

ACPI Component Architecture
Programmer Reference
OS-Independent Subsystem, Debugger, and Utilities

Revision 1.27

January 20, 2010

ACPI Component Architecture Programmer Reference

Information in this document is provided in connection with Intel® products. No license, express or implied, by estoppel or otherwise, to any intellectual
property rights is granted by this document. Except as provided in Intel’s Terms and Conditions of Sale for such products, Intel assumes no liability
whatsoever, and Intel disclaims any express or implied warranty, relating to sale and/or use of Intel products including liability or warranties relating to
fitness for a particular purpose, merchantability, or infringement of any patent, copyright or other intellectual property right. Intel products are not
intended for use in medical, life saving, or life sustaining applications.

Intel may make changes to specifications and product descriptions at any time, without notice.

Designers must not rely on the absence or characteristics of any features or instructions marked "reserved" or "undefined." Intel reserves these for
future definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to them.

The ACPI Component Architecture may contain design defects or errors known as errata which may cause the product to deviate from published
specifications. Current characterized errata are available on request.

Copyright © 2000 - 2010 Intel Corporation

*Other brands and names are the property of their respective owners.

2

 ACPI Component Architecture Programmer Reference

Contents
1 Introduction ... 12

1.1 Document Structure ...12
1.2 Rationale and Justification ...12
1.3 Reference Documents ...13
1.4 Overview of the ACPI Component Architecture...13

2 Architecture Overview.. 15
2.1 Overview of the ACPICA Subsystem...15

2.1.1 ACPICA Core Subsystem... 15
2.1.2 Operating System Services Layer .. 15
2.1.3 Relationships Between the Host OS, Core Subsystem, and OSL.......... 16

2.1.3.1 Host Operating System Interaction ... 16
2.1.3.2 OS Services Layer Interaction .. 17
2.1.3.3 ACPICA Core Subsystem Interaction 17

2.2 Architecture of the ACPICA Core Subsystem..18
2.2.1 ACPI Table Management.. 18
2.2.2 Early ACPI Table Access.. 18
2.2.3 AML Interpreter ... 19
2.2.4 Namespace Management... 19
2.2.5 Resource Management... 19
2.2.6 ACPI Hardware Management... 19
2.2.7 Event Handling.. 20
2.2.8 Requests from Host OS to ACPICA Subsystem..................................... 20

2.3 Architecture of the OS Services Layer (OSL) ..21
2.3.1 Types of OSL Services ... 21
2.3.2 Requests from ACPICA Subsystem to OS... 22

3 Design Details ... 23
3.1 ACPI Namespace Fundamentals...23

3.1.1 Named Objects ... 23
3.1.2 Scopes .. 23

3.1.2.1 Example Namespace Scopes, Names, and Objects 23
3.1.3 Predefined Objects ... 24
3.1.4 Logical Namespace Layout... 24

3.2 Execution Model...25
3.2.1 Initialization ... 25
3.2.2 Memory Allocation .. 26

3.2.2.1 Caller Allocates All Buffers.. 26
3.2.2.2 ACPI Allocates Return Buffers .. 26

3.2.3 Parameter Validation .. 27
3.2.4 Exception Handling ... 27
3.2.5 Multitasking and Reentrancy... 27
3.2.6 Event Handling.. 27

3.2.6.1 Fixed Events.. 28
3.2.6.2 General Purpose Events ... 28
3.2.6.3 Notify Events ... 28

3.2.7 Address Spaces and Operation Regions.. 28
3.2.7.1 Installation of Address Space Handlers 29
3.2.7.2 ACPI-Defined Address Spaces ... 29

3.3 Policies and Philosophies ..30
3.3.1 External Interfaces .. 30

 3

ACPI Component Architecture Programmer Reference

3.3.1.1 Exception Codes ... 30
3.3.1.2 Memory Buffers ... 30

3.3.2 Subsystem Initialization .. 30
3.3.2.1 ACPI Table Validation ... 30
3.3.2.2 Required ACPI Tables... 31

3.3.3 Major Design Decisions .. 31
3.3.3.1 Performance versus Code/Data Size...................................... 31
3.3.3.2 Object Management – No Garbage Collection 31

4 Implementation Details... 32
4.1 Required Host OS Initialization Sequence...32

4.1.1 Bootload and Low Level Kernel Initialization .. 32
4.1.2 ACPICA Subsystem Initialization.. 32
4.1.3 Other OS Initialization ... 32
4.1.4 Device Enumeration, Configuration, and Initialization 33
4.1.5 Final OS Initialization .. 33

4.2 Required ACPICA Initialization Sequence...33
4.2.1 Global Initialization - AcpiInitializeSubsystem... 33
4.2.2 ACPI Table and Namespace Initialization .. 33

4.2.2.1 AcpiInitializeTables.. 33
4.2.2.2 AcpiGetTable, AcpiGetTableHeader, AcpiGetTableByIndex.. 33
4.2.2.3 AcpiLoadTables... 34
4.2.2.4 Internal ACPI Namespace Initialization................................... 34

4.2.3 Handler Installation ... 34
4.2.3.1 Handler Types ... 34

4.2.4 Hardware Initialization - AcpiEnableSubsystem 35
4.2.4.1 ACPI Hardware and Event Initialization 35

4.2.5 Object Initialization – AcpiIntializeObjects .. 36
4.2.5.1 ACPI Device Initialization .. 36
4.2.5.2 Other ACPI Object Initialization... 37

4.2.6 Other Operating System ACPI-related Initialization 37
4.2.7 Just-in-time Operation Region Initialization .. 37

4.2.7.1 SystemMemory Region Initialization 38
4.2.7.2 PCI_Config Region Initialization.. 38

4.2.8 System Shutdown - AcpiTerminate .. 38
4.3 Multithreading Support...38

4.3.1 Reentrancy.. 38
4.3.2 Mutual Exclusion and Synchronization ... 39
4.3.3 Control Method Execution... 39

4.3.3.1 Control Method Blocking ... 39
4.3.3.2 Control Method Execution Rules... 40
4.3.3.3 A Simple Multithreading Model ... 40
4.3.3.4 A More Complex Multithreading Model 41

4.3.4 ACPI Global Lock Support .. 42
4.3.4.1 Obtaining The Global Lock.. 43
4.3.4.2 Releasing the Global Lock .. 43
4.3.4.3 Global Lock Interrupt Handler ... 44

4.3.5 Single Thread Environments... 44
5 Subsystem Features... 45

5.1 AML Interpreter Slack Mode ..45
5.2 AML Interpreter Math Mode (32-bit or 64-bit) ..45
5.3 Predefined Control Method Validation ...45
5.4 I/O Port Protection ...46
5.5 Debugging Support ..46

4

 ACPI Component Architecture Programmer Reference

5.5.1 Error and Warning Messages ... 46
5.5.2 Execution Debug Output (ACPI_DEBUG_PRINT Macro) 47
5.5.3 Function Tracing (ACPI_FUNCTION_TRACE Macro) 47
5.5.4 ACPICA Debugger.. 48

5.6 Environmental Support Requirements...48
5.6.1 Resource Requirements ... 48
5.6.2 C Library Functions... 49
5.6.3 Source Code Organization.. 50
5.6.4 System Include Files... 50

5.6.4.1 Customization to the Target Environment............................... 51
6 Data Types and Interface Parameters... 52

6.1 ACPICA Interface Parameters ...52
6.1.1 ACPI Names and Pathnames... 52
6.1.2 Pointers ... 52
6.1.3 Buffers... 52

6.2 ACPICA Basic Data Types ..53
6.2.1 UINT64 and COMPILER_DEPENDENT_UINT64.................................. 53
6.2.2 ACPI_PHYSICAL_ADDRESS .. 53
6.2.3 ACPI_IO_ADDRESS .. 53
6.2.4 ACPI_SIZE.. 53
6.2.5 ACPI_STRING – ASCII String .. 53
6.2.6 ACPI_BUFFER – Input and Output Memory Buffers.............................. 53

6.2.6.1 Input Buffer.. 54
6.2.6.2 Output Buffer ... 54

6.2.7 ACPI_STATUS – Interface Exception Return Codes 54
6.2.8 ACPI_HANDLE – Object Handle .. 55

6.2.8.1 Predefined Handles... 55
6.2.9 ACPI_OBJECT_TYPE – Object Type Codes ... 56
6.2.10 ACPI_OBJECT – Method Parameters and Return Objects 56
6.2.11 ACPI_OBJECT_LIST – List of Objects... 57
6.2.12 ACPI_EVENT_TYPE – Fixed Event Type Codes................................... 58
6.2.13 ACPI_TABLE_HEADER – Common ACPI Table Header 58

6.3 ACPI Resource Data Types...58
6.3.1 PCI IRQ Routing Tables ... 58
6.3.2 Device Resources... 59

6.3.2.1 ACPI_RESOURCE_TYPE – Resource Data Types 59
6.4 ACPICA Exception Codes ...61

7 Subsystem Configuration .. 65
7.1 Configuration Files ...65
7.2 Component Selection...65

7.2.1 ACPI_DISASSEMBLER.. 65
7.2.2 ACPI_DEBUGGER ... 65

7.3 Configurable Data Types ...66
7.3.1 ACPI_SPINLOCK ... 66
7.3.2 ACPI_SEMAPHORE... 66
7.3.3 ACPI_MUTEX ... 66
7.3.4 ACPI_CPU_FLAGS .. 66
7.3.5 ACPI_THREAD_ID ... 66
7.3.6 ACPI_CACHE_T... 67
7.3.7 ACPI_UINTPTR_T.. 67

7.4 Subsystem Options..67
7.4.1 ACPI_USE_SYSTEM_CLIBRARY ... 67
7.4.2 ACPI_USE_STANDARD_HEADERS... 67

 5

ACPI Component Architecture Programmer Reference

7.4.3 ACPI_DEBUG_OUTPUT.. 67
7.4.4 ACPI_USE_LOCAL_CACHE.. 67
7.4.5 ACPI_DBG_TRACK_ALLOCATIONS .. 68
7.4.6 ACPI_MUTEX_TYPE.. 68
7.4.7 ACPI_MUTEX_DEBUG .. 68
7.4.8 ACPI_SIMPLE_RETURN_MACROS ... 68
7.4.9 ACPI_USE_DO_WHILE_0 ... 69

7.5 Per-Compiler Configuration ...69
7.5.1 COMPILER_DEPENDENT_INT64 ... 69
7.5.2 COMPILER_DEPENDENT_UINT64 .. 69
7.5.3 ACPI_USE_NATIVE_DIVIDE ... 70
7.5.4 ACPI_DIV_64_BY_32 (Short 64-bit Divide).. 70
7.5.5 ACPI_SHIFT_RIGHT_64 (64-bit Shift) ... 70
7.5.6 ACPI_EXPORT_SYMBOL.. 71
7.5.7 ACPI_EXTERNAL_XFACE... 71
7.5.8 ACPI_INTERNAL_XFACE.. 71
7.5.9 ACPI_INTERNAL_VAR_XFACE .. 71
7.5.10 ACPI_SYSTEM_XFACE... 71
7.5.11 ACPI_PRINTF_LIKE... 71
7.5.12 ACPI_UNUSED_VAR... 72

7.6 Per-Machine Configuration ..72
7.6.1 ACPI_MACHINE_WIDTH ... 72
7.6.2 ACPI_FLUSH_CPU_CACHE.. 72
7.6.3 ACPI_OS_NAME .. 72
7.6.4 ACPI_ACQUIRE_GLOBAL_LOCK... 73
7.6.5 ACPI_RELEASE_GLOBAL_LOCK... 73

7.7 Dynamic Configuration...74
7.7.1 Interpreter Slack Mode.. 74
7.7.2 ACPI Register Widths ... 74
7.7.3 Serialized Methods ... 75
7.7.4 Wake GPEs... 75
7.7.5 Creation of_OSI Method ... 75

7.8 Subsystem Configuration Constants..75
7.8.1 ACPI_CHECKSUM_ABORT... 75
7.8.2 ACPI_MAX_LOOP_INTERATIONS ... 75
7.8.3 ACPI_MAX_STATE_CACHE_DEPTH ... 76
7.8.4 ACPI_MAX_PARSE_CACHE_DEPTH... 76
7.8.5 ACPI_MAX_OBJECT_CACHE_DEPTH... 76
7.8.6 ACPI_MAX_WALK_CACHE_DEPTH... 76

8 ACPICA Core Subsystem - External Interface Definition.. 77
8.1 ACPICA Subsystem Initialization and Control ...77

8.1.1 AcpiInitializeSubsystem .. 77
8.1.2 AcpiInstallInitializationHandler .. 78

8.1.2.1 Interface to User Callback Function .. 78
8.1.3 AcpiEnableSubsystem.. 79
8.1.4 AcpiInitializeObjects.. 80
8.1.5 AcpiSubsystemStatus ... 81
8.1.6 AcpiTerminate... 81

8.2 ACPI Table Management...83
8.2.1 AcpiInitializeTables ... 83
8.2.2 AcpiReallocateRootTable ... 84
8.2.3 AcpiFindRootPointer ... 84
8.2.4 AcpiLoadTables .. 85
8.2.5 AcpiGetTableHeader .. 86

6

 ACPI Component Architecture Programmer Reference

8.2.6 AcpiGetTable .. 87
8.2.7 AcpiGetTableByIndex ... 88
8.2.8 AcpiInstallTableHandler .. 89

8.2.8.1 Interface to Table Event Handlers... 89
8.2.9 AcpiRemoveTableHandler .. 90

8.3 ACPI Namespace Management ..92
8.3.1 AcpiEvaluateObject... 92
8.3.2 AcpiEvaluateObjectTyped... 96
8.3.3 AcpiGetObjectInfo... 97
8.3.4 AcpiGetNextObject ... 100
8.3.5 AcpiGetParent... 102
8.3.6 AcpiGetType ... 102
8.3.7 AcpiGetHandle.. 103
8.3.8 AcpiGetName.. 105
8.3.9 AcpiGetDevices .. 106
8.3.10 AcpiAttachData ... 107
8.3.11 AcpiDetachData .. 108
8.3.12 AcpiGetData.. 109
8.3.13 AcpiInstallMethod.. 110
8.3.14 AcpiWalkNamespace.. 112

8.3.14.1 Interface to User Callback Function 113
8.4 ACPI Hardware Management ..115

8.4.1 AcpiEnable.. 115
8.4.2 AcpiDisable ... 115
8.4.3 AcpiReset.. 116
8.4.4 AcpiReadBitRegister... 117
8.4.5 AcpiWriteBitRegister ... 118
8.4.6 AcpiRead... 119
8.4.7 AcpiWrite... 120
8.4.8 AcpiAcquireGlobalLock... 120
8.4.9 AcpiReleaseGlobalLock.. 121
8.4.10 AcpiGetTimerResolution ... 122
8.4.11 AcpiGetTimerDuration .. 122
8.4.12 AcpiGetTimer .. 123

8.5 ACPI Sleep/Wake Support...124
8.5.1 AcpiSetFirmwareWakingVector .. 124
8.5.2 AcpiSetFirmwareWakingVector64 .. 124
8.5.3 AcpiGetSleepTypeData .. 125
8.5.4 AcpiEnterSleepStatePrep ... 126
8.5.5 AcpiEnterSleepState... 126
8.5.6 AcpiEnterSleepStateS4Bios ... 127
8.5.7 AcpiLeaveSleepState.. 128

8.6 ACPI Fixed Event Management...129
8.6.1 AcpiEnableEvent... 129
8.6.2 AcpiDisableEvent.. 130
8.6.3 AcpiClearEvent ... 130
8.6.4 AcpiGetEventStatus.. 131
8.6.5 AcpiInstallFixedEventHandler ... 132

8.6.5.1 Interface to Fixed Event Handlers... 133
8.6.6 AcpiRemoveFixedEventHandler ... 133

8.7 ACPI General Purpose Event Management ..135
8.7.1 AcpiEnableGpe ... 135
8.7.2 AcpiDisableGpe .. 136
8.7.3 AcpiClearGpe.. 137
8.7.4 AcpiSetGpeType... 138
8.7.5 AcpiGetGpeStatus .. 139

 7

ACPI Component Architecture Programmer Reference

8.7.6 AcpiGetGpeDevice ... 140
8.7.7 AcpiDisableAllGpes .. 141
8.7.8 AcpiEnableAllRuntimeGpes.. 141
8.7.9 AcpiInstallGpeBlock .. 142
8.7.10 AcpiRemoveGpeBlock .. 143
8.7.11 AcpiInstallGpeHandler .. 144

8.7.11.1 Interface to General Purpose Event Handlers 145
8.7.12 AcpiRemoveGpeHandler .. 145

8.8 Miscellaneous Handler Support ...147
8.8.1 AcpiInstallNotifyHandler.. 147

8.8.1.1 Interface to Notification Event Handlers................................ 148
8.8.2 AcpiRemoveNotifyHandler.. 149
8.8.3 AcpiInstallAddressSpaceHandler.. 150

8.8.3.1 Interface to Address Space Setup Handlers......................... 151
8.8.3.2 Interface to Address Space Handlers 152
8.8.3.3 Context for the Default PCI Address Space Handler 153

8.8.4 AcpiRemoveAddressSpaceHandler ... 153
8.8.5 AcpiInstallExceptionHandler ... 154

8.8.5.1 Interface to Exception Handlers .. 155
8.9 ACPI Resource Management ..156

8.9.1 AcpiGetCurrentResources.. 156
8.9.2 AcpiGetPossibleResources .. 157
8.9.3 AcpiSetCurrentResources .. 158
8.9.4 AcpiGetIRQRoutingTable ... 159
8.9.5 AcpiGetVendorResource .. 160
8.9.6 AcpiResourceToAddress64 .. 161
8.9.7 AcpiWalkResources.. 161

8.9.7.1 Interface to User Callback Function 162
8.10 Memory Management ..164

8.10.1 ACPI_ALLOCATE... 164
8.10.2 ACPI_ALLOCATE_ZEROED.. 165
8.10.3 ACPI_FREE .. 165

8.11 Formatted Output ...166
8.11.1 AcpiInfo and ACPI_INFO.. 166
8.11.2 AcpiWarning and ACPI_WARNING.. 167
8.11.3 AcpiError and ACPI_ERROR.. 168
8.11.4 AcpiException and ACPI_EXCEPTION.. 169
8.11.5 AcpiDebugPrint and ACPI_DEBUG_PRINT... 170
8.11.6 AcpiDebugPrintRaw and ACPI_DEBUG_PRINT_RAW 172

8.12 Miscellaneous Utilities..172
8.12.1 AcpiFormatException.. 172
8.12.2 AcpiDebugTrace ... 173
8.12.3 AcpiGetSystemInfo ... 174
8.12.4 AcpiGetStatistics... 175
8.12.5 AcpiPurgeCachedObjects... 176

8.13 Global Variables...176
8.13.1 AcpiDbgLevel & AcpiDbgLayer... 176
8.13.2 AcpiGbl_FADT .. 177
8.13.3 AcpiCurrentGpeCount... 177

9 OS Services Layer - External Interface Definition ... 178
9.1 Environmental and ACPI Tables..178

9.1.1 AcpiOsInitialize ... 178
9.1.2 AcpiOsTerminate .. 179
9.1.3 AcpiOsGetRootPointer.. 179

8

 ACPI Component Architecture Programmer Reference

9.1.4 AcpiOsPredefinedOverride ... 180
9.1.5 AcpiOsTableOverride.. 180

9.2 Memory Management ..182
9.2.1 AcpiOsCreateCache ... 182
9.2.2 AcpiOsDeleteCache.. 183
9.2.3 AcpiOsPurgeCache .. 183
9.2.4 AcpiOsAcquireObject.. 184
9.2.5 AcpiOsReleaseObject... 184
9.2.6 AcpiOsMapMemory .. 185
9.2.7 AcpiOsUnmapMemory.. 186
9.2.8 AcpiOsGetPhysicalAddress .. 186
9.2.9 AcpiOsAllocate.. 187
9.2.10 AcpiOsFree ... 187
9.2.11 AcpiOsReadable ... 188
9.2.12 AcpiOsWritable ... 188

9.3 Multithreading and Scheduling Services..189
9.3.1 AcpiOsGetThreadId .. 189
9.3.2 AcpiOsExecute ... 189
9.3.3 AcpiOsSleep ... 190
9.3.4 AcpiOsStall.. 191

9.4 Mutual Exclusion and Synchronization ..191
9.4.1 AcpiOsCreateMutex.. 191
9.4.2 AcpiOsDeleteMutex .. 192
9.4.3 AcpiOsAcquireMutex .. 192
9.4.4 AcpiOsReleaseMutex ... 193
9.4.5 AcpiOsCreateSemaphore ... 193
9.4.6 AcpiOsDeleteSemaphore ... 194
9.4.7 AcpiOsWaitSemaphore... 195
9.4.8 AcpiOsSignalSemaphore.. 196
9.4.9 AcpiOsCreateLock .. 196
9.4.10 AcpiOsDeleteLock .. 197
9.4.11 AcpiOsAcquireLock... 197
9.4.12 AcpiOsReleaseLock.. 198

9.5 Interrupt Handling ..198
9.5.1 AcpiOsInstallInterruptHandler ... 199

9.5.1.1 Interface to OS-independent Interrupt Handlers 200
9.5.2 AcpiOsRemoveInterruptHandler... 200

9.6 Memory Access and Memory Mapped I/O ..201
9.6.1 AcpiOsReadMemory... 201
9.6.2 AcpiOsWriteMemory ... 202

9.7 Port Input/Output..202
9.7.1 AcpiOsReadPort ... 203
9.7.2 AcpiOsWritePort ... 203

9.8 PCI Configuration Space Access...204
9.8.1 AcpiOsReadPciConfiguration ... 204
9.8.2 AcpiOsWritePciConfiguration.. 205
9.8.3 AcpiOsDerivePciId .. 205

9.9 Formatted Output ...206
9.9.1 AcpiOsPrintf .. 206
9.9.2 AcpiOsVprintf .. 207
9.9.3 AcpiOsRedirectOutput .. 207

9.10 Miscellaneous ..208
9.10.1 AcpiOsValidateInterface ... 208
9.10.2 AcpiOsGetTimer ... 208
9.10.3 AcpiOsSignal... 209

 9

ACPI Component Architecture Programmer Reference

9.10.4 AcpiOsGetLine.. 210
10 ACPICA Deployment Guide ... 211

10.1 Using the ACPICA Core Subsystem Interfaces...211
10.1.1 Initialization Sequence .. 211
10.1.2 ACPICA Initialization Examples.. 211

10.1.2.1 Full ACPICA Initialization .. 211
10.1.2.2 ACPICA Initialization With Early ACPI Table Access 212

10.1.3 Shutdown Sequence... 213
10.1.4 Traversing the ACPI Namespace (Low Level)...................................... 214
10.1.5 Traversing the ACPI Namespace (High Level)..................................... 216

10.2 Implementing the OS Services Layer ..217
10.2.1 Parameter Validation .. 217
10.2.2 Memory Management ... 217
10.2.3 Scheduling Services ... 217
10.2.4 Mutual Exclusion and Synchronization ... 217
10.2.5 Interrupt Handling ... 217
10.2.6 Stream I/O... 218
10.2.7 Hardware Abstraction (I/O, Memory, PCI Configuration) 218

11 Tools and Utilities ... 219
11.1 iASL Compiler ..219
11.2 AcpiExec – User Mode ACPI Execution/Simulation ..220
11.3 AcpiXtract – Extract ACPI Tables ..220
11.4 AcpiSrc – Convert ACPICA Source Code ...220

12 ACPICA Debugger Reference .. 222
12.1 Overview ..222
12.2 Supported Environments ...222

12.2.1 The AcpiExec Utility .. 222
12.3 Debugger Architecture ...222
12.4 Configuration and Installation ..223
12.5 Command Overview ..225
12.6 General Purpose Commands ..225

12.6.1 Allocations... 225
12.6.2 Dump... 225
12.6.3 Exit .. 226
12.6.4 Help... 226
12.6.5 History (! And !!) .. 226
12.6.6 Level.. 226
12.6.7 Locks... 227
12.6.8 Quit.. 227
12.6.9 Stats .. 227
12.6.10 Tables ... 228
12.6.11 Unload... 228

12.7 Namespace Access Commands..228
12.7.1 BusInfo .. 228
12.7.2 Disassemble.. 228
12.7.3 Event ... 229
12.7.4 Find ... 229
12.7.5 Gpe ... 229
12.7.6 Gpes.. 229
12.7.7 Integrity ... 230
12.7.8 Methods .. 230

10

 ACPI Component Architecture Programmer Reference

12.7.9 Namespace... 230
12.7.10 Notify ... 230
12.7.11 Object.. 231
12.7.12 Owner.. 231
12.7.13 Predefined... 232
12.7.14 Prefix ... 232
12.7.15 References.. 232
12.7.16 Resources... 232
12.7.17 Set N ... 233
12.7.18 Sleep ... 233
12.7.19 Terminate .. 233
12.7.20 Type .. 233

12.8 Control Method Execution Commands ..234
12.8.1 Arguments... 234
12.8.2 Breakpoint ... 234
12.8.3 Call .. 234
12.8.4 Debug.. 234
12.8.5 Execute ... 235
12.8.6 Go ... 235
12.8.7 Information .. 235
12.8.8 Into .. 235
12.8.9 List... 236
12.8.10 Locals.. 236
12.8.11 Results .. 236
12.8.12 Set... 236
12.8.13 Stop... 237
12.8.14 Thread... 237
12.8.15 Trace ... 237
12.8.16 Tree... 237

12.9 File I/O Commands ..238
12.9.1 Close ... 238
12.9.2 Load .. 238
12.9.3 Open ... 238

Figures

Figure 1. The ACPI Component Architecture ... 14
Figure 2. ACPICA Subsystem Architecture .. 16
Figure 3. Interaction between the Architectural Components... 17
Figure 4. Internal Modules of the ACPICA Core Subsystem.. 18
Figure 5. Operating System to ACPICA Subsystem Request Flow 21
Figure 6. ACPICA Subsystem to Operating System Request Flow 22
Figure 7. Internal Namespace Structure... 25
Figure 8. Global Lock Architecture.. 43
Figure 9. ACPICA Debugger Architecture .. 223

Tables
Table 1. C Library Functions Used within the Subsystem .. 49
Table 2. ACPI Object Type Codes.. 56
Table 3. Exception Code Values... 61

 11

ACPI Component Architecture Programmer Reference

1 Introduction

1.1 Document Structure
This document consists of these major sections:

Introduction: Contains a brief overview of the ACPI Component Architecture (CA) and the
interfaces for both the Core Subsystem and OS Services Layers.

1.

Architecture Overview: Overview of the main architectural components and interface to the
host operating system. Summary of the computational and architectural model that is
implemented by the ACPI component architecture.

2.

Design Details: Details concerning design decisions and execution model. 3.

Implementation Details: Details concerning implementation specifics. 4.

Data Types and Interface Parameters: Descriptions of the major data types and data
structures that are exposed via the external interfaces. Other related information required to
use the ACPICA subsystems and interfaces.

5.

Subsystem Configuration: Description of the available configuration options to tailor the
subsystem to different compilers and machines, as well as run-time tuning options.

6.

ACPICA Core Subsystem Interfaces: Detailed description of the programmatic interfaces
that are implemented by the core component of the ACPI Component Architecture.

7.

OS Services Layer Interfaces: Detailed description of the programmatic interfaces that must
be implemented by operating system vendors in the layer that interfaces the ACPICA Core
Subsystem to the host operating system.

8.

ACPICA Deployment Guide: Tips and techniques on how to use the Core Subsystem
interfaces, and how to implement the OSL interfaces to host a new operating system.

9.

Tools and Utilities: A brief overview of the miscellaneous tools and utilities that are part of
the ACPICA package.

10.

ACPICA Debugger Reference: Overview, installation and configuration, and detailed
descriptions of the command set.

11.

1.2 Rationale and Justification
The complexity of the ACPI specification leads to a lengthy and difficult implementation in
operating system software. The purpose of the ACPI component architecture is to simplify ACPI
implementations for operating system vendors (OSVs) by providing major portions of an ACPI
implementation in OS-independent ACPI modules that can be integrated into any operating system.

The ACPICA software can be hosted on any operating system by writing a small and relatively
simple translation service between the ACPICA subsystem and the host operating system (This
service is known as the OS Services Layer).

12

 ACPI Component Architecture Programmer Reference

1.3 Reference Documents
ACPI documents are available at http://www.acpi.info
•
•
•
•
•
•
•
•
•
•
•
•

•

•

•

•

Advanced Configuration and Power Interface Specification, Revision 1.0, December 1, 1996
Advanced Configuration and Power Interface Specification, Revision 1.0a, July 1, 1998
Advanced Configuration and Power Interface Specification, Revision 1.0b, February 8, 1999
Advanced Configuration and Power Interface Specification, Revision 2.0, July 27, 2000
Advanced Configuration and Power Interface Specification, Revision 2.0a, March 32, 2002
Advanced Configuration and Power Interface Specification, Revision 2.0b, October 11, 2002
Advanced Configuration and Power Interface Specification, Revision 2.0c, August 23, 2003
Advanced Configuration and Power Interface Specification, Revision 3.0, September 2, 2004
Advanced Configuration and Power Interface Specification, Revision 3.0a, December 30, 2005
Advanced Configuration and Power Interface Specification, Revision 3.0b, October 10, 2006
Advanced Configuration and Power Interface Specification, Revision 4.0, June 16, 2009
iASL Compiler User Reference

1.4 Overview of the ACPI Component Architecture
The ACPI Component Architecture (also referred to by the term “ACPICA” in this document)
defines and implements a group of software components that together create an implementation of
the ACPI specification. A major goal of the architecture is to isolate all operating system
dependencies to a relatively small translation or conversion layer (the OS Services Layer) so that the
bulk of the ACPICA code is independent of any individual operating system. Therefore, hosting the
ACPICA code on new operating systems requires no source changes within the ACPICA code itself.
The components of the architecture include:

An OS-independent ACPICA Core Subsystem component that provides the fundamental
ACPI services such as the AML interpreter and namespace management.

An OS-dependent OS Services Layer for each host operating system to provide OS support
for the ACPICA Core Subsystem.

An ASL compiler-disassembler for translating ASL code to AML byte code and for
disassembling existing binary ACPI tables back to ASL source code.

Several ACPI utilities for executing the interpreter in ring 3 user space, extracting binary
ACPI tables from the output of the AcpiDump utility, and translating the ACPICA source
code to Linux/Unix format.

This document describes the ACPICA Subsystem, OS services layer, and utilities. The iASL
compiler is documented in the iASL Compiler User Reference.

In the diagram below, the ACPICA subsystem is shown in relation to the host operating system,
device driver, OSPM software, and the ACPI hardware.

 13

http://www.acpi.info/

ACPI Component Architecture Programmer Reference

14

Figure 1. The ACPI Component Architecture

Host Operating System

OSPM / Policy
Manager

Device Drivers

ACPICA Subsystem

ACPI –
Related

Hardware

User Interface

 ACPI Component Architecture Programmer Reference

2

2.1

,

ng, and I/O.

nterface to any operating system that provides such services,
requests into the system calls

provided by the host operating system. The OS Services Layer is the only component of the
ACPICA that contains code that is specific to a host operating system.

Thus, the ACPICA Subsystem consists of two major software components:

1. The ACPICA Core Subsystem provides the fundamental ACPI services that are independent
of any particular operating system.

2. The OS Services Layer (OSL) provides the conversion layer that interfaces the ACPICA Core
Subsystem to a particular host operating system.

When combined into a single static or loadable software module such as a device driver or kernel
subsystem, these two major components form the ACPICA Subsystem. Throughout this document,
the term “ACPICA Subsystem” refers to the combination of the ACPICA Core Subsystem with the
OS Services Layer components into a single module, driver, or load unit.

2.1.1 ACPICA Core Subsystem

The ACPICA Core Subsystem supplies the major building blocks or subcomponents that are
required for all ACPI implementations — including an AML interpreter, a namespace manager,
ACPI event and resource management, and ACPI hardware support.

One of the goals of the ACPICA Core Subsystem is to provide an abstraction level high enough
such that the host operating system does not need to understand or know about the very low-level
ACPI details. For example, all AML code is hidden from the host. Also, the details of the ACPI
hardware are abstracted to higher-level software interfaces.

e
.

CPICA Core Subsystem are the host OS device

2.1.2 ices Layer

Architecture Overview

Overview of the ACPICA Subsystem
The ACPICA Subsystem implements the low level or fundamental aspects of the ACPI
specification. Included are an AML parser/interpreter, ACPI namespace management, ACPI table
and device support, and event handling. Since the ACPICA core provides low-level system services
it also requires low-level operating system services such as memory management, synchronization,
scheduli

To allow the Core Subsystem to easily i
an Operating System Services Layer translates ACPICA-to-OS

The Core Subsystem implementation makes no assumptions about the host operating system or
environment. The only way it can request operating system services is via interfaces provided by th
OS Services Layer

The primary user of the services provided by the A
drivers and power/thermal management software.

Operating System Serv

The OS Services Layer (or OSL) operates as a translation service for requests from the ACPICA
core subsystem back to the host OS. The OSL implements a generic set of OS service interfaces by
using the primitives available from the host OS.

 15

ACPI Component Architecture Programmer Reference

Because of its nature, the OS Services Layer
operating system. There is a single ACPICA

 must be implemented anew for each supported host
 Core Subsystem, but there must be an OS Services

ayer

ure — most of the implementation of the ACPI specification is independent of

any operating system services. Therefore, the Core Subsystem is the larger of the two components.

 to the host operating system is diagrammed

Figure 2.

Layer for each operating system supported by the ACPI component architecture.

The primary function of the OSL in the ACPI Component Architecture is to be the small glue l
that binds the much larger ACPICA Core Subsystem to the host operating system. Because of the
nature of ACPI itself — such as the requirement for an AML interpreter and management of a large
namespace data struct

The overall ACPI Component Architecture in relation
below.

ACPICA Subsystem Architecture

2.1.3 ystem, and
OSL

2.1.3.1 Host Operating System Interaction

The Host Operating System makes direct calls to the Acpi* interfaces within the ACPICA Core
Subsystem to request ACPI services.

Whenever the ACPICA Core Subsystem requires operating system services, it makes calls the OS
Services Layer. The OSL component “calls up” to the host operating system whenever operating
system services are required, either for the OSL itself, or on behalf of the Core Subsystem
component. All native (OS-dependent) calls made directly to the host are confined to the OS
Services Layer. The core ACPICA code contains no operating system-specific code.

Relationships Between the Host OS, Core Subs

OS Services Layer

ACPICA Core Subsystem

Host Operating System

ACPICA Subsystem Module

16

 ACPI Component Architecture Programmer Reference

2.1

The OS Services Layer

.3.2 OS Services Layer Interaction

 provides operating-system dependent implementations of the predefined
AcpiOs* interfaces. These interfaces provide common operating system services to the Core
Subsystem such as memory allocation, mutual exclusion, hardware access, and I/O. The Core
Subsystem component uses these interfaces to gain access to OS services in an OS-independent
manner. Therefore, the OSL component makes calls to the host operating system to implement the
AcpiOs * interfaces.

2.1.3.3 ACPICA Core Subsystem Interaction

The ACPICA Core Subsystem implements a set of external interfaces that can be directly called
from the host OS. These Acpi* interfaces provide the actual ACPI services for the host. When
operating system services are required during the servicing of an ACPI request, the Core Subsystem
makes requests to the host OS indirectly via the fixed AcpiOs* interfaces.

The diagram below illustrates the relationships and interaction between the various architectural
elements by showing the flow of control between them. Note that the Core Subsystem never calls
the host directly -- instead it makes calls to the AcpiOs * interfaces in the OSL. This provides the
ACPICA code with OS-independence.

Components Figure 3. Interaction between the Architectural

ACPICA Subsystem

ACPICA Core Components

OS Services Layer

Implements
Acpi*

Interfaces

Implements
AcpiOs*

Interfaces

Host

Operating

System

 17

ACPI Component Architecture Programmer Reference

2.2 Architecture of the ACPICA Core Subsystem
The C l logical modules or sub-components. Each module
implem . This section describes each sub-component and
identifies the classes of external interfaces to the components, the mapping of these classes to the

These ACPICA modules are the OS-independent parts of an ACPI implementation that can share

n OS-specific ACPI driver or
bsystem (or whatever packaging is appropriate for the host OS.)

The diag es of the ACPICA Core Subsystem and their
relatio e AML interpreter forms the foundation of the component, with
additio n this foundation.

Figure 4. Internal Modul re Subsystem

ore Subsystem is divided into severa
ents a service or group of related services

individual components, and the interface names.

common code across all operating systems. These modules are delivered in source code form (the
language used is ANSI C), and can be compiled and integrated into a
su

ram below shows th
nship to each other. Th

e various internal modul

nal services built upo

es of the ACPICA Co

2.2.1 ACP

This c SDT/XSDT, FADT, FACS, DSDT, SSDT,
etc. Th ware or directly from a buffer provided by the host
operat

• on

•

• Access to all available ACPI tables

2.2.2

tion Table) may be required before hardware elements can be initialized

I Table Management

omponent manages all ACPI tables such as the R
e tables may be loaded from the firm

ing system. Services include:

ACPI Table Verificati

ACPI Table installation and removal

Early ACPI Table Access

In many cases, certain ACPI tables are required by the host OS very early during system/kernel
initialization. For example, the ECDT (Embedded Controller Boot Resources Table) and MADT

ultiple APIC Descrip(M

ACPI Table
Management

Event
Management

ACPI Hardware
Management

Resource
Management

Namespace
Management

AML Interpreter

18

 ACPI Component Architecture Programmer Reference

proper ay be required before the kernel dynamic
memo

To sup lone service
that can ystem. It can
be exe the need for a single memory mapping
at any

. Therefore, there are no direct external interfaces to the interpreter. The services that the

l Method Execution

2.2

The Namespace component provides ACPI namespace services on top of the AML interpreter. It
builds and manages the internal ACPI namespace. Services include:

2.2.5

2.2.6

The h r ACPI-related
h w

• ACPI Status register and Enable register access

ly. This initialization and thus these ACPI tables m
ry (and virtual memory) is available.

port this need, the ACPICA Table Manager component is designed as a standa
f the ACPICA core subs be initialized and used independently from the rest o

cuted with no need for any dynamic memory, and only
given time.

2.2.3 AML Interpreter

The AML interpreter is responsible for the parsing and execution of the AML byte code that is
provided by the computer system vendor. Most of the other services are built upon the AML
interpreter
interpreter provides to the other services include:

• ACPI Table Parsing

• AML Contro

• Evaluation of Namespace Objects

.4 Namespace Management

• Namespace Initialization from ACPI tables

• Device Enumeration

• Namespace Access

• Access to ACPI data and tables

Resource Management

The Resource component provides resource query and configuration services on top of the
Namespace manager and AML interpreter. Services include:

• Getting and Setting Current Resources

• Getting Possible Resources

• Getting IRQ Routing Tables

• Getting Power Dependencies

ACPI Hardware Management

ardware manager controls access to the ACPI registers, timers, and othe
ard are. Services include:

 19

ACPI Component Architecture Programmer Reference

• ACPI Register access (generic read and write)

• Power Management Timer access

• ACPI mode enable/disable

• Global Lock support

• General Purpose Event (GPE) Handlers (Installation , removal, and dispatch)

• Address Space and Operation Region Handlers (Installation, removal, and dispatch)

2.2.8 Requests from Host OS to ACPICA Subsystem

The host operating system can make direct calls to the Acpi* external interfaces to request ACPI
services.

The exact ACPI services required (and the requests made to those services) will vary from OS to
OS. However, it can be expected that most OS requests will fit into the broad categories of the
functional service groups described earlier: boot time functions, device load time functions, and
runtime functions.

The flow of OS to ACPICA requests is shown in the diagram below.

• Sleep Transitions support (S-states)

2.2.7 Event Handling

The Event Handling component manages the ACPI System Control Interrupt (SCI). The single SCI
multiplexes the ACPI timer, Fixed Events, and General Purpose Events (GPEs). This component
also manages dispatch of notification and Address Space/Operation Region events. Services
include:

• ACPI event enable/disable (Fixed Events, GPEs)

• Fixed Event Handlers (Installation, removal, and dispatch)

• Notify Handlers (Installation, removal, and dispatch)

20

 ACPI Component Architecture Programmer Reference

Figure 5. Operating System to ACPICA Subsystem Request Flow

2.3
nt of the architecture enables the rehosting or retargeting of the

rvices Layer must be written for each target operating system.

 OS dependent functions
ubsystem component.

These interfaces are themselves OS-independent because they are constant across all OSL
e they

m nd interfaces of the host operating system.

These stan ed in this document as the AcpiOs* interfaces) include functions
such as me read scheduling, and must be implemented using the available
services of

2.3.1 Types of OSL Services

The servic Layer can be categorized
into the fo s:

• emory mapping.

• on.

OSPM Code PCI and Plug n Play
Drivers Related Drivers

SMBus Driver

Other ACPI –

Controller
Driver

Battery Drivers

Embedded

ACPICA Subsystem

Architecture of the OS Services Layer (OSL)
The OS Services Layer compone
ACPICA components to execute under different operating systems, or to even execute in
environments where there is no host operating system. In other words, the OSL component provides
the glue that joins ACPICA to a particular operating system and/or environment. The OSL
implements interfaces and services using the system calls and utilities that are available from the
host OS. Therefore, an OS Se

The OSL component implements a standard set of interfaces that perform
(such as memory allocation and hardware access) on behalf of the Core S

implementations. It is the implementations of these interfaces that are OS-dependent, becaus
ust use the native services a

d interfaces (defindar
mory management and th
 the host operating system.

es provid
ing group

ed for the ACPICA Core Subystem by the OS Services
llow

• Environmental – global initialization and environment setup.

Memory Management – dynamic memory allocation and m

Multitasking Support – scheduling and asynchronous executi

 21

ACPI Component Architecture Programmer Reference

•

•

• Addres

• ns. This provides error, warning,

2.3.2 Req

ACPI t
must b erating
system. These requests include calls for OS dependent functions such as I/O, resource allocation,

PI Component Architecture defines interfaces to the OS
terfaces are constant (i.e. they are OS-independent), but

 target OS.

Figure 6. A

Mutual Exclusion and Synchronization – Mutexes, Semaphores, and Spin Locks.

Interrupt handling – interrupt handlers.

s Spaces – memory, I/O port, and PCI configuration space access.

Stream I/O – support for console I/O with printf-like functio
debug, and trace output from the subsystem.

uests from ACPICA Subsystem to OS

o OS requests are requests for OS services made by the ACPICA subsystem. These requests
e serviced (and therefore implemented) in a manner that is appropriate to the host op

error logging, and user interaction. The AC
Services Layer for this purpose. These in
they must be implemented uniquely for each

The flow of ACPI to OS requests is shown in the diagram below.

CPICA Subsystem to Operating System Request Flow

ACPICA Subsystem

OS Services Layer

ACPICA Core Subsystem

Requests to Host OS

22

 ACPI Component Architecture Programmer Reference

3 De
This s
both t

3.1 AC
The A
Subsy
Syste

d

3.1.2

original source ASL that describes and defines
an object. An object’s scope is defined as all objects that appear between the pair of open and close

 other words, the scope of an object is the container for all

nverting an ACPI name into an object handle, the two

3.1.2.1 e Scopes, Names, and Objects

(_SB.PCI0.DOCK, 1)

In this example, there are three ACPI namespace objects

sign Details
ection contains information about concepts, data types, and data structures that are common to
he Core Subsystem and OSL components of the ACPICA Subsystem.

PI Namespace Fundamentals
CPI Namespace is a large data structure that is constructed and maintained by the Core
stem component. Constructed primarily from the AML defined within an ACPI Differentiated

m Description Table (DSDT), the namespace contains a hierarchy of named ACPI objects.

3.1.1 Named Objects

Each object in the namespace has a fixed 4-character name (32-bits) associated with it. The root
object is referenced by the backslash as the first character in a pathname. Pathnames are constructe
by concatenating multiple 4-character object names with a period as the name separator.

Scopes

The concept of an object scope relates directly to the

brackets immediately after the object. In
of the children of that object.

In some of the ACPICA interfaces, it is convenient to define a scope parameter that is meant to
represent this container. For example, when co
parameters required to resolve the name are the name itself, and a containing scope where the name
can be found. When the object that matches the name is found within the scope, a handle to that
object can be returned.

Example Namespac

In the ASL code below, the scope of the object _GPE contains the objects _L08 and _L0A.

Scope (_GPE)
{
 Method (_L08)
 {
 Notify
 }
 Method (_L0A)
 {
 Store (0, _SB.PCI0.ISA.EC0.DCS)
 }
}

, about which we can observe the
following:
• The names of the three objects are _GPE, _L08, and _L0A.

• The child objects of parent object _GPE are _L08 and _L0A.

 23

ACPI Component Architecture Programmer Reference

• The absolute pathname (or fully-qualified pathname) of object _L08 is “_GPE._L08”.

• The scope of object _GPE contains both the _L08 and _L0A objects.

• The scope of control methods _L08 and _L0A contain executable AML code.

• The containing scope of object _L08 is the scope owned by the object _GPE.

• The parent of both objects _L08 and _L0A is object _GPE.

• The type of both objects _L08 and _L0A is ACPI_TYPE_METHOD.

• The next object (or peer object) after object _L08 is object _L0A. In the example _GPE

• ng backslash

scope, there are no additional objects after object _L0A.

Since _GPE is a namespace object at the root level (as indicated by the precedi
in the name), its parent is the root object, and its containing scope is the root scope.

3.1.3 Predefined Objects

Subsystem component, there are several

ock
"_REV", ACPI_TYPE_NUMBER // Supported ACPI specification revision

/ OS Name
/ Global Lock
/ Query OS Interfaces

3.1.4

cal namespace after the predefined objects and the _GPE scope

During initialization of the internal namespace within Core
predefined objects that are always created and installed in the namespace, regardless of whether they
appear in any of the loaded ACPI tables. These objects and their associated types are shown below.
"_GPE", ACPI_TYPE_ANY // General Purpose Event block
"_PR_", ACPI_TYPE_ANY // Processor block
"_SB_", ACPI_TYPE_ANY // System Bus block
"_SI_", ACPI_TYPE_ANY // System Indicators block
"_TZ_", ACPI_TYPE_ANY // Thermal Zone bl

"_OS_", ACPI_TYPE_STRING /
"_GL_", ACPI_TYPE_MUTEX /
"_OSI", ACPI_TYPE_METHOD /

Logical Namespace Layout

The diagram below shows the logi
has been entered.

24

 ACPI Component Architecture Programmer Reference

Figure 7. Internal Namespace Structure

ACPI_ROOT_OBJECT

\

_L08

_L0A

_GPE Scope
_GPE

PR

SB

SI

TZ

_REV

OS

GL

ACPI_ROOT_SCOPE

3.2

3.2.1

ta and

2. Initialize the table manager and load the ACPI tables – The FADT, FACS, DSDT, and SSDTs
es

.
DT. Any

SSDTs are optional. All other ACPI tables defined by the ACPI specification are not directly
 subsystem, but they are available to ACPI-related device drivers via the

ces. These tables include the MADT, ECDT, etc.

e. The ACPICA Subsystem installs an interrupt handler for the System Control

Execution Model

Initialization

The initialization of the ACPICA Subsystem must be driven entirely by the host operating system.
Since it may be appropriate (depending on the requirements of the host OS) to initialize different
parts of the ACPICA Subsystem at different times, this initialization is split into a multi-step
process. The four main steps are outlined below.

