acpica/source/components/hardware/hwregs.c
aystarik a47c080dac Added 2000 to the copyright in the legal header
date	2000.12.08.20.55.00;	author rmoore1;	state Exp;
2005-06-29 15:40:01 +00:00

1163 lines
32 KiB
C

/*******************************************************************************
*
* Module Name: hwregs - Read/write access functions for the various ACPI
* control and status registers.
* $Revision: 1.85 $
*
******************************************************************************/
/******************************************************************************
*
* 1. Copyright Notice
*
* Some or all of this work - Copyright (c) 1999, 2000, Intel Corp.
* All rights reserved.
*
* 2. License
*
* 2.1. This is your license from Intel Corp. under its intellectual property
* rights. You may have additional license terms from the party that provided
* you this software, covering your right to use that party's intellectual
* property rights.
*
* 2.2. Intel grants, free of charge, to any person ("Licensee") obtaining a
* copy of the source code appearing in this file ("Covered Code") an
* irrevocable, perpetual, worldwide license under Intel's copyrights in the
* base code distributed originally by Intel ("Original Intel Code") to copy,
* make derivatives, distribute, use and display any portion of the Covered
* Code in any form, with the right to sublicense such rights; and
*
* 2.3. Intel grants Licensee a non-exclusive and non-transferable patent
* license (with the right to sublicense), under only those claims of Intel
* patents that are infringed by the Original Intel Code, to make, use, sell,
* offer to sell, and import the Covered Code and derivative works thereof
* solely to the minimum extent necessary to exercise the above copyright
* license, and in no event shall the patent license extend to any additions
* to or modifications of the Original Intel Code. No other license or right
* is granted directly or by implication, estoppel or otherwise;
*
* The above copyright and patent license is granted only if the following
* conditions are met:
*
* 3. Conditions
*
* 3.1. Redistribution of Source with Rights to Further Distribute Source.
* Redistribution of source code of any substantial portion of the Covered
* Code or modification with rights to further distribute source must include
* the above Copyright Notice, the above License, this list of Conditions,
* and the following Disclaimer and Export Compliance provision. In addition,
* Licensee must cause all Covered Code to which Licensee contributes to
* contain a file documenting the changes Licensee made to create that Covered
* Code and the date of any change. Licensee must include in that file the
* documentation of any changes made by any predecessor Licensee. Licensee
* must include a prominent statement that the modification is derived,
* directly or indirectly, from Original Intel Code.
*
* 3.2. Redistribution of Source with no Rights to Further Distribute Source.
* Redistribution of source code of any substantial portion of the Covered
* Code or modification without rights to further distribute source must
* include the following Disclaimer and Export Compliance provision in the
* documentation and/or other materials provided with distribution. In
* addition, Licensee may not authorize further sublicense of source of any
* portion of the Covered Code, and must include terms to the effect that the
* license from Licensee to its licensee is limited to the intellectual
* property embodied in the software Licensee provides to its licensee, and
* not to intellectual property embodied in modifications its licensee may
* make.
*
* 3.3. Redistribution of Executable. Redistribution in executable form of any
* substantial portion of the Covered Code or modification must reproduce the
* above Copyright Notice, and the following Disclaimer and Export Compliance
* provision in the documentation and/or other materials provided with the
* distribution.
*
* 3.4. Intel retains all right, title, and interest in and to the Original
* Intel Code.
*
* 3.5. Neither the name Intel nor any other trademark owned or controlled by
* Intel shall be used in advertising or otherwise to promote the sale, use or
* other dealings in products derived from or relating to the Covered Code
* without prior written authorization from Intel.
*
* 4. Disclaimer and Export Compliance
*
* 4.1. INTEL MAKES NO WARRANTY OF ANY KIND REGARDING ANY SOFTWARE PROVIDED
* HERE. ANY SOFTWARE ORIGINATING FROM INTEL OR DERIVED FROM INTEL SOFTWARE
* IS PROVIDED "AS IS," AND INTEL WILL NOT PROVIDE ANY SUPPORT, ASSISTANCE,
* INSTALLATION, TRAINING OR OTHER SERVICES. INTEL WILL NOT PROVIDE ANY
* UPDATES, ENHANCEMENTS OR EXTENSIONS. INTEL SPECIFICALLY DISCLAIMS ANY
* IMPLIED WARRANTIES OF MERCHANTABILITY, NONINFRINGEMENT AND FITNESS FOR A
* PARTICULAR PURPOSE.
