

ACPI Component Architecture
Programmer Reference
Core Subsystem, Debugger, and Utilities

Revision 1.21

February 12, 2009

ACPI Component Architecture Programmer Reference

Information in this document is provided in connection with Intel® products. No license, express or implied, by estoppel or otherwise, to any intellectual
property rights is granted by this document. Except as provided in Intel’s Terms and Conditions of Sale for such products, Intel assumes no liability
whatsoever, and Intel disclaims any express or implied warranty, relating to sale and/or use of Intel products including liability or warranties relating to
fitness for a particular purpose, merchantability, or infringement of any patent, copyright or other intellectual property right. Intel products are not
intended for use in medical, life saving, or life sustaining applications.

Intel may make changes to specifications and product descriptions at any time, without notice.

Designers must not rely on the absence or characteristics of any features or instructions marked "reserved" or "undefined." Intel reserves these for
future definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to them.

The <Product Name> may contain design defects or errors known as errata which may cause the product to deviate from published specifications.
Current characterized errata are available on request.

Copyright © 2000 - 2009 Intel Corporation

*Other brands and names are the property of their respective owners.

2 Ref No SC-<xxxx>

 ACPI Component Architecture Programmer Reference

Contents
1 Introduction ... 12

1.1 Document Structure ...12
1.2 Rationale and Justification ...12
1.3 Reference Documents ...13
1.4 Overview of the ACPI Component Architecture...13

2 Architecture Overview.. 15
2.1 Overview of the ACPICA Subsystem...15

2.1.1 ACPICA Core Subsystem... 15
2.1.2 Operating System Services Layer .. 15
2.1.3 Relationships Between the Host OS, Core Subsystem, and OSL.......... 16

2.1.3.1 Host Operating System Interaction ... 16
2.1.3.2 OS Services Layer Interaction .. 17
2.1.3.3 ACPICA Core Subsystem Interaction 17

2.2 Architecture of the ACPICA Core Subsystem..18
2.2.1 ACPI Table Management.. 18
2.2.2 Early ACPI Table Access.. 18
2.2.3 AML Interpreter ... 19
2.2.4 Namespace Management... 19
2.2.5 Resource Management... 19
2.2.6 ACPI Hardware Management... 19
2.2.7 Event Handling.. 20
2.2.8 Requests from Host OS to ACPICA Subsystem..................................... 20

2.3 Architecture of the OS Services Layer (OSL) ..21
2.3.1 Types of OSL Services ... 21
2.3.2 Requests from ACPICA Subsystem to OS... 22

3 Design Details ... 23
3.1 ACPI Namespace Fundamentals...23

3.1.1 Named Objects ... 23
3.1.2 Scopes .. 23

3.1.2.1 Example Namespace Scopes, Names, and Objects 23
3.1.3 Predefined Objects ... 24
3.1.4 Logical Namespace Layout... 24

3.2 Execution Model...25
3.2.1 Initialization ... 25
3.2.2 Memory Allocation .. 26

3.2.2.1 Caller Allocates All Buffers.. 26
3.2.2.2 ACPI Allocates Return Buffers .. 26

3.2.3 Parameter Validation .. 27
3.2.4 Exception Handling ... 27
3.2.5 Multitasking and Reentrancy... 27
3.2.6 Event Handling.. 27

3.2.6.1 Fixed Events.. 28
3.2.6.2 General Purpose Events ... 28
3.2.6.3 Notify Events ... 28

3.2.7 Address Spaces and Operation Regions.. 28
3.2.7.1 Installation of Address Space Handlers 29
3.2.7.2 ACPI-Defined Address Spaces ... 29

3.3 Policies and Philosophies ..30
3.3.1 External Interfaces .. 30

Ref No SC-<xxxx> 3

ACPI Component Architecture Programmer Reference

3.3.1.1 Exception Codes ... 30
3.3.1.2 Memory Buffers ... 30

3.3.2 Subsystem Initialization .. 30
3.3.2.1 ACPI Table Validation ... 30
3.3.2.2 Required ACPI Tables... 31

3.3.3 Major Design Decisions .. 31
3.3.3.1 Performance versus Code/Data Size...................................... 31
3.3.3.2 Object Management – No Garbage Collection 31