1. Perform a global initialization of the ACPICA Subsystem – this initializes the global da
other items within the subsystem.

must be acquired and mapped before the internal namespace can be constructed. The tabl
may be loaded from the firmware, loaded from an input buffer, or some combination of both
The minimum set of ACPI tables includes an RSDT/XSDT, FADT, FACS, and a DS

used by the ACPICA
table manager external interfa

3. Build the internal namespace – this causes ACPICA to parse the DSDT and any SSDTs and
build an internal namespace from the objects found therein.

4. Enable ACPI mode of the machine. Before ACPI events can occur, the machine must be put
into ACPI mod
Interrupts (SCIs), and transitions the hardware from legacy mode to ACPI mode.

 25

ACPI Component Architecture Programmer Reference

3.2.2 Memory Allocation

There are two models of memory allocation that can be used. In the first model, the caller to the
ACPICA subsystem pre-allocates any required memory. This allows maximum flexibility for the
caller since only the caller knows what is the appropriate memory pool to allocate from, whether t
statically or dynamically allocate the memory, etc. In the second mod

o
el, the caller can choose to

have the ACPICA subsystem allocate memory via the AcpiOsAllocate interface. Although this

3.2.2.1

A

,
l of a separate interface to obtain the required buffer size is insufficient. Instead,

a model that allows the caller to pre-post a buffer of a large enough size has been chosen. This

 local

quired, a buffer can be posted in the
original call. If this call fails, only then is a larger buffer allocated. See Section 6.2.6 -

3.2.2.2

UFFER data type as an output parameter, the following
tem to allocate return buffers:

 structure ACPI_ALLOCATE_BUFFER.

2. C ce.

3. If ception code is AE_OK, the interface completed successfully and a buffer was
al ntained in the ACPI_BUFFER structure.

model is less flexible, it is far easier to use and is sufficient for most environments.

Each memory allocation model is described below.

Caller Allocates All Buffers

In this model, the caller preallocates buffers of a large enough size and posts them to the ACPIC
subsystem via the ACPI_BUFFER data type.

It is often the case that the required buffer size is not known by even the ACPICA subsystem until
after the evaluation of an object or the execution of a control method has been completed. Therefore
the “get size” mode

model is described below.

For ACPI interfaces that use the ACPI_BUFFER data type as an output parameter, the following
protocol can be used to determine the exact buffer size required:

1. Set the buffer length field of the ACPI_BUFFER structure to zero, or to the size of a
buffer that is thought to be large enough for the data.

2. Call the Acpi interface.

3. If the return exception code is AE_BUFFER_OVERFLOW, the buffer length field has been
set by the interface to the buffer length that is actually required.

4. Allocate a buffer of this length and initialize the length and buffer pointer field of the
ACPI_BUFFER structure.

5. Call the Acpi interface again with this valid buffer of the required length.

Alternately, if the caller has some idea of the buffer size re

“ACPI_BUFFER – Input and Output Memory Buffers” for additional discussion on using the
ACPI_BUFFER data type.

ACPI Allocates Return Buffers

In this model, the caller lets the ACPICA subsystem allocate return buffers. It is the responsibility of
the caller to delete these returned buffers.

For the ACPI interfaces that use the ACPI_B
protocol is used to allow the ACPICA subsys

1. Set the buffer length field of the ACPI_BUFFER

all the Acpi interfa

 the return ex
located. The length of the buffer is co

26

 ACPI Component Architecture Programmer Reference

4. D AcpiOsFree with the pointer contained in the ACPI_BUFFER
st

3.2.3 Parameter

r input parameters before passing them down to the Core Subsystem code.

The lim ter validation consists of sanity checking input parameters for null pointers and
out-of and nothing more. Any additional parameter validation (such as buffer length
valida host calls the ACPICA code.

3.2.4

All exceptions that occur during the processing of a request to the ACPICA Core Subsystem are

ore Subsystem interfaces. There are
pi* or AcpiOs* calls.

3.2.5

e
h the native host OS primitives to ensure that mutual exclusion and

synchronization can be performed correctly. Although dependent on the correct implementation of
ystem is otherwise fully reentrant and supports multiple
he exception of the AML interpreter, as explained below.

 ACPI specification, there is a major limitation on the concurrency
ML interpreter portion of the subsystem. The specification states

ol
y

of
erpreter itself is essentially a single-threaded component of

• Notify events that are generated via the execution of the ASL Notify keyword in a control
method.

elete the buffer by calling
ructure.

Validation

Only limited parameter validation is performed on all input parameters passed to the ACPICA Core
Subsystem. Therefore, the host OS should perform all limit and range checks on buffer pointers,
strings, and othe

ited parame
-range values
tion) must occur before the

Exception Handling

returned in an ACPI_STATUS return code and bubbled up to the original caller. Names for the
ACPICA exceptions are all prefixed with “AE_”. For example, AE_OK indicates successful
completion of a request.

All exception handling is performed inline by the caller to the C
no exception handlers associated with either the Ac

Multitasking and Reentrancy

All components of the ACPICA subsystem are intended to be fully reentrant and support multiple
threads of execution. To achieve this, there are several mutual exclusion OSL interfaces that must b
properly implemented wit

these interfaces, the ACPICA Core Subs
threads throughout the component, with t

Because of the constraints of the
that can be achieved within the A
that at most one control method can be actually executing AML code at any given time. If a contr
method blocks (an event that can occur only under a few limited conditions), another method ma
begin execution. However, it can be said that the specification precludes the concurrent execution
control methods. Therefore, the AML int
the ACPICA subsystem. Serialization of both internal and external requests for execution of control
methods is performed and managed by the front-end of the interpreter.

3.2.6 Event Handling

The term Event Handling is used somewhat loosely to describe the class of asynchronous events that
can occur during the execution of the ACPICA subsystem. These events include:

• System Control Interrupts (SCIs) that are generated by both the ACPI Fixed and General
Purpose Events.

 27

ACPI Component Architecture Programmer Reference

• Events that are caused by accesses to an a
execution of a control method.

ddress space or operation region during the

port for them in the ACPICA subsystem are described in more
detail below.

3.2.6.1

lers can be installed for each event. Only device drivers or system services should
install

3.2.6.2 General Purpose Events

Incom
associated

rol method is never executed in the context of the SCI interrupt handler, but is instead
host operating system.

ot required
res a

dedic
Contr

If a G ler is installed for a given GPE, the handler is invoked first, then the associated
contro

GPE B nd removed
dynam
dispat ecessary interfaces to install and remove GPE Block Devices.

3.2.6.3 Noti

An AC the execution of a Notify opcode during the execution of
a cont a particular ACPI object, and this object must be a

stalled for notifications on a particular device, this handler
tify opcode, in the context of the thread that is executing

 and other system services that know about the
 will be received.

3.2.7

ASL source code and the corresponding AML code use the Address Space mechanism to access
ess Spaces are used to access the
ral pre-defined Address Spaces

 OpRegion is a named
window into an address space. During the creation of an OpRegion, the ASL programmer defines

Each of these events and the sup

Fixed Events

Incoming Fixed Events can be handled by the default ACPICA subsystem event handlers, or
individual hand

 such handlers.

ing General Purpose Events (GPEs) are usually handled by executing a control method that is
with a particular GPE. According to the ACPI specification, each GPE level may have a

method associated with it whose name is of the form _Exx for edge-triggered or _Lxx for level-
triggered. xx is the GPE level in hexadecimal (See the ACPI specification for complete details.)
This cont
queued for later execution by the

In addition to this mechanism, individual handlers for GPE levels may be installed. It is n
that a handler be installed for a GPE level, and in fact, currently the only device that requi

ated GPE handler is the ACPI Embedded Controller. A device driver for the Embedded
oller would install a handler for the GPE that is dedicated to the EC.

PE hand
l method (if any) is queued for execution.

lock Devices are also supported. These GPE blocks may be installed a
ically as necessary. The ACPICA Core Subsystem provides centralized GPE handling and

ch, and provides the n

fy Events

PI Notify Event occurs as a result of
rol method. A notify event occurs on

device or thermal zone. If a handler is in
is invoked during the execution of the No
the control method.

Notify handlers should be installed by device drivers
particular device or thermal zone on which notifications

Address Spaces and Operation Regions

data that is out of the direct scope of the ASL. For example, Addr
CMOS RAM and the ACPI Embedded Controller. There are seve
that may be accessed and user-defined Address Spaces are allowed.

The Operating System software (which includes the AML Interpreter) allows access to the various
address spaces via the ASL Operation Region (OpRegion) construct. An

28

 ACPI Component Architecture Programmer Reference

both the boundaries (window size) and the address space to be accessed by the OpRegion. Specific
addresses within the access window can then be defined as named fields to simplify their use.

The AML Interpreter is responsible for translating ASL/AML references to named Fields into
accesses to the appropriate Address Space. The interpreter resolves locations within an address
space using the fields’ address within an OpRegion and then the OpRegion’s offset within the
address space. The resolved address, address access width, and function (read or write) are then
passed to the address space handler who is responsible for performing the actual physical access of
the address space.

3.2.7.1 Installation of Address Space Handlers

At runtime, the ASL/AML code cannot access an address space until a handler has been installed for
that address space. An ACPICA user can either install the default address space handlers or install
user defined address space handlers using the AcpiInstallAddressSpaceHandler interface.

Each Address Space is “owned” by a particular device such that all references to that address space
within the scope of the device will be handled by that devices address space handler. This
mechanism allows multiple address space/operation region handlers to be installed for the same type
of address space, each mutually exclusive by virtue of being governed by the ACPI address space
scoping rules. For example, picture a platform with two SMBus devices, one an embedded
controller based SMBus; the other a PCI based SMBus. Each SMBus must expose its own address
space to the ASL without disrupting the function of the other. In this case, there may be two device
drivers and two distinctly different address space handlers, one for each type of SMBus. This
mechanism can be employed in a similar manner for the other predefined address spaces. For
example, the PCI Configuration space for each PCI bus is unique to that bus. Creation of a region
within the scope of a PCI bus must refer only to that bus.

Address space handlers must be installed on a named object in the ACPI namespace or on the
special object ACPI_ROOT_OBJECT. This is required to maintain the scoping rules of address
space access. Address handlers are installed for the namespace object representing the device that
“owns” that address space. Per ASL rules, regions that access that address space must be declared in
the ASL within the scope of that namespace object.

It is the responsibility of the ACPICA user to enumerate the namespace and install address handlers
as needed.

3.2.7.2 ACPI-Defined Address Spaces

The ACPI specification defines address spaces for:
• System Memory

• System I/O

• PCI Configuration Space

• System Management Bus (SMBus)

• Embedded Controller

• CMOS

• PCI Bar Target

• IPMI (ACPI 4.0)

 29

ACPI Component Architecture Programmer Reference

The ACPICA subsystem implements default address space handlers for the foll
address spaces:
• System Memory

owing ACPI defined

•

ed Controller, SMBus, and other ACPI-related device drivers.

3.3 s and Philosophies
sed during the design and
e a direct interpretation

of the policies and procedures dictated
by the en agreed upon during the
design

3.3.1 Exte

3.3.1.1 Exce

All ex the function return. Any other return
values as parameters. This provides a consistent and simple
synchronous exception-handling model.

ultiple threads on multiple operating
descriptor (such as the errno

mecha

3.3.1.2 Mem

Memo aces is rarely allocated
by the force the caller to always pre-allocate memory. This
forces creation and deletion of its own buffers — hopefully
minim exception to this is the
ACPI_BUFFER type, where the caller can direct the ACPICA subsystem to allocate return buffers.

3.3.2.1 ACP

All AC PICA Core Subsystem undergo some minimal
validation before they are accepted. This includes all tables found in the RSDT regardless of
whether the signature is recognized, and all tables loaded from user buffers. The following

 System I/O

• PCI Configuration Space

Default address space handlers can be installed by supplying the special value
ACPI_DEFAULT_HANDLER as the handler address when calling the
AcpiInstallAddressSpaceHandler interface.

The other predefined address spaces (such as Embedded Controller and SMBus) have no default
handlers and will not be accessible without OS provided handlers. This is typically the role of the
Embedd

Policie
This section provides insight into the policies and philosophies that were u
implementation of the ACPICA Core Subsystem. Many of these policies ar

ACPI specification. Others are a direct or indirect result of
ACPI specification. Still others are simply standards that have be
 of the subsystem.

rnal Interfaces

ption Codes

ternal interfaces (Acpi*) return an exception code as
 are returned via pointer(s) passed

Since the ACPICA Core Subsystem is reentrant and supports m
systems, a model where an exception code is stored in the task

nism) was purposefully avoided to improve portability.

ory Buffers

ry for return objects, buffers, etc. that is returned via the external interf
subsystem itself. The model chosen is to

 the calling software to manage both the
izing memory fragmentation and avoiding memory leaks. The

3.3.2 Subsystem Initialization

I Table Validation

PI tables that are examined by the AC

30

 ACPI Component Architecture Programmer Reference

validations are performed on each table. A warning is issued for tables that do not pass on
of these tests:

e or more

1. The Ta mory

2.

3. n the header

4. (with the exception of the FACS, which has no checksum).

Other header signature are simply
ignored.

At the ires the following ACPI tables:

1. One (FADT — signature “FACP”). This table contains
n about the ACPI hardware and pointers to the FACS and DSDT

tables.

S-to-firmware

) that contain
additional AML code. All SSDTs found in the RSDT/XSDT root table are loaded during the

aded at runtime via the

3.3.3

3.3.3.1 Performance versus Code/Data Size

 at the expense of performance.
The relatively static internal namespace data structure has been optimized to minimize non-paged

ethod

 Garbage Collection

This

e

ble pointer must point to valid physical me

The signature (in the table header) must be 4 ASCII chars, even if the name is not recognized.

The table must be readable for length specified i

The table checksum must be valid

than this validation, tables that are not recognized by their table

3.3.2.2 Required ACPI Tables

very minimum, the ACPICA Core Subsystem requ

 Fixed ACPI Description Table
configuration informatio

2. One Firmware ACPI Control Structure (FACS). This table contains the O
interface including the firmware waking vector and the Global Lock.

3. One Differentiated System Description Table (DSDT). This table contains the primary AML
code for the system.

4. Optional are one or more Secondary System Description Tables (SSDTs

table/namespace initialization. Other SSDTs and OEM tables can be lo
Load or LoadTable AML operators.

Major Design Decisions

The ACPICA subsystem is optimized to minimize code and data size

kernel memory use, and control method execution parse trees are freed immediately upon m
termination.

3.3.3.2 Object Management – No

Creation and deletion of all internal objects are managed such that garbage collection is never
required or performed. Objects are deleted deterministicatlly when they are no longer needed.
is achieved through the use of object reference counts and object trees.

Internal object caches allow the reuse of commonly used objects without burdening the OS fre
space manager. This greatly improves the performance of the entire subsystem.

 31

ACPI Component Architecture Programmer Reference

4

4.1
PICA

ernel initialization. In fact,
ACPI support must be considered to be one of the fundamental startup modules of the kernel. The

e memory management, synchronization
es are available, ACPICA should be

to the OS
very e

4.1.1 Bootload and Low Level Kernel Initialization
•

•

• ernel subsystems

•

• Initialize and enable free space manager

n primitives

 Initialize basic interrupt mechanism and hardware

4.1.2
• Initialize ACPICA Table Manager and Load ACPI Tables

andler

nd user handlers)

• Initialize ACPI Objects (_STA, _INI)

4.1.3 Other OS Initialization

Implementation Details

Required Host OS Initialization Sequence
This section describes a generic operating system initialization sequence that includes the AC
subsystem. The ACPICA subsystem must be loaded very early in the k

basic OS requirements of the ACPICA subsystem includ
primitives, and interrupt support. As soon as these servic
initialized. Only after ACPI is available can motherboard device enumeration and configuration
begin.

In summary, ACPI Tables are descriptions of the hardware, therefore must be loaded in
arly.

OS is loaded into memory via bootloader or downloader

Initialize OS data structures, objects and run-time environment

Initialize low-level k

Initialize ACPI Table Manager if early ACPI table access is required

• Initialize and enable synchronizatio

•

• Initialize and start system timer

ACPICA Subsystem Initialization

• Initialize Namespace

• Initialize ACPI Hardware and install SCI interrupt h

• Initialize ACPI Address Spaces (Default handlers a

• Find PCI Root Bus(es) and install PCI config space handlers

• Remaining non-ACPI Kernel initialization

• Initialize and start System Resource Manager

• Determine processor configuration

32

 ACPI Component Architecture Programmer Reference

4.1.4 D

outing table and Initialize PCI routing. PCI
rivers.

4.1.5 Final

4.2
system.

ent granularity to allow customization of the
 and host environment.

4.2.1 Global Initialization - AcpiInitializeSubsystem

This m itializes the ACPICA
Subsy of
the AC . The
interfa

zation

4.2.2.1 AcpiInitializeTables

CA core subsystem and may be initialized and executed at any time during kernel
initial
acquir
kerne
Table

4.2.2.2 Acp

These n individual ACPI tables as
necessary. The only ACPI tables that are consumed by the ACPICA subsystem are the FADT,
FACS, DSDT, and any SSDTs. All other ACPI tables present on the platform must be consumed by

evice Enumeration, Configuration, and Initialization
• Match motherboard devices to drivers via _HID

• Initialize PCI subsystem: Obtain _PRT interrupt r
driver enumerates PCI bus and loads appropriate d

• Initialize Embedded Controller support/driver

• Initialize SM Bus support/driver

• Load and initialize drivers for any other motherboard devices

OS Initialization
• Load and initialize any remaining device drivers

• Initialize upper layers of the OS

• Activate user interface

Required ACPICA Initialization Sequence
This section presents a detailed description of the initialization process for the ACPICA sub
The initialization interfaces are provided at a suffici
initialization sequence for each host operating system

andatory step begins the initialization process and must be first. It in
stem software, including all global variables, tables, and data structures. All components
PICA Subsystem are initialized, including the OSL interface layer and the OSPM layer
ce provided is AcpiInitializeSubsystem.

4.2.2 ACPI Table and Namespace Initiali

This required phase loads the ACPI tables from the BIOS and initializes the internal ACPI
namespace.

This function initializes the ACPICA Table Manager. This component is independent of the rest of
the ACPI

ization, even before dynamic/virtual memory is available. This allows the ACPI tables to be
ed very early in the kernel initialization process. Some ACPI tables are required during early

l initialization/configuration -- such as the SLIT (System Locality Distance Information
), SRAT (System Resource Affinity Table), and MADT (Multiple APIC Description Table.)

iGetTable, AcpiGetTableHeader, AcpiGetTableByIndex

functions may be used by the host OS and device drivers to obtai

 33

ACPI Component Architecture Programmer Reference

the host OS and device drivers. For example, the ECDT (Embedded Controller Boot Resources
Table) is used by the host-dependent Embedded Controller device driver.

AcpiLoadTabl4.2.2.3 es

d

4.2.2.4 Internal ACPI Namespace Initialization

tructures of the CA
subsystem), the internal ACPI Namespace (database of named ACPI objects) is constructed from

I objects into the internal namespace

•
s. The resulting parse tree is not stored, since

nts

4.2.3 H n

Once
during
the initialization before execution of any control methods
is allo
intend

4.2.3.1 Handler Types

rfaces are available

This interface creates the internal ACPI namespace data structure from the DSDT and SSDTs foun
in the RSDT/XSDT root table. All SSDTs found in the root table are loaded. Other SSDTs may be
loaded by AML code at runtime via the AML Load operator. OEM tables that appear in the
RSDT/XSDT can only be loaded via the AML LoadTable operator.

As the various ACPI tables are loaded (installed into the internal data s

those tables. As each table is loaded, the following tasks are automatically performed:

• First pass parse – Load all named ACP

• Second pass parse – Resolve all forward references within the ACPI table

First pass parse of all control methods – Sanity check to ensure that the tables can be
completely parsed, including the control method
control methods are parsed on the fly every time they are executed. (This task represe
minimal CPU overhead, and saves huge amounts of memory that would be consumed by
storing parse trees.)

• Lock the namespace so that GPEs will not cause control methods to run

a dler Installation

the namespace has been constructed, the OS should install any handlers that it may require
 execution of the ACPICA subsystem. The purpose of installing these handlers at this point in

process is so that the handlers are in place
wed – thereby insuring that any custom handlers will not miss any of the events that they are
ed to handle. Any handlers installed in this phase will override any default handlers.

The following handler installation inte

Initialization Handler: AcpiInstallInitializationHandler

This function is used to install a global handler for ACPICA initialization events. Currently, the
handler is called after the execution of every device _INI method.

Table Event Handler: AcpiInstallTableHandler

This function is used to install a global handler for ACPI table load/unload events.

AML Exception Handler: AcpiInstallExceptionHandler

 function is used to install a global handler for AML run-time exceptions.

ess Space Handlers:

This

Addr AcpiInstallAddressSpaceHandler

34

 ACPI Component Architecture Programmer Reference

Th function is used to install address space handlers to override the default address space
dlers (for the predefined address spaces) or install handle

is
han rs for custom address spaces. These
handlers are invoked to implement Operation Region requests.

Fixed Event Handlers: AcpiInstallFixedEventHandler

Th function is used to install handlers for ACPI Fixed Events. is

General-Purpose Event Handlers: AcpiInstallGpeHandler

This to install handlers for ACPI General Purpose Events (GPEs).

N f

 function is used

oti y Handlers: AcpiInstallNotifyHandler

This function is used to install handlers for ACPI device notifications.

4.2.4

ation, fixed events are initialized and enabled. GPEs are

• Install default operation region handlers for the following address spaces that must always be

wever.)

4.2.4.1 ACP on

This s sary, sets up the ACPI hardware, initializes the
ACPI Even ing
in “har tem
(For ex ility runs in this mode.)

The A
archite wing
reasons:

nted as a control method
and are not

rm.

Hardware Initialization - AcpiEnableSubsystem

This step continues the subsystem initialization and is more hardware oriented. It first puts the
system into ACPI mode, then installs the default Operation Region handlers, initializes the event
manager, and installs the SCI and Global Lock handlers.

During the event manager initializ
initialized, but are not enabled at this time.

To summarize the actions performed by this call:

• Enter ACPI Mode.

available: SystemMemory, SystemIO, PCI_Config, and DataTable.

• Initialize ACPI Fixed and General Purpose events (not enabled at this time, ho

• Install the SCI and Global Lock interrupt handlers.

I Hardware and Event Initializati

tep puts the system into ACPI mode if neces
t handling, and installs the ACPI interrupt handlers. This step is optional when runn

dware-independent” mode – when there is no access to hardware by the ACPICA subsys
ample, the AcpiExec ut

CPI hardware must be initialized and an SCI interrupt handler must be installed before it is
cturally safe to evaluate ACPI objects and execute control methods, for the follo

1. Any ACPI named object (predefined or otherwise) can be impleme
and there is no way to safely make any assumptions about which objects are
implemented as control methods. This is dependent on the individual AML on each platfo

2. Because control methods can access the ACPI hardware, cause ACPI interrupts (SCIs), and
most interesting of all, can block while waiting for an SCI to be serviced, it is inherently
unsafe and architecturally incorrect to attempt to execute control methods without first
initializing the hardware and installing the SCI interrupt handler

 35

ACPI Component Architecture Programmer Reference

This step is only optional when running in “hardware-independent” mode. Otherwise it is required
to setup the ACPI hardware and System Control Interrupt handling. ACPI mode is entered if the
machine is in legacy mode. If the machine is already in ACPI mode (such as an IA-64 machine), no

executed because the hardware is now
ated interrupts (System Control Interrupts or

4.2.5 bjects

This step completes the initialization of all objects within the loaded namespace, then initializes and

r the

 Regions that are declared within control methods are not

ntify and define the
er enabled at runtime, they

dy.

4.2.5.1

s found within the ACPI namespace are
t are present as indicated by the _STA
rdware – this is left to the actual device

type Device, Processor, and Thermal found therein. Any operation regions accessed by these
time address space initialization mechanism.

 is performed to identify all subtrees that contain devices that have a
ethod. This greatly enhances the speed of this step and can reduce
 time. If there is no _INI method for a given device, then no attempt is

action is required.

When this step is complete, control methods may be
initialized and the subsystem is able to take ACPI-rel
SCIs). The execution of any control method (including the _REG methods) can cause the generation
of an SCI – therefore, the hardware must be initialized before control methods may be run.
Additional ACPICA subsystem initialization that requires control method execution can now be
completed.

Object Initialization – AcpiIntializeO

enables the runtime general-purpose events:

• Initialize all Operation Regions. This step runs all Operation Region _REG methods fo
address spaces with default handlers – SystemMemory, SystemIO, PCI_Config, and
DataTable. Note: Operation
initialized until actual execution of the method.

• Finish initialization of complex objects (Operation Regions, BufferFields, Buffers,
BankFields, and Packages) that contain executable AML code within the declaration.

• Initialize all Device, Processor and Thermal objects within the namespace by executing
the_STA and _INI methods on each of these objects.

• Initialize the FADT-defined GPE blocks.

• Execute all _PRW methods within the namespace. These methods ide
GPEs that are used for wake events. These types of GPEs are nev
are only enabled as the system enters a sleep state.

• Enable all runtime GPEs. The GPEs can only be enabled after the _REG, _STA, and _INI
methods have been run. This ensures that all Operation Regions and all Devices have been
initialized and are rea

ACPI Device Initialization

During this step, all Device, Processor, and Thermal object
initialized. The _INI method is executed for all devices tha
method. This is not an actual initialization of the device ha
drivers for the hardware.

The entire namespace is traversed and the_STA and _INI methods are run on all ACPI objects of

methods will be automatically initialized by the just-in-
The initialization is performed via the following steps:

• A namespace analysis
corresponding _INI m
operating system boot
made to execute the _STA method for the device.

• If the device has an _INI method, attempt to execute the _STA method for the device.

36

 ACPI Component Architecture Programmer Reference

• If _STA does not exist within the scope of the device, the device is assumed to be both
present and functional – as per the ACPI specification.

tioning, do not run _INI on the

 not examine the

od

• n of every _INI method.

4.2.5.2 Oth ect Initialization

s itialized
during the device and address space initialization.

can contain executable AML code and therefore
the initialization of the objects must be deferred until the CA subsystem and ACPI hardware are

s
erationRegion code in

the
imp

4.2.6 Ot

All external ACPI interfaces are available and the host OS can perform the following initialization

• Enumerate devices using the _HID method

• drivers

• d

• ridge

4.2.7 Just-in-time Operation Region Initialization

This p udes just-in-time initialization for any Operation Regions, Packages, Buffers, or
Fields r a
PCIC ry Operation Region, the definition of that
particu
ASL s
must b until the CA subsystem and ACPI hardware are both initialized).

• If the _STA flags indicate the device is not present but func
device, but continue to examine the children of the device.

• If the _STA flags indicate the device is not present and not functioning, do
children of this device – abort the walk of this subtree of the namespace.

• If the _STA flags indicate that the device is present, then attempt to execute the _INI meth
for the device.

The global initialization handler is called after the executio

er ACPI Obj

Thi step initializes the remaining AML Operation Regions and Fields that were not in

Operation Regions and CreateField ASL statements

both initialized. Some of this initialization may have been completed during the earlier steps. This
step completes that initialization.

This final pass through the loaded ACPI tables will execute all AML code outside of the control
methods that has not already been executed on-demand during the previous phases. The purpose i
to initialize the Field and OpRegion objects by executing all CreateField, Op

AML. ACPI 2.0 has additional elements that will need to be initialized this way (Not yet
lemented.)

her Operating System ACPI-related Initialization

steps:

Load, configure, and install device

Device Drivers install handlers for other address spaces such as SMBus, EC, IPMI, an
custom address spaces

The PCI driver enumerates PCI devices and loads PCIConfig handlers for PCI-to-PCI-b
devices (which causes the associated child PCI bus_REG methods to run, etc.)

hase incl
 that are accessed by the control methods executed here. For example, if a _REG method fo
onfig address space accesses a SystemMemo

lar SystemMemory region is fully evaluated at that time. (Operation Regions and CreateField
tatements can contain executable AML code and therefore the initialization of the objects
e deferred

 37

ACPI Component Architecture Programmer Reference

Therefore, Address Spaces are initialized in the
that they are declared in the ASL source code.

order in which they are accessed, not in the order

4.2.7.1 Syst

For ea
maxim maintained, in an attempt to
minim

When
and a

This m

4.2.7.2 PCI_

For th
corres Root Bridge.

ject indicates the presence of a PCI Root Bridge (an ID
ress), perform PCI Configuration Space initialization

run

metho rs.
Finall

• tained from the _ADR method.

• e _SEG method.

•

•
 any adjustments to the

When the PCI confituration space is
perfor and AcpiOsWritePciConfiguration.

4.2.8

y be re-initialized and restarted from the beginning anytime after this step completes.

4.3 Mu

4.3.1 Reentrancy

All ex eentrant. There are limitations to
the amount of concurrency allowed during control method execution, but these limitations are

When any Address Space is initialized, the associated _REG method (if any) is executed as well.

emMemory Region Initialization

ch operation region within the SystemMemory address space, a memory mapped window of
um size ACPI_SYSMEM_REGION_WINDOW_SIZE is
ize the overhead of mapping entire operation regions if they are very large.

 a request is received that is outside of the current window, the existing mapping is deleted
new mapping that can service the request is created.

apping feature is implemented in the default handler for the SystemMemory address space.

Config Region Initialization

ese operation regions, the namespace is searched upwards from the region to find the
ponding PCI

If a _HID or _CID method under a device ob
value of PNP0A03 or PNP0A08 for PCI Exp
on the bridge. Install the PCI address space handler on the bridge (and on all descendents) and
the _REG method for the device if it is present. Then execute the _ADR, _SEG, and _BBN

ds (in the bridge scope) to obtain the PCI Device, Function, Segment, and Bus numbe
y, run the associated _REG method to indicate the availability of the region.

The initial PCI Device and Function values are ob

The initial PCI Segment number is obtained from th

The initial PCI Bus number is obtained from the _BBN method.

The final PCI ID consisting of Device, Function, Segment, and Bus is obtained by calling the
AcpiOsDerivePciId OSL interface. This allows the host OS to make
PCI ID as required.

 accessing a PCI_Config operation region, all I/O from/to
med via the OSL interfaces AcpiOsReadPciConfiguration

System Shutdown - AcpiTerminate

This step frees all dynamically allocated resources back to the host operating system The ACPICA
subsystem ma

ltithreading Support

ternal interfaces to the ACPICA Core Subsystem are fully r

38

 ACPI Component Architecture Programmer Reference

transp s
will si

4.3.2 Mut

e ACPICA code:

1. used for high-level mutual exclusion within the ACPICA
ASL Mutex operators, as well as the ACPI

G S, they can be
imp

2. Sem
Eve

3. Spi

4.3.3 Contro

Most of the itional
lo
di
control methods. The design implements the following portion of the ACPI specification that

se four sentences:

4.3.3.1

s:

d

6. Invokes the host debugger via a write to the debug object or executes the BreakPoint() ASL

7. Accesses an Operation Region which results in a dispatch to a user-installed handler that
blocks on I/O or other long-term operation

8. A Notify AML opcode results in a dispatch to a user-installed handler that blocks in a similar
way

arent to the calling threads — in the sense that threads that attempt to execute control method
mply block until the interpreter becomes available.

ual Exclusion and Synchronization

Three different types of synchronization objects are used by th

 Mutex objects. These objects are
core and AML interpreter and to implement the

lobal Lock. If there are no mutex primitives available in the host O
lemented with semaphore objects (binary semaphores.)

aphore objects. These objects are used for synchronization and to implement the ASL
nt operators.

n Locks. These objects are only used at interrupt level (in interrupt handlers).

l Method Execution

 multithread support within the ACPICA subsystem is implemented using trad
cks and mutexes around critical (shared) data areas. However, the AML interpreter design is
fferent in that the ACPI specification defines a special threading behavior for the execution of

defines a partially multithreaded AML interpreter in the

A control method can use other internal, or well-defined, control methods to accomplish the
task at hand, which can include defined control methods provided by the operating
software. Interpretation of a Control Method is not preemptive, but can block. When a
control method does block, the operating software can initiate or continue the execution of
a different control method. A control method can only assume that access to global objects
is exclusive for any period the control method does not block.

Control Method Blocking

First of all, how can a control method block? This is a fairly exhaustive list of the possibilitie

1. Executes the Sleep() ASL opcode

2. Executes the Acquire() ASL opcode and the request cannot be immediately satisfied

3. Executes the Wait() ASL opcode and the request cannot be immediately satisfie

4. Attempts to acquire the Global Lock (via Operation Region access, etc), but must wait

5. Attempts to execute a control method that is serialized and already executing (or is blocked),
or has reached its concurrency limit

opcode

 39

ACPI Component Architecture Programmer Reference

4.3.3.2 Control Method Execution Rules

Here are
upon. Th m are
inferred

1. A Co
inclu
meth

2. If a C the
origin ethod.
Instead, e tail
or the he

3. Methods
made to
m

4. T ronization supported by Operation Regions and mentioned in the ACPI
specification seems to depend entirely on the non-preemptive control method execution model

4.3.3.3

1. Sleep () - directly implemented via AcpiOsSleep (), will block the caller and free the

sMutex.

se of
the lock.

ue
e).

 block for a long time.

7.

8. Not

These
execut tics of “no preemption unless the method does something to block itself”. This
requires additional support. I will take a stab at a multithread model here; please feel free to modify

terpreter is
thread
r

control methods (and the threads that are executing them) must be either blocked or awaiting
execution/resumption.

2. Therefore, we can put a mutex around the entire interpreter and only allow a thread access to
the interpreter when there are no other accessing threads.

 some Control Method execution “rules” that the ACPICA multithread support is built
ese rules are not always stated explicitly in the ACPI specificat

.
ion — some of the

ntrol Method will run to completion (as far as the interpreter is concerned - this doesn’t
de thread preemption and interrupt handling by the OS) unless it blocks (i.e. a control
od will not be arbitrarily preempted by the interpreter.)

ontrol Method blocks, the next Control Method in the queue will be executed. When
al (blocked) control method becomes ready, it will not preempt the executing m

it will be placed back on the execution queue (We could place the method at th
ad of the execution queue, or leave this decision to the OSL implementers).

 can be serialized (non-reentrant) or reentrant. A thread will block if an attempt is
execute (either via direct invocation or indirectly via a method call) a serialized

ethod that is already executing (or is blocked).

he “implicit” synch

(see above.)

A Simple Multithreading Model

The actual mechanisms to block a thread are simple and are already in place on the OSL side:

processor.

2. Acquire () - implemented via an AcpiO

3. Wait () - implemented via an AcpiOsSemaphore.

4. Global Lock - implemented via an AcpiOsMutex and the interrupt caused by the relea

5. Concurrency limit - we could put a queue at each method (high overhead), or simply re-que
the thread (perhaps in a high-priority queue if we implement on

6. Host Debugger - These are simply AcpiOs* calls that we assume will

Operation Region Handler blocks on some OS primitive

ify handler blocks in the same manner as (7).

mechanisms are sufficient to implement the blocking, but this isn’t enough to implement the
ion seman

or comment.

1. True concurrent control method execution is not allowed. Although the in
“reentrant” in the sense that more than one thread can call into the interpreter, only one
at any given time (system wide) can be actively interpreting a control method. All othe

40

 ACPI Component Architecture Programmer Reference

3. The implication and result is that when an executing control method blocks, it is defined to
have stopped accessing the interpreter, and is no longer executing within the interpreter.

4. If any interrupt handler needs interpreter services (such as the EC driver and the _Qxx control
methods), it must schedule a thread for execution. When it runs, this thread calls the
interpreter to execute the method.

The algorithm below implements the model described above:
AmlExecuteControlMethod ()

Acquire (Global Interpreter Lock)
If <the method does anything that might block>
Check if it will block (such as wait on a semaphore with a zero
timeout, or grab global lock)
If <we know or the method will block or still think that it might
block>
(such as sleep, acquire-no-units, wait-no-event, global lock not
available, reached concurrency limit) - and perhaps before we
dispatch to a user OpRegion or Notify handler)

Release (Global Interpreter Lock) (Allow another thread to
execute a method)

Execute the blocking call (AcpiOsSleep or AcpiOsWaitSemaphore)
Acquire (Global Interpreter Lock) (Must re-enter the

interpreter, can’t preempt running thread!)
Release (Global Interpreter Lock) (Finished with this method, free
the interpreter)

4.3.3.4 A More Complex Multithreading Model

e adds a mechanism to implement a “priority” system where
al thods that are queued and
h scheduling of threads that
a on an OS-defined priority mechanism. In
ot ule threads the way we want.

Tw sem ter Gate” and an “Inner Gate”. A thread must pass
through tion. Once inside both gates, it releases the outer gate,
a ing ate. When the first thread completes execution of the
m
e
it

T ber of blocked
th (the last thread allowed in through the outer gate).

s allowing T2 to run. T1 unblocks and eventually waits on
 signals the inner gate. T1 now runs to completion. All

o hreads waiting at the outer gate - therefore, it gives
p rity t running a method.

T fied model described above:

This extension to the model shown abov
l executing and blocked Control Methods have a higher priority than me

e never executed yet. This allows the interpreter some control over theav
re executing control methods, without relying directly

 to schedher words, it provides an OS-dependent way

o aphores are used, call them an “Ou
uboth gates before it can begin exec

 a thread in to wait at the inner gllow
ethod, it releases the inner gate, allowing the next thread to proceed. If at any time during

xecution a thread must block, it releases the inner gate, blocks, then re-acquires the inner gate when
 resumes execution.

he maximum length of the queue
reads (running a method)> + 1

 at the inner gate will never exceed <the num

In the typical (blocking) case, T1 block
the inner gate. T2 eventually completes and

f this ha e number of tppens regardless of th
o threads that are alreadyrio

he algorithm below implements the modi

 41

ACPI Component Architecture Programmer Reference

AmlExecuteControlMethod ()
Acquire (Outer Lock)
Acquire (Inner Lock) (Must acquire both locks to begin execution)

ng that might block>
such as wait on a semaphore with a zero

l think that it might

(such as sleep, acquire-no-units, wait-no-event, global lock not
available, reached concurrency limit) - and perhaps before we

or Notify handler)
 (Allow another thread to begin

execution of a method)
,

interpreter)

Note: k the
.

4.3.4

rdware and data structures. It is not
intended to be a mutual exclusion mechanism between threads implemented by the host OS.

The one and only purpose of the Global Lock is to provide synchronization between the resident
firmware (SMI BIOS, etc.) and all other software on the platform.

The ACPICA subsystem manages the global lock in the following manner:

• When the firmware owns the global lock, ACPICA queues up all requests to acquire the
global lock.

• When the firmware releases the global lock, ACPICA satisfies all queued requests one at a
time. A separate hardware acquire and release is performed for each thread that has requested
the lock.

This algorithm prevents starvation of the global lock if many OS threads are requesting it. The BIOS
has the opportunity to acquire the lock after each requesting thread releases it.

The diagram below shows the global lock in relation to the BIOS and other system software.

Release (Outer Lock) (Allow one thread into the outer lock)
If <the method does anythi

Check if it will block (
timeout)
If <we know or the method will block or stil
block>

dispatch to a user OpRegion
Release (Inner Lock)

Execute the blocking call (AcpiOsSleep, AcpiOsWaitSemaphore
etc.)
Acquire (Inner Lock) (Must re-enter the interpreter since
we cannot preempt running thread!)

Release (Inner Lock) (Finished with this method, free the

It is not so important that the threads free the locks in reverse order as it is that they all unloc
locks in the same order. Since they are all executing the same code, this behavior is ensured

While the simple multithreading model will be sufficient, the more complex model allows a more
“fair” allocation of resources under heavy load. The outstanding question is whether there will ever
be enough concurrent use of the AML interpreter to justify the complexity of the second model.

ACPI Global Lock Support

The ACPI Global Lock is intended to be a mutual exclusion mechanism that allows both the host
operating system and the resident firmware to access common ha

42

 ACPI Component Architecture Programmer Reference

Figure 8. Global Lock Architecture

Global Lock

Shared Data

Resident
Firmware

(BIOS)

Operating System

Device Drivers

ACPI Subsystem

4.3.4.1

GlobalLockAquired = TRUE;
return; /* All done! */

terrupt */

4.3.4.2 Releasing the Global Lock

ntrol register

Obtaining The Global Lock
/* Only one thread can acquire the lock at a time */

Acquire the internal global lock mutex
If (AcquireHardwareGlobalLock())
{

}

/* Must wait until the BIOS releases the lock and generates in

AmlExitInterpreter ();
AcpiOsWaitSemaphore (GlobalLockSemaphore, WAIT_FOREVER);
AmlEnterInterpreter ();

If global lock is not acquired
Error, return;

ReleaseHardwareGlobalLock ();
If Pending bit set

Write the GBL_RLS bit to the co

GlobalLockAquired = FALSE;
Release the internal global lock mutex

 43

ACPI Component Architecture Programmer Reference

4.3.4. Global Lock Interrupt Han3 dler
/* We get an SCI when the firmware releases the lock */

lLockSemaphore);

4.3.5

r
te

e
. Since these mechanisms are not

ment these interfaces to simply

t

figured out during generation of the subsystem.

AcquireHardwareGlobalLock ()
If (Global Locak was acquired)
{

GlobalLockAcquired = TRUE;
AcpiOsSignalSemaphore (Globa

}

Single Thread Environments

Both the design and implementation of the ACPICA Core Subsystem is targeted primarily fo
inclusion within the kernel of a multitasking operating system. However, it is possible to genera
and operate the subsystem within a single threaded environment — with either a primitive operating
system or loader, or even standalone with no additional system software other than a few device
drivers.

The successful operation of the ACPICA in any environment depends upon the correct
ngle implementation of the OSL layer underneath it. This requirement is no different for a si

threaded environment, but some special considerations must be made:

The primary mechanisms used for mutual exclusion and multithread synchronization throughout th
ACPICA subsystem are the OSL Spinlock, Mutex, and Semaphore
required in a single threaded environment, it is sufficient to imple
always return an AE_OK exception code.

When used within an OS kernel at ring 0, the ACPI debugger requires a dedicated thread to perform
command line processing. Since this mechanism is not required in a single threaded environment, i
can be con

44

 ACPI Component Architecture Programmer Reference

5

5.1 AML Interpreter Slack Mode
Wh ith other existing ACPI implementation(s)
by i It also enables the Implicit Return feature.

Implicit Return Va

Subsystem Features

en enabled, this mode provides better compatibility w
gnoring certain errors and improper AML sequences.

lue: This feature will automatically return the result of the last AML operation

es whose
AML vior.

Operation

in a control method, in the absence of an explicit Return() operator. Since other ACPI
plementations have implemented this feature by default, there are many existing machinim

ASL/ depends on this beha

 Region Range Checking: Allow access beyond t
to t tion

he end of of a region. The default
behavior i region. Typically, access beyond the
end of the acc es the overrun. For example, a one-byte
operation region and a field with DWORD access. Normally, access to the field will cause an error.

s to strictly limit access he end of the opera
region occurs when the ess data width caus

This option will allow the access to continue.

Uninitialized Method Locals and Arguments: Allow access to uninitialized Locals and
Arguments as if they were initialized to an Integer object with a value of zero. If this feature is not
enabled, an error is generated an the method is aborted.

Source Operand Types for Store Operator: Allow objects of any type to be the source for the

e

Unr

ASL/AML Store operator. The ACPI specification restricts the source operand to be one of a subset
of the available ACPI object types. This option overrides the ACPI specification and allows sourc
operands of any type.

esolved References within Packages: Allow references within Package objects to go
solved with no err or warning. A NULL package element is inserted instead. This is another

r AML interpreters, and there are
unre or
compatibility issue with othe existing machines that depend on this
featu

5.2
T at is
lo its
fo larger than 1, full
6

5.3 P
nd whose
 the return

value, if any. There are nearly 200 such methods.

d.

ion of the method -- before the ACPI-related device drivers run into them.

re.

AML Interpreter Math Mode (32-bit or 64-bit)
he integer size used by the AML interpreter is variable and is dynamically set via the DSDT th

ed is always 32-baded. For ACPI 1.0 DSDTs with a version number of 1, the integer width us
r backward compatibility. For ACPI 2.0 and later DSDTs with a version number

4-bit integer math is used.

redefined Control Method Validation
For the predefined control methods (methods that are defined in the ACPI specification a
names begin with a single underscore), the ACPICA subsystem performs a validation on

The input number of arguments and the type of the return object is validated against the ACPI
specification. If the method returns a package, the length of the package as well as the individual
elements of the package are validated. A warning message is issued if there are any problems foun

This feature is useful in finding problems with objects returned by BIOS AML code immediately
upon execut

 45

ACPI Component Architecture Programmer Reference

5.4

e
_
A

T

{"DMA", 0x0000, 0x000F, ACPI_OSI_WIN_XP}, /* DMA controller 1 */
{"PIC0", 0x0020, 0x0021, ACPI_ALWAYS_ILLEGAL}, /* Interrupt Controller */
{"PIT1", 0x0040, 0x0043, ACPI_OSI_WIN_XP}, /* System Timer 1 */
{"PIT2", 0x0048, 0x004B, ACPI_OSI_WIN_XP}, /* System Timer 2 failsafe */
{"RTC", 0x0070, 0x0071, ACPI_OSI_WIN_XP}, /* Real-time clock */
{"CMOS", 0x0074, 0x0076, ACPI_OSI_WIN_XP}, /* Extended CMOS */
{
{

POS channel select */

{"IDMA", 0x00C0, 0x00DF, ACPI_OSI_WIN_XP}, /* ISA DMA */
ALWAYS_ILLEGAL}, /* PIC edge/level registers */
OSI_WIN_XP} /* PCI configuration space */

5.5 Debugging Support
ACPICA

Subsystem:

is data
the fact. So much data can be generated that the

debug output can be selectively enabled on a per-subcomponent basis and even a finer

I/O Port Protection
The ACPICA subsystem protects certain I/O ports from access via the AML code. Some ports are
always illeg e ports are illegal based upon the strings that the BIOS has requested via thal, and som

OSI predefined control method. When an I/O request is made to a blocked port, the
E_AML_ILLEGAL_ADDRESS exception is returned.

he current list of protected ports is as follows:

"DMA1", 0x0081, 0x0083, ACPI_OSI_WIN_XP}, /* DMA 1 page registers */
"DMA1L", 0x0087, 0x0087, ACPI_OSI_WIN_XP}, /* DMA 1 Ch 0 low page */

{"DMA2", 0x0089, 0x008B, ACPI_OSI_WIN_XP}, /* DMA 2 Ch 2 low page */
{"DMA2L", 0x008F, 0x008F, ACPI_OSI_WIN_XP}, /* DMA 2 low page refresh */
{"ARBC", 0x0090, 0x0091, ACPI_OSI_WIN_XP}, /* Arbitration control */
{"SETUP", 0x0093, 0x0094, ACPI_OSI_WIN_XP}, /* System board setup */
{"POS", 0x0096, 0x0097, ACPI_OSI_WIN_XP}, /*
{"PIC1", 0x00A0, 0x00A1, ACPI_ALWAYS_ILLEGAL}, /* Cascaded PIC */

{"ELCR", 0x04D0, 0x04D1, ACPI_
{"PCI", 0x0CF8, 0x0CFF, ACPI_

ACPI_ALWAYS_ILLEGAL: These ports are always blocked.

ACPI_OSI_WIN_XP: These ports are legal unless the BIOS AML has invoked _OSI with the XP
string “Windows 2001” or any Windows string representing a release of Windows later than XP.
Performed for Windows compatibility, this means that these ports are illegal on most modern x86
machines.

Two styles of debugging are supported with the debugging tools available with the

1. Extraordinary amounts of trace and debug output can be generated from debug output and
trace statements that are embedded in the debug version of the ACPICA subsystem. Th
can be used to track down problems after

granularity of the type of debug statement can be selected.