*
* 4.2. IN NO EVENT SHALL INTEL HAVE ANY LIABILITY TO LICENSEE, ITS LICENSEES
* OR ANY OTHER THIRD PARTY, FOR ANY LOST PROFITS, LOST DATA, LOSS OF USE OR
* COSTS OF PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES, OR FOR ANY INDIRECT,
* SPECIAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THIS AGREEMENT, UNDER ANY
* CAUSE OF ACTION OR THEORY OF LIABILITY, AND IRRESPECTIVE OF WHETHER INTEL
* HAS ADVANCE NOTICE OF THE POSSIBILITY OF SUCH DAMAGES. THESE LIMITATIONS
* SHALL APPLY NOTWITHSTANDING THE FAILURE OF THE ESSENTIAL PURPOSE OF ANY
* LIMITED REMEDY.
*
* 4.3. Licensee shall not export, either directly or indirectly, any of this
* software or system incorporating such software without first obtaining any
* required license or other approval from the U. S. Department of Commerce or
* any other agency or department of the United States Government. In the
* event Licensee exports any such software from the United States or
* re-exports any such software from a foreign destination, Licensee shall
* ensure that the distribution and export/re-export of the software is in
* compliance with all laws, regulations, orders, or other restrictions of the
* U.S. Export Administration Regulations. Licensee agrees that neither it nor
* any of its subsidiaries will export/re-export any technical data, process,
* software, or service, directly or indirectly, to any country for which the
* United States government or any agency thereof requires an export license,
* other governmental approval, or letter of assurance, without first obtaining
* such license, approval or letter.
*
*****************************************************************************/
#define __HWREGS_C__
#include "acpi.h"
#include "achware.h"
#include "acnamesp.h"
#define _COMPONENT HARDWARE
MODULE_NAME ("hwregs")
/* This matches the #defines in actypes.h. */
NATIVE_CHAR *SleepStateTable[] = {"\\_S0_","\\_S1_","\\_S2_","\\_S3_",
"\\_S4_","\\_S4B","\\_S5_"};
/*******************************************************************************
*
* FUNCTION: AcpiHwGetBitShift
*
* PARAMETERS: Mask - Input mask to determine bit shift from.
* Must have at least 1 bit set.
*
* RETURN: Bit location of the lsb of the mask
*
* DESCRIPTION: Returns the bit number for the low order bit that's set.
*
******************************************************************************/
static UINT32
AcpiHwGetBitShift (
UINT32 Mask)
{
UINT32 Shift;
FUNCTION_TRACE ("HwGetBitShift");
for (Shift = 0; ((Mask >> Shift) & 1) == 0; Shift++)
{ ; }
return_VALUE (Shift);
}
/*******************************************************************************
*
* FUNCTION: AcpiHwClearAcpiStatus
*
* PARAMETERS: none
*
* RETURN: none
*
* DESCRIPTION: Clears all fixed and general purpose status bits
*
******************************************************************************/
void
AcpiHwClearAcpiStatus (void)
{
UINT16 GpeLength;
UINT16 Index;
FUNCTION_TRACE ("HwClearAcpiStatus");
DEBUG_PRINT (TRACE_IO, ("About to write %04X to %04X\n",
ALL_FIXED_STS_BITS,
(UINT16) AcpiGbl_FADT->XPm1aEvtBlk.Address));
AcpiCmAcquireMutex (ACPI_MTX_HARDWARE);
AcpiHwRegisterWrite (ACPI_MTX_DO_NOT_LOCK, PM1_STS, ALL_FIXED_STS_BITS);
if (AcpiGbl_FADT->XPm1bEvtBlk.Address)
{
AcpiOsOut16 ((ACPI_IO_ADDRESS) AcpiGbl_FADT->XPm1bEvtBlk.Address,
(UINT16) ALL_FIXED_STS_BITS);
}
/* now clear the GPE Bits */
if (AcpiGbl_FADT->Gpe0BlkLen)
{
GpeLength = (UINT16) DIV_2 (AcpiGbl_FADT->Gpe0BlkLen);
for (Index = 0; Index < GpeLength; Index++)
{
AcpiOsOut8 ((ACPI_IO_ADDRESS) (AcpiGbl_FADT->XGpe0Blk.Address + Index),
(UINT8) 0xff);
}
}
if (AcpiGbl_FADT->Gpe1BlkLen)
{
GpeLength = (UINT16) DIV_2 (AcpiGbl_FADT->Gpe1BlkLen);
for (Index = 0; Index < GpeLength; Index++)
{
AcpiOsOut8 ((ACPI_IO_ADDRESS) (AcpiGbl_FADT->XGpe1Blk.Address + Index),
(UINT8) 0xff);
}
}
AcpiCmReleaseMutex (ACPI_MTX_HARDWARE);
return_VOID;
}
/*******************************************************************************
*
* FUNCTION: AcpiHwObtainSleepTypeRegisterData
*
* PARAMETERS: SleepState - Numeric state requested
* *Slp_TypA - Pointer to byte to receive SLP_TYPa value
* *Slp_TypB - Pointer to byte to receive SLP_TYPb value
*
* RETURN: Status - ACPI status
*
* DESCRIPTION: AcpiHwObtainSleepTypeRegisterData() obtains the SLP_TYP and
* SLP_TYPb values for the sleep state requested.