4 Implementation Details... 32
4.1 Required Host OS Initialization Sequence...32

4.1.1 Bootload and Low Level Kernel Initialization .. 32
4.1.2 ACPICA Subsystem Initialization.. 32
4.1.3 Other OS Initialization ... 32
4.1.4 Device Enumeration, Configuration, and Initialization 33
4.1.5 Final OS Initialization .. 33

4.2 Required ACPICA Initialization Sequence...33
4.2.1 Global Initialization - AcpiInitializeSubsystem... 33
4.2.2 ACPI Table and Namespace Initialization .. 33

4.2.2.1 AcpiInitializeTables.. 33
4.2.2.2 AcpiGetTable, AcpiGetTableHeader, AcpiGetTableByIndex.. 33
4.2.2.3 AcpiLoadTables... 34
4.2.2.4 Internal ACPI Namespace Initialization................................... 34

4.2.3 Handler Installation ... 34
4.2.3.1 Handler Types ... 34

4.2.4 Hardware Initialization - AcpiEnableSubsystem 35
4.2.4.1 ACPI Hardware and Event Initialization 35

4.2.5 Object Initialization – AcpiIntializeObjects .. 36
4.2.5.1 ACPI Device Initialization .. 36
4.2.5.2 Other ACPI Object Initialization... 37

4.2.6 Other Operating System ACPI-related Initialization 37
4.2.7 Just-in-time Operation Region Initialization .. 37

4.2.7.1 SystemMemory Region Initialization 38
4.2.7.2 PCI_Config Region Initialization.. 38

4.2.8 System Shutdown - AcpiTerminate .. 38
4.3 Multithreading Support...38

4.3.1 Reentrancy.. 38
4.3.2 Mutual Exclusion and Synchronization ... 39
4.3.3 Control Method Execution... 39

4.3.3.1 Control Method Blocking ... 39
4.3.3.2 Control Method Execution Rules... 40
4.3.3.3 A Simple Multithreading Model ... 40
4.3.3.4 A More Complex Multithreading Model 41

4.3.4 ACPI Global Lock Support .. 42
4.3.4.1 Obtaining The Global Lock.. 43
4.3.4.2 Releasing the Global Lock .. 43
4.3.4.3 Global Lock Interrupt Handler ... 44

4.3.5 Single Thread Environments... 44
4.4 Debugging Support ..44

4.4.1 Error and Warning Messages ... 44
4.4.2 Execution Debug Output (ACPI_DEBUG_PRINT Macro) 45
4.4.3 Function Tracing (ACPI_FUNCTION_TRACE Macro) 45
4.4.4 ACPICA Debugger.. 46

4.5 Environmental Support Requirements...46
4.5.1 Resource Requirements ... 46
4.5.2 C Library Functions... 47

4 Ref No SC-<xxxx>

 ACPI Component Architecture Programmer Reference

4.5.3 System Include Files... 47
4.5.3.1 Customization to the Target Environment............................... 48

5 Data Types and Interface Parameters... 49
5.1 ACPICA Interface Parameters ...49

5.1.1 ACPI Names and Pathnames... 49
5.1.2 Pointers ... 49
5.1.3 Buffers... 49

5.2 ACPICA Basic Data Types ..50
5.2.1 UINT64 and COMPILER_DEPENDENT_UINT64.................................. 50
5.2.2 ACPI_PHYSICAL_ADDRESS .. 50
5.2.3 ACPI_IO_ADDRESS .. 50
5.2.4 ACPI_SIZE.. 50
5.2.5 ACPI_INTEGER.. 50
5.2.6 ACPI_STRING – ASCII String .. 50
5.2.7 ACPI_BUFFER – Input and Output Memory Buffers.............................. 51

5.2.7.1 Input Buffer.. 51
5.2.7.2 Output Buffer ... 51

5.2.8 ACPI_STATUS – Interface Exception Return Codes 52
5.2.9 ACPI_HANDLE – Object Handle .. 52

5.2.9.1 Predefined Handles... 52
5.2.10 ACPI_OBJECT_TYPE – Object Type Codes ... 53
5.2.11 ACPI_OBJECT – Method Parameters and Return Objects 53
5.2.12 ACPI_OBJECT_LIST – List of Objects... 54
5.2.13 ACPI_EVENT_TYPE – Fixed Event Type Codes................................... 55
5.2.14 ACPI_TABLE_HEADER – Common ACPI Table Header 55