2. An AML debugger is provided that has the ability to single step control methods to examine

5.5.1 Erro

the results of individual AML opcodes, and to change the values of local variables and
method arguments if necessary.

r and Warning Messages

There are several macros used throughout the ACPICA subsystem to format and print error and
warning messages. In addition to the input message, each of these macros automatically print the
module name, line number, and current ACPICA version number.

46

 ACPI Component Architecture Programmer Reference

These macros are conditionally compiled
ACPI_NO_ERROR_MESSAGES durin

and can be removed if desired by defining
g subsystem compilation. However, they are used only for

ACPI_INFO – Information message

The current statistics for the use of these m in the ACPICA source is as follows:

ACPI_ERROR 284
ACPI_EXCEPTION 55 i
ACPI_WARNING 41 i
ACPI_INFO 8 in

5.5.2 Execution Debug Output (ACPI_DEBUG_PRINT Macro)

The ACPI_DEBUG_PRINT macro is used ut the source code of the ACPICA Core
Subsystem to selectively print debug mess 350 invocations of the ACPI_DEBUG_PRINT
are scattered throughout the ACPICA subs rce. This macro is compiled out entirely for
non-debug versions of the subsystem.

Output from ACPI_ DEBUG_PRINT can at two levels: on a per-subcomponent level
(Namespace manager, Parser, Interpreter, a per-type level (informational, warnings,
errors, and more.) There are two global va set these output levels:

1. AcpiDbgLayer Bit field that ena debug output from entire subcomponents
within the AC system.

2. AcpiDbgLevel Bit field that ena the various debug output levels

The example below shows some of the de a namespace search. None of the output
of the function tracing is shown here, but it traces would appear interspersed with the
other debug output.
nsutils-0346: NsInternalizeName: returning [00821F30] (abs) "\BITZ"
nsaccess-0424: NsLookup: Searching from root [007F09B4]
nsaccess-0477: NsLookup: Multi Name (1 Segments, Flags=0)
nsaccess-0494: NsLookup: [BITZ/]

84

5.5.3

Most of the functions within the subsystem use the ACPI_FUNCTION_TRACE macro upon entry
and the return_ACPI_STATUS macro upon exit. For the debug version of the subsystem, if the
function trace debug level is enabled, the ACPI_FUNCTION_TRACE macro displays the name of
the module and function and the current call nesting level. Upon exit, the return_ACPI_STATUS
macro again displays the name of the function, the call nesting level, and the return status code of
the call.

serious issues in order to limit their overhead.

ACPI_ERROR – Displays an error message.

ACPI_EXCEPTION – Displays an error message with a decoded ACPI_STATUS exception.

ACPI_WARNING – Displays a warning message.

only.

acros with

 invocations
nvocations
nvocations
vocations

 througho
ages. Over
ystem sou

 be enabled
 etc.), and on
riables that

b lesles/disab
PICA sub

b lesles/disab

bug output from
the enter/ex

nssearch-0166: NsSearchOnly: Searching \/ [007F09B4]
nssearch-0168: NsSearchOnly: For BITZ (type 0)
nssearch-0239: NsSearchOnly: Name BITZ (actual type 8) found at 007FC3
nseval-0302: NsEvaluateByName: \BITZ [007FC384] Value 007FE0C0

Function Tracing (ACPI_FUNCTION_TRACE Macro)

 47

ACPI Component Architecture Programmer Reference

The next few lines show examples of the func
ACPI_FUNCTION_TRACE macro, we see th

tion tracing. On each invocation of the
e module name and line number, followed by the call

he
.

bject-0356 [07] NsGetAttachedObject : ----Entry 004A2CC8
nsobject-0373 [07] NsGetAttachedObject : ----Exit- 004A2728

07] UtAcquireFrom State Cache
 u 08] UtPushGeneri
 u 08] UtPushGeneri
dswscope-0223 [07] DsScopeStackPush : ----Exit- AE_OK
dsm dat 07] DsMethodData
dsm dat] DsStoreObjec
dsmthdat-0657 [08] DsStoreObjectToLocal : Opcode=104 Idx=0 Obj=004A2F08

e f exit macros have the
r, th best way to determ path taken by subsystem. If the

oble bein be narrowed to enabled for that
t of d

5.5.4 CP CA e

ovi as ubco e ACPICA er provides the
pab y to ta structur ce and associated
tern obje , an execution step and breakpoint
ppo) By using Print for output,

 as an

ebug ed and

5.6 Environmental
is section scrib ental req is includes the

es that the s ources that are
nsu fr ting system.

5.6.1 es ur R ements

Data Size: These are the sizes for the OS-independent acpica.lib
produced by the Microsoft Visual C++ 6.0 32-bit compiler. The debug version of the code includes

ebug V 17.0K Data, 98.2K Total
 Versi 49.1K Data, 204.9K Total

Dynam h pendent on the size of the loaded
ACPI DT objects they create at table
load t sourc at control method
termin

nesting level (2 digits), followed by the name of the actual procedure entered. Some versions of t
ACPI_FUNCTION_TRACE macro allow one of the function parameters to be displayed as well
Executing \BITZ
nso

dswscope-0186 [07] DsScopeStackPush : ----Entry
 utalloc-0235 [Cache : 004A1DC8 from

tmisc-0711 [cState : ----Entry
isc it- tm -0719 [cState : ----Ex

th -0274 [InitArgs : ----Entry 004A1438
th -0655 [08 tToLocal : ----Entry

Th un entry and ability to generate hugction e amounts of output data.
Howeve is is often the ine the actual execution
pr m g debugged can a single control method, tracing can be
method only, thus reducing the amoun ebug data generated.

A I D bugger

Pr ded a s mponent of th Core Subsystem, the AML Debugg
m daca ilit display subsyste es and objects (such as the namespa

lein al ct) d to debug the of control methods (including sing
su rt. only two OSL interfaces, AcpiOsGetLine for input and AcpiOs
the debugger can operate standalone or extension to a host debugger.

The debugger provides a more active d ging environment where data can be examin
altered during the execution of control methods.

Support Requirements
Th de es the enviro uirements of the ACPICA subs

der fil
nm ystem. Th

external functions and hea ubsystem uses, as well as the res
 theco med om host opera

R o ce equir

Static Memory - example Code and

the debug output trace mechanism and has a much larger code and data size.

Non-D ersion: 81.2K Code,
Debug on: 155.8K Code,

ic Memory: T e size of the internal ACPI namespace is de
 tables – DS and any SSDTs – and the number of named ACPI
ime. All re es used during control method execution are freed
ation.

48

 ACPI Component Architecture Programmer Reference

5.6.2 C Library Functions

In order to make the ACPICA Core Subsystem as portable and truly OS-independent as possible,
here is only extremely limited use of standard C library functions within the Core Subsystem t

com hat can generate code in-line or link to small,
ind nsive list of the C library functions that are used by
the Co

Table 1 stem
isalpha

ponent itself. The calls are limited to those t
ependent code modules. Below is a comprehe

re Subsystem code.

. C Library Functions Used within the Subsy

isdigit

isprint

isspace

isupper

isxdigit

memcmp

memcpy

memset

strcat

strcmp

strcpy

strlen

strncat

strncmp

strncpy

strstr

strtoul

strupr

tolower

toupper

va_end

va_list

va_start

If ACPI_USE_SYSTEM_CLIBRARY is defined during the compilation of the subsystem, the
subsystem must be linked to a local C library to resolve these Clib references. If
ACPI_USE_SYSTEM_CLIBRARY is not set, the subsystem will automatically link to local
implementations of these functions. Note that the local implementations are written in portable
ANSI C, and may not be as efficient as local assembly code implementations of the same functions.
Therefore, it is recommended that the local versions of the C library functions be used if at all
possible.

 49

ACPI Component Architecture Programmer Reference

5.6. Source Code Organization

The ACPICA source code as released is organized as below. At the top le
directories for the ACPICA docum
source code itself is organized into

3

vel, there are separate
entation, generation tools, and the actual C source code. The
 a separate directory for each major ACPICA component, tool, or

test.

 documents // Acpica documentation
ource generation tools:
C-lint files

 linux // Linux makefiles

arser // AML Interpreter parser

// OS-specific files
 service_layers // Various OSLs

e code
 tests // ACPICA test suites:

its // ACPICA interface tests
ts // ASL test suite

 misc // Miscellaneous ASL tests

5.6.4

The following include files (header files) are useful for users of both the Acpi* and AcpiOs*

Includes all of the files below.

acpica

 generate // S
 lint // P

 msvc // Microsoft VC++ 6.0 makefiles
 release // Release utilities
 unix // Generic Unix/gcc makefiles
 source // Entire ACPICA source code tree:
 common // Common files
 compiler // iASL compiler
 components // Main ACPICA components:
 debugger // AML Debugger
 disassembler // AML Disassembler
 dispatcher // AML Interpreter dispatcher
 events // ACPI Event Manager (GPEs etc.)
 executer // Main AML Interpreter
 hardware // ACPI Hardware Manager
 namespace // ACPI Namespace Manager
 p
 resources // ACPI Resource Manager
 tables // ACPI Table Manager
 utilities // Miscellaneous utilities
 include // Most ACPICA includes
 platform // Platform-specific files
 os_specific

 tools // ACPICA tools/utilities:
 acpibin // Binary file utility
 acpiexec // ACPI user space executer
 acpisrc // Source translation utility
 acpixtract // Table extraction utility
 examples // ACPICA exampl

 aap
 asl

System Include Files

interfaces:
• acpi.h

• acexcep.h The ACPI_STATUS exception codes

• acpiosxf.h The prototypes for all of the AcpiOs* interfaces

• acpixf.h The prototypes for all of the Acpi* interfaces

• actypes.h Common data types used across all interfaces

50

 ACPI Component Architecture Programmer Reference

5.6.4.1

The use of header files that are external to the ACPICA subsystem is confined to a single header file

• ACPI_USE_STANDARD_HEADERS

• stdarg.h

• string.h

re that the Core Subsystem will run as a kernel-
level component in most operating systems.

Customization to the Target Environment

named acenv.h. These external include files are used only if the following symbols are defined:

• ACPI_USE_SYSTEM_CLIBRARY

Several of the standard C library headers are used:

• stdlib.h

• ctype.h

When generating the Core Subsystem component from source, the acenv.h header may be modified
if the filenames above are not appropriate for generation on the target system. For example, some
environments use a different set of header files for the kernel-level C library versus the user-level C
library. Use of C library routines within the Core Subsystem component has been kept to a
minimum in order to enhance portability and to ensu

 51

ACPI Component Architecture Programmer Reference

6 Data Types and Interface
Par

face Parameters

6.1.1

ored in a single 32-bit integer to simplify their use.

ted ASCII strings that reference named objects in the ACPI namespace.
ed of multiple 4-character ACPI names separated by a period. In

nors all of the naming conventions that are defined in the
A I

Frequ
pathnam alified if it begins with the backslash
c c . All
other specify a path to an object from somewhere in the
namespace besides the root.

one

he

6.1.2

6.1.3 Buffers

lied to the Core
ure,

erform range validity checking on the
ffers themselves. In the ACPI Component Architecture, it is the responsibility of the OS Services

Layer to validate all buffers passed to it by application code, create aliases if necessary to address

ameters

6.1 ACPICA Inter

ACPI Names and Pathnames

As defined in the ACPI Specification, all ACPI object names (the names for all ACPI objects such
as control methods, regions, buffers, packages, etc.) are exactly four ASCII characters long. The
ASL compiler automatically pads names out to four characters if an input name in the ASL source is
shorter. (The padding character is the underscore.) Since all ACPI names are always of a fixed
length, they can be st

Pathnames are null-termina
A pathname can be compos
addition, two special characters are defined. The backslash appearing at the start of a pathname
indicates to begin the search at the root of the namespace. A carat in the pathname directs the search
to traverse upwards in the namespace by one level. The ACPI namespace is defined in the ACPI
specification. The ACPICA subsystem ho

CP specification.

ently in this document, pathnames are referred to as “fully qualified pathname” or “absolute
e” or “relative pathname”. A pathname is fully qu

hara ter (‘\’) since it defines the complete path to an object from the root of the namespace
pathnames are relative since they

The ACPI specification defines special search rules for single segment (4-character) or standal
names. These rules are intended to apply to the execution of AML control methods that reference
named ACPI objects. The ACPICA Core Subsystem component implements these rules fully for t
execution of control methods. It does not implement the so-called “parent tree” search rules for the
external interfaces in order to avoid object reference ambiguities.

Pointers

Many of the interfaces defined here pass pointers as parameters. It is the responsibility of the caller
to ensure that all pointers passed to the ACPICA subsystem are valid and addressable. The
interfaces only verify that pointers are non-NULL. If a pointer is any value other than NULL, it will
be assumed to be a valid pointer and will be used as such.

It is the responsibility of the caller to ensure that all input and output buffers supp
Subsystem component are at least as long as the length specified in the ACPI_BUFFER struct
readable, and writable in the case of output buffers. The Core Subsystem does not perform
addressability checking on buffer pointers, nor does it p
bu

52

 ACPI Component Architecture Programmer Reference

buffers, and ensure that all buffers that it creates locally a
bsystem trusts the OS Services Layer to validate all buffe

re valid. In other words, the ACPICA Core
rs.

FER is set to ACPI_ALLOCATE_BUFFER before a call that
rns d will allocate a return buffer on behalf of the

ler. is buffer when it is no longer needed.

6.2.1

preter

 requires the deployment of 64-bit integers across the entire ACPICA Core Subsystem.
Since there is (currently) no standard method of defining a 64-bit integer in the C language, the

erpreter) integers.

ESS

The wi
s n
3 his allows for a full 64 bit address space on
64-bit machines as well as “extended” physical addresses (above 4Gbytes) on 32-bit machines.

6.2.3 ACPI_IO_ADDRESS

Similar to ACPI_PHYSICAL_ADDRESS, except it is used for I/O addresses.

6.2.4 ACPI_SIZE

This data type is 32-bits or 64 bits depending on the platform. It is used in leiu of the C library
size_t, which cannot be guaranteed to be available.

6.2.5 ACPI_STRING – ASCII String

The ACPI_STRING data type is a conventional “char *” null-terminated ASCII string. It is used
whenever a full ACPI pathname or other variable-length string is required. This data type was
defined to strongly differentiate it from the ACPI_NAME data type.

6.2.6 ACPI_BUFFER – Input and Output Memory Buffers

Many of the ACPICA interfaces require buffers to be passed into them and/or buffers to be returned
from them. A common structure is used for all input and output buffers across the interfaces. The
buffer structure below is used for both input and output buffers. The Core Subsystem component
only allocates memory for return buffers if requested to do so — this allows the caller complete
flexibility in where and how memory is allocated. This is especially important in kernel level code.

Su

When the length field of ACPI_BUF
retu ata in an output buffer, the core subsystem

 It is the responsibility of the caller to free thcal

6.2 ACPICA Basic Data Types

UINT64 and COMPILER_DEPENDENT_UINT64

Beginning with the ACPI version 2.0 specification, the width of integers within the AML inter
are defined to be 64 bits on all platforms (both 32- and 64-bit). The implementation of this
requirement

COMPILER_DEPENDENT_UINT64 macro is used to allow the UINT64 typedef to be defined by
each host compiler. The UINT64 data type is used at the Acpi* interface level for both physical
memory addresses and ACPI (int

6.2.2 ACPI_PHYSICAL_ADDR

dth of all physical addresses is fixed at 64 bits, regardless of the platform or operating
ystem. Logical addresses (pointers) remain the natural width of the machine (i.e. 32 bit pointers o
2-bit machines, 64-bit pointers on 64-bit machines.) T

 53

ACPI Component Architecture Programmer Reference

typedef struct
{

UINT32 Length; // Length of the buffer in bytes;
void *Pointer; // pointer to buffer

6.2.6.1 Input Buffer

An input buffer is defined to be a by the user (caller) before it is passed
in as a parameter to one of the AC ssing an input buffer to one of the Core
Subsystem interfaces, the user cr structure and initializes it with a pointer
to the actual buffer and the lengt uffer. Since the memory for the actual
ACPI_BUFFER structure is sm y allocated on the CPU stack. For
example, a user may allocate a e. The buffer may be reused many
times with data of various length of bytes of significant data contained in
the buffer is entered in the Length FFER structure before an Core Subsystem
interface is called.

6.2.6.2 Output Buffer

An output buffer is defined to be a th data by an ACPI interface before it is
returned to the caller. When the s used as an output buffer the caller must
always initialize the structure b

1. Placing a value in the L ximum size of the buffer that is
pointed to by the Pointer e ACPI interface to ensure that there is
sufficient user provided

2. Initializing the Length field to ACPI_ALLOCATE_BUFFER to cause the ACPICA

If a buffer that was passed in by the caller is too small, the ACPI interfaces that require output

gth
FFER is used). The caller

may recover from this failure by examining the Length field of the ACPI_BUFFER structure. The

During normal operation, the ACPI interface will copy data into the buffer. It will indicate to the

T refore, the Length field is both an input and output parameter. On input, it indicates either the
ation to the ACPICA subsystem to allocate a return buffer on behalf of

he actual amount of data that was placed in the buffer (if the

xception is set to AE_BUFFER_OVERFLOW.

6.2.7

Most of the external ACPI interfaces return an exception code of type ACPI_STATUS as the
function return value, as shown in the example below:

} ACPI_BUFFER;

 data buffer that is filled with
PI interfaces. When pa

eates an ACPI_BUFFER
h of the valid data in the b

all, it will typically be dynamicall
 4K buffer for common storag

s. Each time the number
field of the ACPI_BU

 buffer that is filled wi
 ACPI_BUFFER structure i
y either

ength field that indicates the ma
 field. The length is used by th

space for the return value.

subsystem to allocate a buffer.

buffers will indicate the failure by returning the error code AE_BUFFER_OVERFLOW. The
interfaces will never attempt to put more data into the caller’s buffer than is specified by the Len
field of the ACPI_BUFFER structure (unless ACPI_ALLOCATE_BU

interface will place the required length in this field in the event that the buffer was too small.

caller the length of data in the buffer by setting the Length field of the ACPI_BUFFER to the actual
number of bytes placed in the buffer.

he
size of the buffer or an indic
the caller. On output, it either indicates t
buffer was large enough), or it indicates the buffer size that is required (if the buffer was too small)
and the e

ACPI_STATUS – Interface Exception Return Codes

54

 ACPI Component Architecture Programmer Reference

ACPI_STATUS Status;

6.2.8

ia the
DLE data type. A handle to an object is obtained by creating an attachment to the object

iPathnameToHandle or AcpiNameToHandle primitives. The concept is similar to
 a file and receiving a connection – after the pathname has been resolved to an object

tions are needed on

e
ngeably as parameters to Acpi interfaces. In fact, a scope handle is actually a handle to

object within the scope.

6.2.8.1

espace:

ROOT_OBJECT: A handle to the root object of the namespace. All objects contained
 the root scope are children of the root object.

Status = AcpiInitializeSubsystem ();
if (ACPI_FAILURE (Status))
{

xception handling code here // E
}

ACPI_HANDLE – Object Handle

References
ACPI_HAN

to ACPI objects managed by the Core Subsystem component are made v

via the Acp
peningo

handle, no additional internal searching is performed whenever additional opera
the object.

References to
used intercha

 object scopes also use the ACPI_HANDLE type. This allows objects and scopes to b

the first

 Predefined Handles

One predefined handle is provided in order to simplify access to the ACPI nam

ACPI_
within

 55

ACPI Component Architecture Programmer Reference

6.2.9 ACPI_OBJECT_TYPE – Object Type Codes

Each ACPI object that is managed by the ACPICA subsystem has a type associated with it. The
valid ACPI object types are defined as follows:

Table 2. A s CPI Object Type Code
ACPI_TYPE_ANY

ACPI_TYPE_INTEGER

ACPI_TYPE_STRING

ACPI_TYPE_BUFFER

ACPI_TYPE_PACKAGE

ACPI_TYPE_FIELD_UNIT

ACPI_TYPE_DEVICE

ACPI_TYPE_EVENT

ACPI_TYPE_METHOD

ACPI_TYPE_MUTEX

ACPI_TYPE_REGION

ACPI_TYPE_POWER

ACPI_TYPE_PROCESSOR

ACPI_TYPE_THERMAL

ACPI_TYPE_BUFFER_FIELD

ACPI_TYPE_DDB_HANDLE

ACPI_TYPE_DEBUG_OBJECT

6.2.1 ACPI_OBJECT – Method Paramete0 rs and Return Objects

 to control methods, and to receive
his data structure is to provide a

common object that can be used to contain multiple ACPI data types.

thod, each parameter is contained in an ACPI_OBJECT.

typed
{
 ACPI_OBJECT_TYPE Type; /* See definition of AcpiNsType for values */
 s
 {

 } Integer;

The general purpose ACPI_OBJECT is used to pass parameters
results from the evaluation of namespace objects. The point of t

When passing parameters to a control me
All of the parameters are then grouped together in an ACPI_OBJECT_LIST.

When receiving a result from the evaluation of a namespace object, an ACPI_OBJECT is returned
in an ACPI_BUFFER structure. This allows variable length objects such as ACPI Packages to be
returned in the buffer. The first item in the buffer is always the base ACPI_OBJECT.

ef union acpi_object

truct

 ACPI_OBJECT_TYPE Type; /* ACPI_TYPE_INTEGER */
 UINT64 Value; /* The integer value */

56

 ACPI Component Architecture Programmer Reference

 s
 {
 ACPI_OBJECT_TYPE Type; /* ACPI_TYPE_STRING */
 UINT32 Length; /* # of bytes in string, minus null */
 char *Pointer; /* points to the string value */
 }

 struct
 {
 ACPI_OBJECT_TYPE Type; /* ACPI_TYPE_BUFFER */

 /* # of bytes in buffer */
r; /* points to the buffer */

 s
 {

 UINT32 Count; /* # of elements in package */
 union acpi_object *Elements; /* Pointer to array of ACPI_OBJECTs */
 }

 s
 {
 ACPI_OBJECT_TYPE Type; /* ACPI_TYPE_LOCAL_REFERENCE */
 ACPI_OBJECT_TYPE ActualType; /* Type associated with the Handle */
 e */

 s
 {

 UINT32 ProcId;
 ACPI_IO_ADDRESS PblkAddress;
 UINT32 PblkLength;
 } c

 st t
 {
 ACPI_OBJECT_TYPE Type; /* ACPI_TYPE_POWER */
 UINT32 SystemLevel;
 UINT32 ResourceOrder;
 } PowerResource;

} ACPI

6.2.11 A CT_LIST – List of Objects

T to pass parameters to control methods via the AcpiEvaluateMethod interface. The
C objects pointed to by the Pointer field. In other words, the Pointer
fi that contains Count ACPI objects.

piObjList

UINT32 Count;
ACPI_OBJECT *Pointer;

} ACPI_OBJECT_LIST;

truct

 String;

 UINT32 Length;
 UINT8 *Pointe
 } Buffer;

truct

 ACPI_OBJECT_TYPE Type; /* ACPI_TYPE_PACKAGE */

 Package;

truct

 ACPI_HANDLE Handle; /* object referenc
 } Reference;

truct

 ACPI_OBJECT_TYPE Type; /* ACPI_TYPE_PROCESSOR */

Pro essor;

ruc

_OBJECT;

CPI_OBJE

his object is used
ount is the number of ACPI
eld must point to an array

typedef struct Ac
{

 57

ACPI Component Architecture Programmer Reference

6.2.12 AC

The codes below are used to
insta

ACPI er
ACPI
ACPI
ACPI
ACPI

6.2.13 AC

This

type
{

[4]; /* Identifies type of table */
 /* Length of table, in bytes, */

 * including header */
 /* Specification minor version # */

 sum of entire table = 0 */
fication */
identification */

ision number */
mpilerId [4]; /* ASL compiler vendor ID */
mpilerRevision;/* ASL compiler revision number */

6.3

6.3.1 PCI IRQ Routing Tables

ment.
ero.

escribed in
he ACPI Specification. While all structure members are UINT32 types, the valid

PI_EVENT_TYPE – Fixed Event Type Codes

ACPI fixed events are defined in the ACPI specification. The event
ll handlers for the individual events.

_EVENT_PMTIMER // Power Management Timer rollov
_EVENT_GLOBAL // Global Lock released
_EVENT_POWER_BUTTON // Power Button (pressed)
_EVENT_SLEEP_BUTTON // Sleep Button (pressed)
_EVENT_RTC // Real Time Clock alarm

PI_TABLE_HEADER – Common ACPI Table Header

 is the header used for most of the BIOS-provided ACPI tables.

def struct /* ACPI common table header */

char Signature
INT32 Length; U

NT8 Revision; UI

UINT8 Checksum; /* To make
char OemId [6]; /* OEM identi

le char OemTableId [8]; /* OEM tab
INT32 OemRevision; /* OEM revU
char AslCo
INT32 AslCoU

} ACPI_TABLE_HEADER;

ACPI Resource Data Types
These data types are used by the ACPICA resource interfaces.

The AcpiGetIrqRoutingTable interface retrieves the PCI IRQ routing tables. This interface returns
the routing table in the ACPI_BUFFER provided by the caller. Upon return, the Length field of the
ACPI_BUFFER will indicate the amount of the buffer used to store the PCI IRQ routing tables. If
the returned status is AE_BUFFER_OVERFLOW, the Length indicates the size of the buffer
needed to contain the routing table.

The ACPI_BUFFER Pointer points to a buffer of at least Length size. The buffer contains a series
of PCI_ROUTING_TABLE entries, each of which contains both a Length member and a Data
member. The Data member is a PRT_ENTRY. The Length member specifies the length of the
PRT_ENTRY and can be used to walk the PCI_ROUTING_TABLE entries. By incrementing a
buffer walking pointer by Length bytes, the pointer will reference each succeeding table ele
The final PCI_ROUTING_TABLE entry will contain no data and have a Length member of z

Each PRT_ENTRY contains the Address, Pin, Source, and Source Index information as d
Chapter 6 of t
portion of both the Pin and SourceIndex members are only UINT8 wide. Although the Source
member is defined as “char Source[4]”, it can be de-referenced as a null-terminated string.

58

 ACPI Component Architecture Programmer Reference

typedef struct acpi_pci_routing_table
{
 UINT32 Length;
 UINT32 Pin;
 UINT64 Address; /* PCI Address of device */

 /* PCI Pin */

/

6.3.2

terface.

eter. If the Length member of the
aces will return an ACPI_STATUS of

AE_BUFFER_OVERFLOW with Length set to the size buffer needed to contain the resource
inter

ore the resource descriptors.

6.3.2.1 pes

bleResources, and AcpiSetCurrentResources.

tions

y32

2

4

 UINT32 SourceIndex; /* Index of resource, allocating dev *
 char Source[4]; /* pad to 64 bits so sizeof() works */

} ACPI_PCI_ROUTING_TABLE;

Device Resources

Device resources are returned by indirectly executing the _CRS and _PRS control methods via the
AcpiGetCurrentResources and AcpiGetPossibleResources interfaces. These device resources are
needed to properly execute the _SRS control method using the AcpiSetCurrentResources in

These interfaces require an ACPI_BUFFER param
ACPI_BUFFER is set to zero, the AcpiGet* interf

descriptors. If the Length member is non-zero and Pointer in non-NULL, it is assumed that Po
points to a memory buffer of at least Length size. Upon return, the Length member will indicate the
amount of the buffer used to st

ACPI_RESOURCE_TYPE – Resource Data Ty

The following resource types are supported by the ACPICA subsystem. The resource types that
follow are use in the resource definitions used in the resource handling interfaces:
AcpiGetCurrentResources, AcpiGetPossi

1. Irq
3. Dma

rtDependentFunc4. Sta
5. EndDependentFunctions
6. Io
7. FixedIo
8. VendorSpecific
9. EndTag
10. Memory24
11. Memory32
12. FixedMemor
13. Address16
14. Address3
15. Address64

ress616. ExtendedAdd
17. ExtendedIrq
18. GenericRegister

 59

ACPI Component Architecture Programmer Reference

typedef union acpi_resource_data /* union of all resources */
{

PI_RESOURCE_IRQ
PI_RESOURCE_DMA
PI_RESOURCE_START_DEP

IO
FIXED_IO
VENDOR
VENDOR_TY

 ACPI_RESOURCE_END_TAG
RCE_MEMORY24
RCE_MEMORY32

FIXED_MEM
ADDRESS16

 ACPI_RESOURCE_ADDRESS32 Address32;
RESS64
ENDED_

E_EXTENDED_
E_GENERIC_R

E_DATA;

t acpi_resourc

 UINT32

;

T ointer points to a ith a
series of RESOURCE entries, each of wh ith an Id that indicates the type of resource
d th member and a Data
R A union can be any o
L e caller to w uffer
w s, the poin The final
e CE entrie s no
a

W E entries, t
For example, if the Id member evaluates pendentFunctions, then the Data member is two
3 atibilityPriority val alues are
i onstant definitions ATION,
A TION or pretation
o iscussed in the Start Dependent Functions section of the ACPI
s

A lex example, cons aluates
t Data member is a
A OURCE structure co ed in
t riptor s
D mber i
M S_NUMBER_RANGE. This value also effects the
i fic
i

T ed in the ACPI ers
within the ADDRESS32_RESOURCE stru be

 AC Irq;
 AC
 AC

 Dma;
ENDENT StartDpf;

 ACPI_RESOURCE_
 ACPI_RESOURCE_

 Io;
 FixedIo;

 ACPI_RESOURCE_
 ACPI_RESOURCE_

 Vendor;
PED VendorTyped;
 EndTag;

 ACPI_RESOU
 ACPI_RESOU

 Memory24;
 Memory32;
ORY32 FixedMemory32; ACPI_RESOURCE_

 ACPI_RESOURCE_ Address16;

 ACPI_RESOURCE_ADD
 ACPI_RESOURCE_EXT

 Address64;
ADDRESS64 ExtAddress64;
IRQ ACPI_RESOURC

 ACPI_RESOURC
 ExtendedIrq;

EGISTER GenericReg;

} ACPI_RESOURC

typedef struc e
{
 UINT32 Type;

 Length;
 ACPI_RESOURCE_DATA Data;

} ACPI_RESOURCE

he ACPI_BUFFER P buffer of at least Length size. The buffer is filled w
ich begins w

escriptor, a Leng
ESOURCE_DAT

member that is a RESOURCE_DATA union. The
f fourteen different types of resource descriptors. The

ength member will allow th
alking pointer by Length b

alk the RESOURCE entries. By incrementing a b
ter will reference each succeeding table element.yte

lement in the list of RESOUR s will have an Id of EndTag. An EndTag entry contain
dditional data.

hen walking the RESOURC he Id member determines how to interpret the structure.
to StartDe

2-bit values, a Comp
nterpreted using the c

ue and a PerformanceRobustness value. These v
 that are found in actypes.h, GOOD_CONFIGUR
SUB_OPTIMAL_CONFIGURATION. The interCCEPTABLE_CONFIGURA

f these constant definitions is d
pecification, Chapter 6.

s another, more comp
o Address32, then the

ider a RESOURCE entry with an Id member that ev
n ADDRESS32_RESOURCE structure. The

DDRESS32_RES ntains fourteen members that map to the data discuss
ection of the ACPI specification, Chapter 6. The he DWORD Address Space Desc

ata.Address32.ResourceType me s interpreted using the constant definitions
EMORY_RANGE, IO_RANGE or BU

Address32.Attribunterpretation of the Data.
nformation.

te structure because it contains type speci

he General Flags discuss specification are interpreted and given separate memb
cture. Each of the bits in the General Flags that descri

60

 ACPI Component Architecture Programmer Reference

whether the maximum and minimum addresses is fixed or not, whether the address is subtractively
or positively decoded and er the resource simply consumes or both produces and consumes a
r he members d
Pro

T preted base
R , th
D ch

T nAd nOffset
a ply

T S ength
is non-zero. Although the ResourceSourc s defined as UINT8 ResourceSource[1], it can
b ted stri

6.4 A ion Co
A f return co
e interface an
i

T ed in the

T ble exception cod
c ublic p
s ion.

Table 3. Ex

wheth
esource are represented by t

ducerConsumer respectively.
MaxAddressFixed, MinAddressFixed, Decode an

he Attribute member is inter d upon the ResourceType member. For example, if the
en the AtesourceType is MEMORY_RANGE

ata.Address32.Attribute.Memory.Ca
tribute member contains two 16-bit values, a

eAttribute value and a ReadWriteAttribute value.

he Data.Address32.Granularity, Mi
nd AddressLength members are sim

dressRange, MaxAddressRange, AddressTranslatio
interpreted as UINT32 numbers.

he optional Data.Address32.Resource ourceIndex is valid only if the ResourceSourceStringL
e member i

e de-referenced as a null-termina ng whose length is ResourceSourceStringLength.

CPICA Except des
 common and consistent set o des is used throughout the ACPICA subsystem. For

xample, all of the public ACPI
tected.

s return the exception AE_BAD_PARAMETER when
nvalid parameter is de

he exception codes are contain public acexcep.h file.

he entire list of availa es is given below, along with a generic description of each
ode. See the description of each p

cept
rimitive for a list of possible exceptions, along with

pecific reason(s) for each ex

ception Code Values

Exception Name Typical Meaning

AE_OK No error

Environmental Exceptions

AE_ERROR Unspecified error

AE_NO_ACPI_TABLES ACPI tables could not be found

AE_NO_NAMESPACE A namespace has not been loaded

AE_NO_MEMORY Insufficient dynamic memory

AE_NOT_FOUND The name was not found in the namespace

AE_NOT_EXIST A required entity does not exist

AE_ALREADY_EXISTS An entity already exists

AE_TYPE The object type is incorrect

AE_NULL_OBJECT g A required object was missin

AE_NULL_ENTRY The requested object does not exist

AE_BUFFER_OVERFLOW The buffer provided is too small

AE_STACK_OVERFLOW An internal stack overflowed

AE_STACK_UNDERFLOW An internal stack underflowed

AE_NOT_IMPLEMENTED The feature is not implemented

AE_SUPPORT The feature is not supported

 61

ACPI Component Architecture Programmer Reference

Exception Name Typical Meaning

AE_LIMIT A predefined limit was exceeded

AE_TIME A time limit or timeout expired

AE_ACQUIRE_DEADLOCK Internal error – attempt was made to
acquire a mutex in improper order

AE_RELEASE_DEADLOCK to

Internal error – attempt was made
rrelease a mutex in improper orde

AE_NOT_ACQUIRED An attempt to release a mutex or
Lock without a previous acquire

the Global

AE_ALREADY_ACQUIRED to Internal error – attempt was made
acquire a mutex twice

AE_NO_HARDWARE_RESPONSE /O Hardware did not respond after an I
operation

AE_NO_GLOBAL_LOCK There is no hardware Global Lock

AE_ABORT_METHOD A control method was aborted

AE_SAME_HANDLER Attempt was made to install the
handler that is already install

 same
ed.

AE_OWNER_ID_LIMIT There are no more Owner IDs available for
ACPI tables or control methods

Programmer Exceptions (ACPI external interfaces)

AE_BAD_PARAMETER A parameter is out of range or invalid

AE_BAD_CHARACTER An invalid character was found in a name

AE_BAD_PATHNAME An invalid character was found in a
pathname

AE_BAD_DATA A package or buffer contained incorrect
data

AE_BAD_HEX_CONSTANT Invalid character in a Hex constant

AE_BAD_OCTAL_CONSTANT Invalid character in an Octal constant

AE_BAD_DECIMAL_CONSTANT Invalid character in a Decimal constant

AE_MISSING_ARGUMENTS To few arguments were passed to a control
method

AE_BAD_ADDRESS A null I/O address was passed as a
parameter to AcpiRead or AcpiWrite

ACPI Table Exceptions

AE_BAD_SIGNATURE An ACPI table has an invalid signature

AE_BAD_HEADER Invalid field in an ACPI table header

AE_BAD_CHECKSUM An ACPI table checksum is not correct

AE_BAD_VALUE An invalid value was found in a table

AE_INVALID_TABLE_LENGTH The FADT or FACS has improper length

AML (Interpreter) Exceptions

AE_AML_BAD_OPCODE Invalid AML opcode encountered

AE_AML_NO_OPERAND An operand is missing (such as a method
that did not return a required value)

62

 ACPI Component Architecture Programmer Reference

Exception Name Typical Meaning

AE_AML_OPERAND_TYPE An operand of an incorrect type was
encountered

AE_AML_OPERAND_VALUE The operand had an inappropriate or invalid
value

AE_AML_UNINITIALIZED_LOCAL Method tried to use an uninitialized local
le variab

AE_AML_UNINITIALIZED_ARG Method tried to use
argument

 an uninitialized

AE_AML_UNINITIALIZED_ELEMENT Method tried to use an empty package
element

AE_AML_NUMERIC_OVERFLOW Overflow during BCD conversion or other

AE_AML_REGION_LIMIT Tried to access beyond the end of an
Operation Region

AE_AML_BUFFER_LIMIT Tried to access beyond the end of a buffer

AE_AML_PACKAGE_LIMIT Tried to access beyond the end of a package

AE_AML_DIVIDE_BY_ZERO During execution of AML Divide operator

AE_AML_BAD_NAME An ACPI name contains invalid character(s)

AE_AML_NAME_NOT_FOUND Could not resolve a named reference

AE_AML_INTERNAL An internal error within the interpreter

A AE_ ML_INVALID_SPACE_ID An Operation Region SpaceID is invalid

AE_AML_STRING_LIMIT String is longer than 200 characters

AE_A ot return a required value ML_NO_RETURN_VALUE A method did n

A AE_ ML_METHOD_LIMIT A control method reached the maximum
reentrancy limit of 255

AE_A to release a mutex that it ML_NOT_OWNER A thread tried
does not own

A _AE ML_MUTEX_ORDER Mutex SyncLevel release mismatch

AE_AML_MUTEX_NOT_ACQUIRED Attempt to release a mutex that was not
ly acquired previous

AE_AML_INVALID_RESOURCE_TYPE Invalid resource type in resource list

AE_AML_INVALID_INDEX Invalid Argx or Localx (x too large)

AE_AML_REGISTER_LIMIT Ban
reg

k value or Index value beyond range of
ister

AE_AML_NO_WHILE Break or Continue without a While

AE_AML_ALIGNMENT Non-aligned memory transfer on platform
that does not support this

AE_AML_NO_RESOURCE_END_TAG No End Tag in a resource list

AE_AML_BAD_RESOURCE_VALUE Invalid value of a resource element

AE_AML_CIRCULAR_REFERENCE Two references refer to each other

AE_AML_BAD_RESOURCE_LENGTH The length of a Resource Descriptor in the
AML was incorrect

AE_AML_ILLEGAL_ADDRESS A memory, I/O, or PCI configuration address
was invalid

 63

ACPI Component Architecture Programmer Reference

Exception Name Typical Meaning

AE_AML_INFINITE_LOOP An AML While loop appears to have been
stuck infinitely and the method was aborted

Internal Exceptions used for control

AE_CTRL_RETURN_VALUE A Method returned a value

AE_CTRL_PENDING Method is calling another method

AE_CTRL_TERMINATE Terminate the executing method

AE_CTRL_TRUE An If or While predicate result

AE_CTRL_FALSE An If or While predicate result

AE_CTRL_DEPTH Maximum search depth has been reached

AE_CTRL_END An If or While predicate is false

AE_CTRL_TRANSFER Transfer control to called method

AE_CTRL_BREAK A Break has been executed

AE_CTRL_CONTINUE A Continue has been executed

AE_CTRL_PARSE_CONTINUE Used to skip over bad opcodes

AE_CTRL_PARSE_PENDING Used to implement AML While loops

64

 ACPI Component Architecture Programmer Reference

7 Subsystem Configuration
There are several methods of configuring the OS-independent ACPICA Core Subsystem:

1. Selection of individual ACPICA components.

2. Configuration of platform-specific data types.

3. Per-machine configuration for machine-specific dependencies.

on through the use of compiler switches.

initialized from the configuration header file.

7.1
The ACPICA subsystem has three types of configuration header files to allow the subsystem to be

llowing for the tuning of subsystem

 must be implemented on a per-compiler basis.

These files appear in the include/platform directory.

eing targeted for the ACPICA
subsystem provides macros and defines that must be implemented on a per-machine basis.

acconfig.h allows for the tailoring and tuning of various subsystem
This file appears in the include directory

7.2 Component lection

ng

4. Per-compiler configuration for compiler dependencies.

5. Other compile-time configurati

6. Run-time global variables which are statically

Configuration Files

tailored to the particular machine and compiler, as well as a
constants.

These three include files perform the subsystem configuration:

• An include file that is specific to the particular compiler being used to compile the ACPICA
subsystem provides macros and defines that

• An include file that is specific to the particular machine b

These files appear in the include/platform directory.

A global include file, •
constants and options.

Se

7.2.1 ACPI_DISASSEMBLER

This switch enables the AML Disassembler component, which is usually used in conjunction with
the ACPI Debugger.

7.2.2 ACPI_DEBUGGER

This switch enables the ACPICA Debugger component. It also enables the various object dumpi
routines.

 65

ACPI Component Architecture Programmer Reference

7.3 Configurable Data Types
The configurable data types are used to help tailor the ACPICA subsystem to a particular operation
system or compiler. Any changes from the default values should be specified in a system-dependent
header file under the include/platform directory.

st

7.3.2

d *). It can be changed to whatever
r semaphore objects.

7.3.3 ACPI_MUTEX

This typ andle for a mutex. It is returned by the AcpiOsCreateMutex
inte e eter to the AcpiOsAcquireMutex and AcpiOsReleaseMutex
inte e ACPI_MUTEX is (void *). It can be changed to whatever type the
host

If mutex objects are not supported by the host operating system, use the ACPI_MUTEX_TYPE
ption (described later). This option causes mutexes to
MAPHORE objects, and the OSL mutex interfaces are

7.3.4

ck, and the value passed as a
r type the host OS uses for CPU

efault

7.3.5 ACPI_THREAD_ID

is returned by the AcpiOsGetThreadId interface. The
PI_SIZE, but it is configurable since some operating

7.3.1 ACPI_SPINLOCK

This type is an OS-dependent handle for a spinlock. It is returned by the AcpiOsCreateLock
interface, and passed as a parameter to the AcpiOsAcquireLock and AcpiOsReleaseLock interfaces.
The default value for ACPI_SPINLOCK is (void *). It can be changed to whatever type the ho
OS uses for spinlocks.

ACPI_SEMAPHORE

This type is an OS-dependent handle for a semaphore. It is returned by the AcpiOsCreateSemaphore
interface, and passed as a parameter to the AcpiOsWaitSemaphore and AcpiOsSignalSemaphore
interfaces. The default value for ACPI_SEMAPHORE is (voi
type the host OS uses fo

e is an OS-dependent h
rfac , and passed as a param
rfac s. The default value for
 OS uses for mutex objects.

with the ACPI_BINARY_SEMAPHORE o
be automatically implemented via ACPI_SE
not required.

ACPI_CPU_FLAGS

This type is used for the value returned from AcpiOsAcquireLo
parameter to AcpiOsReleaseLock. It can be configured to whateve
flags that need to be saved and restored across the acquisition and release of a spinlock. The d
value is ACPI_SIZE.

This type is an OS-dependent Thread ID that
ID is ACdefault type for ACPI_THREAD_

systems implement a thread ID as a pointer.

66

 ACPI Component Architecture Programmer Reference

7.3.6 ACPI_CACHE_T

 AcpiOsCreateCache. It is used as a parameter to the
that implement a
red), the value for this

. Otherwise, the value is OS-dependent.

ICA under a C99 compiler that implements the
uintptr_t type. It is used for casting of pointers to eliminate compiler warnings. The default value

oid *).

7.4 Subsystem Options
mpile time by selecting or

disabling various features.

This switch allows the use of a system-supplied C library for the Clib functions used by the
s.

e

7.4.2 ACPI_USE_STANDARD_HEADERS

provided by the host. The following

#include <stdarg.h>

#include <ctype.h>

7.4.3

h enables all debug facilities within ACPICA. This includes the ACPI_DEBUG_PRINT
tput statements, the ACPI_FUNCTION_TRACE tracing statements, and the various object

L and no code is produced.

7.4.4

This switch enable the local ACPICA cache manager code. The use of a cache can improve the
ACPICA performance considerably, since it frequently allocations and deallocates objects of
identical size. If the host OS provides a similar cache manager, the ACPICA cache manager is not
needed.

This type is used for the value returned from
various OSL cache interfaces to identify a cache object for operating systems

ICA cache memory manager is used (configucache manager. If the local ACP
type is ACPI_MEMORY_LIST

7.3.7 ACPI_UINTPTR_T

This type is introduced to assist compilation of ACP

for the non-C99 case is (v

These defines are used to customize the ACPICA Subsystem at co

7.4.1 ACPI_USE_SYSTEM_CLIBRARY

subsystem. If this switch is not set, the subsystem uses its own implementations of these function
Use of a system C library (when available) may be more efficient in terms of reused system cod
and efficiency of the function implementations.

This switch allows the use of standard C library headers that are
C library headers are used:

#include <stdlib.h>
#include <string.h>

ACPI_DEBUG_OUTPUT

This switc
ou
dumping routines. If disabled, all of these macros evaluate to NUL

ACPI_USE_LOCAL_CACHE

 67

ACPI Component Architecture Programmer Reference

7.4.5 ACPI_DBG_TRACK_ALLOCATIONS

on

ebugger.

 following values:

E (default)

This switch enables the ACPICA cache statistics mechanism, and is only applicable if the local
ACPICA cache manager is enabled (ACPI_USE_LOCAL_CACHE.) When enabled, informati
about each cache is saved, including the total memory allocated/freed, total requests, cache
hits/misses, etc. This information can be displayed via the ACPICA D

7.4.6 ACPI_MUTEX_TYPE

This macro is used to define the type of mutex support desired. Either native (host OS) mutexes may
be used, or binary semaphores may be used. The default behavior is to use binary semaphores.

The ACPI_MUTEX_TYPE must be one of the two

ACPI_BINARY_SEMAPHOR

les the
s, and the various

 in the OSL.

Use this value if the host OS does not support mutex objects. If set, this switch enab
utex interfaces via binary semaphoreautomatic use of macros that implement the m

mutex interfaces do not need to be implemented

ACPI_OSL_MUTEX

Use this value if the host OS supports mutex objects.
lemented in the OSL:

The various mutex interfaces must be

7.4.7 ACPI_MUTEX_DEBUG

utex objects. It checks for possible
e of this option can impact performance

considerably, so it it should only used for debugging.

7.4.8

. The default implementation for the return macros has extra
otection so that the macro parameter is not evaluated twice. The simplified versions of these

imp

• AcpiOsCreateMutex
• AcpiOsDeleteMutex
• AcpiOsAcquireMutex

AcpiOsReleaseMutex •

Enables code that performs error checking on the use of m
deadlock conditions by enforcing a mutex ordering rule. Us

ACPI_SIMPLE_RETURN_MACROS

Enables simplified return macros
pr
macros are smaller, but the parameter can be evaluated twice

Protected macro:

fine return_ACPI_STATUS(s) \ #de
 ACPI_DO_WHILE0 ({ \

ATUS _s = (s); \
 (ACPI_DEBUG_PARAMETERS, _s); \

 register ACPI_ST
 AcpiUtStatusExit

 return (_s); })

68

 ACPI Component Architecture Programmer Reference

Simplified macro:

#define return_ACPI_STATUS(s) \
 ACPI_DO_WHILE0 ({ \
 AcpiUtStatusExit (ACPI_DEBUG_PARAMETERS, (s)); \
 return((s)); })

7.4.9

rn macros (see examples above). Prevents some
.