*
******************************************************************************/
ACPI_STATUS
AcpiHwObtainSleepTypeRegisterData (
UINT8 SleepState,
UINT8 *Slp_TypA,
UINT8 *Slp_TypB)
{
ACPI_STATUS Status = AE_OK;
ACPI_OPERAND_OBJECT *ObjDesc;
FUNCTION_TRACE ("HwObtainSleepTypeRegisterData");
/*
* Validate parameters
*/
if ((SleepState > ACPI_S_STATES_MAX) ||
!Slp_TypA || !Slp_TypB)
{
return_ACPI_STATUS (AE_BAD_PARAMETER);
}
/*
* AcpiEvaluate the namespace object containing the values for this state
*/
Status = AcpiNsEvaluateByName (SleepStateTable[SleepState], NULL, &ObjDesc);
if (ACPI_FAILURE (Status))
{
return_ACPI_STATUS (Status);
}
if (!ObjDesc)
{
REPORT_ERROR (("Missing Sleep State object\n"));
return_ACPI_STATUS (AE_NOT_EXIST);
}
/*
* We got something, now ensure it is correct. The object must
* be a package and must have at least 2 numeric values as the
* two elements
*/
Status = AcpiCmResolvePackageReferences(ObjDesc);
if (ObjDesc->Package.Count < 2)
{
/* Must have at least two elements */
REPORT_ERROR (("Sleep State package does not have at least two elements\n"));
Status = AE_ERROR;
}
else if (((ObjDesc->Package.Elements[0])->Common.Type !=
ACPI_TYPE_NUMBER) ||
((ObjDesc->Package.Elements[1])->Common.Type !=
ACPI_TYPE_NUMBER))
{
/* Must have two */
REPORT_ERROR (("Sleep State package elements are not both of type Number\n"));
Status = AE_ERROR;
}
else
{
/*
* Valid _Sx_ package size, type, and value
*/
*Slp_TypA = (UINT8) (ObjDesc->Package.Elements[0])->Number.Value;
*Slp_TypB = (UINT8) (ObjDesc->Package.Elements[1])->Number.Value;
}
if (ACPI_FAILURE (Status))
{
DEBUG_PRINT (ACPI_ERROR,
("SleepTypeRegisterData: Bad Sleep object %p type %X\n",
ObjDesc, ObjDesc->Common.Type));
}
AcpiCmRemoveReference (ObjDesc);
return_ACPI_STATUS (Status);
}
/*******************************************************************************
*
* FUNCTION: AcpiHwRegisterBitAccess
*
* PARAMETERS: ReadWrite - Either ACPI_READ or ACPI_WRITE.
* UseLock - Lock the hardware
* RegisterId - index of ACPI Register to access
* Value - (only used on write) value to write to the
* Register. Shifted all the way right.
*
* RETURN: Value written to or read from specified Register. This value
* is shifted all the way right.
*
* DESCRIPTION: Generic ACPI Register read/write function.
