +03:00
// boolean to remember storage buffer extension
2023-11-04 03:50:15 +03:00
bool storage_buffer_ext_defined_{false};
2019-02-09 23:43:10 +03:00
// runtime array of uint type
2023-11-04 03:50:15 +03:00
analysis::RuntimeArray* uint64_rarr_ty_{nullptr};
2019-08-23 06:01:58 +03:00
// runtime array of uint type
2023-11-04 03:50:15 +03:00
analysis::RuntimeArray* uint32_rarr_ty_{nullptr};
2019-02-09 23:43:10 +03:00
2019-01-05 19:15:11 +03:00
// Pre-instrumentation same-block insts
std::unordered_map<uint32_t, Instruction*> same_block_pre_;
// Post-instrumentation same-block op ids
std::unordered_map<uint32_t, uint32_t> same_block_post_;
2020-09-20 06:12:57 +03:00
// Map function calls to result id. Clear for every function.
// This is for debug input reads with constant arguments that
// have been generated into the first block of the function.
// This mechanism is used to avoid multiple identical debug
// input buffer reads.
struct vector_hash_ {
std::size_t operator()(const std::vector<uint32_t>& v) const {
std::size_t hash = v.size();
for (auto& u : v) {
hash ^= u + 0x9e3779b9 + (hash << 11) + (hash >> 21);
}
return hash;
}
};
std::unordered_map<std::vector<uint32_t>, uint32_t, vector_hash_> call2id_;
// Function currently being instrumented
2023-11-04 03:50:15 +03:00
Function* curr_func_{nullptr};
2020-09-20 06:12:57 +03:00
// Optimize direct debug input buffer reads. Specifically, move all such
// reads with constant args to first block and reuse them.
2023-12-23 05:15:36 +03:00
const bool opt_direct_reads_;
// Set true if the instrumentation needs to know the current stage.
// Note that this does not work with multi-stage modules.
const bool use_stage_info_;
2019-01-05 19:15:11 +03:00
};
} // namespace opt
} // namespace spvtools
#endif // LIBSPIRV_OPT_INSTRUMENT_PASS_H_