ACPI_USE_DO_WHILE_0

Inserts a do … while(0) statement around the retu
compilers from issuing warnings for these macros

Default implementation:

#define ACPI_DO_WHILE0(a) do a while(0)

7.5 Per-Compiler Configuration
These macros and defines allow the ACPICA subsystem to be tailored to a particular compiler.

7.5.1 COMPILER_DEPENDENT_INT64

there is (currently) no standard method to define 64-bit integers in the C language. There is no
guration file.

Defines the name of a signed 64-bit integer on for this compiler. This macro is required because

default, this macro must be defined by the platform confi

Examples

#define COMPILER_DEPENDENT_INT64 int64_t
#define COMPILER_DEPENDENT_INT64 long

 COMPILER_DEPENDENT_INT64 __int64
 COMPILER_DEPENDENT_INT64 long long

7.5.2 COMPILER_DEPENDENT_UINT64

ger on for this compiler. This macro is required because

#define
define#

Defines the name of an unsigned 64-bit inte
there is (currently) no standard method to define 64-bit integers in the C language. There is no
default, this macro must be defined by the platform configuration file.

Examples

#define COMPILER_DEPENDENT_UINT64 uint64_t

gned long
gned __int64

#define COMPILER_DEPENDENT_UINT64 unsigned long long

#define COMPILER_DEPENDENT_UINT64 unsi
#define COMPILER_DEPENDENT_UINT64 unsi

 69

ACPI Component Architecture Programmer Reference

7.5.3 ACPI_USE_NATIVE_DIVIDE

ptional
th

library is available for use by ACPICA. If the library is not available, then do not use this option and
e function is enabled instead.

7.5.4

vide with a 64-bit dividend and a 32-bit divisor. The purpose
s to perform a short divide on 32-bit platforms without invoking a double-precision

ry. Both the quotient and remainder must be returned. There is no default, this macro

Example 32-bit Implementation

This switch enables native 64-bit divides. It is set by default for 64-bit machine widths. It is o
for 32-bit platforms. Only use this option on a 32-bit platform if a 64-bit double-precision ma

a local ACPICA double-precision divid

ACPI_DIV_64_BY_32 (Short 64-bit Divide)

This macro performs a simple 64-bit di
of this macro i

ath libram
must be defined by the platform configuration file.

#define ACPI_DIV_64_BY_32(n_hi, n_lo, d32, q32, r32) \
{ \

 eax, n_lo \
 __asm div d32 \

}

 __asm mov edx, n_hi \
 __asm mov

 __asm mov q32, eax \
 __asm mov r32, edx \

Example 64-bit Implementation

 ACPI_DIV_64_BY_32(n, n_hi, n_lo, d32, q32, r32) \
\

}

This macro performs a 64-bit right shift by one bit. The purpose of this macro is to perform a shift
-bit platforms without invoking a double-precision math library. There is no default, this

acro must be defined by the platform configuration file.

#define
{
 q32 = n / d32; \
 r32 = n % d32; \

7.5.5 ACPI_SHIFT_RIGHT_64 (64-bit Shift)

right on 32
m

Example 32-bit Implementation

#define ACPI_SHIFT_RIGHT
{

_64(n_hi, n_lo) \
 \

 __asm shr n_hi, 1 \
 __asm rcr n_lo, 1 \
}

Example 64-bit Implementation

#define ACPI_SHIFT_RIGHT_64(n, n_hi, n_lo) \
{ \
 n <<= 1; \
}

70

 ACPI Component Architecture Programmer Reference

7.5.6 ACPI_EXPORT_SYMBOL

This macro is used to define the mechanism used to export public symbols, if applicable. Within
ACPICA, it is invoked for each of the public interfaces. The default value is NULL.

Example

#define ACPI_EXPORT_SYMBOL(Symbol) EXPORT_SYMBOL(Symbol);

7.5.7 ACPI_EXTERNAL_XFACE

 allows the definition of an interface type prefix (such as _cdecl, pascal, etc.) to be used
ration of all ACPICA external interfaces (the Acpi* interfaces.) The default value is

This macro
 the declain

NULL.

Example

#define ACPI_EXTERNAL_XFACE APIENTRY

7.5.8

cl, pascal, etc.) to be used

7.5.9

cl, pascal, etc.) to be used
. The default value is

ACPI_INTERNAL_XFACE

This macro allows the definition of an interface type prefix (such as _cde
in the declaration of all ACPICA internal interfaces. The default value is NULL.

ACPI_INTERNAL_VAR_XFACE

This macro allows the definition of an interface type prefix (such as _cde
in the declaration of all ACPICA variable-argument list internal interfaces
NULL.

Example

#define ACPI_INTERNAL_VAR_XFACE __cdecl

aration of all interfaces to the host OS. The default value is NULL.

7.5.10 ACPI_SYSTEM_XFACE

This macro allows the definition of an interface type prefix (such as _cdecl, pascal, etc.) to be used
in the decl

Examples

#define ACPI_SYSTEM_XFACE __cdecl
#defin SYSTEM_XFACE APIENTe ACPI_ RY

7.5.11 ACPI_PRINTF_LIKE

his macro defines a suffix to be used in the definitions and prototypes of internal print functions
that accept a printf-like format string. Some compilers have the ability to perform additional
typechecking on such functions. The default value is NULL.

T

 71

ACPI Component Architecture Programmer Reference

Example

#define ACPI_PRINTF_LIKE(c) \
 __attribute__ ((__format__ (__printf__, c, c+1)))

7.5.12

ay not be used in a
warnings for such

ACPI_UNUSED_VAR

This macro defines a prefix to be used in the definition of variables that m
module (such as the ACPI_MODULE_NAME). This can prevent compiler
variables. The default value is NULL.

Example

#define ACPI_UNUSED_VAR __attribute__ ((unused))

7.6
articular machine or

chine architecture.

d by the platform configuration file.

Per-Machine Configuration
These macros and defines allow the ACPICA subsystem to be tailored to a p
ma

7.6.1 ACPI_MACHINE_WIDTH

This macro defines the standard integer width of the target machine, either 32 or 64. There is no
default, this macro must be define

Examples

 32
 64

7.6.2 ACPI_F

#define ACPI_MACHINE_WIDTH
#define ACPI_MACHINE_WIDTH

LUSH_CPU_CACHE

Defines the instruction or instructions necessary to flush the CPU cache(s) on this machine.

Examples

7.6.3

tring that is returned by the predefined “_OS_” method in the ACPI namespace.

_OS_NAME "Microsoft Windows NT"

tially obsolete, but there is a large base of ASL/AML code in existing
eck antees that the ASL will

xecute down the most tested code path. Also, there is some code that will not execute the _OSI
OS ng at your own risk.

#define ACPI_FLUSH_CPU_CACHE() __asm {WBINVD}
#define ACPI_FLUSH_CPU_CACHE() wbinvd()

ACPI_OS_NAME

This defines the s

#define ACPI

The _OS_ object is essen
machines that ch for the string above. The use of this string usually guar
e
method unless _ _ matches the string avove. Therefore, change this stri

72

 ACPI Component Architecture Programmer Reference

7.6.4 QU

 on this
machine.

csPtr, Acquired)

ACPI_AC IRE_GLOBAL_LOCK

This macro defines the code (in assembly or C) necessary to acquire the ACPI Global Lock

ACPI_ACQUIRE_GLOBAL_LOCK (Fa

Where:

FacsPtr is a pointer to the FACS table.

Acquired is a boolean return value. TRUE if the lock was acquired; FALSE otherwise.

Example:

#define ACPI_ACQUIRE_GLOBAL_LOCK(FacsPtr, Acq) __asm \
{ \

 \

 __asm mov eax, [ecx] \
, eax \
, 0xFFFFFFFE \

 __asm bts edx, 1 \

 __asm sbb eax, eax \

7.6.5

essary to release the ACPI Global Lock on this

 __asm mov eax, 0xFF \
 __asm mov ecx, FacsPtr \
 __asm or ecx, ecx \
 __asm jz exit_acq \
 __asm lea ecx, [ecx].GlobalLock
 \
 __asm acq10: \

 __asm mov edx
 __asm and edx

 __asm adc edx, 0 \
 __asm lock cmpxchg dword ptr [ecx], edx \
 __asm jnz acq10 \
 \
 __asm cmp dl, 3 \

 \
 __asm exit_acq: \
 __asm mov Acq, al \
}

ACPI_RELEASE_GLOBAL_LOCK

This macro defines the code (in assembly or C) nec
machine.

ACPI_RELEASE_GLOBAL_LOCK (FacsPtr, Pending)

Where:

FacsPtr is a pointer to the FACS table.

Pending is a boolean return value. TRUE if the global lock pending bit is set; FALSE
otherwise.

 73

ACPI Component Architecture Programmer Reference

Example:

#define ACPI_RELEASE_GLOBAL_LOCK(FacsPtr, Pnd) __asm \
{ \
 __asm xor eax, eax \
 __asm mov ecx, FacsPtr \

 \

 __asm and edx, 0xFFFFFFFC \
 \
 \

 \

 __asm mov Pnd, al \

7.7
run-time by setting various

ACPICA global option variables.

eader.

7.7.1

Gbl_EnableInterpreterSlack, FALSE);

7.7.2 ACPI Register Widths

This option can be used to override the ACPI register widths that are specified in the FADT in the
case where the FADT contains one or more incorrect register widths (lengths). The default value is
FALSE, do not use the default register widths -- use the values as specified in the FADT.

The default register widths are as follows:

PM1A Enable,
PM1A Status,
PM1A Control,
PM1B Enable,
PM1B Status,
PM1B Control -- 16 bits each, = ACPI_PM1_REGISTER_WIDTH

PM2 Control -- 8 bits, = ACPI_PM2_REGISTER_WIDTH

 __asm or ecx, ecx \
 __asm jz exit_rel
 __asm lea ecx, [ecx].GlobalLock \
 \
 __asm Rel10: \
 __asm mov eax, [ecx] \
 __asm mov edx, eax \

 __asm lock cmpxchg dword ptr [ecx], edx
 __asm jnz Rel10

 __asm cmp dl, 3 \
 __asm and eax, 1 \
 \
 __asm exit_rel: \

}

Dynamic Configuration
This section describes features that may be enabled or disabled at

The global option variables are found in the include/acglobal.h h

Interpreter Slack Mode

Enable or disable the AML Interpreter slack mode, as decribed earlier. The default is disabled.

ACPI_INIT_GLOBAL (Acpi

74

 ACPI Component Architecture Programmer Reference

PM Timer -- 32 bits, = ACPI_PM_TIMER_WIDTH

ACPI_INIT_GLOBAL (AcpiGbl_UseDefaultRegisterWidths, FAL

Serialized Methods

SE);

7.7.3

7.7.4 Wake GPEs

d be enabled at runtime or not. A wake GPE is
defined as a GPE that is used only to wake the system. The default is for all wake GPEs to be
disable m is about to sleep. The wake GPEs are
d em AML.

BAL (AcpiGbl_LeaveWakeGpesDisabled, TRUE);

7.7.5 Creation of_OSI Method

ether the predefined _OSI method is created or not. The _OSI method was
defined in ACPI 2.0 and is implemented internally within the ACPICA subsystem.

ACPI_INIT_GLOBAL (AcpiGbl_CreateOsiMethod, TRUE);

7.8 Su stem Configur
subsystem constants are specified in the include/acconfig.h header file. These

constants may be modified at either compile time by changing the constants in acconfig.h, or at run-
tim ng the contents of the glo .

7.8.1 ACPI_CHECKSUM_ABORT

Defines whether the table manager shou ding of an ACPI table if the table checksum
is incorrect. Possible values are TRUE or FALSE. The default is FALSE.

ksums are found to be incorrect, not because of corruption, but because
the BIOS has modified the table on the fly according to BIOS configuration options, and has

7.8.2 ACPI_MAX_LOOP_INTERATIONS

This defines the number of AML While() loop executions that are permitted before the infinite loop
break mechanism is invoked. The default is 64K iterations, which is a very large number of

This option can be used to force all control methods to be serialized. Meaning that only one thread
can enter the method at a time, similar to the Serialized control method option. The default is to not
force serialization and let each control method dictate the serialization mode for itself. The use of
this option essentially forces the AML interpreter to be single threaded.

ACPI_INIT_GLOBAL (AcpiGbl_AllMethodsSerialized, FALSE);

This option controls whether “wake” GPEs shoul

d at runtime. They are only enabled when the syste
etermined from the _PRW methods contained in the syst

ACPI_INIT_GLO

This option controls wh

bsy ation Constants
The configurable

e by changi bal variables where these constants are stored

ld abort the loa

In practice, often table chec

inadvertently forgotten to update the checksum. Therefore, the ACPI table checksum isn’t very
useful and the default is to ignore checksum errors.

 75

ACPI Component Architecture Programmer Reference

interations for an AML loop. This mechanism prevents a cat
block the AML interpreter forever, effectively locking up m

astrophic infinite loop which would
ost of the ACPICA subsystem.

I polling loop. For example, if the
hardware simply does not respond and the loop does not implement a timeout.

7.8.3 ACPI_MAX_STATE_CACHE_DEPTH

The d recursive calls
within the subsystem. These are small objects, but are used frequently. A larger cache will improve

 the entire subsystem (loading tables, parsing methods, and executing methods.)

7.8.4 ACPI_MAX_PARSE_CACHE_DEPTH

The maximum number of objects in the parse object cache. These are the objects used to build parse
he will improve the execution performance of control methods (when the parse

just-in-ti y is used) by improvi

7.8.5 ACPI_MAX_OBJECT_CACHE_DEPTH

The
duri er
cache will improve the performance of control method execution

7.8.6 ACPI_MAX_WALK_CACHE_DEPTH

walk object. Since only one object is
he a large number of these objects. A few

rformance of control method execution and
reduce memory fragmentation.

nfinite loops can occur in poorly written AML in a hardware

 maximum number of objects in the generic state object cache used to avoi

the performance of

trees. A larger cac
me strateg ng the time to parse the AML.

 maximum number of objects in the interpreter operand object cache. These objects are used
ng control methods to pass the operands for individual AML opcodes to the interpreter. A larg

The maximum number of objects in the parse tree walk object cache. These are relatively large
objects (about 512 bytes) that are used to contain the entire state of a control method during its
execution. Each nested control method requires an additional
required per control method, it is not necessary to cac
cached walk objects are sufficient to increase the pe

76

 ACPI Component Architecture Programmer Reference

8 ACPICA Core Subsystem -
E ternal Interf
This section contains documentation for t rfaces exported by the AC
interfaces are grouped based upon their y. These g al
modules (or sub-components) of the Core S m describe
interfaces are intended to be used by the OSL only. The host OS these interfaces

he ACPICA Core Subsystem are prefixed by the letters “Acpi”.

8.1 ion and Control

x ace Definition
he specific inte PICA Core. The

functionalit roups are closely related to the intern
ubsyste d earlier in this document. These

 does not call
directly. All interfaces to t

ACPICA Subsystem Initializat

8.1.1 AcpiInitializeSubsystem

Initialize all ACPICA globals and sub-components.

ACPI_STATUS
iInitializeSubsystem (Acp

PARAMETERS

None

RETURN

Status re.

EXCEPTIONS

AE_OK

AE_ERROR

AE_NO_MEMORY Insufficient dynamic memory to complete the ACPI
initialization.

Fun Description:

void)

Exception code that indicates success or reason for failu

The subsystem was successfully initialized.

The system is not capable of supporting ACPI mode.

ctional

This function initializes the entire ACPICA subsystem, including the OS Services Layer. It must be
call fore any of the other Acp le
Manager interfaces these interfaces are an be called at any time.)

ed once be i* interfaces are called (with the exception of the Tab
 independent and c

 77

ACPI Component Architecture Programmer Reference

8.1.2 AcpiInstallInitializationHandler

Install a global handler for initialization handling.

ACPI_STATUS
AcpiInstallInitializationHandler (

ler.

Reserved.

EX NS

AE_OK The ACPI namespace was successfully loaded and

AE_BAD_PARAMETER The Handler parameter is invalid.

AE_ALREADY_EXISTS lled.

Functional Description:

ACPI_INIT_HANDLER Handler,
UINT32 Function)

PARAMETERS

Handler A pointer to the initialization hand

Function

CEPTIO

initialized.

A global initialization handler has already been insta

This function installs a global initializat alled during the subsystem initialization.

Currently, the handler is called after eac
(The _INI and _STA methods have bee

8.1.2.1 Interface to User Callback F

ion handler that is c

h Device object within the namespace has been initialized
n run on the device.)

unction

Interface to the user function that is installed via AcpiInstallInitializationHandler.

AC TUS (*ACPI_INIT_HAN
DLE Object,

Function)

PARAMETERS

One of the following manifest constants:

PI_STA DLER) (
ACPI_HAN
UINT32

Object A handle for the object that is being or has just been
initialized.

Function

 ACPI_INIT_DEVICE_INI – the Object is a handle to a
Device that has just been initialized.

78

 ACPI Component Architecture Programmer Reference

RETURN VALUE

Status AE_OK Continue the walk.

 AE_TERMINATE Stop the walk immediately.

AE_DEPTH Go no deeper into the namespace tree.

All others Abort the walk with this exception
code.

Functional Description:

This function is called during subsystem initialization.

8.1.3 AcpiEnableSubsystem

Complete the ACPICA Subsystem initialization and enable ACPI operations.

ACPI_STATUS
Acp stem (

UINT32 Flags)

one of these manifest constants:

ACPI_FULL_INITIALIZATION – Perform completed
initialization. This is the normal use of this interface.

 ACPI_NO_ACPI_ENABLE. Do not attempt to enter
ACPI mode. For hardware-independent mode only.

 ACPI_NO_ADDRESS_SPACE_INIT. Do not install the
default address space handlers. For debug purposes only.

 ACPI_NO_HANDLER_INIT. Do not install the SCI and
global lock handlers. For hardware-independent mode only.

RE

Exception code that indicates success or reason for failure.

EX ONS

The ACPI namespace was successfully loaded and
initialized.

AE_NO_MEMORY Insufficient memory to build the internal namespace.

iEnableSubsy

PARAMETERS

Flags Specifies how the subsystem should be initialized. Must be

TURN

Status

CEPTI

AE_OK

 79

ACPI Component Architecture Programmer Reference

Functional Description:

This function completes initialization of the ACPICA Subsystem.

8.1.4 AcpiInitializeObjects

Initialize objects within the ACPI namespace.

A
A

UINT32 Flags)

PARAMETERS

Flags Specifies how the subsystem should be initialized. Must be
one of these manifest constants:

 ACPI_FULL_INITIALIZATION – Perform completed
initialization. This is the normal use of this interface.

 ACPI_NO_ADDRESS_SPACE_INIT. Do not execute the
operation region _REG control methods. For debug
purposes only.

 ACPI_NO_OBJECT_INIT. Do not run the final
initialization pass to complete initialization of all address
spaces and fields.

 ACPI_NO_DEVICE_INIT. Do not attempt to run the
_STA and _INI methods on devices in the ACPI namespace.

 ACPI_NO_EVENT_INIT. Do not initialize the FADT-
defined GPE blocks. For hardware independent mode only.

RETURN

Status Exception code that indicates success or reason for failure.

EXCEPTIONS

AE_OK The ACPI namespace was successfully loaded and
initialized.

AE_NO_MEMORY Insufficient memory to build the internal namespace.

Functional Description:

CPI_STATUS
cpiInitializeObjects (

This function completes initialization of the ACPICA Subsystem by initializing all ACPI Devices,
Operation Regions, Buffer Fields, Buffers, and Packages. It must be called and it should only be
called after a call to AcpiEnableSubsystem. The object cache is purged after these objects are
initialized, in case an overly large number of cached objects were created during initialization
(versus the size of the caches at runtime.)

80

 ACPI Component Architecture Programmer Reference

8.1.5 AcpiSubsystemStatus

Obtain initialization status of the ACPICA subsystem.

A
A

void)

RETURN

Exception code indicates success or reason for failure.

EXCEPTIONS

AE_ERROR The subsystem has not been initialized

Functional Description:

CPI_STATUS
cpiSubsystemStatus (

PARAMETERS

None

Status

AE_OK The subsystem was successfully initialized.

This function allows device drivers to determine the initialization status of the ACPICA subsystem.:

8.1.6 AcpiTerminate

Sh ll ACPI Components. utdown a

ACP
Acp

void)

EXCEPTIONS

AE_OK The subsystem was successfully shutdown.

AE_ERROR The OS-dependent layer did not shutdown properly.

I_STATUS
iTerminate (

PARAMETERS

None

RETURN

Status Exception code indicates success or reason for failure.

 81

ACPI Component Architecture Programmer Reference

Functional Description:

T he ACPICA subsystem. The
namespace tables are unloaded, and all resources are freed to the host operating system. This
function should be called prior to unloading the ACPICA subsystem. In more detail, the terminate

 the following:

with the ACPI tables (either allocated or mapped memory).

Free all internal objects associated with the namespace.

ithin the object caches.

F S resources associated with mutual exclusion.

his function performs a shutdown of the Core Subsystem portion of t

function performs

Free all memory associated

Free all objects w

ree all O

82

 ACPI Component Architecture Programmer Reference

8.2 AC

8.2.1 AcpiInitializeTables

PI Table Management

Initialize the ACPICA table manager.

ACPI_STATUS
AcpiInitializeTables (

ACPI_TABLE_DESC *InitialTableArray,
UINT32 InitialTableCount,

InitialTableArray Pointer to an array of pre-allocated ACPI_TABLE_DESC
structures. If NULL, the array is dynamically allocated.

InitialTableCount Requested size of InitialTableArray, in number of

AllowResize Flag to tell the Table Manager if a resize of the pre-allocated
array is allowed. Ignored if InitialTableArray is NULL.

RE VALUE

Exception code that indicates success or reason for failure.

EX

The table manager was successfully initialized.

_FOUND

Insufficient dynamic memory to complete the operation.

Fun escription:

BOOLEAN AllowResize)

PARAMETERS

ACPI_TABLE_DESC structures.

TURN

Status

CEPTIONS

AE_OK

AE_NOT A valid RSDP could not be located.

AE_NO_MEMORY

ctional D

Thi le manag
information about the BIOS-provided A can be pre-allocated by the caller (if dynamic
memory is not available yet) or it can be allocated by this function.

Specify a static memory array for the InitialTableArray if the Table Manager is to be used early
dur ore dyna
and the Table Manager will use dynami y.

s function initializes the tab er component. A memory array is required to store
CPI tables. It

ing kernel initialization, bef mic memory is available. Otherwise, use a NULL pointer
c memory to allocate the arra

 83

ACPI Component Architecture Programmer Reference

8.2.2 AcpiReallocateRootTable

Copy the root ACPI information table into dynamic memory.

A
A eRootTable (

PARAMETERS

N

 indicates success or reason for failure.

EXCEPTIONS

 table was successfully enlarged.

emory to complete the operation.

Functional Description:

CPI_STATUS
cpiReallocat

void)

None

RETUR

Status Exception code

AE_OK The

AE_NO_MEMORY Insufficient dynamic m

This function copies the root table into dynamic memory. The root table is used to s
namic

tore information
abo memory is
ava llocated static table
arra

8.2.3 AcpiFindRootPointer

ut the BIOS-provided ACPI tables. This function should be called after dy
h a pre-ailable within the kernel and if AcpiInitializeTables was called wit

y.

Locate the RSDP via memory scan (IA-32).

ACPI_STATUS
AcpiFindRootPointer (

ACPI_SIZE Address)

PARAMETERS

A pointer to where the physical address of the ACPI RSDP
table will be returned.

RETURN VALUE

Exception code that indicates success or reason for failure.

EXC

AE_OK

*Table

TableAddress

Status

EPTIONS

The RSDP was found and returned.

84

 ACPI Component Architecture Programmer Reference

AE_NOT_FOUND

Fun :

A valid RSDP could not be located.

AE_NO_MEMORY Insufficient dynamic memory to complete the operation.

ctional Description

This function locates and returns the ACPI Root System Description Pointer by scanning within the
memory for the RSDP signature. This mechanism is only applicable to

IA-32 systems.

is

This function is always available, regardless of the initialization state of the rest of ACPICA.

8.2.4 AcpiLoadTables

first megabyte of physical

This interface should only be called from the OSL function AcpiOsGetRootPointer if this memory
scanning mechanism is appropropriate for the current platform.

If the operation fails an appropriate status will be returned and the value of RsdpPhysicalAddress
undefined.

Load the BIOS-provided ACPI tables and build an internal ACPI namespace.

ACPI_STATUS
AcpiLoadTables (

PA

ailure.

EX

AE_OK essfully loaded and a handle returned.

D_CHECKSUM

ER The table header is invalid or is not a valid type.

ACPI_TABLES
found in physical memory.

Insufficient dynamic memory to complete the operation.

Functi

void)

RAMETERS

None

RETURN VALUE

Status Exception code that indicates success or reason for f

CEPTIONS

The table was succ

AE_BA The computed table checksum does not match the checksum
in the table.

AE_BAD_HEAD

AE_NO_ The ACPI tables (RSDT, DSDT, FADT, etc.) could not be

AE_NO_MEMORY

onal Description:

This function loads ACPI tables that are poi stalls them into the
internal ACPI namespace database. The o DP) points to the Root

nted to by the RSDP/RSDT and in
 Ro t System Description Pointer (RS

 85

ACPI Component Architecture Programmer Reference

Sys T), and via pointers contained
in RSDT.

The minimum required set of ACPI tab ubsystem to initialize
consists of the following:

♦

used directly by the ACPICA subsystem are loaded. Other tables (such as the

ed.

tem Description Table (RSD the remaining ACPI tables are found

les that will allow the ACPICA core s

 RSDT/XSDT

♦ FADT

♦ FACS

♦ DSDT

Only tables that are
MADT, SRAT, etc.) are obtained and consumed by different kernel subsystems and/or device
drivers.

All SSDTs found within the RSDT/XSDT are load

If the operation fails an appropriate status will be returned.

8.2.5 AcpiGetTableHeader

Get the header portion of a specific installed ACPI table.

ACPI_STATUS
AcpiGetTableHeader (

char *Signature,
UINT32 Instance,
ACPI_TABLE_HEADER *OutTableHeader)

PARAMETERS

requested table.

For table types that support multiple tables (SSDT), the

one.

OutTableHeader A pointer to a location where the table header is to be

RE

Status c or reason for failure.

EXCEPTIONS

The table header was successfully located and returned.

Signature A pointer to the 4-character ACPI signature for the

Instance
instance of the table to be returned. For table types that
support only a single table, this parameter must be set to

returned.

TURN VALUE

Ex eption code that indicates success

AE_OK

AE_BAD_PARAMETER At least one of the following is true:

• The Signature pointer is NULL.

86

 ACPI Component Architecture Programmer Reference

• The OutTableHeader pointer is NULL.

AE_NOT_FOUND There is no table of this type currently loaded, or the table of
 is not loaded.

e Type is not supported (RSDP).

Functi

the specified Instance

AE_TYPE The tabl

onal Description:

This function obtains the header of an installed ACPI table. The header contains a length field that
ize of the buffer needed to contain the entire table. This function is not

vali header and is fixed length.

For tab ecify which
 given type should be returned. For table types that only support single tables, the
 must be set to one.

If th n fails an appropriate stat tTableHeader are
und

8.2.6 AcpiGetTable

can be used to determine the s
d for the RSDP table since it does not have a standard

le types that support more than one table, the Instance parameter is used to sp
table header of the
Instance parameter

e operatio us will be returned and the contents of Ou
efined.

Ob installed ACPI tabtain a specific le.

ACPI_STATUS
AcpiGe (

PARAMETERS

Signature A pointer to the 4-character ACPI signature for the
requested table.

ple instances of the table are

 to where the address of the requested ACPI table
.

RETURN VALUE

s Exception code that indicates success or reason for failure.

EX

d.

AMETER At least one of the following is true:

tTableHeader pointer is NULL.

tTable
char *Signature,
UINT32 Instance,
ACPI_TABLE_HEADER **Table)

Instance Which table instance, if multi
allowed (SSDT).

Table A pointer
is returned

Statu

CEPTIONS

AE_OK The requested table was found and returne

AE_BAD_PAR

• The Signature pointer is NULL.

• The Ou

 87

ACPI Component Architecture Programmer Reference

AE_NO_ACPI_TABLES

AE_NOT_FOUND There is no table of this type currently loaded, or the table of

AE_NO_MEMORY Insufficient dynamic memory to complete the operation.

Functional Description:

A valid RSDP could not be located.

the specified Instance is not loaded.

Thi locates and returns one of .
On IA-32 systems, this involves scannin cal memory for the

This may be called at any time after the Table Manager is initialized, even before the
AC ubsystem has been initialized. This allows early access to ACPI tables -- even before the
system virtual memory manager has been started.

ropriate status will be returned and the value of Table is undefined.

8.2.7 AcpiGetTableByIndex

s function the ACPI tables that are supplied by the system firmware
g within the first megabyte of physi

RSDP signature.

function
PICA s

If the operation fails an app

Obtain an installed ACPI table via an index into the Root Table

ACPI_STATUS
A

x,
ACPI_TABLE_HEADER **OutTable)

TableIndex Index of the table within the internal Root Table list.

A pointer to location where the table is to be returned.

RETURN VALUE

Exception code that indicates success or reason for failure.

EXCEPTIONS

The table was successfully located and returned.

_PARAMETER

AE_NOT_EXIST e aded, or the table of
 s

Functional Description:

cpiGetTableByIndex (
UINT32 TableInde

PARAMETERS

OutTable

Status

AE_OK

AE_BAD At least one of the following is true:

• The OutTable pointer is NULL.

Th re is no table of this type currently lo
the pecified Instance is not loaded.

This function obtains an installed ACPI table. It is useful for iterating through the entire set of
installed ACPI tables. To obtain a specific ACPI table, use AcpiGetTable or AcpiGetTableHeader.

88

 ACPI Component Architecture Programmer Reference

If the operation fails an appropriate status will be returned and the contents of OutTable is
undefined.

8.2.8 AcpiInstallTableHandler

Install a handler for ACPI table load and unload events.

ACPI_STATUS
AcpiInstallTableHandler (

ACPI_TABLE_HANDLER Handler,
void *Context)

PARAMETERS

Handler Address of the handler to be installed.

Context A context value that will be passed to the handler as a
parameter.

RETURN VALUE

Status Exception code that indicates success or reason for failure.

EXCEPTIONS

AE_OK The handler was successfully installed.

AE_BAD_PARAMETER At least one of the following is true:

• The Handler pointer is NULL.

AE_ALREADY_EXISTS A global table handler is already installed.

Functional Description:

This function installs a global handler for table load/unload events.

8.2.8.1 Interface to Table Event Handlers

Definition of the handler interface for Table Events.

typedef
ACPI_STATUS (*ACPI_TABLE_HANDLER) (

UINT32 Event,
void *Table,
void *Context)

PARAMETERS

Event The table event that occurred. One of these manifest
constants:

 89

ACPI Component Architecture Programmer Reference

 ENT_LOAD – The table was just

CPI_TABLE_EVENT_UNLOAD – The table is about to
 unloaded.

 just loaded or is about to be

The Context value that was passed as a parameter to the
AcpiInstallTableHandler function.

RE

ption:

ACPI_TABLE_EV
loaded.

 A
be

Table The table that was either
unloaded.

Context

TURN VALUE

None

Functional Descri

Thi is installed via AcpiInstallT d whenever an ACPI table is either
loaded or unloaded.

This function does not execute in the context of an interrupt handler.

8.2.9 Ac iRemoveTableHandl

s handler ableHandler. It is calle

p er

Re dler for ACPI table evmove a han ents.

ACP
AcpiRemoveTableHandler (

ACPI_TABLE_HANDLER

PA

Handler viously installed handler.

The ha

RAMETER At lea

• The Handler pointer is NULL.

• T ss is not the same as the one that is
installed.

AE_NOT_EXIST There i d for notifications on this object.

I_STATUS

Handler)

RAMETERS

Address of the pre

RETURN VALUE

Status Exception code that indicates success or reason for failure.

EXCEPTIONS

AE_OK ndler was successfully removed.

AE_BAD_PA st one of the following is true:

he Handler addre

s no handler installe

90

 ACPI Component Architecture Programmer Reference

Functional Description:

This function removes a handler for notify events that was previously installed via a call to
AcpiInstallTableHandler.

 91

ACPI Component Architecture Programmer Reference

8.3 ACPI Namespace Manag

8.3.1 AcpiEvaluateObject

ement

Evaluate an ACPI namespace object and r retu n the result.

AC
Acp

ACPI_HANDLE Objec
ACPI_STRING Pathn
ACPI_OBJECT_LIST *Meth s,

tu

PA

Object One of the following:

• A han

• A handle to a parent object that is a prefix to the pathname.

 A NU dle if the pathname is fully qualified.

Pathna an
absolu

MethodParams If the o is is a pointer to a list of
param e
NULL eters are being passed to the method or if
the object is not a method.

ReturnBuffer A pointer to a location where the return value of the object
evaluation (if any) is placed. If this pointer is NULL, no
value is returned.

St ure.

EXCE

A

An unspecified error occurred during the parsing of

method could not be parsed due to
code.

PI_STATUS
iEvaluateObject (

t,
ame,
odParam

ACPI_BUFFER *Re rnBuffer)

RAMETERS

dle to the object to be evaluated.

• LL han

Pathname me of namespace object to evaluate. May be either
te path or a path relative to the Object.

bject is a control method, th
eters to pass to the method. This pointer may b
 if no param

RETURN VALUE

atus Exception code that indicates success or reason for fail

PTIONS

E_OK The object was successfully evaluated.

AE__LIMIT More than the maximum number of 7 arguments
were passed to a method.

AE_AML_ERROR
the AML code.

AE_AML_PARSE The control
invalid AML

92

 ACPI Component Architecture Programmer Reference

AE_AML_BAD_OPCODE An invalid opcode was encountered in the AML
code.

AE_AML_NO_OPERAND An required operand was missing. This could be
caused by a method that does not return any object.

AE_AML_OPERAND_TYPE An operand object is not of the required ACPI type.

t that was
ed into

the method properly.

(uninitialized).

NUMERIC_OVERFLOW An overflow occurred during a numeric conversion

_LIMIT A method attempted to access beyond the end of an
Operation Region defined boundary.

R_L A method attempted to access beyond the end of a
er object.

_LIMIT A method attempted to access beyond the end of a
Package object.

d attempted to execute a divide instruction
ro divisor.

e contained within the AML code has one or
invalid characters.

 name reference within the AML code could not be
und and therefore could not be resolved.

An error that is internal to the ACPICA subsystem

Bad or invalid data was found in a package object.

AME The path contains at least one ACPI name that is not
racters long.

At least one of the following is true:

• Both the Object and Pathname parameters are

AE_AML_OPERAND_VALUE An operand object has an invalid value

AE_AML_UNINITIALIZED_LOCAL A method attempted to access a local variable that
was not initialized.

AE_AML_UNINITIALIZED_ARG A method attempted to access an argumen
not part of the argument list, or was not pass

AE_AML_UNITIALIZED_ELEMENT A method attempted to use (dereference) a reference
to an element of a package object that is empty

AE_AML_
(Such as BCD conversion.)

AE_AML_REGION

AE_ AML_BUFFE IMIT
Buff

AE_ AML_PACKAGE

AE_ AML_DIVIDE_BY_ZERO A metho
with a ze

AE_AML_BAD_NAME A nam
more

AE_AML_NAME_NOT_FOUND A
fo

AE_AML_INTERNAL
occurred.

AE_BAD_CHARACTER An invalid character was found in the Pathname
parameter.

AE_BAD_DATA

AE_BAD_PATHN
exactly four cha

AE_BAD_PARAMETER

NULL.

 93

ACPI Component Architecture Programmer Reference

• The Object handle is NULL, but the Pathname is
not absolute.

• tBuffer is not
 Pointer

 small to
on return, the

equired buffer

specified error occurred.

AE_NO_MEMORY Insufficient dynamic memory to complete the

AE_NOT_FOUND The object referenced by the combination of the
Object and Pathname was not found within the
namespace.

issing. This is an internal

curred because of an
 or because control methods or

objects are nested too deep.

CK_UNDERFLOW underflow occurred during

_TYPE be evaluated.

Functional Description:

• The Pathname is relative but the Object is
invalid.

 The Length field of Ou
ACPI_ALLOCATE_BUFFER, but the
field of OutBuffer is NULL.

AE_BUFFER_OVERFLOW The Length field of the ReturnBuffer is too
hold the actual returned object. Up
Length field contains the minimum r
length.

AE_ERROR An un

request.

AE_NULL_OBJECT A required object was m
error.

AE_STACK_OVERFLOW An internal stack ove
error in the AML,

rflow oc

AE_STA An internal stack
evaluation.

AE The object is of a type that cannot

This function locates and evaluates objects in the namespace. This interface has two modes of
ope ng on the type of obj

1. If the target object is a control me y) is

1. If the target is not a control metho
the returned value corresponds to
corresponding returned result) ma Buffer.

Spe t Object

ration, dependi ect that is being evaluated:

thod, the method is executed and the result (if an
returned.

d, the current “value” of that object is returned. The type of
 the type of the object; for example, the object (and the
y be a Integer, a String, or a

cifying a Targe : The target
object, a valid Object, a valid Pathname
parameters must be valid.

If th , the Pathname mu e path.

ULL, the Pathname may be either:

1. th relative to the Object hand)

2. An absolute pathname. In this case, the Object handle is ignored.

object may be any valid named ACPI object. To specify the
, or both may be provided. However, at least one of these

e Object is NULL st be a fully qualified (absolute) namespac

If the Object is non-N

 A pa le (a relative pathname as defined in the ACPI specification

94

 ACPI Component Architecture Programmer Reference

Parameters to Control Methods: If the object to be evaluated is a control method, the caller can
supply zero or more parameters that will be passed to the method when it is executed.. The
Met s parameter is a pointer to an AC
ACPI_OBJECTs. If MethodParams is NULL, t ed to the control method.
If the Count field of MethodParams is zero, then the entire parameter is treated exactly as if it is a
NUL to be evaluated is n
igno

Receiving Evaluation Results:

hodParam PI_OBJECT_LIST that in turn is a counted array of
hen no parameters are pass

L pointer. If the object ot a control method, the MethodParams field is
red.

 The ReturnObject e
obj ation. If this parameter is NULL, th e
discarded. If there is no result from the evaluation of the object and no error occurred, the Length

arameter is set to zero.

 parameter optionally receives the results of th
ect evalu e evaluation results are not returned and ar

field of the ReturnObject p

Unsupported Object Types: The object types that cannot be evaluated are the following:
ACPI_TYPE_DEVICE. Others TBD.

Exceptional Conditions: Any exceptions that occur during the execution of a control method result
in the immediate termination of the control methods. All nested control methods are also terminated,

E

Example 1:

up to and including the parent method.

XAMPLES

 Executing the control method with an absolute path, two input parameters, with no
ted:

AC

/* Initialize the parameter list */

Params.Pointer = &Obj;

/* Initialize the parameter objects */

O = ACPI_TYPE_STRI
Obj[0].String.Pointer = “ACPI User”;

ype = ACPI_TYPE_NUMBER;
Obj[1].Number.Value = 0x0E00200A;

/* Execute the control method */

iEvaluateObject (NULL,”_SB.PCI0._TWO” , &Params, NULL);

Example 2:

return value expec

ACPI_OBJECT_LIST Params;
PI_OBJECT Obj[2];

Params.Count = 2;

bj[0].Type NG;

Obj[1].T

Status = Acp

 Before executing a control m n
ACPI urn val

ACPI_BUFFER Results;
ACPI_OBJECT Obj;

/* Initialize the return buf

Re izeof (Obj
Results.Pointer = &Obj;

The three examples that follow are functionally identical.

ethod that returns a result, we must declare and initialize a
_BUFFER to contain the ret ue:

fer structure */

sults.Length = s);

 95

ACPI Component Architecture Programmer Reference

Example 3: Executing a control method using an absolute path. In this example, there are no input
parameters, but a return value is expected.

0._STA” , NULL, &Results);

Examp

Status = AcpiEvaluateObject (NULL,”_SB.PCI

le 4: E ecut ontrol method using a relative path. A return value is expectx ing a c ed.

Status = AcpiPathnameToHandle (”_SB.PCI0”, &Object)
, &Results);

Examp

Status = AcpiEvaluateObject (Object, ”_STA” , NULL

le 5: Executing a control method using a relative path. A retu rn value is expected.

8.3.2 Acp teO

Status = AcpiPathnameToHandle (”_SB.PCI0._STA”, &Object)
Status = AcpiEvaluateObject (Object, NULL, NULL, &Results);

iEvalua bjectTyped

Evalu idated result. ate an ACPI namespace object and return the type-val

ACPI
AcpiE tTy

ACP LE
AC G
ACPI_OBJECT_LIST *MethodParams,

wing:

ject to be evaluated.

 a parent object that is a prefix to the pathname.

name is fully qualified.

ce object to evaluate. May be either an
 path relative to the Object.

ethod, this is a pointer to a list of
ethod. This pointer may be

NULL if no parameters are being passed to the method or if
the object is not a method.

nBuffer A pointer to a location where the return value of the object

ype

RE VALUE

ure.

_STATUS
valuateObjec ped (

OI_HAND bject,
PI_STRIN Pathname,

ACPI_BUFFER *ReturnBuffer,
ACPI_OBJECT_TYPE ReturnType)

PARAMETERS

Object One of the follo

• A handle to the ob

• A handle to

• A NULL handle if the path

Pathname Pathname of namespa
absolute path or a

MethodParams If the object is a control m
parameters to pass to the m

Retur
evaluation (if any) is placed. If this pointer is NULL, no
value is returned.

ReturnT The expected type of the returned object.

TURN

Status Exception code that indicates success or reason for fail

96

 ACPI Component Architecture Programmer Reference

EX NS

AE_OK The object was successfully evaluated and the correct

AE_NULL_OBJECT No object was returned from the evaluation.

AE_TYPE

Others

Functional Description:

CEPTIO

object type was returned.

An object of the incorrect type was returned.

See the definition of AcpiEvaluateObject.

Thi s and evaluates obje d
from the evaluation is of the expected ty nd to AcpiEvaluateObject. See the
des EvaluateObject for m

8.3.3 AcpiGetObjectInfo

s function locate cts in the namespace and validates that the object returne
pe. It is a front-e

cription of Acpi ore information.

Get information about an ACPI namespace object.

ACPI_STATUS
AcpiGe o (

ACPI_DEVICE_INFO

A handle to an ACPI object for which information is to be
returned.

OutBu A pointer to a location where the device info pointer is
returned.

RETURN

E_INFO structure for valid returned fields.

AE_BAD_PARAMETER At least one of the following is true:

• The Object handle is invalid.

• The OutBuffer pointer is NULL.

AE_NO_MEMORY Insufficient dynamic memory to complete the operation.

tObjectInf
ACPI_HANDLE Object,

**OutBuffer)

PARAMETERS

Object

ffer

Status Exception code that indicates success or reason for failure.

EXCEPTIONS

AE_OK Device info was successfully returned. See the
ACPI_DEVIC

 97

ACPI Component Architecture Programmer Reference

Functional Description:

T nformation about an object contained within the ACPI namespace. For all
n

(ACPI_TYPE_INTEGER, etc.)
he 4-character ACPI name of the object

F jects, this additional information is returned:

F
fo he device:

ress of the object (bus and device specific)

at return the lowest D-state values (_S0W, _S1W, _S2W,

_ _S4D)

Retu ed

his function obtains i
amespace objects, the following information is returned:

Type — The ACPI object type
Name — T

or Control Method ob

ParamCount — The required number of input parameters

or Device and Processor objects, this additional information is ret
owing standard ACPI device methods and objects on behalf of t

urned as a result of evaluating the
ll

_ADR — The add
_STA — The current status of the object/device
_HID — The hardware ID of the object (string)
_UID — The Unique ID of the object (string)
_CID — The Compatibility ID list of the object (strings)
_SxW — Methods th

_S3W, _S4W)
SxD — Methods that return the highest D-state values (_S1D, _S2D, _S3D,

rn Data Format: The device information is returned in the ACPI_DEVICE_INFO structure

 Name;
 ACPI_OBJECT_TYPE Type;

ParamCount;
Valid;

 UINT32 CurrentStatus;

ID HardwareId;
D UniqueId;

 ACPI_DEVICE_ID_LIST CompatibleIdList;

} A

Where:

Entire size of the returned structure, including all ID strings
ructure.

Type bject type code.

ount

that is defined as follows:

typedef struct
{
 UINT32 InfoSize;
 UINT32

 UINT8
 UINT8
 UINT8 Flags;
 UINT8 HighestDstates[4];
 UINT8 LowestDstates[5];

 UINT64 Address;
 ACPI_DEVICE_
 ACPI_DEVICE_I

CPI_DEVICE_INFO;

InfoSize
that are appended to the end of the st

Name The 4-character ACPI name of the object.

Is the o

ParamC If the object is a control method, this is the number of
parameters defined for the method.

98

 ACPI Component Architecture Programmer Reference

Valid A bit field that indicates which of the optional fields below
contain valid values. See below.

Flags Miscellaneous information flags. The following flags are
defined:

(PCI root bridge) or PNP0A08 (PCI Express root bridge)

HighestDstates _SxD device state values. 0xFF indicates that the field is

 indicates that the

CurrentStatus ethod for this object.

Address e

UniqueId

An array of pointers to the string(s) obtained as a result of
evaluating _CID for this object (a list of _CIDs.)

Each bit should be checked before the corresponding value in the structure can be considered valid.

e.
 of the

bits set in the Valid field return structure will be set.

 ACPI_PCI_ROOT_BRIDGE: Indicates that either the
_HID or one of the _CID values matched either PNP0A03

invalid.

LowestDstates _SxW device wake state values. 0xFF
field is invalid.

The result of evaluating _STA m

Th result of evaluating _ADR for this object.

HardwareId A pointer to the string obtained as a result of evaluating
_HID for this object.

A pointer to the string obtained as a result of evaluating
_UID for this object.

CompatibleIds

The fields of the structure that are valid because the corresponding method or object has been
successfully found under the device are indicated by the values of the Valid bitfield via the
following constants:

ACPI_VALID_ADR
ACPI_VALID_STA
ACPI_VALID_HID
ACPI_VALID_UID
ACPI_VALID_CID
ACPI_VALID_SXDS
ACPI_VALID_SXWS

None of the methods/objects that are used by this interface are required by the ACPI specification.
Therefore, there is no guarantee that all or even any of them are available for a particular devic
Even if none of the methods are found, the interface will return an AE_OK status — but none

 99

ACPI Component Architecture Programmer Reference

The sub-structures used for the va

riable-length device ID strings are defined as follows:

 UINT32 Length; /* Length of string + null */

ty
{

 Count; /* Number of IDs in Ids array */
 ListSize; /* Size of list, including ID strings */

 I_DEVICE_ID Ids[1

} ACPI_DEVICE_ID_LIST;

Within the original ACPI tables, the _HID, _UID, and _CID values can be of either type
NG or ACPI_TYPE_INTEGER. However, in order to provide a consistent

rface, these values are always returned as NULL terminated strings,
rega f the original data type in th
performed if necessary, as follows:

mpressed EISAIDs within _HID and _CID objects are decompressed and
erted to strings.

in _UID presentation.

The object returned from this function s ul

Note: The string pointers for _HID, _U , ed area within the
returned buffer af ter the ACPI_DEVIC IN ject is freed, these
poin lid.

8.3.4 AcpiGetNextObject

typedef struct
{

 char *String;

} ACPI_DEVICE_ID;

pedef struct

 UINT32
 UINT32
 ACP]; /* ID array */

ACPI_TYPE_STRI
data type in the external inte

rdless o e source ACPI table. An internal data type conversion is

• 32-bit co
conv

• 64-bit integer IDs with objects are converted to decimal string re

ho d be freed via ACPI_FREE.