*
******************************************************************************/
UINT32
AcpiHwRegisterBitAccess (
NATIVE_UINT ReadWrite,
BOOLEAN UseLock,
UINT32 RegisterId,
...) /* Value (only used on write) */
{
UINT32 RegisterValue = 0;
UINT32 Mask = 0;
UINT32 Value = 0;
FUNCTION_TRACE ("HwRegisterBitAccess");
if (ReadWrite == ACPI_WRITE)
{
va_list marker;
va_start (marker, RegisterId);
Value = va_arg (marker, UINT32);
va_end (marker);
}
if (ACPI_MTX_LOCK == UseLock) {
AcpiCmAcquireMutex (ACPI_MTX_HARDWARE);
}
/*
* Decode the Register ID
* Register id = Register block id | bit id
*
* Check bit id to fine locate Register offset.
* check Mask to determine Register offset, and then read-write.
*/
switch (REGISTER_BLOCK_ID(RegisterId))
{
case PM1_STS:
switch (RegisterId)
{
case TMR_STS:
Mask = TMR_STS_MASK;
break;
case BM_STS:
Mask = BM_STS_MASK;
break;
case GBL_STS:
Mask = GBL_STS_MASK;
break;
case PWRBTN_STS:
Mask = PWRBTN_STS_MASK;
break;
case SLPBTN_STS:
Mask = SLPBTN_STS_MASK;
break;
case RTC_STS:
Mask = RTC_STS_MASK;
break;
case WAK_STS:
Mask = WAK_STS_MASK;
break;
default:
Mask = 0;
break;
}
RegisterValue = AcpiHwRegisterRead (ACPI_MTX_DO_NOT_LOCK, PM1_STS);
if (ReadWrite == ACPI_WRITE)
{
/*
* Status Registers are different from the rest. Clear by
* writing 1, writing 0 has no effect. So, the only relevent
* information is the single bit we're interested in, all
* others should be written as 0 so they will be left
* unchanged
*/
Value <<= AcpiHwGetBitShift (Mask);
Value &= Mask;
if (Value)
{
AcpiHwRegisterWrite (ACPI_MTX_DO_NOT_LOCK, PM1_STS, (UINT16) Value);
RegisterValue = 0;
}
}
break;
case PM1_EN:
switch (RegisterId)
{
case TMR_EN:
Mask = TMR_EN_MASK;
break;
case GBL_EN:
Mask = GBL_EN_MASK;
break;
case PWRBTN_EN:
Mask = PWRBTN_EN_MASK;
break;
case SLPBTN_EN:
Mask = SLPBTN_EN_MASK;
break;
case RTC_EN:
Mask = RTC_EN_MASK;
break;
default:
Mask = 0;
break;
}
RegisterValue = AcpiHwRegisterRead (ACPI_MTX_DO_NOT_LOCK, PM1_EN);
if (ReadWrite == ACPI_WRITE)
{
RegisterValue &= ~Mask;
Value <<= AcpiHwGetBitShift (Mask);
Value &= Mask;
RegisterValue |= Value;
AcpiHwRegisterWrite (ACPI_MTX_DO_NOT_LOCK, PM1_EN, (UINT16) RegisterValue);
}
break;
case PM1_CONTROL:
switch (RegisterId)
{
case SCI_EN:
Mask = SCI_EN_MASK;
break;
case BM_RLD:
Mask = BM_RLD_MASK;
break;
case GBL_RLS:
Mask = GBL_RLS_MASK;
break;
case SLP_TYPE_A:
case SLP_TYPE_B:
Mask = SLP_TYPE_X_MASK;
break;
case SLP_EN:
Mask = SLP_EN_MASK;
break;
default:
Mask = 0;
break;
}
/*
* Read the PM1 Control register.
* Note that at this level, the fact that there are actually TWO
* registers (A and B) and that B may not exist, are abstracted.
*/
RegisterValue = AcpiHwRegisterRead (ACPI_MTX_DO_NOT_LOCK, PM1_CONTROL);
DEBUG_PRINT (TRACE_IO, ("PM1 control: Read %X\n", RegisterValue));
if (ReadWrite == ACPI_WRITE)
{
RegisterValue &= ~Mask;
Value <<= AcpiHwGetBitShift (Mask);
Value &= Mask;
RegisterValue |= Value;
/*
* SLP_TYPE_x Registers are written differently
* than any other control Registers with
* respect to A and B Registers. The value
* for A may be different than the value for B
*
* Therefore, pass the RegisterId, not just generic PM1_CONTROL,
* because we need to do different things. Yuck.
*/
AcpiHwRegisterWrite (ACPI_MTX_DO_NOT_LOCK,
RegisterId, (UINT16) RegisterValue);
}
break;
case PM2_CONTROL:
switch (RegisterId)
{
case ARB_DIS:
Mask = ARB_DIS_MASK;
break;
default:
Mask = 0;
break;
}
RegisterValue = AcpiHwRegisterRead (ACPI_MTX_DO_NOT_LOCK, PM2_CONTROL);
DEBUG_PRINT (TRACE_IO, ("PM2 control: Read %X from %p\n",
RegisterValue, AcpiGbl_FADT->XPm2CntBlk.Address));
if (ReadWrite == ACPI_WRITE)
{
RegisterValue &= ~Mask;
Value <<= AcpiHwGetBitShift (Mask);
Value &= Mask;
RegisterValue |= Value;
DEBUG_PRINT (TRACE_IO,
("About to write %04X to %p\n", RegisterValue,
AcpiGbl_FADT->XPm2CntBlk.Address));
AcpiHwRegisterWrite (ACPI_MTX_DO_NOT_LOCK,
PM2_CONTROL, (UINT8) (RegisterValue));
}
break;
case PM_TIMER:
Mask = TMR_VAL_MASK;
RegisterValue = AcpiHwRegisterRead (ACPI_MTX_DO_NOT_LOCK,
PM_TIMER);
DEBUG_PRINT (TRACE_IO, ("PM_TIMER: Read %X from %p\n",
RegisterValue, AcpiGbl_FADT->XPmTmrBlk.Address));
break;
case GPE1_EN_BLOCK:
case GPE1_STS_BLOCK:
case GPE0_EN_BLOCK:
case GPE0_STS_BLOCK:
/* Determine the bit to be accessed
*
* (UINT32) RegisterId:
* 31 24 16 8 0
* +--------+--------+--------+--------+
* | gpe_block_id | gpe_bit_number |
* +--------+--------+--------+--------+
*
* gpe_block_id is one of GPE[01]_EN_BLOCK and GPE[01]_STS_BLOCK
* gpe_bit_number is relative from the gpe_block (0x00~0xFF)
*/
Mask = REGISTER_BIT_ID(RegisterId); /* gpe_bit_number */
RegisterId = REGISTER_BLOCK_ID(RegisterId) | (Mask >> 3);
Mask = AcpiGbl_DecodeTo8bit [Mask % 8];
/*
* The base address of the GPE 0 Register Block
* Plus 1/2 the length of the GPE 0 Register Block
* The enable Register is the Register following the Status Register
* and each Register is defined as 1/2 of the total Register Block
*/
/*
* This sets the bit within EnableBit that needs to be written to
* the Register indicated in Mask to a 1, all others are 0
*/
/* Now get the current Enable Bits in the selected Reg */
RegisterValue = AcpiHwRegisterRead (ACPI_MTX_DO_NOT_LOCK, RegisterId);
DEBUG_PRINT (TRACE_IO, ("GPE Enable bits: Read %X from %X\n",
RegisterValue, RegisterId));
if (ReadWrite == ACPI_WRITE)
{
RegisterValue &= ~Mask;
Value <<= AcpiHwGetBitShift (Mask);
Value &= Mask;
RegisterValue |= Value;
/* This write will put the Action state into the General Purpose */
/* Enable Register indexed by the value in Mask */
DEBUG_PRINT (TRACE_IO, ("About to write %04X to %04X\n",
RegisterValue, RegisterId));
AcpiHwRegisterWrite (ACPI_MTX_DO_NOT_LOCK,
RegisterId, (UINT8) RegisterValue);
RegisterValue = AcpiHwRegisterRead (ACPI_MTX_DO_NOT_LOCK, RegisterId);
}
break;
case SMI_CMD_BLOCK:
case PROCESSOR_BLOCK:
/* not used */
default:
Mask = 0;
break;
}
if (ACPI_MTX_LOCK == UseLock) {
AcpiCmReleaseMutex (ACPI_MTX_HARDWARE);
}
RegisterValue &= Mask;
RegisterValue >>= AcpiHwGetBitShift (Mask);
DEBUG_PRINT (TRACE_IO, ("Register I/O: returning %X\n", RegisterValue));
return_VALUE (RegisterValue);
}
/******************************************************************************
*
* FUNCTION: AcpiHwRegisterRead
*
* PARAMETERS: UseLock - Mutex hw access.