ID and _CID simply point to a reserv
E_ FO structure. When the return ob

ters will become inva

Get a handle to the next child ACPI object of a parent object.

ACPI_STATUS

Type,
ACPI_HANDLE Parent,

Child,
ACPI_HANDLE *OutHandle)

xt object.

Parent A handle to a parent object to be searched for the next child
object.

he
parent object that matches the Type will be returned. Use
the value of NULL to get the first child of the parent.

AcpiGetNextObject (
ACPI_OBJECT_TYPE

ACPI_HANDLE

PARAMETERS

Type The desired type of the ne

Child A handle to a child object. The next child object of t

100

 ACPI Component Architecture Programmer Reference

OutHandle A pointer to a location where a handle to the next chil
object is to

 d
 be returned. If this pointer is NULL, the child

object handle is not returned.

RETURN VALUE

Status Exception code that indicates success or reason for failure.

EXCEPTIONS

AE_OK The next object was successfully found and returned.

AE_BAD_PARAMETER At least one of the following is true:

• The Parent handle is invalid.

• The Child handle is inv

• The Type parameter refers to an invalid type.

he given
 was not found.

If Child is NULL, this exception means that the parent
object has no children.

F

alid.

AE_NOT_FOUND The child object parameter is the last object of t
type within the parent — a next child object

unctional Description:

This function obtains the next child object of the parent object that is of type Type. Both the Parent
meters are optional. The behavior for the various combinations of Parent and

1. current object) for the search.

2. formed starting at the

arent and the Child parameters are NULL, the search begins at the start of the
space (the search begins at the

If the search fails, an appropriate status

This interface is appropriate for use wit at looks up a group of objects within the internal
nam r, the AcpiWalkNam
sim n your application; see t

and the Child para
Child is as follows:

 If the Child is non-NULL, it is used as the starting point (the

 If the Child is NULL and the Parent is non-NULL, the search is per
beginning of the scope.

3. If both the P
name Root Object).

will be returned and the value of OutHandle is undefined.

hin a loop th
espace. Howeve espace primitive implements such a loop and may be

pler to use i he description of this interface for additional details.

 101

ACPI Component Architecture Programmer Reference

8.3.5 AcpiGetParent
Get a handle to the parent object of an ACPI object.

ACP
Acp

ACPI_HANDLE *Ou

PARAMETERS

Child ha

OutParent A p cation where the handle to the parent object

RE

.

EXCEPTIONS

The parent object was successfully found and returned.

t object.)

I_STATUS
iGetParent (
ACPI_HANDLE Child,

tParent)

A ndle to an object whose parent is to be returned.

ointer to a lo
is to be returned.

TURN VALUE

Status Exception code that indicates success or reason for failure

AE_OK

AE_BAD_PARAMETER At least one of the following is true:

• The Child handle is invalid.

• The OutParent pointer is NULL.

AE_NULL_ENTRY The referenced object has no parent. (Entries at the root
level do not have a paren

Functional Description:

This function returns a handle to the parent of the Child object. If an error occurs, a status code is
returned and the value of OutParent is undefined.

8.3.6 AcpiGetType

Get the type of an ACPI object.

ACPI_STATUS
AcpiGetType (

ACPI_HANDLE Object,
ACPI_OBJECT_TYPE *OutType)

PARAMETERS

Object A handle to an object whose type is to be returned.

102

 ACPI Component Architecture Programmer Reference

OutType A pointer to a location where the object type is to be
returned.

R

Exception code that indicates success or reason for failure.

EX

ed.

 At least one of the following is true:

utType pointer is NULL.

Functi :

ETURN

Status

CEPTIONS

AE_OK The object type was successfully return

AE_BAD_PARAMETER

• The Object handle is invalid.

• The O

onal Description

This function obtains the type of an AC na
ACPI_OBJECT_TYPE for a comprehensi

8.3.7 AcpiGetHandle

PI mespace object. See the definition of the
ve listing of the available object types.

Get the object handle associated with an ACPI name.

ACPI_STATUS

ACPI_HANDLE Parent,
STRING

ACPI_HANDLE *OutHandle)

PARAMETERS

Parent pecified by Pathname.
e to the Parent. If

e a fully qualified
h

Pathname ject (a NULL terminated
ther a single segment

PI pathname (with

OutHandle po
retur

RE

Status

AcpiGetHandle (

ACPI_ Pathname,

A handle to the parent of the object s
In other words, the Pathname is relativ
Parent is NULL, the pathname must b
pat name.

A name or pathname to an ACPI ob
ASCII string). The string can be ei
ACPI name or a multiple segment AC
path separators).

A inter to a location where a handle to the object is to be
ned.

TURN VALUE

Exception code that indicates success or reason for failure.

 103

ACPI Component Architecture Programmer Reference

EXCEPTIONS

AE_OK The pathname was successfully associated with an object
and the handle was returned.

AE_BAD_CHARACTER An invalid character was found in the pathname.

AE_BAD_PATHNAME The path contains at least one ACPI name that is not exactly
four characters long.

east one of the following is true:

• The Pathname does not begin with a backslash
character.

• The OutHandle pointer is NULL.

y loaded.

A ers to a

Functi

AE_BAD_PARAMETER At l

• The Pathname pointer is NULL.

AE_NO_NAMESPACE The namespace has not been successfull

E_NOT_FOUND One or more of the segments of the pathname ref
non-existent object.

onal Description:

This function translates an ACPI pathname into an object handle. It locates the object in the
e Parent and Pathame parameters. Only the specified Parent
 — this function will not

namespace via the combination of th
object will be searched for the name perform a walk of the namespace tree
(See AcpiWalkNamespace).

The pathname is relative to the Parent. If the parent object is NULL, the Pathname must be fully
qualified (absolute), meaning that the path to the object must be a complete path from the root of the

e pathname must begin with a backslash (‘\’).

Mu e) are not allowed by
the f a particular name were to appear
und to the
inte ance of the
name, and the second instance would be ignored.

ls an appropriate status will be returned and the value of OutHandle is undefined.

namespace, and th

ltiple instances of the same name under a given parent (within a given scop
ACPI specification. However, if more than one instance o
er a single parent in the ACPI DSDT, only the first one would be successfully loaded in
rnal namespace. The second attempt to load the name would collide with the first inst

If the operation fai

104

 ACPI Component Architecture Programmer Reference

8.3.8 AcpiGetName

Get the name of an ACPI object.

AC US
Acp e (

ACPI_HANDLE
UINT32

st
constants:

pathname (from the namespace root) to the object.

• ACPI_SINGLE_NAME – return a single segment
ACPI name for the object (4 characters, null
terminated).

 a location where the fully qualified and NULL
terminated name or pathname is to be returned.

 that indicates success or reason for failure.

EXCEPTIONS

AE_OK The full pathname associated with the handle was

_PARAMETER

• The Parent handle is invalid.

• The OutName pointer is NULL.

• The Length field of OutName is not

_OVERFLOW The Length field of OutName indicates that the buffer is too
 return, the Length

 buffer length.

ully loaded.

PI_STAT
iGetNam

Object,
NameType

ACPI_BUFFER *OutName)

PARAMETERS

Object A handle to an object whose name or pathname is to be
returned.

NameType The type of name to return; must be one of these manife

• ACPI_FULL_PATHNAME – return a complete

OutName A pointer to

RETURN VALUE

Status Exception code

successfully retrieved and returned.

AE_BAD At least one of the following is true:

• The Object handle is invalid.

ACPI_ALLOCATE_BUFFER, but the Pointer field
of OutName is NULL.

AE_BUFFER
small to hold the actual pathname. Upon
field contains the minimum required

AE_NO_NAMESPACE The namespace has not been successf

 105

ACPI Component Architecture Programmer Reference

Functional Description:

This function obtains the name that is associ The returned name can
be either a full pathname (from the root, with a single segment, 4-
character ACPI name. This function and ary functions, as shown in
the

EX

ated with the Object parameter.
 path segment separators) or

 AcpiGetHandle are complement
 examples below.

AMPLES

Example 1: The following operations:

andle))

Handle == OutHandle;

Status = AcpiGetName (Handle, ACPI_FULL_PATHNAME, &OutName)
Status = AcpiGetHandle (NULL, OutName.BufferPtr, &OutH

Yield this result:

Example 2: If Name is a 4-character ACPI name, the following operations:

cpiGetName (OutHandle, ACPI_SINGLE_NAME, &OutName)

Name == OutName.BufferPtr

8.3.9 AcpiGetDevices

Status = AcpiGetHandle (Parent, Name, &OutHandle))
Status = A

Yield this result:

W CPI namespace to find alalk the A l objects of type Device.

ACPI_STATUS

D,
WALK_CALLBACK

**ReturnValue)

PARAMETERS

 NULL, all objects of
type Device are passed to the UserFunction.

UseFunction A pointer to a function that is called when the namespace
je

er
function each time it is invoked.

A pointer to a location where the (void *) return value from
rminated

AcpiGetDevices (
char *HI
ACPI_ UserFunction,
void *UserContext,
void

HID A device Hardware ID to search for. If

ob ct is deleted:

UserContext A value that will be passed as a parameter to the us

ReturnValue
the UserFunction is to be placed if the walk was te
early. Otherwise, NULL is returned.

106

 ACPI Component Architecture Programmer Reference

RETURN VALUE

Status Exception code that indicates success or reason for failure.

EXCEPTIONS

The walk was successful. Termination occurred from
 the user function, depending

arameter.

ption:

AE_OK
completion of the walk or by

f the return pon the value o

AE_BAD_PARAMETER The UserFunction address is NULL.

Functional Descri

This function performs a modified dept
invoked whenever an object of type De tching HID is found. If the user function
retu -zero value, the search is te
call

If the HID parameter is NULL, all obje ssed to the
Use tion.

8.3.10 AcpiAttachData

h-first walk of the namespace tree. The UserFunction is
vice with a ma

rns a non rminated immediately and this value is returned to the
er.

cts of type Device within the namespace are pa
r Func

Attach user data to an ACPI namespace object.

ACPI_STATUS
AcpiAttachData (

ANDLE
BJECT_HANDLER

PARAMETERS

Object ha ata will be attached.

Handler po ed when the namespace
object is deleted.

Data A pointer to arbitrary user data. The pointer is stored in the
d

at any time via AcpiGetData.

RETURN VALUE

Status Exception code that indicates success or reason for failure.

EXCEPTIONS

AE_OK The data was successfully attached.

AE_BAD_PARAMETER At least one of the following is true:

ACPI_H Object,
ACPI_O Handler,
void *Data)

A ndle to an object to which the d

A inter to a function that is call

namespace with the namespace object and can be retrieve

 107

ACPI Component Architecture Programmer Reference

• The Object handle is invalid.

• pointer is NULL.

• The Data pointer is NULL.

ORY Insufficient dynamic memory to complete the operation.

aded.

ption:

 The Handler

AE_NO_MEM

AE_NO_NAMESPACE The namespace has not been successfully lo

Functional Descri

Thi ws arbitrary data to be

8.3.11 AcpiDetachData

s function allo associated with a namespace object.

Re data attachment to a nammove a espace object.

ACPI_STATUS
Acp ata (

ACPI_HANDLE Object,
NDLER

PA

Object ha will be attached.

Handler po
je

the o ed.

RETURN VALUE

Status

EXCEPTIONS

AE_OK The data was successfully detached.

iAttachD

ACPI_OBJECT_HA Handler)

RAMETERS

A ndle to an object to which the data

A inter to a function that is called when the namespace
ob ct is deleted. This must be the same pointer used when

riginal call to AcpiAttachData was us

Exception code that indicates success or reason for failure.

AE_BAD_PARAMETER At least one of the following is true:

• The Object handle is invalid.

• The Handler pointer is NULL.

AE_NO_NAMESPACE The namespace has not been successfully loaded.

Functional Description:

This function removes a previous association between user data and a namespace object.

108

 ACPI Component Architecture Programmer Reference

8.3.12 AcpiGetData

Retrieve data that was associated with a namespace object.

ACPI_STATUS
AcpiGetData (

ACPI_HANDLE Object,
ACPI_OBJECT_HANDLER Handler

A handle to an object to from which the attached data will
be returned.

dler A pointer to a function that is called when the namespace
when

the original call to AcpiAttachData was used.

namespace object.

t indicates success or reason for failure.

The data was successfully returned.

.

O_NAMESPACE The namespace has not been successfully loaded.

void **Data)

PARAMETERS

Object

Han
object is deleted: This must be the same pointer used

Data A pointer to where the arbitrary user data pointer will be
returned. The pointer is stored in the namespace with the

RETURN VALUE

Status Exception code tha

EXCEPTIONS

AE_OK

AE_BAD_PARAMETER At least one of the following is true:

• The Object handle is invalid.

• The Handler pointer is NULL.

• The Data pointer is NULL.

AE_NO_MEMORY Insufficient dynamic memory to complete the operation

AE_N

Functional Description:

This function retrieves data that was previously associated with a namespace object.

 109

ACPI Component Architecture Programmer Reference

8.3.13 AcpiInstallMethod

Install a single control method into the namespace.

ACPI_STATUS
AcpiInstallMethod (

UINT8 *TableBuffer)

PA

 table

 es success or reason for failure.

EX

AE_OK

AE_BAD_HEADER es not contain a valid ACPI table, or the table

AE_BAD_PARAMETER is true:

 as the
ment of the table.

RY

AE_TYPE
t an object of type method and cannot be

Functional Description:

RAMETERS

TableBuffer A pointer to a buffer containing a DSDT or SSDT
which in turn contains a single control method.

RETURN VALUE

Status Exception code that indicat

CEPTIONS

The method was successfully installed.

The buffer do
is not a DSDT or SSDT.

At least one of the following

• The TableBuffer pointer is NULL.

• The table does not contain a valid control method
first (and only) ele

AE_NO_MEMO Insufficient dynamic memory to complete the operation.

The name of the method already exists in the namespace,
but the name is no
overwritten.

This function installs a single control m
existing method which may not work co w method in order to
create a missing method such as _OFF, _ON, _STA, _INI, etc. It can also be used to insert a

purposes. For these cases, it is far simpler to dynamically install a single
an override the entire DSDT with a modified DSDT.

Acp hod can be used to create a
 existing control method. The name (and location) for the new method is defined
ontained in the ACPI table pointed to by the TableBuffer parameter. Either single

(4 c ACPI names may be used,
sep s. This function shou
been loaded and the namespace has bee

ethod into the ACPI namespace. It is intended to override an
rrectly or it can insert a completely ne

method for debugging
control method rather th

iInstallMet new method anywhere in the namespace or to overwrite
the AML for any
within the AML c

haracter) or full ACPI pathnames may be used, each segment
arated by period ld be called only after all BIOS-defined ACPI tables have

n created.

110

 ACPI Component Architecture Programmer Reference

The d compi lting table is then
passed as the parameter to AcpiInstallMethod. If the method needs to reference any objects that
already exist within the namespace, the ASL ld be used.

Example

method must be defined an led within a DSDT or SSDT. The resu

 External operator shou

The example ASL code below creates a e name
“_SI_.ABCD”. The name dictates where the method will be created within the namespace, and can
be a full pathname that references any p io

", "DSDT", 2, "Intel", "MTHDTEST", 0x20090512)

hat can be included into a C source file:

 * Copyright (C) 2000 - 2009 Intel Corporation
 * Supports ACPI Specification Revision 3.0a

 {

2,0x49,0x6E,0x74,0x65,0x6C,0x00, /* 00000008 "..Intel." */
 0x4D,0x54,0x48,0x44,0x54,0x45,0x53,0x54, /* 00000010 "MTHDTEST" */
 x05,0x09,0x20,0x49,
 x04,0x09,0x20,0x14,
 9,0x5F,0x41,0x42,
 D,0x45,0x78,0x61,
 0x65,0x20,0x69,0x6E,0x73,0x74,0x61,0x6C, /* 00000038 "e instal" */
 0x6C,0x65,0x64,0x20,0x6D,0x65,0x74,0x68, /* 00000040 "led meth" */
 F,0x64,0x00,0x5B,0x31,
 0x31,0xA4,0x00,
 };

The is then used in a call t

 Status = AcpiInstallMethod (AmlCode);

RE (Status))

 }

 DSDT that contains one method with th

ort n of the namespace.

 DefinitionBlock ("
 {
 Method (_SI_.ABCD, 1, Serialized)
 {
 Store ("Example installed method", Debug)
 Store (Arg0, Debug)
 Return ()
 }
 }

The example is compiled via the iASL compiler using the “-tc” option to create a C hex file:

 > iasl –tc method.asl

This produces the following output, which is “C” code t

 /*
 * Intel ACPI Component Architecture
 * ASL Optimizing Compiler version 20090422 [April 22 2009]

 *
 * Compilation of "method.asl" - Tue May 12 14:55:53 2009

 *
 * C source code output
 */
 unsigned char AmlCode[] =

 0x44,0x53,0x44,0x54,0x53,0x00,0x00,0x00, /* 00000000 "DSDTS..." */
 0x02,0x1

 0x12,0 0x4E,0x54,0x4C, /* 00000018 "... INTL" */
 0x22,0 0x2E,0x2E,0x5F, /* 00000020 "".. ..._" */
 0x53,0x4 0x43,0x44,0x09, /* 00000028 "SI_ABCD." */
 0x70,0x0 0x6D,0x70,0x6C, /* 00000030 "p.Exampl" */

 0x6 0x70,0x68,0x5B, /* 00000048 "od.[1ph[" */

 buffer above o AcpiInstallMethod, as shown in the example code below:

 if (ACPI_FAILU
 {

 AcpiOsPrintf ("%s, Could not install method\n",
 AcpiFormatException (Status));

 111

ACPI Component Architecture Programmer Reference

8.3.14 AcpiWalkNamespace

Traverse a portion of the ACPI namespace to find objects of a given type.

ACPI_STATUS
AcpiWalkNamespace (

ACPI_OBJECT_TYPE Type,
ACPI_HANDLE StartObject,
UINT32 MaxDepth,
ACPI_WALK_CALLBACK PreOrderVisit,
ACPI_WALK_CALLBACK PostOrderVisit,
void *UserContext,
void **ReturnValue

PARAMETERS

Type The type of object desired.

StartObject A handle to an object where the namespace walk is to begin.
The constant ACPI_ROOT_OBJECT indicates to start the
walk at the root of the namespace (walk the entire
namespace.)

MaxDepth The maximum number of levels to descend in the
namespace during the walk.

PreOrderVisit A pointer to a user-written function that is invoked in a pre-
order manner for each matching object that is found during
the walk. (See the interface specification for the user
function below.)

PostOrderVisit A pointer to a user-written function that is invoked in a
post-order manner for each matching object that is found
during the walk. (See the interface specification for the user
function below.)

UserContext A value that will be passed as a parameter to the user
function each time it is invoked.

ReturnValue A pointer to a location where the (void *) return value from
the UserFunction is to be placed if the walk was terminated
early. Otherwise, NULL is returned.

RETURN VALUE

Status Exception code that indicates success or reason for failure.

EXCEPTIONS

AE_OK The walk was successful. Termination occurred from
completion of the walk or by the user function, depending
on the value of the return parameter.

112

 ACPI Component Architecture Programmer Reference

AE_BAD_PARAMETER At least one of the following is true:

pth is zero.

• The UserFunction address is NULL.

• The StartObject handle is invalid.

• The Type is invalid.

Functional Description:

• The MaxDe

This function performs a modified depth-first walk of the namespace tree, starting (and ending) at
the object specified by the StartObject handle. The User Functions (PreOrderVisit and/or
PostOrderVisit) are invoked whenever an object that matches the type parameter is found during the

nction returns a non-zero value, the search is terminated immediately and this
e caller.

The of this procedure is to provide a generic namespace walk routine that can be called from
ultiple services; the user function can be tailored to each task —

nction, a compare function, etc.

8.3.14.1 Interface to User Callback Function

walk. If the user fu
value is returned to th

point
multiple places to provide m
whether it is a print fu

Interface to the user function that is invoked from AcpiWalkNamespace.

AC *ACPI_WALK_CA
ACPI_HANDLE
UINT32
void *Context,

The UserContext value that was passed as a parameter to the
AcpiWalkNamespace function.

A pointer to a location where the return value (if any) from
the user function is to be stored.

E

_OK Continue the walk.

AE_TERMINATE Stop the walk immediately.

AE_DEPTH Go no deeper into the namespace tree.

 All others Abort the walk with this exception
code.

PI_STATUS (LLBACK) (
ObjHandle,
NestingLevel,

void **ReturnValue)

PARAMETERS

ObjHandle A handle to an object that matches the search criteria.

Nesting Level Depth of this object within the namespace (distance from
the root.)

Context

ReturnValue

RETURN VALU

Status AE

 113

ACPI Component Architecture Programmer Reference

Functional Description:

Thi n is called from AcpiWalkN
The walk can be modified by the exception code returned from this function. AE_TERMINATE

k immediately, and AcpiWalkNamespace will return AE_OK to the original caller.
 will prevent the walk from progressing any deeper down the current branch of the

nam e. AE_OK is the normal ormally. All other
exception codes will cause the walk to terminate and the exception is returned to the original caller
of A space.

s functio amespace whenever a object of the desired type is found.

will abort the wal
AE_DEPTH

espace tre return that allows the walk to continue n

cpiWalkName

114

 ACPI Component Architecture Programmer Reference

8.4 ACPI Hardware Management

8.4.1 AcpiEnable

Put the system into ACPI mode.

ACPI_STATUS
AcpiEnable (

PA

RE

EX

Fun

void)

RAMETERS

None

TURN VALUE

Status Exception code that indicates success or reason for failure.

CEPTIONS

AE_OK ACPI mode was successfully enabled.

AE_ERROR Either ACPI mode is not supported by this system (legacy
mode only), the SCI interrupt handler could not be installed,
or the system could not be transitioned into ACPI mode.

AE_NO_ACPI_TABLES The ACPI tables have not been successfully loaded.

ctional Description:

Thi
inte
tran

8.4.2 AcpiDisable

s function enables ACPI mode on the host computer system. It ensures that the system control
rrupt (SCI) is properly configured, disables SCI event sources, installs the SCI handler, and
sfers the system hardware into ACPI mode.

Take the system out of ACPI mode.

ACPI_STATUS
AcpiDis

PARAMETERS

able (
void)

None

 115

ACPI Component Architecture Programmer Reference

RETURN VALUE

Status Exception code that indicates success or reason for failure.

EXCEPTIONS

AE_OK ACPI mode was successfully disabled.

AE_ERROR The system could not be transitioned out of ACPI mode.

Functional Description:

This function disables ACPI mode on the host computer system. It returns the system hardware to
y mode, disables all events, and removes the SCI interrupt handler.

8.4.3 AcpiReset

original ACPI/legac

Perfor tem reset. m a sys

AC
Acp

PA

RE

EX

Fun

PI_STATUS
iReset (
void)

RAMETERS

None

TURN VALUE

Status Exception code that indicates success or reason for failure.

CEPTIONS

AE_OK The reset register was successfully written.

AE_NOT_EXIST The FADT flags indicate that the reset register is not
supported, or the reset register address is zero.

ctional Description:

Thi
defi

Reset registers in both memory and I/O s register in PCI configuration
by this function and must be handled by the host.

s function performs a system reset by writing the FADT-defined Reset Value to the FADT-
ned Reset Register (if the register is supported, as indicated by the FADT Flags).

pace are supported. A reset
space is not supported

116

 ACPI Component Architecture Programmer Reference

8.4.4 AcpiReadBitRegister

Get the ontents of an ACPI-defined c Bit Register.

ACPI_STATUS
AcpiGetRegister (

UINT32 RegisterId,
UINT32 *ReturnValue)

 bit register, one of the following
manifest constants:
 ACPI_BITREG_TIMER_STATUS
 ACPI_BITREG_BUS_MASTER_STATUS

_STATUS
ITREG_POWER_BUTTON_STATUS

 ACPI_BITREG_SLEEP_BUTTON_STATUS
 ACPI_BITREG_RT_CLOCK_STATUS

 ACPI_BITREG_POWER_BUTTON_ENABLE
 ACPI_BITREG_SLEEP_BUTTON_ENABLE

 ACPI_BITREG_RT_CLOCK_ENABLE

 ACPI_BITREG_SCI_ENABLE
 ACPI_BITREG_BUS_MASTER_RLD

LOCK_RELEASE
YPE

 to be returned.

RE ALUE

Exception code that indicates success or reason for failure.

AE_BAD_PARAMETER Invalid RegisterId.

Other The function failed at the operating system level.

PARAMETERS

RegisterId The ID of the desired

 ACPI_BITREG_GLOBAL_LOCK
 ACPI_B

 ACPI_BITREG_WAKE_STATUS
 ACPI_BITREG_PCIEXP_WAKE_STATUS

 ACPI_BITREG_TIMER_ENABLE
 ACPI_BITREG_GLOBAL_LOCK_ENABLE

 ACPI_BITREG_PCIEXP_WAKE_DISABLE

 ACPI_BITREG_GLOBAL_
 ACPI_BITREG_SLEEP_T
 ACPI_BITREG_SLEEP_ENABLE
 ACPI_BITREG_ARB_DISABLE

ReturnValue A pointer to a location where the data is

TURN V

Status

EXCEPTIONS

AE_OK The register was read successfully.

 117

ACPI Component Architecture Programmer Reference

Functional Description:

T the RegisterId. The value returned is normalized to
b r disabled. The hardware is not locked during the
read, as it is not necessary

8.4.5 AcpiWriteBitRegister

his function reads the bit register specified in
it zero. Can be used with interrupts enabled o

Set the contents of an ACPI-defined Bit Register.

AC TUS
Acp gister (

d
constants:
 ACPI_BITREG_TIMER_STATUS

TER_STATUS
LOCK_STATUS

N_STATUS
BUTTON_STATUS
CK_STATUS

US
 ACPI_BITREG_PCIEXP_WAKE_STATUS

 ACPI_BITREG_GLOBAL_LOCK_ENABLE
 ACPI_BITREG_POWER_BUTTON_ENABLE

_DISABLE
BITREG_SCI_ENABLE

CPI_BITREG_BUS_MASTER_RLD
 ACPI_BITREG_GLOBAL_LOCK_RELEASE

 ACPI_BITREG_SLEEP_TYPE
 ACPI_BITREG_SLEEP_ENABLE

 ACPI_BITREG_ARB_DISABLE

RETU

Exception code that indicates success or reason for failure.

EXC NS

AE_OK The register was read successfully.

PI_STA
iSetRe
UINT32 RegisterId,
UINT32 Value)

PARAMETERS

RegisterI The ID of the desired register, one of the following manifest

 ACPI_BITREG_BUS_MAS
 ACPI_BITREG_GLOBAL_
 ACPI_BITREG_POWER_BUTTO
 ACPI_BITREG_SLEEP_
 ACPI_BITREG_RT_CLO
 ACPI_BITREG_WAKE_STAT

 ACPI_BITREG_TIMER_ENABLE

 ACPI_BITREG_SLEEP_BUTTON_ENABLE
 ACPI_BITREG_RT_CLOCK_ENABLE
 ACPI_BITREG_PCIEXP_WAKE
 ACPI_
 A

Value The data to be written.

RN VALUE

Status

EPTIO

118

 ACPI Component Architecture Programmer Reference

AE_BAD_P Invalid RegisterId. ARAMETER

Other The function failed at the operating system level.

Functional Description:

This function writes the bit register specified in the RegisterId. The value written must be
o before calling. Can be used with interrupts enabled or disabled.

8.4.6 AcpiRead

normalized to bit zer

Read the c of an ACPI Registerontents (low-level read).

ACPI_STATUS

UINT64 *ReturnValue,

r to where the data is returned. The entire 64-bit
lue is set, regardless of the width of the register.

A pointer to a valid ACPI register in generic address format.

RETURN VALUE

Exception code that indicates success or reason for failure.

EXCEPTIONS

AE_OK The register was read successfully.

AE_BAD_ADDRESS

AE_BAD_PARAMETER The L.

The register width was not 8/16/32/64.

iption:

AcpiRead (

ACPI_GENERIC_ADDRESS *Register)

PARAMETERS

ReturnValue A pointe
ReturnVa

Register

Status

The Address element of the register is zero.

Register or ReturnValue parameters are NUL

AE_SUPPORT

Other The function failed at the operating system level.

Functional Descr

Thi reads a register defined in s from memory
or I st have 2, or 64 bits.

s function the generic address format. It supports read
/O space only. Registers mu a width of either 8, 16, 3

 119

ACPI Component Architecture Programmer Reference

8.4.7 AcpiWrite

Write an ACPI Register (low-level write).

ACPI_STATUS
AcpiWrite (

UINT64 Value,
ACPI_GENERIC_ADDRESS *Register)

PARAMETERS

Value

A pointer to a valid ACPI register in generic address format.

RE ALUE

Exception code that indicates success or reason for failure.

EX

AE_OK The register was read successfully.

AE_BAD_ADDRESS The Address element of the register is zero.

ER The Register parameter is NULL.

function failed at the operating system level.

Functi

The data to be written.

Register

TURN V

Status

CEPTIONS

AE_BAD_PARAMET

AE_SUPPORT The register width was not 8/16/32/64.

Other The

onal Description:

T gister defined in the generic address format. It supports writes to memory or
I/O space only. Registers must have a width of either 8, 16, 32, or 64 bits.

8.4.8 AcpiAcquireGlobalLock

his function writes a re

Acquire the ACPI Global Lock.

ACPI_STATUS
AcpiAc alLock (

UINT32

PARAMETERS

lobal lock.

quireGlob
UINT16 Timeout,

*OutHandle)

Timeout The maximum time (in System Ticks) the caller is willing to
wait for the g

120

 ACPI Component Architecture Programmer Reference

OutHandle A pointer to where a handle to the lock is to be returned.
This handle is required to release the global lock.

RETURN VALUE

Status Exception code that indicates success or reason for failure.

EX

AE_OK The global lock was successfully acquired.

AE_BAD_PARAMETER The OutHandle pointer is NULL.

CEPTIONS

AE_TIME The global lock could not be acquired within the specified
time limit.

Functional Description:

T PI Global Lock. The purpose of
the global lock is to ensure exclusive access to resources that must be shared between the operating
system and the firmware.

8.4.9

his function obtains exclusive access to the single system-wide AC

AcpiReleaseGlobalLock

Release the ACPI Global Lock.

ACPI_STATUS
AcpiReleaseGlobalLock (

Handle)

PARAMETERS

The handle that was obtained when the Global Lock was
acquired. This allows different threads to acquire and

RETU

Status Exception code that indicates success or reason for failure.

EXCEPTIONS

AE_OK The global lock was successfully released

AE_BAD_PARAMETER The Handle is invalid.

Functional Description:

UINT32

Handle

release the lock, as long as they share the handle.

RN VALUE

This function releases the global lock. The releasing thread may be different from the thread that
acquired the lock. However, the Handle must be the same handle that was returned by
AcpiAcquireGlobalLock.

 121

ACPI Component Architecture Programmer Reference

8.4.10 AcpiGetTimerResolution

Get the resolution of the ACPI Power Management Timer.

A
A

UINT32 *OutValue)

OutValue A pointer to where the current value of the PM Timer
resolution is to be returned.

RE UE

Exception code that indicates success or reason for failure.

EX ONS

The PM Timer resolution was successfully retrieved and
returned.

_PARAMETER

Functional Description:

CPI_STATUS
cpiGetTimerResolution (

PARAMETERS

TURN VAL

Status

CEPTI

AE_OK

AE_BAD The OutValue pointer is NULL.

This function returns the PM Timer resolution – either 24 (for 24-bit) or 32 (for 32-bit timers).

8.4.11 AcpiGetTimerDuration

Calculates the time elapsed (in microseconds) between two values of the ACPI Power
Management Timer.

ACPI_STATUS
A

tartTicks,
UINT32 EndTicks,

*OutValue)

PA

The value of the PM Timer at the start of a time
measurement (obtained by calling AcpiGetTimer).

measurement (obtained by calling AcpiGetTimer).

ue

cpiGetTimer (
UINT32 S

UINT32

RAMETERS

StartTicks

EndTicks The value of the PM Timer at the end of a time

OutVal A pointer to where the elapsed time (in microseconds) is to
be returned.

122

 ACPI Component Architecture Programmer Reference

RETURN VALUE

cess or reason for failure.

EX

d returned.

AE_BAD_PARAMETER The OutValue pointer is NULL.

Status Exception code that indicates suc

CEPTIONS

AE_OK The time elapsed was successfully calculated an

Functional Description:

This function calculates and returns the time elapsed (in microseconds) between StartTicks and
EndTicks, taking into consideration the PM Timer frequency, resolution, and counter rollovers.

8.4.12 AcpiGetTimer

Get the current value of the ACPI Power Management Timer.

ACPI_STATUS
AcpiGetTimer (

UINT32 *OutValue)

PA

A pointer to where the current value of the ACPI Timer is to
be returned.

RETU

EXC

AE_OK alue of the timer was successfully retrieved
and returned.

 The OutValue pointer is NULL.

Functional Description:

RAMETERS

OutValue

RN VALUE

Status Exception code that indicates success or reason for failure.

EPTIONS

The current v

AE_BAD_PARAMETER

This function returns the current value of the PM Timer (in ticks).

 123

ACPI Component Architecture Programmer Reference

8.5 ke Support

8.5.1 AcpiSetFirmwareWakingVector

ACPI Sleep/Wa

Set the 32-bit firmware wake vector.

ACPI_STATUS
WakingVector (

Address32)

PARAMETERS

The physical address to be stored in the waking vector.

RETURN VALUE

Exception code that indicates success or reason for failure.

EX ONS

The vector was set successfully.

ACPI_TABLES

Fun l Description:

AcpiSetFirmware
UINT32

Address32

Status

CEPTI

AE_OK

AE_NO_ The FACS is not loaded or could not be found.

ctiona

This function sets the 32-bit firmware (ROM BIOS) wake vector. If a 64-bit vector exists in the
current FACS, it is set to zero.

s will be returned and the value of the waking vector will be

ector64

If the function fails an appropriate statu
undisturbed.

8.5.2 AcpiSetFirmwareWakingV

Set the 64-bit firmware wake vector.

ACPI_STATUS
AcpiSetFirmwareWakingVector64 (

UINT64 Address64)

PARAMETERS

Address64 The physical address to be stored in the waking vector.

RETURN VALUE

Status Exception code that indicates success or reason for failure.

124

 ACPI Component Architecture Programmer Reference

EXCEPTIONS

AE_OK The vector was set successfully.

AE_NOT_EXIST The 64-bit vector does not exist in the current FACS. Either
the table is too small or the revision is less than 1.

AE_NO_ACPI_TABLES The FACS is not loaded or could not be found.

Functional Description:

This function sets the 64-bit firmware (ROM BIOS) wake vector. The 32-bit vector is set to zero.

ed and the value of the waking vector will be
undisturbed.
If the function fails an appropriate status will be return

8.5.3 AcpiGetSleepTypeData

Get the SLP_TYP data for the requested sleep state.

ACPI_STATUS
Acp eepTypeData (

UINT8 SleepState,
*SleepTypeA,
*SleepTypeB)

PARAMETERS

The SleepState value (0 through 5) for which the

A pointer to a location where the value of SLP_TYPa will
be returned.

eB _TYPb will

es success or reason for failure.

AE_OK Both SLP_TYP values were returned successfully.

AE_BAD_PARAMETER Either SleepState has an invalid value, or one of the
SleepType pointers is invalid.

AE_AML_NO_OPERAND Could not locate one or more of the SLP_TYP values.

AE_AML_OPERAND_TYPE One or more of the SLP_TYP objects was not a numeric
type.

iGetSl

UINT8
UINT8

SleepState
SLP_TYPa and SLP_TYPb values will be returned.

SleepTypeA

SleepTyp A pointer to a location where the value of SLP
be returned.

RETURN VALUE

Status Exception code that indicat

EXCEPTIONS

 125

ACPI Component Architecture Programmer Reference

Functional Description:

T requested sleep state.

8.5.4 AcpiEnterSleepStatePrep

his function returns the SLP_TYP object for the

Prepare to enter a system sleep state (S1-S5).

ACPI_STATUS
Acp StatePrep (

ate
through 5.

RE LUE

 success or reason for failure.

PTS and GTS methods were successfully run

Other Exception from AcpiEvaluateObject.

Functional Description:

iEnterSleep
UINT8 SleepState)

PARAMETERS

SleepSt The sleep state to prepare to enter. Must be in the range 1

TURN VA

Status Exception code that indicates

EXCEPTIONS

AE_OK The

Prepare to enter a system sleep state.

This function evaluates the _PTS and _GTS methods.

8.5.5 AcpiEnterSleepState

Enter a system sleep state (S1-S5).

ACPI_STATUS
AcpiEnterSleepState (

UINT8 SleepState)

PARAMETERS

SleepState The sleep state to enter. Must be in the range 1 through 5.

RETURN VALUE

Status Exception code that indicates success or reason for failure.

126

 ACPI Component Architecture Programmer Reference

EXCEPTIONS

AE_OK The sleep state (S1) was successfully entered.

Invalid SleepState value.

Hardware access exception.

Functional Description:

AE_BAD_PARAMETER

Other

This function only returns for transitions to the S1 state or when an error occurs. Sleep states S2-S4
use

This function must be called with interrupts disabled.

8.5.6 Ac terSleepStateS4B

 the firmware waking vector during wakeup.

piEn ios

Enter S4 BIOS sleep

ACPI_STATUS
AcpiEnterSleepStateS4bios (

void)

PARAMETERS

RE ALUE

Exception code that indicates success or reason for failure.

EX

as successfully entered.

None

TURN V

Status

CEPTIONS

AE_OK The sleep state (S1) w

Other Hardware access exception.

Functional Description:

This function performs an S4 BIOS request.

This function must be called with interrupts disabled.

 127

ACPI Component Architecture Programmer Reference

8.5.7 AcpiLeaveSleepState

Leave (cleanup) a system sleep state (S1-S5).

ACPI_STATUS
AcpiLeaveSleepState (

PARAMETERS

SleepState The sleep state to leave.

RETURN VALUE

Status Excep or reason for failure.

EXCEPTIONS

AE_OK The clea

ption.

:

UINT8 SleepState)

tion code that indicates success

nup was successful.

Other Hardware access exce

Functional Description

Perform cleanup after leaving a sleep state.

128

 ACPI Component Architecture Programmer Reference

8.6 ACPI Fixed Event Manag

8.6.1 AcpiEnableEvent

ement

Enable an ACPI Fixed Event.

ACPI_STATUS
t (

Event,

PA

 This parameter must be one
of the following manifest constants:

ACPI_EVENT_PMTIMER
L

BUTTON
ACPI_EVENT_SLEEP_BUTTON
ACPI_EVENT_RTC

Flags Reserved, set to zero.

RETURN VALUE

Exception code that indicates success or reason for failure.

EX

The event was successfully enabled.

 The

Other

Functional Description:

AcpiEnableEven
UINT32
UINT32 Flags)

RAMETERS

Event The fixed event to be enabled.

ACPI_EVENT_GLOBA
ACPI_EVENT_POWER_

Status

CEPTIONS

AE_OK

AE_BAD_PARAMETER Event is invalid.

Hardware access exception.

This function enables a single ACPI fixed event.

 129

ACPI Component Architecture Programmer Reference

8.6.2 AcpiDisableEvent

Disable an ACPI Fixed Event.

ACPI_STATUS
AcpiDisableEvent (

UINT32 e
32 Flags

Event The fixed event to be disabled. This parameter must be one
tants:

PMTIMER
T_GLOBAL

ACPI_EVENT_POWER_BUTTON
ACPI_EVENT_SLEEP_BUTTON
ACPI_EVENT_RTC

Reserved, set to zero.

RE

ason for failure.

_PARAMETER

Functional Description:

Ev nt,
UINT)

PARAMETERS

of the following manifest cons

ACPI_EVENT_
ACPI_EVEN

Flags

TURN VALUE

Status Exception code that indicates success or re

EXCEPTIONS

AE_OK The event was successfully disabled.

AE_BAD The Event is invalid.

Other Hardware access exception.

This function disables a single ACPI fixed event.

8.6.3 AcpiClearEvent

Clear a pending ACPI Fixed Event.

ACPI_STATUS
AcpiClearEvent (

UINT32 Event

PA

 must be one

)

RAMETERS

Event The fixed event to be cleared. This parameter
of the following manifest constants:

130

 ACPI Component Architecture Programmer Reference

ACPI_EVENT_PMTIMER
ACPI_EVENT_GLOBAL

T_POWER_BUTTON
ACPI_EVENT_SLEEP_BUTTON

PI_EVENT_RTC

R

Status Exception code that indicates success or reason for failure.

AMETER The Event is invalid.

ion:

ACPI_EVEN

AC

ETURN VALUE

EXCEPTIONS

AE_OK The event was successfully cleared.

AE_BAD_PAR

Other Hardware access exception.

Functional Descript

Thi lears (zeros the status bit nt.

8.6.4 AcpiGetEventStatus

s function c for) a single ACPI fixed eve

Obtain the status of an ACPI Fixed Event.

ACPI_STATUS
AcpiGetEventStatus (

P

The fixed event for which status will be obtained. This
parameter must be one of the following manifest constants:

PMTIMER
ENT_GLOBAL

ACPI_EVENT_POWER_BUTTON
ACPI_EVENT_SLEEP_BUTTON
ACPI_EVENT_RTC

EventStatus Where the event status is returned. The following bits may

ACPI_EVENT_FLAG_SET

RE ALUE

Exception code that indicates success or reason for failure.

UINT32 Event,
ACPI_EVENT_STATUS *EventStatus)

ARAMETERS

Event

ACPI_EV
ACPI_EV

ENT_

be set:

TURN V

Status

 131

ACPI Component Architecture Programmer Reference

EX

AE_OK disabled.

AE_BAD_PARAMETER

• The EventStatus pointer is NULL or invalid

Other Hardware access exception.

Functional Description:

CEPTIONS

The event was successfully

At least one of the following is true:

• The Event is invalid.

This function obtains the current status of a single ACPI fixed event.

8.6.5 AcpiInstallFixedEventHandler

Install a handler for ACPI Fixed Events.

ACPI_STATUS
AcpiInstallFixedEventHandler (

UINT32 Event,
ACPI_EVENT_HANDLER Handler,
void *Context)

PARAMETERS

Event The fixed event to be managed by this handler.

Handler Address of the handler to be installed.

Context A context value that will be passed to the handler as a
parameter.

RETURN VALUE

Status Exception code that indicates success or reason for failure.

EXCEPTIONS

AE_OK The handler was successfully installed.

AE_BAD_PARAMETER At least one of the following is true:

• The Event is invalid.

• The Handler pointer is NULL.

AE_ERROR The fixed event enable register could not be written.

AE_ALREADY_EXISTS A handler for this event is already installed.

132

 ACPI Component Architecture Programmer Reference

Functional Description:

This function installs a handler for a predefined fixed event.

Handlers 8.6.5.1 Interface to Fixed Event

Definition of the handler interface for Fixed Events.

typedef
UINT32 (*ACPI_EVENT_HANDLER) (

void *Context)

PARAMETERS

The Context value that was passed as a parameter to the

RETURN VALUE

Reserved .

Functional Description:

Context
AcpiInstallFixedEventHandler function.

Handler should return zero

This handler is installed via AcpiInstall is called whenever the particular fixed
eve s installed to handle occurs.

This function executes in the context of

8.6.6 AcpiRemoveFixedEventHandler

FixedEventHandler. It
nt it wa

 an interrupt handler.

Remove an ACPI Fixed Event handler.

AC US
Acpi ler (

ACPI_EVENT_HANDLER Handler)

PARAMETERS

Event

Address of the previously installed handler.

.

PI_STAT
RemoveFixedEventHand

UINT32 Event,

The fixed event whose handler is to be removed.

Handler

RETURN VALUE

Status Exception code that indicates success or reason for failure

EXCEPTIONS

AE_OK The handler was successfully removed.

 133

ACPI Component Architecture Programmer Reference

AE_BAD_PARAMETER At least one of the following is true:

• Event is invalid.

• The Handler pointer is NULL.

• The Handler address is not the same as the one that is
installed.

e written.

AE_NOT_EXIST There is no handler installed for this event.

Functional Description:

 The

AE_ERROR The fixed event enable register could not b

This function removes a handler for a p a call
to AcpiInstallFixedEventHandler.

redefined fixed event that was previously installed via

134

 ACPI Component Architecture Programmer Reference

8.7 ACPI General Purpose Event Management

8.7.1 AcpiEnableGpe

Enable an ACPI General Purpose Event.

AC
Acp

ACPI_HANDLE GpeDevice,
GpeNumber,

UINT32 Flags)

PARAMETERS

GpeDevice GPE Block Device of the GPE to be

GpeNumber enabled within the specified GPE
 begins
evices

ACPI_NOT_ISR – Caller is not executing from an
Interrupt Service Routine (interrupt level.)

RETURN VALUE

Status Exception code that indicates success or reason for failure.

EX

AE_OK e

AE_BAD_PARAMETER At l ing is true:

evice.

• The GpeNumber is out of range for the referenced
GpeDevice.

PI_STATUS
iEnableGpe (

UINT32

A handle for the parent
enabled. Specify a NULL handle to indicate that the
permanent GPE blocks defined in the FADT (GPE0 and
GPE1) are to be used.

The GPE number to be
Block. The GPE0 block always begins at zero. GPE1
at GPE1_BASE (in the FADT). Named GPE Block D
always begin at zero.

Flags

CEPTIONS

Th GPE was successfully enabled.

east one of the follow

• The GpeDevice is invalid or does not refer to a valid
GPE Block D

Functional Description:

This function enables a single General Purpose Event. Both the FADT–defined GPE blocks and
GPE Block Devices are supported. The GPE blocks defined in the FADT are permanent and

eration.

This function may be called from an interrupt service routine (typically a GPE handler) or a device
driver, depending on the setting of the Flags parameter.

installed during system initialization. These permanent blocks, GPE0 and GPE1, are treated as a
single logical block differentiated by non-overlapping GPE numbers. GPE Block Devices are
installed via AcpiInstallGpeBlock during bus/device enum

 135

ACPI Component Architecture Programmer Reference

8.7.2 AcpiDisableGpe

Disable an ACPI General Purpose Event.

ACPI_STATUS
AcpiDisableGpe (

ACPI_HANDLE GpeDevice,
UINT32 GpeNumber,
UINT32 Flags)

PARAMETERS

GpeDevice A handle for the parent GPE Block Device of the GPE to
disabled. Specify a NULL handle to indicate that the
permanent GPE blocks defined in the FADT (GPE0 and
GPE1) a

 be

re to be used.

E
 begins

s

tine (interrupt level.)

RETURN VALUE

EXCEPTIONS

The GPE was successfully disabled.

D_PARAMETER

• The GpeDevice is invalid or does not refer to a valid
GPE Block Device.

• The GpeNumber is out of range for the referenced

Functional Description:

GpeNumber The GPE number to be disabled within the specified GP
Block. The GPE0 block always begins at zero. GPE1
at GPE1_BASE (in the FADT). Named GPE Block Device
always begin at zero.

Flags ACPI_NOT_ISR – Caller is not executing from an
Interrupt Service Rou

Status Exception code that indicates success or reason for failure.

AE_OK

AE_BA At least one of the following is true:

GpeDevice.

This function disables a single General
GPE Block Devices are supported. The E
installed during system initialization. These ocks, GPE0 and GPE1, are treated as a
single logical block differentiated by no v ers. GPE Block Devices are
installed via AcpiInstallGpeBlock during s/ .

d from an interrupt service routine (typically a GPE handler) or a device
Flags

Purpose Event. Both the FADT–defined GPE blocks and
GP blocks defined in the FADT are permanent and

permanent bl
n-o erlapping GPE numb

bu device enumeration

This function may be calle
driver, depending on the setting of the parameter.