* RegisterId - RegisterID + Offset.
*
* RETURN: Value read or written.
*
* DESCRIPTION: Acpi register read function. Registers are read at the
* given offset.
*
******************************************************************************/
UINT32
AcpiHwRegisterRead (
BOOLEAN UseLock,
UINT32 RegisterId)
{
UINT32 Value = 0;
UINT32 BankOffset;
FUNCTION_TRACE ("AcpiHwRegisterRead");
if (ACPI_MTX_LOCK == UseLock)
{
AcpiCmAcquireMutex (ACPI_MTX_HARDWARE);
}
switch (REGISTER_BLOCK_ID(RegisterId))
{
case PM1_STS: /* 16-bit access */
Value = AcpiHwLowLevelRead (16, &AcpiGbl_FADT->XPm1aEvtBlk, 0);
Value |= AcpiHwLowLevelRead (16, &AcpiGbl_FADT->XPm1bEvtBlk, 0);
break;
case PM1_EN: /* 16-bit access*/
BankOffset = DIV_2 (AcpiGbl_FADT->Pm1EvtLen);
Value = AcpiHwLowLevelRead (16, &AcpiGbl_FADT->XPm1aEvtBlk, BankOffset);
Value |= AcpiHwLowLevelRead (16, &AcpiGbl_FADT->XPm1bEvtBlk, BankOffset);
break;
case PM1_CONTROL: /* 16-bit access */
if (RegisterId != SLP_TYPE_B)
{
Value |= AcpiHwLowLevelRead (16, &AcpiGbl_FADT->XPm1aCntBlk, 0);
}
if (RegisterId != SLP_TYPE_A)
{
Value |= AcpiHwLowLevelRead (16, &AcpiGbl_FADT->XPm1bCntBlk, 0);
}
break;
case PM2_CONTROL: /* 8-bit access */
Value = AcpiHwLowLevelRead (8, &AcpiGbl_FADT->XPm2CntBlk, 0);
break;
case PM_TIMER: /* 32-bit access */
Value = AcpiHwLowLevelRead (32, &AcpiGbl_FADT->XPmTmrBlk, 0);
break;
case GPE0_STS_BLOCK: /* 8-bit access */
Value = AcpiHwLowLevelRead (8, &AcpiGbl_FADT->XGpe0Blk, 0);
break;
case GPE0_EN_BLOCK: /* 8-bit access */
BankOffset = DIV_2 (AcpiGbl_FADT->Gpe0BlkLen);
Value = AcpiHwLowLevelRead (8, &AcpiGbl_FADT->XGpe0Blk, BankOffset);
break;
case GPE1_STS_BLOCK: /* 8-bit access */
Value = AcpiHwLowLevelRead (8, &AcpiGbl_FADT->XGpe1Blk, 0);
break;
case GPE1_EN_BLOCK: /* 8-bit access */
BankOffset = DIV_2 (AcpiGbl_FADT->Gpe1BlkLen);
Value = AcpiHwLowLevelRead (8, &AcpiGbl_FADT->XGpe1Blk, BankOffset);
break;
case SMI_CMD_BLOCK: /* 8bit */
Value = (UINT32) AcpiOsIn8 (AcpiGbl_FADT->SmiCmd);
break;
default:
Value = 0;
break;
}
if (ACPI_MTX_LOCK == UseLock)
{
AcpiCmReleaseMutex (ACPI_MTX_HARDWARE);
}
return_VALUE (Value);
}
/******************************************************************************
*
* FUNCTION: AcpiHwRegisterWrite
*
* PARAMETERS: UseLock - Mutex hw access.
* RegisterId - RegisterID + Offset.
*
* RETURN: Value read or written.
*
* DESCRIPTION: Acpi register Write function. Registers are written at the
* given offset.
*
******************************************************************************/
void
AcpiHwRegisterWrite (
BOOLEAN UseLock,
UINT32 RegisterId,
UINT32 Value)
{
UINT32 BankOffset;
FUNCTION_TRACE ("AcpiHwRegisterWrite");
if (ACPI_MTX_LOCK == UseLock)
{
AcpiCmAcquireMutex (ACPI_MTX_HARDWARE);
}
switch (REGISTER_BLOCK_ID (RegisterId))
{
case PM1_STS: /* 16-bit access */
AcpiHwLowLevelWrite (16, Value, &AcpiGbl_FADT->XPm1aEvtBlk, 0);
AcpiHwLowLevelWrite (16, Value, &AcpiGbl_FADT->XPm1bEvtBlk, 0);
break;
case PM1_EN: /* 16-bit access*/
BankOffset = DIV_2 (AcpiGbl_FADT->Pm1EvtLen);
AcpiHwLowLevelWrite (16, Value, &AcpiGbl_FADT->XPm1aEvtBlk, BankOffset);
AcpiHwLowLevelWrite (16, Value, &AcpiGbl_FADT->XPm1bEvtBlk, BankOffset);
break;
case PM1_CONTROL: /* 16-bit access */
/*
* If SLP_TYP_A or SLP_TYP_B, only write to one reg block.
* Otherwise, write to both.
*/
if (RegisterId == SLP_TYPE_A)
{
AcpiHwLowLevelWrite (16, Value, &AcpiGbl_FADT->XPm1aCntBlk, 0);
}
else if (RegisterId == SLP_TYPE_B)
{
AcpiHwLowLevelWrite (16, Value, &AcpiGbl_FADT->XPm1bCntBlk, 0);
}
else
{
/* disable/re-enable interrupts if sleeping */
if (RegisterId == SLP_EN)
{
disable();
}
AcpiHwLowLevelWrite (16, Value, &AcpiGbl_FADT->XPm1aCntBlk, 0);
AcpiHwLowLevelWrite (16, Value, &AcpiGbl_FADT->XPm1bCntBlk, 0);
if (RegisterId == SLP_EN)
{
enable();
}
}
break;
case PM2_CONTROL: /* 8-bit access */
AcpiHwLowLevelWrite (8, Value, &AcpiGbl_FADT->XPm2CntBlk, 0);
break;
case PM_TIMER: /* 32-bit access */
AcpiHwLowLevelWrite (32, Value, &AcpiGbl_FADT->XPmTmrBlk, 0);
break;
case GPE0_STS_BLOCK: /* 8-bit access */
AcpiHwLowLevelWrite (8, Value, &AcpiGbl_FADT->XGpe0Blk, 0);
break;
case GPE0_EN_BLOCK: /* 8-bit access */
BankOffset = DIV_2 (AcpiGbl_FADT->Gpe0BlkLen);
AcpiHwLowLevelWrite (8, Value, &AcpiGbl_FADT->XGpe0Blk, BankOffset);
break;
case GPE1_STS_BLOCK: /* 8-bit access */
AcpiHwLowLevelWrite (8, Value, &AcpiGbl_FADT->XGpe1Blk, 0);
break;
case GPE1_EN_BLOCK: /* 8-bit access */
BankOffset = DIV_2 (AcpiGbl_FADT->Gpe1BlkLen);
AcpiHwLowLevelWrite (8, Value, &AcpiGbl_FADT->XGpe1Blk, BankOffset);
break;
case SMI_CMD_BLOCK: /* 8bit */
/* For 2.0, SMI_CMD is always in IO space */
/* TBD: what about 1.0? 0.71? */
AcpiOsOut8 (AcpiGbl_FADT->SmiCmd, (UINT8) Value);
break;
default:
Value = 0;
break;
}
if (ACPI_MTX_LOCK == UseLock)
{
AcpiCmReleaseMutex (ACPI_MTX_HARDWARE);
}
return_VOID;
}
/******************************************************************************
*
* FUNCTION: AcpiHwLowLevelRead
*
* PARAMETERS: Register - GAS register structure
* Offset - Offset from the base address in the GAS
* Width - 8, 16, or 32
*
* RETURN: Value read
*
* DESCRIPTION: Read from either memory, IO, or PCI config space.
*
******************************************************************************/
UINT32
AcpiHwLowLevelRead (
UINT32 Width,
ACPI_GAS *Reg,
UINT32 Offset)
{
UINT32 Value = 0;
ACPI_PHYSICAL_ADDRESS MemAddress;
ACPI_IO_ADDRESS IoAddress;
UINT32 PciRegister;
UINT32 PciDevFunc;
/*
* Must have a valid pointer to a GAS structure, and
* a non-zero address within
*/
if ((!Reg) ||
(!Reg->Address))
{
return 0;
}
/*
* Three address spaces supported:
* Memory, Io, or PCI config.