136

 ACPI Component Architecture Programmer Reference

8.7.3 AcpiClearGpe

Clear a pending ACPI General Purpose Event.

ACPI_STATUS
AcpiClearGpe (

ACPI_HANDLE GpeDevice,
UINT32 GpeNumber,
UINT32 Flags)

 of the GPE to be
e that the

he FADT (GPE0 and

The GPE number to be cleared within the specified GPE

s

Flags g from an

RETURN VALUE

Status dicates success or reason for failure.

EXCEPTIONS

AE_BAD_PARAMETER At least one of the following is true:

• The GpeDevice is invalid or does not refer to a valid
GPE Block Device.

iption:

PARAMETERS

GpeDevice A handle for the parent GPE Block Device
o indicatcleared. Specify a NULL handle t

efined in tpermanent GPE blocks d
GPE1) are to be used.

GpeNumber
Block. The GPE0 block always begins at zero. GPE1 begins
at GPE1_BASE (in the FADT). Named GPE Block Device
always begin at zero.

ACPI_NOT_ISR – Caller is not executin
Interrupt Service Routine (interrupt level.)

Exception code that in

AE_OK The GPE was successfully cleared.

• The GpeNumber is out of range for the referenced
GpeDevice.

Functional Descr

This lears a single General Pu blocks and GPE
Blo he GPE anent and installed
during ese perm as a single
logical block differentiated by non-overl pi a
AcpiInstallGpeBlock during bus/device enum

This function may be called from an interrup ice
driver, depending on the setting of the Flags

 function c rpose Event. Both the FADT–defined GPE
ck Devices are supported. T blocks defined in the FADT are perm

 system initialization. Th anent blocks, GPE0 and GPE1, are treated
ap ng GPE numbers. GPE Block Devices are installed vi

eration.

t service routine (typically a GPE handler) or a dev
 parameter.

 137

ACPI Component Architecture Programmer Reference

8.7.4 AcpiSetGpeType

Set the type (wake/run) of an individual ACPI General Purpose Event.

ACPI_STATUS
AcpiSetGpeType (

ACPI_HANDLE GpeDevice,
UINT32 GpeNumber,
UINT8 Type)

PARAMETERS

GpeDevice A handle for the parent GPE
Specify a NULL handle to

 Block Device of the GPE.
 indicate that the permanent GPE

blocks defined in the FADT (GPE0 and GPE1) are to be
used.

ied GPE Block. The
 GPE1 begins at

med GPE Block Devices
always begin at zero.

 ACPI_GPE_TYPE_WAKE_RUN – This GPE is used for
both runtime and wake events.

RETU VALUE

Status Exception code that indicates success or reason for failure.

EXC NS

AE_BAD_PARAMETER

•

• The GpeNumber is out of range for the referenced
GpeDevice.

escription:

GpeNumber The GPE number within the specif
ro.GPE0 block always begins at ze

GPE1_BASE (in the FADT). Na

Type ACPI_GPE_TYPE_RUNTIME – This GPE is used for
runtime events only.

 ACPI_GPE_TYPE_WAKE – This GPE is used for wake
events only.

RN

EPTIO

AE_OK The type of the GPE was successfully set.

At least one of the following is true:

 The GpeDevice is invalid or does not refer to a valid
GPE Block Device.

• The Type is invalid.

Functional D

This function sets the type of a single General Purpose Event. Runtime GPEs are only enabled when
the system is operational. Wake GPEs are enabled only when the system is going into suspend
mode. Run/wake GPEs are always enabled.

138

 ACPI Component Architecture Programmer Reference

Both the FADT–defined GPE blocks and GPE Block Devices are supported. The GPE blocks
defined in the FADT are permanent and installed during system initialization. These permanent
blocks, GPE0 and GPE1, are treated as a single logical block differentiated by non-overlapping GPE

 via AcpiInstallGpeBlock during bus/device enumeration.

8.7.5 AcpiGetGpeStatus

numbers. GPE Block Devices are installed

Obtain the status of an ACPI General Purpose Event.

AC TUS
AcpiGetGpeStatus (

LE GpeDevice,
GpeNumber,

2 Flags,
VENT_STATUS *EventStatus)

vice
which status is to be obtained. Specify a NULL handle to
indicate that the permanent GPE blocks defined in the

d.

mber within the specified GPE
ys begins at zero. GPE1 begins

at GPE1_BASE (in the FADT). Named GPE Block Devices
always begin at zero.

t status is returned. The following bits may

ACPI_EVENT_FLAG_SET

RETURN VALUE

Exception code that indicates success or reason for failure.

EXCEPTIONS

The GPE was successfully enabled.

D_PARAMETER At least one of the following is true:

• The GpeDevice is invalid or does not refer to a valid

• The GpeNumber is out of range for the referenced
GpeDevice.

PI_STA

ACPI_HAND
UINT32
UINT3
ACPI_E

PARAMETERS

GpeDe A handle for the parent GPE Block Device of the GPE for

FADT (GPE0 and GPE1) are to be use

GpeNu The GPE number to be enabled
Block. The GPE0 block alwa

Flags ACPI_NOT_ISR – Caller is not executing from an
Interrupt Service Routine (interrupt level.)

EventStatus Where the even
be set:

Status

AE_OK

AE_BA

GPE Block Device.

 139

ACPI Component Architecture Programmer Reference

Fun l Description:

ctiona

This function obtains the s
blocks and GPE Block De

tatus of a single General Purpose Event. Both the FADT–defined GPE
vices are supported. The GPE blocks defined in the FADT are permanent

 a

ed from an interrupt service routine (typically a GPE handler) or a device
driver, depending on the setting of the Flags parameter.

8.7.6 AcpiGetGpeDevice

and installed during system initialization. These permanent blocks, GPE0 and GPE1, are treated as
single logical block differentiated by non-overlapping GPE numbers. GPE Block Devices are
installed via AcpiInstallGpeBlock during bus/device enumeration.

This function may be call

Get the GPE Block Device associated with the GPE index.

ACPI_STATUS
Acp

o to the

e

RETURN VALUE

Status ure.

EXCEPTIONS

AE_OK The GPE block device was successfully returned.

AE_BAD_PARAMETER At least one of the following is true:

• The GpeDevice pointer is invalid.

_EXIST E (it is larger than

Functional Description:

iGetGpeDevice (
UINT32 Index,
ACPI_HANDLE *GpeDevice)

PARAMETERS

Index The system index of the GPE, defined to be from zer
value of AcpiCurrentGpeCount.

GpeDevice A pointer to where the handle of the GPE block device is
returned. NULL indicates that the GPE is within one of th
FADT-defined GPE blocks.

Exception code that indicates success or reason for fail

AE_NOT The Index refers to a non-existent GP
AcpiCurrentGpeCount).

This function obtains the GPE block device associated with the Index parameter. A returned NULL
GPE device indicates that the Index refe to d
GPE blocks.

The Index is a system index used to track all GPEs. First are the FADT GPE0 block GPEs, then the
FADT GPE1 GPEs (if present), then any GPE block device GPEs. Valid values for the Index are

rs a GPE that is contained in one of the FADT-define

140

 ACPI Component Architecture Programmer Reference

from zero to the value of the public global variable AcpiCurrentGpeCount. Index values are
consecutive with no ‘holes’.

8.7.7 AcpiDisableAllGpes

Disable all system GPEs

ACPI_STATUS
AcpiDisableAllGpes (

void)

E

uccess or reason for failure.

Other Hardware access exception.

Fun Description:

PARAMETERS

None

RETURN VALU

Status Exception code that indicates s

EXCEPTIONS

AE_OK All GPEs were successfully disabled.

ctional

This function disab
GPEs, in both the FADT-d

les all GPEs currently defined in the system. This includes all runtime and wake
efined GPE blocks as well as any installed GPE block devices.

8.7.8 AcpiEnableAllRuntimeGpes

Enable all runtime GPEs

ACPI_STATUS
AcpiEnableAllRuntimeGpes (

void)

PARAMETERS

None

RETURN VALUE

Status Exception code that indicates success or reason for failure.

EXCEPTIONS

AE_OK All runtime GPEs were successfully enabled.

 141

ACPI Component Architecture Programmer Reference

Other Hardware access exception.

Functional Description:

This function enables all runtime GPEs currently defined in the system. This includes all runtime
ADT-defined GPE blocks as well as any installed GPE block devices. Runtime

GPEs that are not Wake GPEs, as determined from the _PRW methods

8.7.9 Ac

GPEs in both the F
GPEs are defined to be any
within the system AML.

piInstallGpeBlock

Install a GPE Block Device.

AC
AcpiIns Block (

ACPI_HANDLE
ACPI_GENERIC_ADDRESS
UINT32 Regis

PARAMETERS

vice alled.

ified GPE
gin at zero.

ount ter pairs in this

InterruptLevel re interrupt level that this GPE block is to be
associated with. Can be SCI_INT or any other system
interrupt level.

RE ALUE

Exception code that indicates success or reason for failure.

EX

AE_BAD_PARAMETER ue:

es not refer to a valid

PI_STATUS
tallGpe

GpeDevice,
*GpeBlockAddress,

terCount,
UINT32 InterruptLevel)

GpeDe A handle for the GPE Block Device to be inst

GpeNumber The GPE number to be enabled within the spec
Block. Named GPE Block Devices always be

RegisterC The number of status/enable GPE regis
block.

The hardwa

TURN V

Status

CEPTIONS

AE_OK The GPE was successfully enabled.

At least one of the following is tr

• The GpeDevice is invalid or do
GPE Block Device.

• The GpeNumber is out of range for the referenced
GpeDevice.

142

 ACPI Component Architecture Programmer Reference

Functional Description:

T vice driver that supports the
enum k Device in the ACPI
namespace (each has a _HID of ACPI0006) and obtain the resource requirements (_CRS, etc.) and

 call for each device found.

he SCI_INT is
owne the core. Via

ore also supports GPE Block Devices and the associated interrupts, detection,
control method execution — thus centralizing all GPE support to the core.

8.7.10 AcpiRemoveGpeBlock

his function installs a GPE Block Device. It is intended for use by a de
eration of GPE Block Devices. The caller must identify each Bloc

make this

Gpe Block Device handling is supported in the ACPICA core subsystem because t
d by the core subystem, and the FADT-defined GPE blocks are also owned by

this interface, the c
dispatch, and GPE

Remove a GPE Block Device.

ACPI_STATUS

ACPI_HANDLE GpeDevice)

 Block Device to be removed.

Status Exception code that indicates success or reason for failure.

EXCEPTIONS

The GPE was successfully enabled.

ice is invalid or does not refer to a valid
GPE Block Device.

• The GpeNumber is out of range for the referenced

Functional Description:

AcpiRemoveGpeBlock (

PARAMETERS

GpeDevice A handle for the GPE

RETURN VALUE

AE_OK

AE_BAD_PARAMETER At least one of the following is true:

• The GpeDev

GpeDevice.

This oved a GPE Block De . function rem vice that was previously installed via AcpiInstallGpeBlock

 143

ACPI Component Architecture Programmer Reference

8.7.11 AcpiInstallGpeHandler

Install a handler for ACPI General Purpose Events.

ACPI_STATUS
AcpiInstallGpeHandler (

ACPI_HANDLE e
UINT32 GpeN
UINT32 p
ACPI_EVENT_HANDLER Handler,

GpeDevice A handle for the parent GPE Block Device of the GPE for

to indicate that the permanent GPE blocks defined in the
FADT (GPE0 and GPE1) are to be used.

GpeNumber A zero based GPE number. GPE numbers start with GPE
register bank zero, and continue sequentially through GPE
bank one.

Type Whether this GPE is edge or level triggered:

 ACPI_GPE_LEVEL_TRIGGERED
 ACPI_GPE_EDGE_TRIGGERED

Handler Address of the handler to be installed.

Context A context value that will be passed to the handler as a
parameter.

RETURN VALUE

Status Exception code that indicates success or reason for failure.

EXCEPTIONS

AE_OK The handler was successfully installed.

AE_BAD_PARAMETER At least one of the following is true:

• The GpeNumber is invalid.

• The Handler pointer is NULL.

AE_ALREADY_EXISTS A handler for this general-purpose event is already installed.

AE_NO_MEMORY Insufficient dynamic memory to complete the operation.

Functional Description:

Gp Device,
umber,

Ty e,

void *Context)

PARAMETERS

which the handler is to be installed. Specify a NULL handle

This function installs a handler for a general-purpose event

144

 ACPI Component Architecture Programmer Reference

8.7.11.1 Interface to General Purpose Event Handlers

Definition of the handler interface for General Purpose Events.

typedef
void (*ACPI_EVENT_HANDLER) (

void *Context)

PARAMETERS

The Context value that was passed as a parameter to the
ction.

RE

:

Context
AcpiInstallGpeHandler fun

TURN VALUE

None

Functional Description

This handler is installed via AcpiInstallG
purpose event it was installed to handle

 This function executes in the context of

8.7.12 AcpiRemoveGpeHandler

peHandler. It is called whenever the particular general-
 occurs.

 an interrupt handler.

Remove an ACPI General-Purpose Event handler.

ACPI_STATUS
AcpiRemoveGpeHandler (

ACPI_HANDLE GpeD
UINT32 GpeNumber
ACPI_EVENT_HANDLER Hand

PARAMETERS

ce for
andle

hat the permanent GPE blocks defined in the
FADT (GPE0 and GPE1) are to be used.

GpeNumber A zero based GPE number. GPE numbers start with GPE

bank one.

Address of the previously installed handler.

RETURN VALUE

Status Exception code that indicates success or reason for failure.

evice,
,

ler)

GpeDevi A handle for the parent GPE Block Device of the GPE
which the handler is to be removed. Specify a NULL h
to indicate t

register bank zero, and continue sequentially through GPE

Handler

 145

ACPI Component Architecture Programmer Reference

EXCEPTIONS

AE_OK e ed.

• The Handler pointer is .

• The Handler address is not the same as the one that is
installed.

 event.

Th handler was successfully remov

AE_BAD_PARAMETER At least one of the following is true:

• The GpeNumber is invalid.

NULL

AE_NOT_EXIST There is no handler installed for this general-purpose

Functional Description:

This function removes a handler for a general-purpose event that was previously installed via a cal
to AcpiInstallGpeHandler.

l

146

 ACPI Component Architecture Programmer Reference

8.8 M ort

8.8.1 AcpiInstallNotifyHandler

iscellaneous Handler Supp

Install a handler for notification events on an ACPI object.

ACPI_STATUS
andler (

ACPI_HANDLE Object,

ACPI_NOTIFY_HANDLER
void

PARAMETERS

Object Handl vents will be handled.
Notifie ched to the handler. If

l
de)

notific
must b

RMAL

be received by
this handler:

ACPI_SYSTEM_NOTIFY – Notification values

ACPI_DEVICE_NOTIFY – Notification values
from 0x80 to 0xFF.

 the handler as a

RETURN VALUE

Status

EX

AE_BAD_PARAMETER t one of the following is true:

• The Object handle is invalid.

AcpiInstallNotifyH

UINT32 Type,
Handler,
*Context)

e to the object for which notify e
s on this object will be dispat

ACPI_ROOT_OBJECT is specified, the handler wil
become a global handler that receives all (system wi

ations of the Type specified. Otherwise, this object
e one of the following types:

ACPI_TYPE_DEVICE
ACPI_TYPE_PROCESSOR
ACPI_TYPE_THE

Type Specifies the type of notifications that are to

from 0x00 to 0x7F.

Handler Address of the handler to be installed.

Context A context value that will be passed to
parameter.

Exception code that indicates success or reason for failure.

CEPTIONS

AE_OK The handler was successfully installed.

At leas

 147

ACPI Component Architecture Programmer Reference

• The Type is not a valid value.

A handler for notifications on this object is already installed.

s not one of the supported object

mic memory to complete the operation.

iption:

• The Handler pointer is NULL.

AE_ALREADY_EXISTS

AE_TYPE The type of the Object i
types.

AE_NO_MEMORY Insufficient dyna

Functional Descr

This function installs a handler for notify events on an ACPI object
ns are Devices a

. According to the ACPI
spe nd Thermal Zones.

A gl d by using the ACPI_ROOT_OBJECT constant
as t handler (if
ther

8.8.1.1

cification, the only objects that can receive notificatio

obal handler for each notify type may be installe
he object handle. When a notification is received, it is first dispatched to the global
e is one), and then to the device-specific notify handler (if there is one)

Interface to Notification Event Handlers

Definition of the handler interface for Notification Events.

typedef
void (*ACPI_NOTIFY_HANDLER) (

ACPI_HANDLE Devic
UINT32 Value
void *Context)

PARAMETERS

Value
ration.

t

RE LUE

None

:

e
,

Device The handle for the device on which the notify occurred.

The notify value that was passed as a parameter to the AML
notify ope

Contex The Context value that was passed as a parameter to the
AcpiInstallNotifyHandler function.

TURN VA

Functional Description

This handler is installed via AcpiInstallNotifyHandler. It is called whenever a notify occurs on the
e handler is installed as a global notification handler, it is called for every notify of
 when it was installed.

Thi does not execute in the co

target object. If th
the type specified

s function ntext of an interrupt handler.

148

 ACPI Component Architecture Programmer Reference

8.8.2 AcpiRemoveNotifyHand rle

Remove a handler for ACPI notifica ntio events.

ACPI_STATUS
Acp

ACPI_HANDLE
UINT32 Type,

ANDLER

PA

Object Handle to the object for which a notify handler will be
removed. If ACPI_ROOT_OBJECT is specified, the global
handler of the Type specified is removed. Otherwise, this

 one of the following types:

EVICE
ROCESSOR

erType Specifies the type of notify handler to be removed:

ACPI_SYSTEM_NOTIFY – Notification values
from 0x00 to 0x7F.

 Notification values

re.

EX S

AE_OK The ha

AE_BAD_PARAMETER At lea

AE_NOT_EXIST There is no handler installed for notifications on this object.

The type of the Object is not one of the supported object
types.

iRemoveNotifyHandler (
Object,

ACPI_NOTIFY_H Handler)

RAMETERS

object must be

ACPI_TYPE_D
ACPI_TYPE_P
ACPI_TYPE_THERMAL

Handl

ACPI_DEVICE_NOTIFY –
from 0x80 to 0xFF.

Handler Address of the previously installed handler.

RETURN VALUE

Status Exception code that indicates success or reason for failu

CEPTION

ndler was successfully removed.

st one of the following is true:

• The Object handle is invalid.

• The Handler pointer is NULL.

• The Handler address is not the same as the one that is
installed.

AE_TYPE

 149

ACPI Component Architecture Programmer Reference

Functional Description:

This function removes a handler for notify events that was previously installed via a call to
AcpiInstallNotifyHandler.

8.8.3 AcpiInstallAddressSpaceHandler

Install handlers for ACPI Operation Region events.

ACPI_STATUS
A

ACPI_ADR_SPACE_TYPE SpaceId,
I_ADR_SPACE_HANDLER Handler,

PA

dler will

ACPI_ROOT_OBJECT to request global scope. Otherwise,
this object must be one of the following types:

AL

SpaceId The ID ion Region to be
managed

lue
AULT_HANDLER is used the handler

ill be
installed.

Setup nction
that is called when the region first becomes available and

Context ndler as a
parameter.

RETURN VALUE

Exception code that indicates success or reason for failure.

EX NS

AE_OK The handler was successfully installed.

AE_BAD_PARAMETER At least one of the following is true:

cpiInstallAddressSpaceHandler (
ACPI_HANDLE Object,

ACP
ACPI_ADR_SPACE_SETUP Setup,
void *Context)

RAMETERS

Object Handle for the object for which a address space han
be installed. This object may be specified as the

ACPI_TYPE_DEVICE
ACPI_TYPE_PROCESSOR
ACPI_TYPE_THERM

 of the Address Space or Operat
 by this handler.

Handler Address of the handler to be installed if the special va
ACPI_DEF
supplied with by the ACPICA for that address space w

Address of a start/stop initialization/termination fu

also if and when it becomes unavailable.

A context value that will be passed to the ha

Status

CEPTIO

150

 ACPI Component Architecture Programmer Reference

• The object handle does not refer to an object of type
Device, Processor, ThermalZone, or the root object.

LL.

r operation region is

address space that has no default handler.

ndler.

• The SpaceId is invalid.

• The Handler pointer is NU

AE_ALREADY_EXISTS A handler for this address space o
already installed.

AE_NOT_EXIST ACPI_DEFAULT_HANDLER was specified for an

AE_NO_MEMORY There was insufficient memory to install the ha

Functional Description:

This function installs a handler for an Address Space.

8.8.3.1 I andlers nterface to Address Space Setup H

Definition of the setup (Address Space start/stop) handler interface for Operation Region
Events.

typ
void

dle,
on

*HandlerContext)

PARAMETERS

RegionHandle ating.

Function The ty ust be one of the
follow

ontext ically this is
 the

AcpiInstallAddressSpaceHandler function.

ontext

that is passed to the actual address space handler routine.

RE LUE

edef
 (*ACPI_ADR _SPACE_SETUP) (
ACPI_HANDLE RegionHan
UINT32 Functi
void
void **ReturnContext)

Handle to the region that is initializing or termin

pe of function to be performed; m
ing manifest constants:

ACPI_REGION_ACTIVATE (init)
ACPI_REGION_DEACTIVATE (terminate)

HandlerC An address space specific Context value. Typ
the context that was passed as a parameter to

ReturnC An address space specific Context value. This context
subsumes the HandlerContext, and this is the context value

TURN VA

None

 151

ACPI Component Architecture Programmer Reference

Functional Description:

This handler is installed via AcpiInstallAddressSpaceHandler oked to both initialize and
terminate the operation region handling d st invoked with a function
value of ACPI_REGION_ACTIVATE on from AML code. It is
called again with a function value of AC _ t before the address
space handler is removed.

This function does not execute in the context of an interrupt handler.

8.8.3.2 Interface to Address Space

. It is inv
 co e. The setup handler is fir
 up the first access to the region
PI REGION_DEACTIVATE jus

Handlers

Definition of the handler interface for Operation Region Events.

typedef
void (*ACPI_ADR _SPACE_HANDLER) (

UINT32 Function,

UINT64 *Value,

void *RegionContext)

tion to be performed; must be one of the
following manifest constants:

ADDRESS_SPACE_READ

A space-specific address where the operation is to be
performed.

th

A pointer to the value to be written (WRITE), or where the

lue. Typically this is
eter to the

p nction.

ACPI_PHYSICAL_ADDRESS Address,
UINT32 BitWidth,

void *HandlerContext,

PARAMETERS

Function The type of func

ADDRESS_SPACE_WRITE

Address

BitWid The width of the operation, typically 8, 16, 32, or 64.

Value
value that was read should be returned (READ).

HandlerContext An address space specific Context va
the context that was passed as a param
Ac iInstallAddressSpaceHandler fu

RegionContext An operation region specific context. Created during the
region setup.

RETURN VALUE

None

152

 ACPI Component Architecture Programmer Reference

Functional Description:

T ked whenever AML code
atte

tion does not execute in the context of an interrupt handler.

8.8.3.3 Co r

his handler is installed via AcpiInstallAddressSpaceHandler. It is invo
mpts to access the target Operation Region.

This func

ntext for the Default PCI Address Space Handle

De ss space handler. finition of the context required for installation of the default PCI addre

UINT32 PCIContext

Where PCIContext contains the PCI bus number and the PCI segment number. The bus number is
in the low 16 bits and the segment number in the high 16 bits.

8.8.4 Ac moveAddressSppiRe aceHandler

Re ACPI Operation Regionmove an handler.

AC US
AcpiRe AddressSpaceHandler (

 Object,
ACE_TYPE SpaceId,

ADR _SPACE_HANDLER Handler)

quest global scope. Otherwise,

ACPI_TYPE_DEVICE
ACPI_TYPE_PROCESSOR
ACPI_TYPE_THERMAL

SpaceId The ID of the Address Space or Operation Region whose
handler is to be removed.

Handler Address of the previously installed handler.

RETURN VALUE

Status Exception code that indicates success or reason for failure.

EXCEPTIONS

AE_OK The handler was successfully removed.

AE_BAD_PARAMETER At least one of the following is true:

PI_STAT
move

ACPI_HANDLE
ACPI_ADR_SP
ACPI_

PARAMETERS

Object Handle for the object for which a address space handler will
be installed. This object may be specified as the
ACPI_ROOT_OBJECT to re
this object must be one of the following types:

 153

ACPI Component Architecture Programmer Reference

• The object h
Device, Pro

andle does not refer to an object of type
cessor, ThermalZone, or the root object.

ceId is invalid.

 The Handler pointer is NULL.

same as the one that is
installed.

There is no handler installed for this address space or

Functional Description:

• The Spa

•

• The Handler address is not the

AE_NOT_EXIST
operation region.

This function removes a handler for an Address Space or Operation Region that was previously
inst a call to AcpiInstallAddres

8.8.5 Ac llExceptionHan

alled via sSpaceHandler.

piInsta dler

Install a handler for ACPI interpreter run-time exceptions.

AC TUS
AcpiIns er (

T_HANDLER Handler)

PARAMETERS

.

RETURN VALUE

Status or reason for failure.

EXCEPTIONS

AE_OK The ly installed.

DY_EXISTS

PI_STA
tallExceptionHandl

ACPI_EVEN

Handler Address of the handler to be installed

Exception code that indicates success

handler was successful

AE_BAD_PARAMETER At least one of the following is true:

• The Handler pointer is NULL.

AE_ALREA A handler for this general-purpose event is already installed.

Functional Description:

This function installs a global handler for exceptions generated during the execution of control
methods. Useful for error logging and debugging.

154

 ACPI Component Architecture Programmer Reference

8.8.5.1 Interface to Exception Handlers

Definition of the handler interface for General Purpose Events.

typedef
ACPI_STATUS (*ACPI_EXCEPTION_HANDLER) (

UINT32 AmlOffset,
*Context)

PARAMETERS

Name method.

AML opcode whose execution caused the exception.

fset

Reserved for future use. Currently NULL.

RE LUE

Functional Description:

ACPI_STATUS AmlStatus,
ACPI_NAME Name,
UINT16 Opcode,

void

AmlStatus The exception code that was raised.

Name of the executing control

Opcode

AmlOf Offset of the AML opcode within the control method.

Context

TURN VA

None

This handler is installed via AcpiInstallE pt er an exception is
raised within the AML interpreter durin o

The ACPI_STATUS that is returned by the
the original exception code.

xce ionHandler. It is called whenev
g c ntrol method execution.

handler is then used by the AML interpreter instead of

 155

ACPI Component Architecture Programmer Reference

8.9 ACPI Resource Management

8.9.1 AcpiGetCurrentResources

Get the current resource list associated with an ACPI-related device.

AC
AcpiGetCurrentResources (

LE Device,
UFFER *

PARAMETERS

A pointer to a location where the current resource list is to

or reason for failure.

EX

AE_OK e eturned.

AE_BAD_PARAMETER

NULL

LOW The Length field of OutBuffer indicates that the buffer is too
small to hold the resource list. Upon return, the Length field

The Device handle refers to an object that is not of type
ACPI_TYPE_DEVICE.

Functional Description:

PI_STATUS

ACPI_HAND
ACPI_B OutBuffer)

Device A handle to a device object for which the current resources
are to be returned.

OutBuffer
be returned.

RETURN VALUE

Status Exception code that indicates success

CEPTIONS

Th resource list was successfully r

At least one of the following is true:

• The Device handle is invalid.

• The OutBuffer pointer is NULL.

• The Length field of OutBuffer is not
ACPI_ALLOCATE_BUFFER, but the Pointer field
of OutBuffer is .

AE_BUFFER_OVERF

contains the minimum required buffer length.

AE_TYPE

This function obtains the current resources for a specific device. The caller must first acquire a
handle for the desired device. The resource data is placed in the buffer pointed contained in the
OutBuffer structure. Upon completion the Length field of OutBuffer will indicate the number of
bytes copied into the Pointer field of the OutBuffer buffer. This routine will never return a partial
resource structure.

If the function fails an appropriate status will be returned and the value of OutBuffer is undefined.

156

 ACPI Component Architecture Programmer Reference

8.9.2 AcpiGetPossibleResources

Get the possible resource list associated with an ACPI-related device.

ACPI_STATUS
AcpiGetPossibleResources (

ACPI_HANDLE Device,
ACPI_BUFFER *OutBuffer)

PARAMETERS

Device A handle to a device object for which the possible resources
are to be returned.

d.

o

OutBuffer A pointer to a location where the possible resource list is to
be returne

RETURN VALUE

Status Exception code that indicates success or reason for failure.

EXCEPTIONS

AE_OK The resource list was successfully returned.

AE_BAD_PARAMETER At least one of the following is true:

• The Device handle is invalid.

• The OutBuffer pointer is NULL.

• The Length field of OutBuffer is not
ACPI_ALLOCATE_BUFFER, but the Pointer field
of OutBuffer is NULL.

AE_BUFFER_OVERFLOW The Length field of OutBuffer indicates that the buffer is to
small to hold the resource table. Upon return, the Length
field contains the minimum required buffer length.

AE_TYPE The Device handle refers to an object that is not of type
ACPI_TYPE_DEVICE.

Functional Description:

This function obtains the list of the possible resources for a specific device. The caller must first
acquire a handle for the desired device. The resource data is placed in the buffer contained in the
OutBuffer structure. Upon completion the Length field of OutBuffer will indicate the number of

resource structure.

If the function fails an appropriate status will be returned and the value of OutBuffer is undefined.

bytes copied into the Pointer field of the OutBuffer buffer. This routine will never return a partial

 157

ACPI Component Architecture Programmer Reference

8.9.3 AcpiSetCurrentResources

Set the current resource list associated with an ACPI-related device.

ACPI_STATUS
AcpiSetCurrentResources (

PA

A handle to a device object for which the current resource
list is to be set.

Buffer to an ACPI_BUFFER containing the resources to
be set for the device.

RE VALUE

Status ndicates success or reason for failure.

EXCEPTIONS

The resources were set successfully.

D_PARAMETER

• The Device handle is invalid.

ULL.

 zero.

AE_TYPE e
ACP DEVICE.

Functional Description:

ACPI_HANDLE Device,
ACPI_BUFFER *Buffer)

RAMETERS

Device

A pointer

TURN

Exception code that i

AE_OK

AE_BA At least one of the following is true:

• The InBuffer pointer is NULL.

• The Pointer field of InBuffer is N

• The Length field of InBuffer is

Th Device handle refers to an object that is not of type
I_TYPE_

This function sets the current resources
for the desired device. The resource data is p
InBuffer variable.

for a specific device. The caller must first acquire a handle
assed to the routine the buffer pointed to by the

158

 ACPI Component Architecture Programmer Reference

8.9.4 AcpiGetIRQRoutingTable

Get the ACPI Interrupt Request (IRQ) Routing Table for an ACPI-related device.

ACPI_STATUS
AcpiGetIRQRoutingTable (

ACPI_HANDLE Device,
ACPI_BUFFER *OutBuffer)

PARAMETERS

Device A handle to a device object for which the IRQ routing table
is to be returned.

OutBuffer A pointer to a location where the IRQ routing table is to be
returned.

RE E

Status Exception code that indicates success or reason for failure.

EX ONS

AE_OK The system information list was successfully returned.

AE_BAD_PARAMETER At least one of the following is true:

• The Device handle is invalid.

• The OutBuffer pointer is NULL.

• The Length field of OutBuffer is not

indicates that the buffer is
too small to hold the IRQ table. Upon return, the Length

ld contains the minimum required buffer length.

AE_TYPE The Device handle refers to an object that is not of type
ACPI_TYPE_DEVICE.

:

TURN VALU

CEPTI

ACPI_ALLOCATE_BUFFER, but the Pointer field
of OutBuffer is NULL.

AE_BUFFER_OVERFLOW The Length field of OutBuffer

fie

Functional Description

This function obtains the IRQ routing table for a specific bus. It does so by attempting to execute the
T method contained in the scope of the device whose handle is passed as a parameter. _PR

If the function fails an appropriate status will be retur d and the value one f OutBuffer is undefined.

 159

ACPI Component Architecture Programmer Reference

8.9.5 Ac tVendorResourcpiGe e

Fi f type Vendor-Defind a resource o ned

ACPI_STATUS
Acp esource (

ACPI_HANDLE
char *Name,

_UUID *Uuid,
 *OutBuffer)

PARAMETERS

A handle to the parent Device that owns the vendor

Uuid hed. Includes both subtype

Where the vendor resource is returned.

AE_OK The vendor resource was successfully acquired.

AE_BAD_PARAMETER At least one of the following is true:

alid.

 _PRS control

• The OutBuffer of UUID pointer is NULL.

AE_NOT_EXIST The Name could not be found.

Fun

iGetVendorR
DeviceHandle,

ACPI_VENDOR
ACPI_BUFFER

DeviceHandle
resource.

Name Name of the parent resource list (_CRS or _PRS).

A pointer to the UUID to be matc
and 16-byte UUID.

OutBuffer

RETURN VALUE

Status Exception code that indicates success or reason for failure.

EXCEPTIONS

• The DeviceHandle is inv

• The Name does not refer to a _CRS or
method.

• The Length field of OutBuffer is not
ACPI_ALLOCATE_BUFFER, but the Pointer field
of OutBuffer is NULL.

ctional Description:

Thi function retrieves a resource of typ t nd
UU subtype.

s e vendor-defined tha matches the supplied UUID a
ID

160

 ACPI Component Architecture Programmer Reference

8.9.6 AcpiResourceToAddress64

Convert an address resource descriptor to 64 bits

ACPI_STATUS
AcpiResourceToAddress64 (

ACPI_RESOURCE *Resource,
ACPI_RESOURCE_ADDRESS64 *OutResource)

PARAMETERS

Resource The resource descriptor to be converted. This resource must
be one of the following types:

 ACPI_RESOURCE_TYPE_ADDRESS16
 ACPI_RESOURCE_TYPE_ADDRESS32
 ACPI_RESOURCE_TYPE_ADDRESS64

OutResource Where the converted resource is returned.

RETURN VALUE

Status Exception code that indicates success or reason for failure.

EXCEPTIONS

AE_OK The resource was successfully converted.

AE_BAD_PARAMETER The resource is not of the correct type.

Functional Description:

This utility function converts resources of type ADDRESS16 and ADDRESS32 to ADDRESS64.
This saves the caller from having to duplicate code for different-sized address descriptors. If the
input descriptor is of type ADDRESS64, a simple copy is performed.

8.9.7 AcpiWalkResources

Parse an ACPI Resource List.

ACPI_STATUS
AcpiWalkResources (

ACPI_HANDLE DeviceHandle,
char *Name,
ACPI_WALK_RESOURCE_CALLBACK UserFunction,
void *UserContext)

PARAMETERS

DeviceHandle A handle to the Device for which one of the resource lists
will be walked:

 161

ACPI Component Architecture Programmer Reference

Name Name of a resource method (either a _CRS or _PRS

to a user-written function that is invoked for each
ce

ser

R U

S

E

bled.

The DeviceHandle is invalid or the Name does not refer to a
_CRS or _PRS control method.

amic memory to complete the operation.

Functional Description:

method.)

UserFunction A pointer
resource object within the resource list. (See the interfa
specification for the user function below.)

UserContext A value that will be passed as a parameter to the u
function each time it is invoked.

ET RN VALUE

tatus Exception code that indicates success or reason for failure.

XCEPTIONS

AE_OK The event was successfully ena

AE_BAD_PARAMETER

AE_NO_MEMORY Insufficient dyn

This function retrieves the current or possible resource list for the specified device. The User
Fun r from having to parse the list
itself.

8.9.7.1 Interface to User Callback Function

ction is called once for each resource in the list – freeing the calle

Interface to the user function that is invoked from AcpiWalkResources.

AC US (*ACPI_WALK_RE
ACPI_RESOURCE
void *Context)

PARAMETERS

inter to a single resource within the resource list.

Context The UserContext value that was passed as a parameter to the
AcpiWalkResources function.

RETURN VALUE

Status AE_OK Continue the walk.

 AE_TERMINATE Stop the walk immediately.

 AE_DEPTH Go no deeper into the namespace tree.

 All others Abort the walk with this exception
code.

PI_STAT SOURCE_CALLBACK) (
*Resource,

Resource A po

162

 ACPI Component Architecture Programmer Reference

Functional Description:

Th ource for each resource object in the resource list.

is function is called from AcpiWalkRes

 163

ACPI Component Architecture Programmer Reference

8.10 Memory Management
 management services that are built upon the

m rvices layer. If enabled (in debug mode), the
c n to detect the following conditions:

Detect attempts to release (free) an allocated memory block more than once.

mory leaks by keeping a l nding allocated memory blocks. This list
e

.

D mix memory manager calls. In other words, if the Acpi* memory manager is used to
allocate memory, do not free memory via the OS Services Layer (AcpiOsFree), via the C library

 call the host OS memory management primitives.

8.10.1 ACPI_ALLOCATE

The ACPICA Core Subsystem provides memory
emory management services exported by the OS se

ore memory manager tracks and logs each allocatio

1)

2) Detect me ist of all outsta
can be exam ever, the best timined at any time; how e to find memory leaks is after th
subsystem is shutdown -- any remaining allocations represent leaked blocks

o not

(free), or directly

Allocate memory from the dynamic ool. memory p

void *
 (

ACPI_SIZE Size)

PARAMETERS

Size Amount of memory to allocate.

RETURN VALUE

Memory A pointer to the allocated memory. A NULL pointer is

ACPI_ALLOCATE

returned on error.

Functional Description:

This function dynamically all
initialized to any particular va

ocates memory. The returned memory cannot be assumed to be
lue or values.

164

 ACPI Component Architecture Programmer Reference

8.10.2 ACPI_ALLOCATE_ZEROED

Allocate and initialize memory.

void *
TE_ZEROED (

PARAMETERS

Size Amount of memory to allocate.

RETU

Fun escription:

ACPI_ALLOCA
ACPI_SIZE Size)

RN VALUE

Memory A pointer to the allocated memory. A NULL pointer is
returned on error.

ctional D

This function dynami
be initialized to all ze

cally allocates and initializes memory. The returned memory is guaranteed to
ros.

8.10.3 ACPI_FREE

Fr iously allocated memory. ee prev

void
ACPI_FREE (

void *Memory)

PARAMETERS

Memory A pointer to the memory to be freed.

RETURN VALUE

None

Functional Description:

This function frees memory that was previously allocated via ACPI_ALLOCATE or
ACPI_ALLOCATE_ZEROED.

 165

ACPI Component Architecture Programmer Reference

8.11 Formatted Output

8.11.1 AcpiInfo and ACPI_INFO

Print a formatted information/comment string.

void
Acp

t char *ModuleName,
UINT32 LineNumber,

*Format,

PARAMETERS

ModuleName of the currently executing module or filename.

ber rently executing
module.

A standard printf-style format string.

None

o (iInf

cons

const char
…)

The name

LineNum The current line number within the cur

Format

RETURN VALUE

None

EXCEPTIONS

Functional Description:

This function prints a formatted error message using the AcpiOsPrintf and AcpiOsVprintf OSL
string is as follows:

on number]

interfaces. The format of the output

ACPI: (ModuleName-LineNumber): <message> [ACPICA versi

The ACPI_INFO macro

The front-end to this function is the ACPI_INFO macro.

Example: The following invocation of the ACPI_INFO macro:

The AE_INFO macro is required and automatically injects the module name and line number into
the invoation of AcpiError. Note the use of double parentheses which are required in order to pass
the parameters to the printf OSL functions.

 ACPI_INFO ((AE_INFO, "ACPICA example info message"));

Produces this output:

 ACPI: ACPICA example info message

166

 ACPI Component Architecture Programmer Reference

8.11.2 AcpiWarning and ACPI_WARNING

Print a formatted warning string.

void
AcpiWarning (

const char *ModuleName,
UINT32 LineNumber,
const char *Format,
…)

PARAMETERS

ModuleName The name of the currently executing module or filename.

LineNumber The current line number within the currently executing

Format A standard printf-style format string.

RE ALUE

None

EX NS

None

Fun l Description:

module.

TURN V

CEPTIO

ctiona

This function prints a formatted error message using the AcpiOsPrintf and AcpiOsVprintf OSL
e output string is as follows: interfaces. The format of th

ACPI Error (ModuleName-LineNumber): <message> [ACPICA version number]

The ACPI_WARNING macro

The front-end to this function is the ACPI_WARNING macro.

Example: The following invocation of the ACPI_ WARNING macro:

 ((AE_INFO, "ACPICA example warning message"));

Produces this output:

The AE_INFO macro is required and automatically injects the module name and line number into
s

 ACPI_WARNING

 ACPI Warning (examples-0187): ACPICA example warn message [20080926]

the invoation of AcpiError. Note the use of double parentheses which are required in order to pas
the parameters to the printf OSL functions.

 167

ACPI Component Architecture Programmer Reference

8.11.3 AcpiError and ACPI_ERROR

Print a formatted error string.

void
AcpiError (

const char *ModuleName,
UINT32 LineNumber,
const char *Format,
…)

PARAMETERS

ModuleName The name of the currently executing module or filename.

LineNumber The current line number within the currently executing

Format

RETURN VALUE

None

EXCEPTIONS

None

Functional Description:

module.

A standard printf-style format string.

This function prints a formatted error message AcpiOsVprintf OSL
interfaces. The format of the output string is a

ACPI Error (ModuleName-LineNumber): <m n number]

The ACPI_ERROR macro

 using the AcpiOsPrintf and
s follows:

essage> [ACPICA versio

The front-end to this function is the ACPI_ER

Example: The following invocation of the A

 ACPI_ERROR ((AE_INFO, "ACPICA example error message"));

Produces this output:

 ACPI Error (examples-0187): ACPICA example error message [20080926]

The AE_INFO macro is required and automat e name and line number into
the i cpiError. Note the use s
the e printf OSL functio

ROR macro.

CPI_ERROR macro:

ically injects the modul
nvoation of A of double parentheses which are required in order to pas

 parameters to th ns.

168

 ACPI Component Architecture Programmer Reference

8.11.4 AcpiException and ACPI_EXCEPTION

Print string with da formatted error ecoded ACPICA exception code

void
AcpiException (

const char *Mod
UINT32 LineN
ACPI_STATUS Status
const char *Form
…)

PARAMETERS

ModuleName The na e or filename.

LineNumber The cu in the currently executing
modul

Status ACPIC oded and displayed.

uleName,
umber,
,
at,

me of the currently executing modul

rrent line number with
e.

A status to be dec

Format A standard printf-style format string.

RETURN VALUE

None

EXCEPTIONS

None

Functional Description:

This function prints a formatted error message using the AcpiOsPrintf and AcpiOsVprintf OSL
interfaces. The format of the output string is as follows:

ACPI Exception (ModuleName-LineNumber): <message> [ACPICA version number]

The ACPI_EXCEPTION macro

The front-end to this function is the ACPI_EXCEPTION macro.

age"));

]

The AE_INFO macro is required and automatically injects the module name and line number into
the invoation of AcpiError. Note the use of double parentheses which are required in order to pass
the parameters to the printf OSL functions.

Example: The following invocation of the ACPI_ EXCEPTION macro:

 ACPI_EXCEPTION ((AE_INFO, Status, "ACPICA example error mess

Produces this output:

 ACPI Exception (examples-0187): AE_ERROR, ACPICA status [20080926

 169

ACPI Component Architecture Programmer Reference

8.11.5 AcpiDebugPrint and ACPI_DEBUG_PRINT

Print a formatted debug string.

void
AcpiDebugPrint (

UINT32 RequestedDebugLevel,
UINT32 LineNumber,
const char *FunctionName,
const char *ModuleName,
UINT32 ComponentId,
const char *Format,
…)

PARAMETERS

RequestedDebugLevel The debug level for this statement. This value is compared
to the current AcpiDbgLevel mask to determine if this
message will be output or not. Must be one of the following:

ACPI_DB_INIT_NAMES
PI_DB_PARSE

I_DB_LOAD
DB_DISPATCH

ACPI_DB_EXEC

ACPI_DB_TABLES
ACPI_DB_VALUES
ACPI_DB_OBJECTS
ACPI_DB_RESOURCES
ACPI_DB_USER_REQUESTS

I_DB_PACKAGE
I_DB_ALLOCATIONS

ACPI_DB_FUNCTIONS
ACPI_DB_OPTIMIZATIONS
ACPI_DB_MUTEX
ACPI_DB_THREADS

_IO
ACPI_DB_INTERRUPTS
ACPI_DB_EVENTS
ACPI_DB_ALL

thin the currently executing
module.

 The name of the currently executing function.

ACPI_DB_INIT
ACPI_DB_DEBUG_OBJECT
ACPI_DB_INFO
ACPI_DB_ALL_EXCEPTIONS

AC
ACP
ACPI_

ACPI_DB_NAMES
ACPI_DB_OPREGION
ACPI_DB_BFIELD

ACP
ACP

ACPI_DB

LineNumber The current line number wi

FunctionName

170

 ACPI Component Architecture Programmer Reference

ModuleName The name of the currently executing module or filename.

ly defined IDs
are:

ACPI_UTILITIES
ACPI_HARDWARE
ACPI_EVENTS
ACPI_TABLES
ACPI_NAMESPACE

ACPI_RESOURCES
ACPI_CA_DEBUGGER
ACPI_OS_SERVICES
ACPI_CA_DISASSEMBLER

OMPILER
OOLS

ACPI_EXAMPLE
ACPI_DRIVER

RE

None

EXCEPTIONS

None

Fun iption:

ComponentId The ID of the executing component. Current

ACPI_PARSER
ACPI_DISPATCHER
ACPI_EXECUTER

ACPI_C
ACPI_T

Format A standard printf-style format string.

TURN VALUE

ctional Descr

Thi ts debug messages on ent ID match in the
global level/layer masks. This mechanis n the amount of debug output that is
pro In addition to the input string line number, and the function name
are d to the output.

The ACPI_DEBUG_PRINT macro

s function prin ly if the debug level and the compon
m is useful to pare dow

duced. , the module name, the
adde

cpiDebugPrint interface

Exa The following invocation o

G_PRINT ((ACPI_DB_INFO, "Example Debug output"));

Pro output:

0] Examples-main : Example Debug output

The front end to the A

mple: f the ACPI_ DEBUG_PRINT macro

 ACPI_DEBU

duces this

 examples-0200 [0

 171

ACPI Component Architecture Programmer Reference

8.11.6 AcpiDebugPrintRaw and ACPI_DEBUG_PRINT_RAW

Print a formatted debug string, with no extra data.

void
AcpiDebugPrintRaw (

UINT32 LineNumber,
*FunctionName,
*ModuleName,

…)

definition of AcpiDebugPrin

:

UINT32 RequestedDebugLevel,

const char
const char
UINT32 ComponentId,
const char *Format,

PARAMETERS

See the t

Functional Description

This function prints debug messages only if the debug level and the component ID match in the
glob echanis f debug output that is
produced. The message produced by this function is not embellished with the line number, function
name, and module name as is performed by

The ACPI_DEBUG_PRINT_RAW

al level/layer masks. This m m is useful to pare down the amount o

ACPI_DEBUG_PRINT.

 macro

erface. The front end to the AcpiDebugPrintRaw int

Exa on o

 ACPI_DEBUG_PRINT_RAW ((ACP

8.12 Miscellaneous

8.12.1 AcpiFormatException

mple: The following invocati f the ACPI_ DEBUG_PRINT_RAW macro

I_DB_INFO, "Example Debug output"));

Produces this output:

 Example Debug output

Utilities

R ception code. eturn the ASCII name of an ACPI ex

const ch
AcpiFor

ACP

PARAM

The ACPI status/exception code to be translated.

ar *
matException (
I_STATUS Status)

ETERS

Status

172

 ACPI Component Architecture Programmer Reference

RETURN VALUE

EX NS

None

Functional Description:

Exception String A pointer to the formatted exception string.

CEPTIO

This function converts an ACPI exception code into a human-read t returns the
exception name string as the function return value. The string is a const value that does not require
dele

8.12.2 AcpiDebugTrace

able string. I

tion by the caller.

Enable debug tracing of control method execution

ACPI_STATUS
AcpiDebugTrace (

*Name,
DebugLevel,

yer,

d to be traced. Currently, only a
 supported.

The debug level used for the trace.

er .

Sets the type of trace:

E

or reason for failure.

Functional Description:

char
UINT32
UINT32 DebugLa
UINT32 Flags)

PARAMETERS

Name Name of the control metho
4-character ACPI name is

DebugLevel

DebugLay The debug layer used for the trace

Flags

 1 – One shot trace
 0 – Persistent trace

RETURN VALU

Status Exception code that indicates success

EXCEPTIONS

AE_OK The system information list was successfully returned.

This function enables debug tracing of an individual control method.

 173

ACPI Component Architecture Programmer Reference

8.12.3 AcpiGetSystemInfo

Get global ACPI-related system information.

ACPI_STATUS
AcpiGetSystemInfo (

ACPI_BUFFER *OutBuffer)

A pointer to a location where the system information is to be
returned.

E

Exception code that indicates success or reason for failure.

 The system information list was successfully returned.

AE_BAD_PARAMETER At least one of the following is true:

• The OutBuffer pointer is .

• The Length field of OutBuffer is not
ACPI_ALLOCATE_BUFFER, but the Pointer field
of OutBuffer is NULL.

FER_OVERFLOW at the buffer is
too small to hold the system information. Upon return, the
Length field contains the minimum required buffer length.

PARAMETERS

OutBuffer

RETURN VALU

Status

EXCEPTIONS

AE_OK

NULL

AE_BUF The Length field of OutBuffer indicates th

Functional Description:

This function obtains information about the current state of the ACPI system. It will r
information in the OutBuffer structure. Upon comp Length OutBuffer

Pointer

eturn system
letion the field of will indicate

the number of bytes copied into the field of the OutBuffer buffer. This routine will never

 will be returned and the value of OutBuffer is undefined.

UINT32 AcpiCaVersion;

UINT32 DebugLayer;

} ACPI_SYSTEM_INFO;

return a partial resource structure.

If the function fails an appropriate status

The structure that is returned in OutBuffer is defined as follows:

typedef struct _AcpiSysInfo
{

UINT32 Flags;
UINT32 TimerResolution;
UINT32 Reserved1;
UINT32 Reserved2;
UINT32 DebugLevel;

174

 ACPI Component Architecture Programmer Reference

Where:

AcpiCaVersion Version number of the ACPICA core subsystem, in the fo
0xYYYYMMDD.

Flags

rm

Static information about the system:

I_SYS_MODE_ACPI ACPI mode is supported
on this system.

ndicating the corresponding number of bits of

resolution.

DebugLevel Current value of the global variable that controls the debug
output verbosity.

DebugLayer Current value of the global variable that controls the internal
layers whose debug output is enabled.

8.12.4 AcpiGetStatistics

ACP

ACPI_SYS_MODE_LEGACY Legacy mode is
supported.

TimerResolution Resolution of the ACPI Power Management Timer. Either
24 or 32 i

Returns miscellaneous run-time statistics.

ACPI_STATUS
AcpiGetStatistics (

ACPI_STATISTICS *OutStats)

PARAMETERS

OutStats Where the statistics are returned.

RETURN

Status Exception code indicates success or reason for failure.

EXCEPTIONS

AE_OK Statistics were successfully returned.

Functional Description:

This function returns execution statistics of the subsystem. Included are the number of GPEs, SCIs,
and Fixed Events. Also, the number of control methods executed.

The returned ACPI_STATISTICS structure is shown below:

 175

ACPI Component Architecture Programmer Reference

typedef struct acpi_statistics
{
 UINT32 SciCount;
 UINT32 GpeCount;
 UINT32 FixedEventCount[ACPI_NUM_FIX
 UINT32 MethodCount;

ED_EVENTS];

8.12.5 AcpiPurgeCachedObjects

} ACPI_STATISTICS;

Empty all internal object caches.

ACPI_STATUS
AcpiPurgeCachedObjects (

void)

PARAMETERS

None

RETURN

Exception code indicates success or reason for failure.

EXCEPTIONS

AE_OK The caches were successfully purged.

:

Status

Functional Description

Thi o purge
the cache after particularly large operations, or the cache can be periodically flushed to ensure that

nt cache objects are present. It is implemented by calling
h of the object caches.

8.13 Global Variables
There are several global variables that are useful for ACPICA users.

8.13.1 AcpiDbgLevel & AcpiDbgLayer

These globals control the debug output mechanism. AcpiDbgLevel specifies the current debug level
and AcpiDbgLayer specifies which ACPICA components will output debug information.

See the description of ACPI_DEBUG_PRINT for more information.

s function purges all internal object caches, freeing all memory blocks: It can be used t

no large amounts of stagna
AcpiOsPurgeCache for eac

176

 ACPI Component Architecture Programmer Reference

8.13.2 AcpiGbl_FADT

T ADT, converted to a common internal format. ACPI-related
device ation directly from the FADT. The table can be directly accessed
via this symbol.

8.13.3 AcpiCurrentGpeCount

r of active (available) system GPEs. This includes the GPE blocks defined in the
ny installed GPE block devices. This is a dynamic value that can increase or

dec GPE block devices are installed or removed. This value also serves as the maximum
inde e for the AcpiGetGpeDevice interface.

his is a local copy of the system F
drivers often require inform

The current numbe
FADT, as well as a

rease as
x valu

 177

ACPI Component Architecture Programmer Reference

9 OS Services Layer - External
Interface Definition

ions of the interfaces that must be exported by the OS Services
ces be present. All interfaces

to th tem are prefixed by
the letters “

efinitions of the AcpiOs* interfaces are clearly defined by this document. The
actu of the services an y
diff perating systems

9.1 Environmental and A

9.1.1 AcpiOsInitialize

This section contains the definit
Layer. The ACPICA Core Subsystem requires that all of these interfa

e OS Services Layer that are intended for use by the ACPICA Core Subsys
AcpiOs”.

Only the external d
al implementation d interfaces is by definition OS dependent and may be ver
erent for different o .

CPI Tables

Initialize the OSL subsystem.

ACPI_STATUS
AcpiOsInitialize (

void)

P

None

ption:

ARAMETERS

RETURN VALUE

Status Initialization status.

Functional Descri

Thi s the OSL to initiali CA
subsystem

s function allow ze itself. It is called during initialization of the ACPI
.

178

 ACPI Component Architecture Programmer Reference

9.1.2 AcpiOsTerminate

Te inrm ate the OSL subsystem.

AC S
Acp sT

d

RET

S

Func

PI_ TATUS
iO erminate (
voi)

PARAMETERS

None

URN VALUE

tatus Termination status.

tional Description:

This
AC

9.1.3 AcpiOsGetRootPointer

function allows the OSL to cleanup and terminate. It is called during termination of the
ICA subsystem. P

Obtain the Root ACPI table pointer (RSDP).

ACPI_PHYSICAL_ADDRESS
AcpiOsGetRootPointer (

void)

PARAMETERS

l Description:

None.

RETURN VALUE

Address The physical address of the RSDP.

Functiona

This function returns the physical address of the.ACPI RSDP (Root System Description Pointer)
table. The mechanism used to obtain this pointer is platform and/or OS dependent. There are two
primary methods used to obtain this pointer and thus implement this interface:

1) On IA-32 platforms, the RSDP is obtained by searching the first megabyte of physical memory
for the RSDP signature (“RSD PTR “). On these platforms, this interface should be implemented via
a call to the AcpiFindRootPointer interface.

2) On IA-64 platforms, the RSDP is obtained from the EFI (Extended Firmware Interface). The
pointer in the EFI information block that is passed to the OS at OS startup.

 179

ACPI Component Architecture Programmer Reference

9.1.4 AcpiOsPredefinedOverride

Allow the host OS to override a predefined ACPI object.

ACPI_STATUS
AcpiOsPredefinedOverride (

NAMES *PredefinedObject,
*NewValue)

ial value.)

ject is returned.
is object.

Functi :

const ACPI_PREDEFINED_
ACPI_STRING

PARAMETERS

PredefinedObject A pointer to a predefined object (name and init

NewValue Where a new value for the predefined ob
NULL if there is no override for th

RETURN VALUE

Status Exception code that indicates success or reason for failure.

onal Description

Thi he host to overrid

9.1.5 Ac leOverride

s function allows t e the predefined objects in the ACPI namespace.

piOsTab

Allow the host OS to override a firmware ACPI table.

AC TUS

E_HEADER *ExistingTable,
ABLE_HEADER *

PA

ExistingTable po CPI table.

NewTable he t table is returned. The
OSL returns NULL if no replacement is provided.

RETURN VALUE

Status Exception code that indicates success or reason for failure.

PI_STA
AcpiOsTableOverride (

ACPI_TABL
ACPI_T *NewTable)

RAMETERS

A inter to the header of the existing A

W re the pointer to the replacemen

Functional Description:

This function allows the host to override an ACPI table that was found in the firmware. The host OS
can examine the existing table header for the table signature and version number(s) and decide to
replace it if desired. Note, only the table header is guaranteed to be valid and accessible, not the
entire table. Further, the header is only guaranteed to be valid and accessible for the duration of the
execution of this function. It may be unmapped immediately afterwards.

180

 ACPI Component Architecture Programmer Reference

The full identification of an ACPI table includes the following header items:

• The 4-character ACPI signature

• The table Length
 ID string

e ID string

ition

• The Revision

• The OEM
• The OEM Tabl
• The OEM Revision

ACPI Table Header Defin

typedef struct /* ACPI common table header */
{

char Signature [4]; /* Identifies type of table */
Length; /* Length of table, in bytes, */

 OemTableId [8]; /* OEM table identification */
UINT32 OemRevision; /* OEM revision number */

 AslCompilerId r ID */
UINT32 AslCompilerRevision;/* ASL compiler revision number */

} ACPI_TABLE_HEADER;

ICA will invoke this interface once for each table defined in the

 tables.

ride is called in the order that they appear in the
tables that can have multiple instantiations such as the

SSDT. If the host wishes to replace an individual SSDT, it can keep track of the SSDT
i on the full ACPI table identification described
above.

 call this interface for each table that is dynamically loaded via the Load AML
 loaded via this mechanism are typically SSDTs and OEMx tables.

The tables that appear in the
 signatures other than SSDT, typically the OEMx tables that contain executable
tables can be replaced during the initialization phase when ACPICA traverses the

RSD T as above. AcpiOsTableOv a LoadTable is
exe

UINT32
 * including header */
UINT8 Revision; /* Specification minor version # */
UINT8 Checksum; /* To make sum of entire table = 0 */
char OemId [6]; /* OEM identification */
char

char [4]; /* ASL compiler vendo

During initialization, ACP
RSDT/XSDT, and once for the DSDT (pointed to by the FADT). This includes all tables in the
RSDT/XSDT, even tables that are not directly consumed by ACPICA such as ECDT, MADT,
SRAT, SLIT, etc., and all of the OEMx

Tables are installed and AcpiOsTableOver
RSDT/XSDT. This may be important for

nstantiations, or it can differentiate SSDTs based up

ACPICA will also
operator. Tables that are

LoadTable AML operator is used to load the namespace from
RSDT/XSDT with
AML code. These

T/XSD erride is therefore not invoked when
cuted.

 181

ACPI Component Architecture Programmer Reference

9.2 gement
terface.

Memory Mana
These interfaces provide an OS-independent memory management in

9.2.1 AcpiOsCreateCache

Create a memory cache object

ACPI_STATUS
AcpiOsCreateCache (

char *CacheName,
UINT16 Objec
UINT16

tSize,
MaxDepth,

CACHE_T

ame

ObjectSize The size of each object in the cache.

MaxDepth Maximum depth of the cache (max number of objects.) May
d by the host.

Where a pointer to the cache object is returned.

Status Exception code that indicates success or reason for failure.

EXCEPTIONS

The cache was successfully created.

RAMETER At least one of the following is true:

nter is NULL.

ORY Insufficient dynamic memory to complete the operation.

Fun Description:

ACPI_ **ReturnCache)

PARAMETERS

CacheN An ASCII identifier for the cache. May or may not be used
by the host.

or may not be use

ReturnCache

RETURN VALUE

AE_OK

AE_BAD_PA

• The ReturnCache poi

• The ObjectSize is less than 16.

AE_NO_MEM

ctional

Thi n creates a cache object. M have a cache manager that can be
used to implement the cache functions. The ACPICA code uses many dynamic objects of the same

I_OPERAND_OBJECT), and the use of a cache can improve performance
considera ly.

s functio any host operating systems

size (such as the ACP
b

182

 ACPI Component Architecture Programmer Reference

9.2.2 AcpiOsDeleteCache

Delete mory cache object. a me

ACPI_STATUS
AcpiOsDeleteCache (

ACPI_CACHE_T *Cache)

PARAMETERS

Cache The cache object to be deleted.

R

Status Exception code that indicates success or reason for failure.

ted.

AMETER The Cache pointer is NULL.

Fun on:

ETURN VALUE

EXCEPTIONS

AE_OK The cache was successfully crea

AE_BAD_PAR

ctional Descripti

This function deletes a cache object that was created via AcpiOsCreateCache. Any objects currently
wit che must also be deleted.

9.2.3 AcpiOsPurgeCache

hin the ca

Fr rently within a caee all objects cur che object.

ACPI_STATUS
AcpiOsPurgeCache (

RETURN VALUE

Status Exception code that indicates success or reason for failure.

EXCEPTIONS

AE_OK The cache was successfully created.

AE_BAD_PARAMETER The Cache pointer is NULL.

ACPI_CACHE_T *Cache)

PARAMETERS

Cache The cache object to be deleted.

 183

ACPI Component Architecture Programmer Reference

Functional Description:

T within a cache.

9.2.4 AcpiOsAcquireObject

his function deletes all objects that currently reside

Acquire an object from a cache.

void *
AcpiOsAcquireObject (

T

PARAMETERS

Cache object.

RETURN VALUE

A pointer to a cache object. NULL if the object could not be
acquired.

ACPI_CACHE_ *Cache)

The cache object from which to acquire an

Object

EXCEPTIONS

NULL is returned if an object could not be acquired.

Functional Description:

This function acquires an object from the specified cache.

9.2.5 AcpiOsReleaseObject

Release an object to a cache.

ACPI_STATUS
ject (

T *Cache,

PA

The cache object to which the object will be released.

RE E

AcpiOsReleaseOb
ACPI_CACHE_
void *Object)

RAMETERS

Cache

Object The object to be released.

TURN VALU

Status Exception code that indicates success or reason for failure.

184

 ACPI Component Architecture Programmer Reference

EXCEPTIONS

AE_OK The cache was successfully created.

AE_BAD_PARAMETER The Cache or Object pointer is NULL.

Functional Description:

This . It must have been previously acquired
from the same cache via AcpiOsAcquireObject.

9.2.6

function releases an object back to the specified cache

AcpiOsMapMemory

Map physical memory into the caller’s address space.

void *
 (
L_ADDRESS PhysicalAddress,

ZE

PARAMETERS

A full physical address of the memory to be mapped into the

The amount of memory to be mapped starting at the given
physical address.

Pointer to the mapped memory. A NULL pointer indicates
failure.

ption:

AcpiOsMapMemory
ACPI_PHYSICA
ACPI_SI Length)

PhysicalAddress
caller’s address space.

Length

RETURN VALUE

LogicalAddress

EXCEPTIONS

NULL is returned if there was a mapping failure.

Functional Descri

This maps a physical address into the ca pointer is returned. function ller’s address space. A logical

 185

ACPI Component Architecture Programmer Reference

9.2.7 AcpiOsUnmapMemory

Remove a physical to logical memory mapping.

void
AcpiOsUnmapMemory (

dress vious call to
AcpiOsMapMemory.

Length The amount of memory that was mapped. This value must
be identical to the value used in the call to
AcpiOsMapMemory.

RETU ALUE

None

Functional Description:

void *LogicalAddress,
ACPI_SIZE Length)

PARAMETERS

LogicalAd The logical address that was returned from a pre

RN V

This function deletes a mapping that was created by AcpiOsMapMemory.

ddress 9.2.8 AcpiOsGetPhysicalA

Translate a logical address to a physical address.

ACPI_STATUS
Address (

dress

Address .

AE_ERROR An error occurred in the translation system call.

AE_BAD_PARAMETER of the parameters are NULL, no translation was
attempted.

AcpiOsGetPhysical
void *LogicalAddress,
ACPI_PHYSICAL_ADDRESS *PhysicalAddress)

PARAMETERS

LogicalAd The logical address to be translated.

Physical The physical memory address of the logical address

RETURN VALUE

AE_OK The logical address translation was successfully.

One or both

186

 ACPI Component Architecture Programmer Reference

Functional Description:

This function translates a logical address to its physical address location.

9.2.9 AcpiOsAllocate

Allocate memory from the dynamic memory pool.

void *
A

Amount of memory to allocate.

ry A pointer to the allocated memory. A NULL pointer is
returned on error.

ion:

cpiOsAllocate (
ACPI_SIZE Size)

PARAMETERS

Size

RETURN VALUE

Memo

Functional Descript

This dynamically allocates me d
to any particular value or values.

9.2.10 AcpiOsFree

function mory. The returned memory is not assumed to be initialize

Free previously allocated memory.

void
AcpiOsFree (

void *Memory)

PARAMETERS

A pointer to the memory to be freed.

RE

ption:

Memory

TURN VALUE

None

Functional Descri

Thi on frees memory that was prev ate. s functi iously allocated via AcpiOsAlloc

 187

ACPI Component Architecture Programmer Reference

9.2.11 AcpiOsReadable

Check if a memory region is readable.

BO
AcpiOsReadable (

*Memory
Length)

PARAMETERS

A pointer to the memory region to be checked.

T

RETURN VALUE

If without faults.

FALSE If e region are unreadable.

Functional Description:

OLEAN

void
ACPI_SIZE

Memory

Length he length of the memory region, in bytes.

TRUE the entire memory region is readable

on or more bytes within the

This function validates that a pointer to a memory region is valid and the entire region is readable.
Used to validate input parameters to the ACPICA subsystem.

9.2.12 AcpiOsWritable

Check if a memory region is writable (and readable).

BOOLEAN
sWritable (

*Memory,

The length of the memory region, in bytes.

RE VALUE

If the entire memory region is both readable and writable
without faults

ble.

AcpiO
void
ACPI_SIZE Length)

PARAMETERS

Memory A pointer to the memory region to be checked.

Length

TURN

TRUE

FALSE If one or more bytes within the region are unreadable or
unwrita

188

 ACPI Component Architecture Programmer Reference

Functional Description:

Th is valid and the entire region is both
w to the ACPICA subsystem..

9.3 ading and Scheduling Services

9.3.1 AcpiOsGetThreadId

is function validates that a pointer to a memory region
ritable and readable. Used to validate input parameters

Multithre

Ob the currently executain the ID of ting thread.

ACPI_THREAD_ID
Acp tThreadId (

e currently
executing thread. For single threaded implementations, a
constant integer is acceptable. The value 0xFFFFFFFF (-1)

iOsGe
void)

PARAMETERS

None

RETURN VALUE

ThreadId A unique value that represents the ID of th

is reserved and must not be returned by this interface.

Functional Description:

This function returns the ID of the currentl
be unique to the executing thread.

y executing thread. The value must be non-zero and must

9.3.2 AcpiOsExecute

Schedule a procedure for deferred execution.

ACPI_STATUS
AcpiOsExecute (

ACPI_EXE Type,
ACPI_OSD Function,

*Contex

CUTE_TYPE
_EXEC_CALLBACK

void t)

OSL_GLOBAL_LOCK_HANDLER

PARAMETERS

Type Type of the callback function:

OSL_NOTIFY_HANDLER
OSL_GPE_HANDLER

 189

ACPI Component Architecture Programmer Reference

OSL_DEBUGGER_THREAD
OSL_EC_POLL_HANDLER

Address of the procedure to execute.

Exception code that indicates success or reason for
failure.

E

AE_OK The procedure was successfully queued for execution by
the host operating system. This does not indicate that the
procedure has actually executed, however.

g is true:

• The Priority is invalid.

er is NULL.

ion:

OSL_EC_BURST_HANDLER

Function

Context A context value to be passed to the called procedure.

RETURN VALUE

Status

XCEPTIONS

AE_BAD_PARAMETER At least one of the followin

• The Function point

Functional Descript

Thi n queues a procedure for later scheduling and execution.

9.3.3 AcpiOsSleep

s functio

Suspend the running task (course granularity).

void
A

nds)

 in milliseconds.

RETURN VALUE

None

Fun escription:

cpiOsSleep (
UINT64 Milliseco

PARAMETERS

Milliseconds The amount of time to sleep,

ctional D

This function sleeps for the specified tim
time. The sleep granularity is one millis

e. Execution of the running thread is suspended for this
econd.

190

 ACPI Component Architecture Programmer Reference

9.3.4 AcpiOsStall

Wai short amount of time (finet for a granularity).

void
Acp (

The amount of time to delay, in microseconds.

Functi

iOsStall
UINT32 Microseconds)

PARAMETERS

Microseconds

RETURN VALUE

None

onal Description:

This function waits for the specified time. Execution of the running thread is not suspended for this
 is one microsecond.

9.4 clusion and Synchronization
Thr onization and locking.

ST perform parameter validation of the input handle to at least the extent of
detecting a null handle and returning the appropriate exception.

9.4.1 AcpiOsCreateMutex

time. The time granularity

Mutual Ex
ead synchr

These interfaces MU

Create a mutex object.

ACPI_STATUS
AcpiOsCreateMutex (

ACPI_MUTEX *OutHandle)

PARAMETERS

A pointer to a location where a handle to the mutex is to be

RE

Exception code that indicates success or reason for failure.

EX

OutHandle
returned.

TURN VALUE

Status

CEPTIONS

AE_OK The mutex was successfully created.

 191

ACPI Component Architecture Programmer Reference

AE_BAD_P The OutHandle pointer is NULL. ARAMETER

AE_NO_MEMORY Insufficient memory to create the mutex.

Functional Description:

Create a mutex object. Some host operating systems have separate mutex interfaces that can be used
 and the other OSL mutex interfaces. If not, the the mutex interfaces can be
 semaphore interfaces.

9.4.2 Ac

to implement this
implemented with

piOsDeleteMutex

Delete a mutex object.

void
Acp

ACPI_MUTEX Handle)

iOsDeleteMutex (

PARAMETERS

Handle The mutex to be deleted.

RETURN VALUE

None.

Functional Description:

D

9.4.3 AcpiOsAcquireMutex

eletes a mutex object.

Acquire ownership of a mutex object.

ACPI_STATUS
Acp ireMutex (

UTEX
UINT16 Timeout

How long the caller is willing to wait for the requested
nds. A value of
d is willing to

iOsAcqu
ACPI_M Handle,

)

PARAMETERS

Handle The mutex to be acquired.

Timeout
units. The timeout is specified in milliseco
0xFFFF (-1) indicates that the calling threa
wait forever.

192

 ACPI Component Architecture Programmer Reference

RETURN VALUE

Status Exception code that indicates success or reason for failure.

AE_OK The mutex was successfully acquired.

The Handle pointer is NULL.

iption:

EXCEPTIONS

AE_BAD_PARAMETER

Functional Descr

Acq

9.4.4 AcpiOsReleaseMutex

uire ownership of a mutex object.

Release ownership of a mutex object.

void
Acp leaseMutex (

UTEX

PARAMETERS

Handle be released.

iption:

iOsRe
ACPI_M Handle)

The mutex to

RETURN VALUE

None

Functional Descr

Release tex object. The mutex must Mutex.

9.4.5 Ac eateSemaphor

a mu have be previously acquired via AcpiOsAcquire

piOsCr e

Create a semaphore.

ACPI_STATUS
AcpiOsCreateSemaphore (

MaxUnits,
U
A

PARA

M will be

In The initial number of units to be assigned to the semaphore.

UINT32
INT32 InitialUnits,
CPI_SEMAPHORE *OutHandle)

METERS

axUnits The maximum number of units this semaphore
required to accept.

itialUnits

 193

ACPI Component Architecture Programmer Reference

OutHandle A pointer t
to be return

o a location where a handle to the semaphore is
ed.

RETU

Exception code that indicates success or reason for failure.

EX

AE_OK The semaphore was successfully created.

AMETER At least one of the following is true:

AE_NO_MEMORY Insufficient memory to create the semaphore.

Fun Description:

RN VALUE

Status

CEPTIONS

AE_BAD_PAR

• The InitialUnits is invalid.

• The OutHandle pointer is NULL.

ctional

Create a standard semaphore. The MaxUnits parameter allows the semaphore to be tailored to
 example, a MaxUnits value of one indicates that the semaphore is to be used as a

mutex derlying OS object used to nt than if
Ma reater than one (thus indic eneral purpose
sem of both the mutex and general-
pur

9.4.6 AcpiOsDeleteSemaphor

specific uses. For
. The un implement this semaphore may be differe

xUnits is g ating that the semaphore will be used as a g
aphore.) The ACPICA Core Subsystem creates semaphores

pose variety.

e

Delete a semaphore.

ACPI_STATUS
AcpiOsDeleteSemaphore (

Handle)

PARAMETERS

Handle A handle to a semaphore object that was returned by a
previous call to AcpiOsCreateSemaphore.

Status Exception code that indicates success or reason for failure.

EX

AE_OK was successfully deleted.

METER The Handle is invalid.

ACPI_SEMAPHORE

RETURN VALUE

CEPTIONS

The semaphore

AE_BAD_PARA

194

 ACPI Component Architecture Programmer Reference

Functional Description:

Del phore.

9.4.7 AcpiOsWaitSemaphore

ete a sema

Wait for units from a semaphore.

ACPI_STATUS
AcpiOsWaitSemaphore (

ACPI_SEMAPHORE Handle,
Units,
Timeout)

P

le A handle to a semaphore object that was returned by a
previous call to AcpiOsCreateSemaphore.

ler is requesting.

How long the caller is willing to wait for the requested
units. The timeout is specified in milliseconds. A value of

y received.

The units could not be acquired within the specified time
limit.

tion:

UINT32
UINT16

ARAMETERS

Hand

Units The number of units the cal

Timeout

0xFFFF (-1) indicates that the calling thread is willing to
wait forever.

RETURN VALUE

Status Exception code that indicates success or reason for failure.

EXCEPTIONS

AE_OK The requested units were successfull

AE_BAD_PARAMETER The Handle is invalid.

AE_TIME

Functional Descrip

Wait for the specified number of units from a semaphore.

Im

of this interface must support timeout values of zero. This is frequently
used to determine if a call to the interface with an actual timeout value would block. In this

tSemaphore must return either an E_OK if the units were obtained
 AE_TIME to indicate that the requested units are not available. Single

K for this interface.

2. The implementation must also support arbitrary timed waits in order for ASL functions such
as Wait () to work properly.

plementation notes:

1. The implementation

case, AcpiOsWai
immediately, or an
threaded OSL implementations should always return AE_O

 195

ACPI Component Architecture Programmer Reference

9.4.8 AcpiOsSignalSemaphore

Send units to a semaphore.

ACPI_STATUS
Acp

UINT32

Units The number of units to send to the semaphore.

Exception code that indicates success or reason for failure.

PTIONS

essfully signaled.

.

The semaphore has already been signaled MaxUnits times.
No more units can be accepted.

Functional Description:

iOsSignalSemaphore (
ACPI_SEMAPHORE Handle,

Units)

PARAMETERS

Handle A handle to a semaphore object that was returned by a
previous call to AcpiOsCreateSemaphore.

RETURN VALUE

Status

EXCE

AE_OK The semaphore was succ

AE_BAD_PARAMETER The Handle is invalid

AE_LIMIT

Sen quested number of units to a
AE_OK for this interface.

9.4.9 AcpiOsCreateLock

d the re semaphore. Single threaded OSL implementations should
always return

Create a spin lock.

ACPI_STATUS
AcpiOsCreateLock (

andle)

PARAMETERS

OutHandle A pointer to a location where a handle to the lock is to be
returned.

RETURN VALUE

Status Exception code that indicates success or reason for failure.

ACPI_SPINLOCK *OutH

196

 ACPI Component Architecture Programmer Reference

EXCEPTIONS

AE_OK The semaphore was successfully created.

AE_BAD_PARAMETER The OutHandle pointer is NULL.

ORY Insufficient memory to create the semaphore.

Fun

AE_NO_MEM

ctional Description:

Cre is requirement
for mutual exclusion on data structures that are accessed by both interrupt handlers and normal code.

9.4.10 Ac

ate a spin lock. Spin locks are used in the ACPICA subsystem only when there

piOsDeleteLock

De n lock. lete a spi

void

 Handle)

PARAMETERS

A handle to a lock object that was returned by a previous

RE

None c or reason for failure.

EXCEPTIONS

ER The Handle is invalid.

AcpiOsDeleteLock (
ACPI_HANDLE

Handle
call to AcpiOsCreateLock.

TURN VALUE

Ex eption code that indicates success

AE_OK The Lock was successfully deleted.

AE_BAD_PARAMET

Functional Description:

Delete a spin lock.

9.4.11 AcpiOsAcquireLock

Acquire a spin lock.

ACPI_CPU_FLAGS
AcpiOsAcquireLock (

ACPI_SPINLOCK Handle)

 197

ACPI Component Architecture Programmer Reference

PARAMETERS

Handle A handle to a lock object that wa
call to AcpiOsCreateLock.

s returned by a previous

 VALUE

 when the lock is
released.

Functional Description:

RETURN

Flags Platform-dependent CPU flags. To be used

Wait for and acquire a spin lock. May b dlers, and Fixed
event handlers. Single threaded OSL implementations should always return AE_OK for this

9.4.12 AcpiOsReleaseLock

e called from interrupt handlers, GPE han

interface.

Release a spin lock.

void

ACPI_SPINLOCK Handle,

ect that was returned by a previous
ock.

CPU flags that were returned from AcpiOsAcquireLock

RETURN VALUE

Exception code that indicates success or reason for failure.

Fun

AcpiOsReleaseLock (

ACPI_CPU_FLAGS Flags)

PARAMETERS

Handle A handle to a lock obj
call to AcpiOsCreateL

Flags

None

ctional Description:

Release a previouslly acquired spin lock. Single threaded OSL implementations should always
return AE_OK for this interface.

9.5 Interrupt Handling
allation and removal. Interrupt handler inst

198

 ACPI Component Architecture Programmer Reference

9.5.1 Ac uptHpiOsInstallInterr andler

Install a handler for a hardware interrupt level.

ACPI_STATUS
AcpiOsInstallInterruptHandler (

UINT32 InterruptLevel,
DLER

void *Context)

PARAMETERS

InterruptLevel Interrupt level that the handler will service.

ure.

 At least one of the following is true:

The InterruptNumber is invalid.

The Handler pointer is NULL.

AE_ALREADY_EXISTS A handler for this interrupt level is already installed.

ACPI_OSD_HAN Handler,

Handler Address of the handler.

Context A context value that is passed to the handler when the
interrupt is dispatched.

RETURN VALUE

Status Exception code that indicates success or reason for fail

EXCEPTIONS

AE_OK The handler was successfully installed.

AE_BAD_PARAMETER

•

•

Functional Description:

Thi ACPI driver must
inst ich it owns. The
inte

s function installs an interrupt handler for a hardware interrupt level. The
all an interrupt handler to service the SCI (System Control Interrupt) wh
rrupt level for the SCI interrupt is obtained from the ACPI tables.

 199

ACPI Component Architecture Programmer Reference

9.5.1.1 ependent Interrupt Handlers Interface to OS-ind

Definition of the interface for OS-independent interrupt handlers.

typedef
UINT32 (*ACPI_OSD_HANDLER) (

text)

PARAMETERS

Context The Context value that was passed as a parameter to the
AcpiOsInstallInterruptHandler function.

e following manifest

ACPI_INTERRUPT_HANDLED

ED

Fun Description:

void *Con

RETURN VALUE

HandlerActionTaken The handler should return one of th
constants:

ACPI_INTERRUPT_NOT_HANDL

ctional

The ependent interrupt handler m rapper” that
ices Layer. It is the responsibility of the OS Services Layer to manage the

er(s), and dispatch interrupts to the handler(s) appropriately.

9.5.2 AcpiOsRemoveInterruptHandler

OS-ind ust be called from an OSL interrupt handler “w
exists within the OS Serv
installed interrupt handl

Remove an interrupt handler.

ACPI_STATUS

rruptNumber,
dler)

Interrupt number that the handler is currently servicing.

Status Exception code that indicates success or reason for failure.

EXCEPTIONS

AE_OK The handler was successfully removed.

AcpiOsRemoveInterruptHandler (
UINT32 Inte
ACPI_OSD_HANDLER Han

PARAMETERS

InterruptNumber

Handler Address of the handler that was previously installed.

RETURN VALUE

200

 ACPI Component Architecture Programmer Reference

AE_BAD_PARAMETER At least one of the following is true:

• The InterruptNumber is invalid.

• The Handler pointer is NULL.

• The Handler address is not the same as the one that is
installed.

 interrupt level.

Functional Description:

AE_NOT_EXIST There is no handler installed for this

Remove a previously installed hardware interrupt handler.

9.6 M ry Access and
These i s allow the OS Services Layer to anner that is

 OS. The actual hardware I/O instructions may execute within the OS Services
calls may be translated into additional OS calls — such as calls to a Hardware

Abs Component.

These calls are used by the ACPICA for small amounts of data transfer only, such as memory
sfers (such as reading the ACPI tables), the ACPICA code will call

AcpiOsMapMemory instead.

E_SYSTEM_MEMORY
(SystemMemory) space.

emo Memory Mapped I/O
nterface implement memory access in any m

acceptable to the host
Layer itself, or these

traction

mapped I/O. For large tran

Supports Operation Region access to the ACPI_ADR_SPAC

9.6.1 AcpiOsReadMemory

Read a value from a memory location.

ACPI_STATUS
Acp

UINT32 Width)

PARAMETERS

Address Memory address to be read.

Value A pointer to a location where the data is to be returned.

Width The memory width in bits, either 8, 16, or 32.

RETURN VALUE

Status Exception code that indicates success or reason for failure.

iOsReadMemory (
ACPI_PHYSICAL_ADDRESS Address,
UINT32 *Value,

 201

ACPI Component Architecture Programmer Reference

Functional Description:

This function is used to read a data from the specified memory location. The data is zero extended to
fill the 32-bit return value even if the bit width of the location is less than 32. In other words, a full
32 bits are written to the return Value regardless of the number of bits that were read from the
memory at Address. The caller must ensure that no data will be overwritten by this call.

9.6.2 AcpiOsWriteMemory

Write a value to a memory location.

ACPI_STATUS
AcpiOsWriteMemory (

ACPI_PHYSICAL_ADDRESS Address,
UINT32 Value,
UINT32 Width)

PARAMETERS

Address Memory address where data is to be written.

Value Data to be written to the memory location.

Width The memory width in bits, either 8, 16, or 32.

RETURN VALUE

Status Exception code that indicates success or reason for failure.

Functional Description:

This function writes data to the specified memory location. If the bit width of the memory location
is less than 32, only the lower significant bits of the Value parameter are written.

9.7 Port Input/Output
These interfaces allow the OS Services Layer to implement hardware I/O services in any manner
that is acceptable to the host OS. The actual hardware I/O instructions may execute within the OS
Services Layer itself, or these calls may be translated into additional OS calls — such as calls to a
Hardware Abstraction Component.

Supports Operation Region access to the ACPI_ADR_SPACE_SYSTEM_IO (SystemIO) space.

The ACPICA subsystem checks each request against a list of protected I/O ports before calling these
interfaces.

202

 ACPI Component Architecture Programmer Reference

9.7.1 AcpiOsReadPort

Read a value from an input port.

ACPI_STATUS
AcpiOsReadPort (

ACPI_IO_ADDRESS Address,
UINT32 *Value,
UINT32 Width)

PARAMETERS

Address Hardware I/O port address to read from.

Value A pointer to a location where the data is to be returned.

Width The port width in bits, either 8, 16, or 32.

RETURN VALUE

Status Exception code that indicates success or reason for failure.

Functional Description:

This function reads data from the specified input port. The data is zero extended to fill the 32-bit
return value even if the bit width of the port is less than 32.

9.7.2 AcpiOsWritePort

Write a value to an output port.

ACPI_STATUS
AcpiOsWritePort (

ACPI_IO_ADDRESS Address,
UINT32 Value,
UINT32 Width)

PARAMETERS

Address Hardware I/O port address to read from.

Value The value to be written.

Width The port width in bits, either 8, 16, or 32.

RETURN VALUE

Status Exception code that indicates success or reason for failure.

 203

ACPI Component Architecture Programmer Reference

Functional Description:

This function writes data to the specified input port. If the bit width of the port is less than 32, only
the lower significant bits of the Value parameter are written.

9.8 PCI Configuration Space Access
These interfaces allow the OS Services Layer to implement PCI Configuration Space services in any
manner that is acceptable to the host OS. The actual hardware I/O instructions may execute within
the OS Services Layer itself, or these calls may be translated into additional OS calls — such as
calls to a Hardware Abstraction Component.

Supports Operation Region access to the ACPI_ADR_SPACE_PCI_CONFIG (Pci_Config) space.

9.8.1 AcpiOsReadPciConfiguration

Read a value from a PCI configuration register.

ACPI_STATUS
AcpiOsReadPciConfiguration (

ACPI_PCI_ID PciId,
UINT32 Register,
UINT64 *Value,
UINT32 Width)

PARAMETERS

PciId The full PCI configuration space address, consisting of a
segment number, bus number, device number, and function
number.

Register The PCI register address to be read from.

Value A pointer to a location where the data is to be returned.

Width The register width in bits, either 8, 16, 32, or 64.

RETURN VALUE

Status Exception code that indicates success or reason for failure.

Functional Description:

This function reads data from the specified PCI configuration port. The data is zero extended to fill
the 64-bit return value even if the bit width of the location is less than 64.

204

 ACPI Component Architecture Programmer Reference

9.8.2 AcpiOsWritePciConfiguration

Write a value to a PCI configuration register.

ACPI_STATUS
AcpiOsWritePciConfiguration (

ACPI_PCI_ID PciId,
UINT32 Register,
UINT64 Value,
UINT32 Width)

PARAMETERS

PciId The full PCI configuration space address, consisting of a
segment number, bus number, device number, and function
number.

Register The PCI register address to be written to.

Value Data to be written.

Width The register width in bits, either 8, 16, 32, or 64.

RETURN VALUE

Status Exception code that indicates success or reason for failure.

Functional Description:

This function writes data to the specified PCI configuration port. If the bit width of the register is
less than 64, only the lower significant bits of the Value are written.

9.8.3 AcpiOsDerivePciId

Derive and update a PCI ID for a PCI device object and PCI operation region.

ACPI_STATUS
AcpiOsDerivePciId (

ACPI_HANDLE DeviceHandle,
ACPI_HANDLE PciRegionHandle,
ACPI_PCI_ID **PciId)

PARAMETERS

DeviceHandle A handle to the PCI device.

PciRegionHandle A handle to the PCI configuration space Operation Region.

PciId Input: The full PCI ID (The full PCI configuration space
address, consisting of a segment number, bus number,
device number, and function number) as obtained from
control methods within the BIOS ACPI tables.

 205

ACPI Component Architecture Programmer Reference

 Output: Where the derived PCI ID is returned. Some or all
of the PCI ID subfields may be updated by this function.

RETURN VALUE

Status Exception code that indicates success or reason for failure.

Functional Description:

This function derives a full PCI ID for a PCI device, consisting of a Segment number, a Bus
number, and a Device number.

The PCI hardware dynamically configures PCI bus numbers depending on the bus topology
discovered during system initialization. The AcpiOsDerivePciId function is invoked by the ACPICA
subsystem during configuration of a PCI_Config Operation Region in order to (possibly) update the
Bus number in the PciId with the actual Bus number as determined by the hardware and operating
system configuration.

The PciId parameter is initially populated by the ACPICA subsystem during the Operation Region
initialization. ACPICA then calls AcpiOsDerivePciId, which is expected to make any necessary
modifications to the Segment, Bus, or Device number PCI ID subfields as appropriate for the
current hardware and OS configuration.

9.9 Formatted Output
These interfaces provide formatted stream output. Used mainly for debug output, these functions
may be redirected to whatever output device or file is appropriate for the host operating system.

9.9.1 AcpiOsPrintf

Formatted stream output.

void ACPI_INTERNAL_VAR_XFACE
AcpiOsPrintf (

const char *Format,
… <variable argument list>)

PARAMETERS

Format A standard print format string.

… Variable printf parameter list.

RETURN VALUE

None.

Functional Description:

This function provides formatted output to an open stream.

206

 ACPI Component Architecture Programmer Reference

9.9.2 AcpiOsVprintf

Formatted stream output.

void
AcpiOsVprintf (

const char *Format,
va_list Args)

PARAMETERS

Format A standard printf format string.

Args A variable parameter list.

RETURN VALUE

None

Functional Description:

This function provides formatted output to an open stream via the va_list argument format.

9.9.3 AcpiOsRedirectOutput

Redirect the debug output.

void
AcpiOsRedirectOutput (

void *Destination)

PARAMETERS

Destination An open file handle or pointer. Debug output will be
redirected to this handle/pointer. The format of this
parameter is OS-specific.

RETURN VALUE

None

Functional Description:

This function redirects the output of AcpiOsPrintf and AcpiOsVprintf to the specified destination.
Usually used to redirect output to a file.

 207

ACPI Component Architecture Programmer Reference

9.10 Miscellaneous

9.10.1 AcpiOsValidateInterface

Check if an_OSI interface is supported by the host OS.

ACPI_STATUS
AcpiOsValidateInterface (

char *Interface)

PARAMETERS

Interface Requested interface to be validated

RETURN VALUE

Status Exception code that indicates success or reason for failure.

EXCEPTIONS

AE_OK The interface is supported by the host OS.

AE_SUPPORT The interface is not supported by the host.

AE_BAD_PARAMETER The interface parameter is NULL.

Functional Description:

This function matches an interface string to the interfaces supported by the host OS. Strings
originate from an AML call to the _OSI control method. See the description of _OSI in the ACPI
specification for a list of currently defined strings.

9.10.2 AcpiOsGetTimer

Get current value of the system timer

UINT64
AcpiOsGetTimer (

void)

PARAMETERS

None.

RETURN VALUE

TimerValue The current value of the system timer in 100-nanosecond
units.

208

 ACPI Component Architecture Programmer Reference

Functional Description:

This function returns the current value of a fine-granularity 64-bit system timer. This interface is
used to implement the Timer ASL/AML function.

9.10.3 AcpiOsSignal

Break to the debugger or display a breakpoint message.

ACPI_STATUS
AcpiOsSignal (

UINT32 Function,
void *Info)

PARAMETERS

Function Signal to be sent to the host operating system – one of these
manifest constants:

ACPI_SIGNAL_FATAL

ACPI_SIGNAL_BREAKPOINT

RETURN VALUE

Status Exception code that indicates success or reason for failure.

Functional Description:

This function is used to pass various signals and notifications to the host operating system. The
following signals are supported:

ACPI_SIGNAL_FATAL

This signal corresponds to the AML Fatal opcode. It is sent to the host OS only when this opcode is
encountered in the AML stream. The host OS may or may not return control from this signal.

The definition of the Info structure for this signal is as follows:

typedef struct AcpiFatalInfo
{
 UINT32 Type;
 UINT32 Code;
 UINT32 Argument;

} ACPI_SIGNAL_FATAL_INFO;

ACPI_SIGNAL_BREAKPOINT

This signal corresponds to the AML Breakpoint opcode. The OSL implements a “Breakpoint”
operation as appropriate for the host OS. If in debug mode, this interface may cause a break into the
host kernel debugger.

 209

ACPI Component Architecture Programmer Reference

The definition of the Info structure for this signal is as follows:

char *BreakpointMessage;

9.10.4 AcpiOsGetLine

Get a input line of data.

ACPI_STATUS
AcpiOsGetLine (

char *Buffer)

PARAMETERS

Message A message string related to the breakpoint

RETURN VALUE

Status Exception code that indicates success or reason for failure.

Functional Description:

The purpose of this function is to support the ACPI Debugger, and it is therefore optional depending
on whether ACPI debugger support is desired.

210

 ACPI Component Architecture Programmer Reference

10 ACPICA Deployment Guide

10.1 Using the ACPICA Core Subsystem Interfaces

10.1.1 Initialization Sequence

In order to allow the most flexibility for the host operating system, there is no single interface that
initializes the entire ACPICA subsystem. Instead, the subsystem is initialized in stages, at the times
that are appropriate for the host OS. The following example shows the sequence of initialization
calls that must be made; it is up to the host interface (OS Services Layer) to make these calls when
they are appropriate.