*/
switch (Reg->AddressSpaceId)
{
case ADDRESS_SPACE_SYSTEM_MEMORY:
MemAddress = (ACPI_PHYSICAL_ADDRESS) Reg->Address + Offset;
switch (Width)
{
case 8:
Value = AcpiOsMemIn8 (MemAddress);
break;
case 16:
Value = AcpiOsMemIn16 (MemAddress);
break;
case 32:
Value = AcpiOsMemIn32 (MemAddress);
break;
}
break;
case ADDRESS_SPACE_SYSTEM_IO:
IoAddress = (ACPI_IO_ADDRESS) Reg->Address + Offset;
switch (Width)
{
case 8:
Value = AcpiOsIn8 (IoAddress);
break;
case 16:
Value = AcpiOsIn16 (IoAddress);
break;
case 32:
Value = AcpiOsIn32 (IoAddress);
break;
}
break;
case ADDRESS_SPACE_PCI_CONFIG:
PciDevFunc = ACPI_PCI_DEVFUN (Reg->Address);
PciRegister = ACPI_PCI_REGISTER (Reg->Address) + Offset;
switch (Width)
{
case 8:
AcpiOsReadPciCfgByte (0, PciDevFunc, PciRegister, (UINT8 *) &Value);
break;
case 16:
AcpiOsReadPciCfgWord (0, PciDevFunc, PciRegister, (UINT16 *) &Value);
break;
case 32:
AcpiOsReadPciCfgDword (0, PciDevFunc, PciRegister, (UINT32 *) &Value);
break;
}
break;
}
return Value;
}
/******************************************************************************
*
* FUNCTION: AcpiHwLowLevelWrite
*
* PARAMETERS: Width - 8, 16, or 32
* Value - To be written
* Register - GAS register structure
* Offset - Offset from the base address in the GAS
*
*
* RETURN: Value read
*
* DESCRIPTION: Read from either memory, IO, or PCI config space.
*
******************************************************************************/
void
AcpiHwLowLevelWrite (
UINT32 Width,
UINT32 Value,
ACPI_GAS *Reg,
UINT32 Offset)
{
ACPI_PHYSICAL_ADDRESS MemAddress;
ACPI_IO_ADDRESS IoAddress;
UINT32 PciRegister;
UINT32 PciDevFunc;
/*
* Must have a valid pointer to a GAS structure, and
* a non-zero address within
*/
if ((!Reg) ||
(!Reg->Address))
{
return;
}
/*
* Three address spaces supported:
* Memory, Io, or PCI config.
*/
switch (Reg->AddressSpaceId)
{
case ADDRESS_SPACE_SYSTEM_MEMORY:
MemAddress = (ACPI_PHYSICAL_ADDRESS) Reg->Address + Offset;
switch (Width)
{
case 8:
AcpiOsMemOut8 (MemAddress, (UINT8) Value);
break;
case 16:
AcpiOsMemOut16 (MemAddress, (UINT16) Value);
break;
case 32:
AcpiOsMemOut32 (MemAddress, (UINT32) Value);
break;
}
break;
case ADDRESS_SPACE_SYSTEM_IO:
IoAddress = (ACPI_IO_ADDRESS) Reg->Address + Offset;
switch (Width)
{
case 8:
AcpiOsOut8 (IoAddress, (UINT8) Value);
break;
case 16:
AcpiOsOut16 (IoAddress, (UINT16) Value);
break;
case 32:
AcpiOsOut32 (IoAddress, (UINT32) Value);
break;
}
break;
case ADDRESS_SPACE_PCI_CONFIG:
PciDevFunc = ACPI_PCI_DEVFUN (Reg->Address);
PciRegister = ACPI_PCI_REGISTER (Reg->Address) + Offset;
switch (Width)
{
case 8:
AcpiOsWritePciCfgByte (0, PciDevFunc, PciRegister, (UINT8) Value);
break;
case 16:
AcpiOsWritePciCfgWord (0, PciDevFunc, PciRegister, (UINT16) Value);
break;
case 32:
AcpiOsWritePciCfgDword (0, PciDevFunc, PciRegister, (UINT32) Value);
break;
}
break;
}
}