1. Initialize all ACPI Code:

Status = AcpiInitializeSubsystem ();

2. Load the ACPI tables from the firmware and build the internal namespace:

Status = AcpiLoadTables ();

3. Complete initialization and put the system into ACPI mode:

Status = AcpiEnableSubsystem ();

10.1.2 ACPICA Initialization Examples

10.1.2.1 Full ACPICA Initialization

ACPI_STATUS
InitializeFullAcpi (void)
{
 ACPI_STATUS Status;

 /* Initialize the ACPICA subsystem */

 Status = AcpiInitializeSubsystem ();
 if (ACPI_FAILURE (Status))
 {
 return (Status);
 }

 /* Initialize the ACPICA Table Manager and get all ACPI tables */

 Status = AcpiInitializeTables (NULL, 16, FALSE);
 if (ACPI_FAILURE (Status))
 {
 return (Status);
 }

 211

ACPI Component Architecture Programmer Reference

 /* Create the ACPI namespace from ACPI tables */

 Status = AcpiLoadTables ();
 if (ACPI_FAILURE (Status))
 {
 return (Status);
 }

 /* Note: Local handlers should be installed here */

 /* Initialize the ACPI hardware */

 Status = AcpiEnableSubsystem (ACPI_FULL_INITIALIZATION);
 if (ACPI_FAILURE (Status))
 {
 return (Status);
 }

 /* Complete the ACPI namespace object initialization */

 Status = AcpiInitializeObjects (ACPI_FULL_INITIALIZATION);
 if (ACPI_FAILURE (Status))
 {
 return (Status);
 }

 return (AE_OK);
}

10.1.2.2 ACPICA Initialization With Early ACPI Table Access

#define ACPI_MAX_INIT_TABLES 16
static ACPI_TABLE_DESC TableArray[ACPI_MAX_INIT_TABLES];

ACPI_STATUS
InitializeAcpiTables (void)
{
 ACPI_STATUS Status;

 /* Initialize the ACPICA Table Manager and get all ACPI tables */

 Status = AcpiInitializeTables (TableArray, ACPI_MAX_INIT_TABLES, TRUE);
 return (Status);
}

ACPI_STATUS
InitializeAcpi (void)
{
 ACPI_STATUS Status;

212

 ACPI Component Architecture Programmer Reference

 /* Initialize the ACPICA subsystem */

 Status = AcpiInitializeSubsystem ();
 if (ACPI_FAILURE (Status))
 {
 return (Status);
 }

 /* Copy the root table list to dynamic memory */

 Status = AcpiReallocateRootTable ();
 if (ACPI_FAILURE (Status))
 {
 return (Status);
 }

 /* Create the ACPI namespace from ACPI tables */

 Status = AcpiLoadTables ();
 if (ACPI_FAILURE (Status))
 {
 return (Status);
 }

 /* Note: Local handlers should be installed here */

 /* Initialize the ACPI hardware */

 Status = AcpiEnableSubsystem (ACPI_FULL_INITIALIZATION);
 if (ACPI_FAILURE (Status))
 {
 return (Status);
 }

 /* Complete the ACPI namespace object initialization */

 Status = AcpiInitializeObjects (ACPI_FULL_INITIALIZATION);
 if (ACPI_FAILURE (Status))
 {
 return (Status);
 }

 return (AE_OK);
}

10.1.3 Shutdown Sequence

The ACPICA Core Subsystem does not absolutely require a shutdown before the system terminates.
It does not hold any cached data that must be flushed before shutdown. However, if the ACPICA
subsystem is to be unloaded at any time during system operation, the subsystem should be shutdown
so that resources that are held internally can be released back to the host OS. These resources
include memory segments, an interrupt handler, and the ACPI hardware itself. To shutdown the
ACPICA Core Subsystem, the following calls should be made:

 213

ACPI Component Architecture Programmer Reference

1. Unload the namespace and free all resources:

Status = AcpiTerminate ();

10.1.4 Traversing the ACPI Namespace (Low Level)

This example demonstrates traversal of the APCI namespace using the low-level Acpi* primitives.
The code is in fact the implementation of the higher-level AcpiWalkNamespace interface, and
therefore this example has two purposes:

1. Demonstrate how the low-level namespace interfaces are used.

2. Provide an understanding of how the namespace walk interface works.

ACPI_STATUS
AcpiWalkNamespace (
 ACPI_OBJECT_TYPE Type,
 ACPI_HANDLE StartHandle,
 UINT32 MaxDepth,
 WALK_CALLBACK UserFunction,
 void *Context,
 void **ReturnValue)
{
 ACPI_HANDLE ObjHandle = 0;
 ACPI_HANDLE Scope;
 ACPI_HANDLE NewScope;
 void *UserReturnVal;
 UINT32 Level = 1;

/* Parameter validation */

 if ((Type > ACPI_TYPE_MAX) ||
 (!MaxDepth) ||
 (!UserFunction))
 {
 return_ACPI_STATUS (AE_BAD_PARAMETER);
 }

 /* Special case for the namespace root object */

 if (StartObject == ACPI_ROOT_OBJECT)
 {
 StartObject = Gbl_RootObject;
 }

 /* Null child means "get first object" */

 ParentHandle = StartObject;
 ChildHandle = 0;
 ChildType = ACPI_TYPE_ANY;
 Level = 1;

 /*
 * Traverse the tree of objects until we bubble back up to where we
 * started. When Level is zero, the loop is done because we have
 * bubbled up to (and passed) the original parent handle (StartHandle)
 */

 while (Level > 0)
 {
 /* Get the next typed object in this scope. Null returned if not found */

 Status = AE_OK;

214

 ACPI Component Architecture Programmer Reference

 if (ACPI_SUCCESS (AcpiGetNextObject (ACPI_TYPE_ANY, ParentHandle, ChildHandle,
 &ChildHandle)))
 {
 /* Found an object, Get the type if we are not searching for ANY */

 if (Type != ACPI_TYPE_ANY)
 {
 AcpiGetType (ChildHandle, &ChildType);
 }

 if (ChildType == Type)
 {
 /* Found a matching object, invoke the user callback function */

 Status = UserFunction (ChildHandle, Level, Context, ReturnValue);
 switch (Status)
 {
 case AE_OK:
 case AE_DEPTH:
 break; /* Just keep going */

 case AE_TERMINATE:
 return_ACPI_STATUS (AE_OK); /* Exit now, with OK status */
 break;

 default:
 return_ACPI_STATUS (Status); /* All others are valid exceptions */
 break;
 }
 }

 /*
 * Depth first search: Attempt to go down another
 * level in the namespace if we are allowed to. Don't go any further if we
 * have reached the caller specified maximum depth or if the user function
 * has specified that the maximum depth has been reached.
 */

 if ((Level < MaxDepth) && (Status != AE_DEPTH))
 {
 if (ACPI_SUCCESS (AcpiGetNextObject (ACPI_TYPE_ANY, ChildHandle,
 0, NULL)))
 {
 /* There is at least one child of this object, visit the object */

 Level++;
 ParentHandle = ChildHandle;
 ChildHandle = 0;
 }
 }
 }

 else
 {
 /*
 * No more children in this object (AcpiGetNextObject failed),
 * go back upwards in the namespace tree to the object's parent.
 */
 Level--;
 ChildHandle = ParentHandle;
 AcpiGetParent (ParentHandle, &ParentHandle);
 }
 }

 return_ACPI_STATUS (AE_OK); /* Complete walk, not terminated by user function */
}

 215

ACPI Component Architecture Programmer Reference

10.1.5 Traversing the ACPI Namespace (High Level)

This example demonstrates the use of the AcpiWalkNamespace interface and other Acpi* interfaces.
It shows how to properly invoke AcpiWalkNamespace and write a callback routine.

This code searches for all device objects in the namespace under the system bus (where most, if not
all devices usually reside.) The callback function always returns NULL, meaning that the walk is not
terminated until the entire namespace under the system bus has been traversed.

Part 1: This is the top-level procedure that invokes AcpiWalkNamespace.

DisplaySystemDevices (void)
{
 ACPI_HANDLE SysBusHandle;

 AcpiNameToHandle (0, NS_SYSTEM_BUS, &SysBusHandle);

 printf ("Display of all devices in the namespace:\n");

 AcpiWalkNamespace (ACPI_TYPE_DEVICE, SysBusHandle, INT_MAX,
 DisplayOneDevice, NULL, NULL);
}

Part 2: This is the callback routine that is repeatedly invoked from AcpiWalkNamespace.

void *
DisplayOneDevice (
 ACPI_HANDLE ObjHandle,
 UINT32 Level,
 void *Context)
{
 ACPI_STATUS Status;
 ACPI_DEVICE_INFO Info;
 ACPI_BUFFER Path;
 char Buffer[256];

 Path.Length = sizeof (Buffer);
 Path.Pointer = Buffer;

 /* Get the full path of this device and print it */

 Status = AcpiHandleToPathname (ObjHandle, &Path);
 if (ACPI_SUCCESS (Status))
 {
 printf ("%s\n", Path.Pointer));
 }

 /* Get the device info for this device and print it */

 Status = AcpiGetDeviceInfo (ObjHandle, &Info);
 if (ACPI_SUCCESS (Status))
 {
 printf (" HID: %.8X, ADR: %.8X, Status: %x\n",
 Info.HardwareId, Info.Address, Info.CurrentStatus));
 }

 return NULL;
}

216

 ACPI Component Architecture Programmer Reference

10.2 Implementing the OS Services Layer

10.2.1 Parameter Validation

In all implementations of the OS Services Layer, the interfaces should adhere to the descriptions in
the document as far as the actual interface parameters as well as the returned exception codes. This
means that the parameter validation is not optional and that the Core Subsystem layer depends on
correct exception codes returned from the OSL.

10.2.2 Memory Management

Implementation of the memory allocation functions should be straightforward. If the host operating
system has several kernel-level memory pools that can be used for allocation, it may be useful to
know some of the dynamic memory requirements of the ACPICA Core Subsystem.

During initialization, the ACPI tables are either mapped from BIOS memory or copied into local
memory segments. Some of these tables (especially the DSDT) can be fairly large, up to about 64K.
The namespace is built from multiple small memory segments, each of a fixed (but configurable)
length. The default namespace table length is 16 entries times about 32 bytes each for a total of 512
bytes per table and per allocation.

During operation, many internal objects are created and deleted while servicing requests. The size of
an internal object is about 32 bytes, and this is the primary run-time memory request size.

Several internal caches are used within the core subsystem to minimize the number of requests to
the memory manager.

10.2.3 Scheduling Services

The intent of the AcpiOsQueueForExecution interface is to schedule another thread. It makes no
difference whether this is a new thread created at the time this call is made, or simply a thread that is
allocated out of a pool of system threads. Only the ACPICA Debugger creates a permanent thread.

10.2.4 Mutual Exclusion and Synchronization

In a single thread environment, the spinlock, mutex, and semaphore interfaces can simply return
AE_OK. In a multiple thread environment, these interfaces must be implemented with real blocking
spinlocks, mutexes, and semaphores since the mutual exclusion support in the core subsystem relies
completely upon the proper implementation of this mechanism and these interfaces.

10.2.5 Interrupt Handling

In order to support the OS-independent interrupt handler that is implemented within the Core
Subsystem, the OSL must provide a local interrupt handler whose interface conforms to the
requirements of the host operating system. This local interrupt handler is a wrapper for the OS-
independent handler; it is the actual handler that is installed for the given interrupt level. The task of
this wrapper is to handle incoming interrupts and dispatch them to the OS-independent handler via
the OS-independent handler interface. When the handler returns, the wrapper performs any
necessary cleanup and exits the interrupt.

 217

ACPI Component Architecture Programmer Reference

10.2.6 Stream I/O

The AcpiOsPrintf and AcpiOsVprintf functions can usually be implemented using a kernel-level
debug print facility. Kernel printf functions usually output data to a serial port or some other special
debug facility. If there is more than one type of debug print routine, use one that can be called from
within an interrupt handler so that Fixed Events and General-Purpose events can be traced.

10.2.7 Hardware Abstraction (I/O, Memory, PCI Configuration)

The intent of the hardware I/O interfaces is to allow these calls to be translated into calls or macros
provided by the host OS for this purpose. However, if the host does not provide a hardware
abstraction service, these functions can be implemented simply and directly via I/O machine
instructions.

218

 ACPI Component Architecture Programmer Reference

11 Tools and Utilities

11.1 iASL Compiler
The iASL compiler is a fully-featured translator for the ACPI Source Language (ASL). As part of
the Intel ACPI Component Architecture, the Intel ASL compiler implements translation for the
ACPI Source Language (ASL) to the ACPI Machine Language (AML).

iASL also includes the ACPICA disassembler, and will disassemble any ACPI table, including both
tables that contain AML (DSDT, SSDT, OEMx) and tables that contain data only (all other ACPI
tables such as FADT, MADT, ECDT, etc.)

The compiler is fully documented in the iASL Compiler User Reference.

Intel ACPI Component Architecture
ASL Optimizing Compiler version 20081031 [Oct 31 2008]
Copyright (C) 2000 - 2008 Intel Corporation
Supports ACPI Specification Revision 3.0a

Usage: iasl [Options] [Files]

General Output:
 -p <prefix> Specify path/filename prefix for all output files
 -vi Less verbose errors and warnings for use with IDEs
 -vo Enable optimization comments
 -vr Disable remarks
 -vs Disable signon
 -w<1|2|3> Set warning reporting level

AML Output Files:
 -s<a|c> Create AML in assembler or C source file (*.asm or *.c)
 -i<a|c> Create assembler or C include file (*.inc or *.h)
 -t<a|c> Create AML in assembler or C hex table (*.hex)

AML Code Generation:
 -oa Disable all optimizations (compatibility mode)
 -of Disable constant folding
 -oi Disable integer optimization to Zero/One/Ones
 -on Disable named reference string optimization
 -r<Revision> Override table header Revision (1-255)

Listings:
 -l Create mixed listing file (ASL source and AML) (*.lst)
 -ln Create namespace file (*.nsp)
 -ls Create combined source file (expanded includes) (*.src)

AML Disassembler:
 -d [file] Disassemble or decode binary ACPI table to file (*.dsl)
 -dc [file] Disassemble AML and immediately compile it
 (Obtain DSDT from current system if no input file)
 -e [f1,f2] Include ACPI table(s) for external symbol resolution
 -2 Emit ACPI 2.0 compatible ASL code
 -g Get ACPI tables and write to files (*.dat)

 219

ACPI Component Architecture Programmer Reference

Help:
 -h Additional help and compiler debug options
 -hc Display operators allowed in constant expressions
 -hr Display ACPI reserved method names

11.2 AcpiExec – User Mode ACPI Execution/Simulation
This utility can be used to load any ACPI tables from file(s), execute control methods, single step
control methods, inspect the ACPI namespace, etc. When generated from source, it contains the
entire ACPICA Core Subsystem including the ACPICA Debugger. All hardware access via the
AML is simulated. All ACPICA debugger commands are available (See the ACPICA Debugger
Reference later in this document.)

Intel ACPI Component Architecture
AML Execution/Debug Utility version 20081031 [Oct 31 2008]

Usage: acpiexec [Options] [InputFile]

Where:
 -? Display this message
 -a Do not abort methods on error
 -b <CommandLine> Batch mode command execution
 -e [Method] Batch mode method execution
 -i Do not run STA/INI methods during init
 -m Display final memory use statistics
 -o <OutputFile> Send output to this file
 -r Disable OpRegion address simulation
 -s Enable Interpreter Slack Mode
 -t Enable Interpreter Serialized Mode
 -v Verbose init output
 -x <DebugLevel> Specify debug output level

11.3 AcpiXtract – Extract ACPI Tables
This utility is used to extract binary ACPI tables from the ASCII output of the acpidump utility
(acpidump is a utility that is part of the PM Tools package.)

Usage: acpixtract [option] <InputFile>

Extract binary ACPI tables from text acpidump output
Default invocation extracts all DSDTs and SSDTs
Version 20081031

Options:
 -a Extract all tables, not just DSDT/SSDT
 -l List table summaries, do not extract
 -s<Signature> Extract all tables named <Signature>

11.4 AcpiSrc – Convert ACPICA Source Code
This utility is used to convert the ACPICA into Linux code format. It can also be used to clean the
ACPICA code by removing extra trailing blanks, etc., and to generate source code statistics.

220

 ACPI Component Architecture Programmer Reference

ACPI Source Code Conversion Utility version 20081031 [Oct 31 2008]

Usage: acpisrc [-c|l|u] [-dsvy] <SourceDir> <DestinationDir>

Where: -c Generate cleaned version of the source
 -l Generate Linux version of the source
 -u Generate Custom source translation

 -d Leave debug statements in code
 -s Generate source statistics only
 -v Verbose mode
 -y Suppress file overwrite prompts

Example output – source code statistics for ACPICA:

ACPI Source Code Conversion Utility version 20081031 [Oct 31 2008]

Source code statistics only
AcpiSrc statistics:

 233 Files processed
 342 Tabs found
 0 Missing if/else braces
 22 Non-ANSI comments found
 159707 Total Lines
 82496 Lines of code
 29508 Lines of non-comment whitespace
 32210 Lines of comments
 3013 Long lines found
 2.8 Ratio of code to whitespace
 2.6 Ratio of code to comments
 51% code, 20% comments, 18% whitespace, 15% headers

 221

ACPI Component Architecture Programmer Reference

12 ACPICA Debugger Reference

12.1 Overview
The ACPICA AML Debugger is an optional subcomponent of the ACPICA Core Subsystem. It can
be operated standalone or in conjunction with (or as an extension of) a native kernel debugger. The
debugger provides the ability to load ACPI tables, dump internal data structures, execute control
methods, disassemble control methods, single step control methods, and set breakpoints within
control methods.

12.2 Supported Environments
The debugger can be executed in a ring 0 (kernel) or ring 3 (application) environment. The
following combinations of debugger and front-end (user-interface) are supported:

• Ring 0 Debugger, Ring 0 Front-End: In this case, the front-end is a host kernel debugger, and
the Debugger operates as an extension to the host debugger.

• Ring 0 Debugger, Ring 3 Front-End. In this mode, the front-end is a ring 3 application that
obtains the command lines from the user and sends them to the debugger executing in Ring 0.
The actual mechanism used for this communication is dependent on the host operating
system.

• Ring 3 Debugger, Ring 3 Front-End. In this mode, the entire ACPICA subsystem (including
the debugger) resides in a Ring 3 application. A single thread can be used for the user
interface, debugger, and AML control method execution. An example of this mode is the
AcpiExec utility.

12.2.1

/Ring3 model of execution is the user mode AcpiExec utility. This
application includes the entire ACPICA subsystem (including the Debugger) and allows the user to
load ACPI tables from files and execute methods contained in the tables.

Of course, hardware and memory access from Ring 3 is very limited. The AcpiExec utility simulates
hardware access.

12.3 Debugger Architecture
The ACPI debugger consists of the following architectural elements:

• A command line interpreter that receives entire command lines from the host, parses them
into commands and parameters, and dispatches the request to the appropriate handler for the
command.

• A group of modules that implement the various debugger commands.

• A group of callback routines that are invoked by the interpreter/dispatcher during the
execution control methods. These callbacks enable the single stepping of control methods and
the display of arguments to each executed control method.

The AcpiExec Utility

An example of the Ring3

222

 ACPI Component Architecture Programmer Reference

When executing in a Ring 0 environment, the debugger initialization creates a separate thread for
the debugger CLI. This threads performs the following tasks until the debugger is shut down:

1. Wait for a command line by calling the AcpiOsGetLine interface

2. Execute the command

All output from the debugger is via the AcpiOsPrint and AcpiOsVprintf interfaces.

The overall architecture of the ACPI Debugger is shown in the diagram below. Note how the
Debugger CLI uses the AcpiOsGetLine interface to obtain user command lines, and how output
from the entire debugger and ACPICA subsystem can be directed to the console, a file, or both via
the implementation of the AcpiOsPrint interface within the OSL layer. Also note how the debugger
and ACPICA subsystem can reside in a different protection ring than the user console support and
file I/O support.

Figure 9. ACPICA Debugger Architecture

OsdPrint()

Console Debugger Command
Line Interpreter

Debugger Command Implementations

ACPI CA Core Subsystem
Debug
Output

File

OS-Dependent Layer

OsdGetLine()

Ring3 or Ring0 Ring3 or Ring0

12.4 Configuration and Installation
The basic idea behind the debugger thread is that it receives a command line from somewhere and
then asynchronously executes it. The command line can come from a ring 3 application (a debugger
front-end), or it can come from the resident kernel debugger (you would install a debugger
extension that forwards command lines to the debugger.)

With this in mind, there are several key components of the debugger:

1. DbInitialize – Initializes the debugger semaphores and creates the debugger thread,
DbExecuteThread

2. DbCommandDispatch – This is the actual command execution code

 223

ACPI Component Architecture Programmer Reference

3. DbExecuteThread – Waits for a command to become available (as indicated by the
MTX_DEBUG_CMD_READY mutex), executes the command, (via DbCommandDispatch),
then signals command completion via the MTX_DEBUG_CMD_COMPLETE mutex.

4. DbUserCommands – An example command loop that must execute in its own thread (this is
the caller thread, not a thread that is part of the debugger). This loop obtains a command line
via AcpiOsGetLine, puts it into the LineBuf buffer, and signals the DbExecuteThread that a
command line is available. It is not necessary to use this procedure, however, if command
lines become available from somewhere besides AcpiOsGetLine.

5. DbSingleStep – Called from the dispatcher just before an AML opcode is executed.
Implements its own command loop that obtains command lines from either the
MTX_DEBUG_CMD_READY mutex (multi-thread mode), or by calling AcpiOsGetLine
directly (single thread mode). Drops out of the loop when the control method is aborted or is
allowed to continue running (perhaps just to the next opcode…)

This is the basic thread model and handshake with the outside world. To integrate the debugger into
a specific environment, it is your responsibility to get command lines to the DbExecuteThread via
the LineBuf and the MTX_DEBUG_CMD_READY mutex. Alternatively, you can just call the
DbCommandDispatch directly if you don’t need an asynchronous debugger thread. Additional
explanation follows.

The AcpiExec Ring3 application uses DbUserCommands to process command lines
(DbUserCommands is actually called from aemain.c). However, if integrating with a kernel
debugger, you will probably want to implement your own mechanism instead of using the
DbUserCommands loop. I would imagine this would entail the following:

1. Install a small extension to the kernel debugger that receives command lines intended for that
extension.

2. Copy the command line to the LineBuf.

3. Signal the DbExecuteThread that a command is available. (MTX_DEBUG_CMD_READY).

4. Wait for the command to complete (MTX_DEBUG_CMD_COMPLETE).

5. Return to the kernel debugger.

If you don’t need the extra debugger thread, you can simply execute commands in the caller’s
context:

1. Install a small extension to the kernel debugger that receives command lines intended for that
extension.

2. Copy the command line to the LineBuf.

3. Call DbCommandDispatch to execute the command directly.

4. Return to the kernel debugger.

The behavior of the debugger can be configured as follows (via the config.h header):

#define DEBUGGER_THREADING DEBUGGER_SINGLE_THREADED

This sets the single thread mode of the debugger.

#define DEBUGGER_THREADING DEBUGGER_MULTI_THREADED

This sets the multi-thread mode of the debugger.

224

 ACPI Component Architecture Programmer Reference

Basically, in multithread mode, we just wait for some other thread to fill the LineBuf with a
command and signal the semaphore. In single thread mode, we explicitly call AcpiOsGetLine to get
a command line.

12.5 Command Overview
There are four classes of commands supported by the debugger:

1. The General-Purpose commands are available in all modes of the debugger. These
commands provide the basic functionality of loading tables, dumping internal data structures,
and starting the execution of control methods.

2. The Namespace Access commands are always available. These commands provide
information about the currently loaded ACPI namespace.

3. The Control Method Execution Commands are available only during the single-step
execution of control methods. These commands allow the display and modification of method
arguments and local variables, control method disassemble, and the setting of method
breakpoints

4. The File I/O Commands are available only if a filesystem is available to the debugger.

12.6 General Purpose Commands

12.6.1 Allocations

Memory allocation status

SYNTAX

- allocations

This command dumps the current status of the dynamic memory allocations, as maintained by the
ACPICA subsystem debug memory allocation tracking mechanism. Primarily used to detect
memory leaks, the mechanism tracks the allocation and freeing of each memory block, and
maintains statistics on the amount of memory allocated, the number of allocations, etc.

12.6.2 Dump

Display objects and memory

SYNTAX

- dump <Address>|<Namepath> [Byte|Word|Dword|Qword]

A generic command to dump all internal ACPI objects and memory. The operand can be a
namespace name, a pointer to an ACPI object, or a pointer to random memory in the current address
space. The command determines the type of ACPI object and decodes it into the appropriate fields

 225

ACPI Component Architecture Programmer Reference

12.6.3 Exit

Terminate

SYNTAX

- exit

Terminate the ACPICA subsystem and exit the debugger.

12.6.4 Help

Get help

SYNTAX

- help

Displays a help screen with the syntax of each command and a short description of each.

12.6.5 History (! And !!)

Command line recall

SYNTAX

- history

- ! <Command Number>

- !!

last few commands. The “!” command can be used to select and re-execute a particular command
from the numbered command buffer, or the “!!” command can be used to simply re-execute the
immediately previous command.

12.6.6 Level

Set debug output level

SYNTAX

- level [<DebugLevel>] [console]

Sets the global debug output level of the ACPICA subsystem for both output directed to a file and
output to the console.

226

 ACPI Component Architecture Programmer Reference

12.6.7 Locks

Display mutex info and status

SYNTAX

- locks

This command displays information and current status of the various mutexes used for internal
synchronization.

12.6.8 Quit

Terminate

SYNTAX

- quit

Terminate the current execution mode. If executing (single stepping) a control method, the method
is immediately aborted with an exception and the debugger returns to the normal command line
mode. If no control method is executing, the ACPICA subsystem is terminated and the debugger
exits.

12.6.9 Stats

Namespace statistics

SYNTAX

- stats [Allocations|Memory|Misc|Objects|Sizes|Stack]

Display namespace statistics that were gathered when the namespace was loaded. This includes
information about the number of objects and their types, the amount of dynamic memory required,
and the number of search operations performed on the namespace database.

SUBCOMMANDS

Allocations: Display a list of current dynamic memory allocations

Memory: Dump internal memory lists (If ACPICA memory cache is configured)

Misc: Namespace search and mutex use statistics

Objects: Summary of namespace objects

Sizes: Memory allocation sizes for each of the internal objects

Stack: Display CPU stack usage

 227

ACPI Component Architecture Programmer Reference

12.6.10 Tables

Display ACPI table info

SYNTAX

- tables

This command displays information about each of the loaded ACPI tables. It uses the internal
AcpiTbPrintTableHeader function.

12.6.11 Unload

Unload table

SYNTAX

- unload <TableSignature> [Instance]

Unload an ACPI Table <Not implemented>

12.7 Namespace Access Commands

12.7.1 BusInfo

Display system bus information

SYNTAX

- businfo

This command displays information about all device objects that have a corresponding _PRT
method. Information includes the _ADR, _HID, _UID, and _CID.

12.7.2 Disassemble

Disassemble a control method

SYNTAX

- disassemble <Method>

This command will dissassemble the input method to the original ASL code.

228

 ACPI Component Architecture Programmer Reference

12.7.3 Event

Generate an ACPI Event

SYNTAX

- event <Value>

Generate an ACPI event to test event handling <NOT IMPLEMENTED>

12.7.4 Find

Find names in the Namespace

SYNTAX

- find <name>

Find an ACPI name or names within the current ACPI namespace. All names that match the given
name are displayed as they are found in the namespace. Names are up to four characters, and
wildcards are supported. A ‘?’ in the name will match any character. Thus, the wildcarded name
“A???” will match all names in the namespace that begin with the letter “A”.

12.7.5 Gpe

Generate a GPE

SYNTAX

- gpe <Block Address> <GPE number>

Generate a GPE at the GPE number within the GPE block specified at the Block Address. Use 0 for
the block address to generate a GPE within the permanent FADT-defined GPE blocks (GPE0 and
GPE1.).

12.7.6 Gpes

Display GPE block information

SYNTAX

- gpes

Display information on all GPE blocks, including the FADT-defined GPE blocks (GPE0 and GPE1)
and all loaded GPE Block Devices.

 229

ACPI Component Architecture Programmer Reference

12.7.7 Integrity

Validate namespace

SYNTAX

- integrity

This command validates the integrity of the entire loaded namespace. It walks the entire namespace
and checks each namespace node for correctness.

12.7.8 Methods

List all control methods

SYNTAX

- methods

Displays a list of all control methods (and their full pathnames) that are contained within the current
ACPI namespace. (Alias for the command “Object Methods”.)

12.7.9 Namespace

Display the loaded ACPI namespace

SYNTAX

- namespace [<Address> | <Namepath>] [Depth]

Dump all or a portion of the current ACPI namespace. If given with no parameter, this command
displays the entire namespace, one named object per line with information about each object. If
given the name of an object or a pointer to an object, it displays the subtree rooted by that object.

12.7.10 Notify

Generate a Notify

SYNTAX

- notify <Namepath> <Value>

Generates a notify on the specified device. This means that the notify handler for the device is
invoked with the parameters specified.

230

 ACPI Component Architecture Programmer Reference

12.7.11 Object

Display typed objects

SYNTAX

- object <Object Type>

Display objects within the namespace of the requested type.

The ObjectType parameter must be one of the following:

 ANY
 INTEGERS
 STRINGS
 BUFFERS
 PACKAGES
 FIELDS
 DEVICES
 EVENTS
 METHODS
 MUTEXES
 REGIONS
 POWERRESOURCES
 PROCESSORS
 THERMALZONES
 BUFFERFIELDS
 DDBHANDLES
 DEBUG
 REGIONFIELDS
 BANKFIELDS
 INDEXFIELDS
 REFERENCES
 ALIAS

12.7.12 Owner

Display namespace by owner ID

SYNTAX

- owner <Owner ID> [Depth]

Display objects within the namespace owned by the requested Owner ID.

 231

ACPI Component Architecture Programmer Reference

12.7.13 Predefined

Display and check all predefined methods/objects

SYNTAX

- predefined

This command displays and validates all predefined methods and objects (names that start with
underscore and are predefined by the ACPI specification.)

The validation checks the input argument count (if object is a control method) against the count
defined in the ACPI spec.

12.7.14 Prefix

Get or Set current prefix

SYNTAX

- prefix [<NamePath>]

Sets the pathname prefix that is prepended to namestrings entered into the debug and execute
commands. This command is the equivalent of the “CD” command.

12.7.15 References

Find all references to an object within the namespace

SYNTAX

- references <Address>

Display all references to the object at the specified address.

12.7.16 Resources

Display device resources

SYNTAX

- resources <Address>

Display resource lists (_PRS, _CRS, etc.) for the Device object at the specified address.

232

 ACPI Component Architecture Programmer Reference

12.7.17 Set N

Set object value

SYNTAX

- set N <NamedObject> <Value>

This command sets the value of a namespace object.

12.7.18 Sleep

Simulate ACPI Sleep/Wake

SYNTAX

- sleep <SleepState>

This command simulates the sleep/wake sequence. SleepState should be an integer, 1-5. The
following ACPICA interfaces are executed:

AcpiEnterSleepStatePrep
AcpiEnterSleepState
AcpiLeaveSleepState

12.7.19 Terminate

Shutdown ACPICA subsystem

SYNTAX

- terminate

Shutdown the ACPICA subsystem, but don’t exit the debugger. This command is useful to find
memory leaks in the form of objects left over after the subsystem deletes the entire namespace and
all known internal objects. Any objects left over after shutdown are displayed and may be examined.

12.7.20 Type

Display object type

SYNTAX

- type <Object>

This command displays the type of a namespace object.

 233

ACPI Component Architecture Programmer Reference

12.8 Control Method Execution Commands
During single stepping of a control method, the following commands are available. The debugger
enters a slightly different command mode (as indicated by the ‘%’ prompt) when single stepping a
control method to indicate that these commands are now available

12.8.1 Arguments

Display Method arguments

SYNTAX

- arguments

- args

Display all arguments to the currently executing control method

12.8.2 Breakpoint

Set control method breakpoint

SYNTAX

- breakpoint <AML Offset>

Set a breakpoint at the AML offset given. When execution reaches this offset, execution is stopped
and the debugger is entered.

12.8.3 Call

Run to next call

SYNTAX

- call

Step execution of the current control method until the next method invocation (call) is encountered.

12.8.4 Debug

Single step a control method

SYNTAX

- debug <Namepath> [Arg0, Arg1,…]

Begin execution of a control method in single step mode. Each AML opcode and its associated
operand(s) is disassembled and displayed before execution. A single carriage return (Enter) single

234

 ACPI Component Architecture Programmer Reference

steps to the next AML opcode. The values of the arguments and the value of the return value (if
any) are displayed for each opcode.

12.8.5 Execute

Execute a control method

SYNTAX

- execute <Namepath> [Arg0, Arg1,…]

Execute a control method. This command begins execution of the named method and lets it run to
completion without single stepping. The return result if any is displayed after execution completes.

12.8.6 Go

Run method to next breakpoint

SYNTAX

- go

Cease single step mode and let the control method run freely until either a breakpoint is reached or
the method terminates.

12.8.7 Information

Info about a control method

SYNTAX

- information

12.8.8 Into

Step into call

SYNTAX

- into

Step into a control method invocation instead of over the call. The default single step behavior is to
step over control method calls, meaning that the call is executed and single stepping resumes after
the call returns. Use this command to single step the execution of a called control method.

 235

ACPI Component Architecture Programmer Reference

12.8.9 List

Disassemble AML code

SYNTAX

- list [<Opcode count>]

Disassemble the AML code of the current control method from the current AML offset for the
length given. Useful for finding interesting places to set breakpoints.

12.8.10 Locals

Display method local variables

SYNTAX

- locals

Display the current values of all of the local variables for the current control method. When stepping
into a control method invocation, the locals of the newly invoked method are displayed during the
time that method is single stepped.

12.8.11 Results

Display method result stack

SYNTAX

- results

Display the current contents of the internal “Result Stack” for the control method.

12.8.12 Set

Set arguments or locals

SYNTAX

- set Arg|Local <ID> <Value>

Set the value of any of a method’s arguments or local variables. ID is 0-7 for method locals and 0-6
for method arguments.

236

 ACPI Component Architecture Programmer Reference

 237

12.8.13 Stop

Stop method

SYNTAX

- stop

Terminate the currently executing control method

12.8.14 Thread

Execute a control method with multiple threads

SYNTAX

- thread <number of threads> <number of loops> <Pathname>

Create the specified number of threads to execute the control method at <Pathname>. Each thread
will execute the method <number of loops> times. The command waits until all threads have
completed before returning.

12.8.15 Trace

Set a method trace

SYNTAX

- trace <method name>

This command sets a trace command that will trace the input method if and when it is executed.
Uses the AcpiDebugTrace interface.

12.8.16 Tree

Display calling tree

SYNTAX

- tree

Display the calling tree of the current method (Displays all nested control method invocations.)

ACPI Component Architecture Programmer Reference

238

12.9 File I/O Commands

12.9.1 Close

Close debug output file

SYNTAX

- close

Close the debug output file, if one is currently open. Using Exit or Quit to terminate the debugger
will automatically close any open file.

12.9.2 Load

Load ACPI table

SYNTAX

- load <Filename>

Load an ACPI table into the namespace from a file.

12.9.3 Open

Open debug output file

SYNTAX

- open <Filename>

Open a file for debug output.

 ACPI Component Architecture Programmer Reference

 239

This page intentionally left blank.

	Contents
	Figures
	Tables
	Introduction
	Document Structure
	Rationale and Justification
	Reference Documents
	Overview of the ACPI Component Architecture

	Architecture Overview
	Overview of the ACPICA Subsystem
	ACPICA Core Subsystem
	Operating System Services Layer
	Relationships Between the Host OS, Core Subsystem, and OSL
	Host Operating System Interaction
	OS Services Layer Interaction
	ACPICA Core Subsystem Interaction

	Architecture of the ACPICA Core Subsystem
	ACPI Table Management
	Early ACPI Table Access
	AML Interpreter
	Namespace Management
	Resource Management
	ACPI Hardware Management
	Event Handling
	Requests from Host OS to ACPICA Subsystem

	Architecture of the OS Services Layer (OSL)
	Types of OSL Services
	Requests from ACPICA Subsystem to OS

	Design Details
	ACPI Namespace Fundamentals
	Named Objects
	Scopes
	Example Namespace Scopes, Names, and Objects

	Predefined Objects
	Logical Namespace Layout

	Execution Model
	Initialization
	Memory Allocation
	Caller Allocates All Buffers
	ACPI Allocates Return Buffers

	Parameter Validation
	Exception Handling
	Multitasking and Reentrancy
	Event Handling
	Fixed Events
	General Purpose Events
	Notify Events

	Address Spaces and Operation Regions
	Installation of Address Space Handlers
	ACPI-Defined Address Spaces

	Policies and Philosophies
	External Interfaces
	Exception Codes
	Memory Buffers

	Subsystem Initialization
	ACPI Table Validation
	Required ACPI Tables

	Major Design Decisions
	Performance versus Code/Data Size
	Object Management – No Garbage Collection

	Implementation Details
	Required Host OS Initialization Sequence
	Bootload and Low Level Kernel Initialization
	ACPICA Subsystem Initialization
	Other OS Initialization
	Device Enumeration, Configuration, and Initialization
	Final OS Initialization

	Required ACPICA Initialization Sequence
	Global Initialization - AcpiInitializeSubsystem
	ACPI Table and Namespace Initialization
	AcpiInitializeTables
	AcpiGetTable, AcpiGetTableHeader, AcpiGetTableByIndex
	AcpiLoadTables
	Internal ACPI Namespace Initialization

	Handler Installation
	Handler Types

	Hardware Initialization - AcpiEnableSubsystem
	ACPI Hardware and Event Initialization

	Object Initialization – AcpiIntializeObjects
	ACPI Device Initialization
	Other ACPI Object Initialization

	Other Operating System ACPI-related Initialization
	Just-in-time Operation Region Initialization
	SystemMemory Region Initialization
	PCI_Config Region Initialization

	System Shutdown - AcpiTerminate

	Multithreading Support
	Reentrancy
	Mutual Exclusion and Synchronization
	Control Method Execution
	Control Method Blocking
	Control Method Execution Rules
	A Simple Multithreading Model
	A More Complex Multithreading Model

	ACPI Global Lock Support
	Obtaining The Global Lock
	Releasing the Global Lock
	Global Lock Interrupt Handler

	Single Thread Environments

	Subsystem Features
	AML Interpreter Slack Mode
	AML Interpreter Math Mode (32-bit or 64-bit)
	Predefined Control Method Validation
	I/O Port Protection
	Debugging Support
	Error and Warning Messages
	Execution Debug Output (ACPI_DEBUG_PRINT Macro)
	Function Tracing (ACPI_FUNCTION_TRACE Macro)
	ACPICA Debugger

	Environmental Support Requirements
	Resource Requirements
	C Library Functions
	Source Code Organization
	System Include Files
	Customization to the Target Environment

	Data Types and Interface Parameters
	ACPICA Interface Parameters
	ACPI Names and Pathnames
	Pointers
	Buffers

	ACPICA Basic Data Types
	UINT64 and COMPILER_DEPENDENT_UINT64
	ACPI_PHYSICAL_ADDRESS
	ACPI_IO_ADDRESS
	ACPI_SIZE
	ACPI_STRING – ASCII String
	ACPI_BUFFER – Input and Output Memory Buffers
	Input Buffer
	Output Buffer

	ACPI_STATUS – Interface Exception Return Codes
	ACPI_HANDLE – Object Handle
	Predefined Handles

	ACPI_OBJECT_TYPE – Object Type Codes
	ACPI_OBJECT – Method Parameters and Return Objects
	ACPI_OBJECT_LIST – List of Objects
	ACPI_EVENT_TYPE – Fixed Event Type Codes
	ACPI_TABLE_HEADER – Common ACPI Table Header

	ACPI Resource Data Types
	PCI IRQ Routing Tables
	Device Resources
	ACPI_RESOURCE_TYPE – Resource Data Types

	ACPICA Exception Codes

	Subsystem Configuration
	Configuration Files
	Component Selection
	ACPI_DISASSEMBLER
	ACPI_DEBUGGER

	Configurable Data Types
	ACPI_SPINLOCK
	ACPI_SEMAPHORE
	ACPI_MUTEX
	ACPI_CPU_FLAGS
	ACPI_THREAD_ID
	ACPI_CACHE_T
	ACPI_UINTPTR_T

	Subsystem Options
	ACPI_USE_SYSTEM_CLIBRARY
	ACPI_USE_STANDARD_HEADERS
	ACPI_DEBUG_OUTPUT
	ACPI_USE_LOCAL_CACHE
	ACPI_DBG_TRACK_ALLOCATIONS
	ACPI_MUTEX_TYPE
	ACPI_MUTEX_DEBUG
	ACPI_SIMPLE_RETURN_MACROS
	ACPI_USE_DO_WHILE_0

	Per-Compiler Configuration
	COMPILER_DEPENDENT_INT64
	COMPILER_DEPENDENT_UINT64
	ACPI_USE_NATIVE_DIVIDE
	ACPI_DIV_64_BY_32 (Short 64-bit Divide)
	ACPI_SHIFT_RIGHT_64 (64-bit Shift)
	ACPI_EXPORT_SYMBOL
	ACPI_EXTERNAL_XFACE
	ACPI_INTERNAL_XFACE
	ACPI_INTERNAL_VAR_XFACE
	ACPI_SYSTEM_XFACE
	ACPI_PRINTF_LIKE
	ACPI_UNUSED_VAR

	Per-Machine Configuration
	ACPI_MACHINE_WIDTH
	ACPI_FLUSH_CPU_CACHE
	ACPI_OS_NAME
	ACPI_ACQUIRE_GLOBAL_LOCK
	ACPI_RELEASE_GLOBAL_LOCK

	Dynamic Configuration
	Interpreter Slack Mode
	ACPI Register Widths
	Serialized Methods
	Wake GPEs
	Creation of_OSI Method

	Subsystem Configuration Constants
	ACPI_CHECKSUM_ABORT
	ACPI_MAX_LOOP_INTERATIONS
	ACPI_MAX_STATE_CACHE_DEPTH
	ACPI_MAX_PARSE_CACHE_DEPTH
	ACPI_MAX_OBJECT_CACHE_DEPTH
	ACPI_MAX_WALK_CACHE_DEPTH

	ACPICA Core Subsystem - External Interface Definition
	ACPICA Subsystem Initialization and Control
	AcpiInitializeSubsystem
	AcpiInstallInitializationHandler
	Interface to User Callback Function

	AcpiEnableSubsystem
	AcpiInitializeObjects
	AcpiSubsystemStatus
	AcpiTerminate

	ACPI Table Management
	AcpiInitializeTables
	AcpiReallocateRootTable
	AcpiFindRootPointer
	AcpiLoadTables
	AcpiGetTableHeader
	AcpiGetTable
	AcpiGetTableByIndex
	AcpiInstallTableHandler
	Interface to Table Event Handlers

	AcpiRemoveTableHandler

	ACPI Namespace Management
	AcpiEvaluateObject
	AcpiEvaluateObjectTyped
	AcpiGetObjectInfo
	AcpiGetNextObject
	AcpiGetParent
	AcpiGetType
	AcpiGetHandle
	AcpiGetName
	AcpiGetDevices
	AcpiAttachData
	AcpiDetachData
	AcpiGetData
	AcpiInstallMethod
	AcpiWalkNamespace
	Interface to User Callback Function

	ACPI Hardware Management
	AcpiEnable
	AcpiDisable
	AcpiReset
	AcpiReadBitRegister
	AcpiWriteBitRegister
	AcpiRead
	AcpiWrite
	AcpiAcquireGlobalLock
	AcpiReleaseGlobalLock
	AcpiGetTimerResolution
	AcpiGetTimerDuration
	AcpiGetTimer

	ACPI Sleep/Wake Support
	AcpiSetFirmwareWakingVector
	AcpiSetFirmwareWakingVector64
	AcpiGetSleepTypeData
	AcpiEnterSleepStatePrep
	AcpiEnterSleepState
	AcpiEnterSleepStateS4Bios
	AcpiLeaveSleepState

	ACPI Fixed Event Management
	AcpiEnableEvent
	AcpiDisableEvent
	AcpiClearEvent
	AcpiGetEventStatus
	AcpiInstallFixedEventHandler
	Interface to Fixed Event Handlers

	AcpiRemoveFixedEventHandler

	ACPI General Purpose Event Management
	AcpiEnableGpe
	AcpiDisableGpe
	AcpiClearGpe
	AcpiSetGpeType
	AcpiGetGpeStatus
	AcpiGetGpeDevice
	AcpiDisableAllGpes
	AcpiEnableAllRuntimeGpes
	AcpiInstallGpeBlock
	AcpiRemoveGpeBlock
	AcpiInstallGpeHandler
	Interface to General Purpose Event Handlers

	AcpiRemoveGpeHandler

	Miscellaneous Handler Support
	AcpiInstallNotifyHandler
	Interface to Notification Event Handlers

	AcpiRemoveNotifyHandler
	AcpiInstallAddressSpaceHandler
	Interface to Address Space Setup Handlers
	Interface to Address Space Handlers
	Context for the Default PCI Address Space Handler

	AcpiRemoveAddressSpaceHandler
	AcpiInstallExceptionHandler
	Interface to Exception Handlers

	ACPI Resource Management
	AcpiGetCurrentResources
	AcpiGetPossibleResources
	AcpiSetCurrentResources
	AcpiGetIRQRoutingTable
	AcpiGetVendorResource
	AcpiResourceToAddress64
	AcpiWalkResources
	Interface to User Callback Function

	Memory Management
	ACPI_ALLOCATE
	ACPI_ALLOCATE_ZEROED
	ACPI_FREE

	Formatted Output
	AcpiInfo and ACPI_INFO
	AcpiWarning and ACPI_WARNING
	AcpiError and ACPI_ERROR
	AcpiException and ACPI_EXCEPTION
	AcpiDebugPrint and ACPI_DEBUG_PRINT
	AcpiDebugPrintRaw and ACPI_DEBUG_PRINT_RAW

	Miscellaneous Utilities
	AcpiFormatException
	AcpiDebugTrace
	AcpiGetSystemInfo
	AcpiGetStatistics
	AcpiPurgeCachedObjects

	Global Variables
	AcpiDbgLevel & AcpiDbgLayer
	AcpiGbl_FADT
	AcpiCurrentGpeCount

	OS Services Layer - External Interface Definition
	Environmental and ACPI Tables
	AcpiOsInitialize
	AcpiOsTerminate
	AcpiOsGetRootPointer
	AcpiOsPredefinedOverride
	AcpiOsTableOverride

	Memory Management
	AcpiOsCreateCache
	AcpiOsDeleteCache
	AcpiOsPurgeCache
	AcpiOsAcquireObject
	AcpiOsReleaseObject
	AcpiOsMapMemory
	AcpiOsUnmapMemory
	AcpiOsGetPhysicalAddress
	AcpiOsAllocate
	AcpiOsFree
	AcpiOsReadable
	AcpiOsWritable

	Multithreading and Scheduling Services
	AcpiOsGetThreadId
	AcpiOsExecute
	AcpiOsSleep
	AcpiOsStall

	Mutual Exclusion and Synchronization
	AcpiOsCreateMutex
	AcpiOsDeleteMutex
	AcpiOsAcquireMutex
	AcpiOsReleaseMutex
	AcpiOsCreateSemaphore
	AcpiOsDeleteSemaphore
	AcpiOsWaitSemaphore
	AcpiOsSignalSemaphore
	AcpiOsCreateLock
	AcpiOsDeleteLock
	AcpiOsAcquireLock
	AcpiOsReleaseLock

	Interrupt Handling
	AcpiOsInstallInterruptHandler
	Interface to OS-independent Interrupt Handlers

	AcpiOsRemoveInterruptHandler

	Memory Access and Memory Mapped I/O
	AcpiOsReadMemory
	AcpiOsWriteMemory

	Port Input/Output
	AcpiOsReadPort
	AcpiOsWritePort

	PCI Configuration Space Access
	AcpiOsReadPciConfiguration
	AcpiOsWritePciConfiguration
	AcpiOsDerivePciId

	Formatted Output
	AcpiOsPrintf
	AcpiOsVprintf
	AcpiOsRedirectOutput

	Miscellaneous
	AcpiOsValidateInterface
	AcpiOsGetTimer
	AcpiOsSignal
	AcpiOsGetLine

	ACPICA Deployment Guide
	Using the ACPICA Core Subsystem Interfaces
	Initialization Sequence
	ACPICA Initialization Examples
	Full ACPICA Initialization
	ACPICA Initialization With Early ACPI Table Access

	Shutdown Sequence
	Traversing the ACPI Namespace (Low Level)
	Traversing the ACPI Namespace (High Level)

	Implementing the OS Services Layer
	Parameter Validation
	Memory Management
	Scheduling Services
	Mutual Exclusion and Synchronization
	Interrupt Handling
	Stream I/O
	Hardware Abstraction (I/O, Memory, PCI Configuration)

	Tools and Utilities
	iASL Compiler
	AcpiExec – User Mode ACPI Execution/Simulation
	AcpiXtract – Extract ACPI Tables
	AcpiSrc – Convert ACPICA Source Code

	ACPICA Debugger Reference
	Overview
	Supported Environments
	The AcpiExec Utility

	Debugger Architecture
	Configuration and Installation
	Command Overview
	General Purpose Commands
	Allocations
	Dump
	Exit
	Help
	History (! And !!)
	Level
	Locks
	Quit
	Stats
	Tables
	Unload

	Namespace Access Commands
	BusInfo
	Disassemble
	Event
	Find
	Gpe
	Gpes
	Integrity
	Methods
	Namespace
	Notify
	Object
	Owner
	Predefined
	Prefix
	References
	Resources
	Set N
	Sleep
	Terminate
	Type

	Control Method Execution Commands
	Arguments
	Breakpoint
	Call
	Debug
	Execute
	Go
	Information
	Into
	List
	Locals
	Results
	Set
	Stop
	Thread
	Trace
	Tree

	File I/O Commands
	Close
	Load
	Open