5.3 ACPI Resource Data Types...55
5.3.1 PCI IRQ Routing Tables ... 55
5.3.2 Device Resources... 56

5.3.2.1 ACPI_RESOURCE_TYPE – Resource Data Types 56
5.4 ACPICA Exception Codes ...58

6 Subsystem Configuration .. 62
6.1 Configuration Files ...62
6.2 Component Selection...62

6.2.1 ACPI_DISASSEMBLER.. 62
6.2.2 ACPI_DEBUGGER ... 62

6.3 Configurable Data Types ...63
6.3.1 ACPI_SPINLOCK ... 63
6.3.2 ACPI_SEMAPHORE... 63
6.3.3 ACPI_MUTEX ... 63
6.3.4 ACPI_CPU_FLAGS .. 63
6.3.5 ACPI_THREAD_ID ... 63
6.3.6 ACPI_CACHE_T... 64
6.3.7 ACPI_UINTPTR_T.. 64

6.4 Subsystem Options..64
6.4.1 ACPI_USE_SYSTEM_CLIBRARY ... 64
6.4.2 ACPI_USE_STANDARD_HEADERS... 64
6.4.3 ACPI_DEBUG_OUTPUT.. 64
6.4.4 ACPI_USE_LOCAL_CACHE.. 64
6.4.5 ACPI_DBG_TRACK_ALLOCATIONS .. 65
6.4.6 ACPI_MUTEX_TYPE.. 65
6.4.7 ACPI_MUTEX_DEBUG .. 65
6.4.8 ACPI_SIMPLE_RETURN_MACROS ... 65
6.4.9 ACPI_USE_DO_WHILE_0 ... 66

Ref No SC-<xxxx> 5

ACPI Component Architecture Programmer Reference

6.5 Per-Compiler Configuration ...66
6.5.1 COMPILER_DEPENDENT_INT64 ... 66
6.5.2 COMPILER_DEPENDENT_UINT64 .. 66
6.5.3 ACPI_USE_NATIVE_DIVIDE ... 67
6.5.4 ACPI_DIV_64_BY_32 (Short 64-bit Divide).. 67
6.5.5 ACPI_SHIFT_RIGHT_64 (64-bit Shift) ... 67
6.5.6 ACPI_EXPORT_SYMBOL.. 68
6.5.7 ACPI_EXTERNAL_XFACE... 68
6.5.8 ACPI_INTERNAL_XFACE.. 68
6.5.9 ACPI_INTERNAL_VAR_XFACE .. 68
6.5.10 ACPI_SYSTEM_XFACE... 68
6.5.11 ACPI_PRINTF_LIKE... 68
6.5.12 ACPI_UNUSED_VAR... 69

6.6 Per-Machine Configuration ..69
6.6.1 ACPI_MACHINE_WIDTH ... 69
6.6.2 ACPI_FLUSH_CPU_CACHE.. 69
6.6.3 ACPI_OS_NAME .. 69
6.6.4 ACPI_ACQUIRE_GLOBAL_LOCK... 70
6.6.5 ACPI_RELEASE_GLOBAL_LOCK... 70

6.7 Dynamic Configuration...71
6.7.1 Interpreter Slack Mode.. 71
6.7.2 ACPI Register Widths ... 72
6.7.3 Serialized Methods ... 72
6.7.4 Wake GPEs... 72
6.7.5 Creation of_OSI Method ... 72

6.8 Subsystem Configuration Constants..73
6.8.1 ACPI_CHECKSUM_ABORT... 73
6.8.2 ACPI_MAX_LOOP_INTERATIONS ... 73
6.8.3 ACPI_MAX_STATE_CACHE_DEPTH ... 73
6.8.4 ACPI_MAX_PARSE_CACHE_DEPTH... 73
6.8.5 ACPI_MAX_OBJECT_CACHE_DEPTH... 73
6.8.6 ACPI_MAX_WALK_CACHE_DEPTH... 73

7 ACPICA Core Subsystem - External Interface Definition.. 75
7.1 ACPICA Subsystem Initialization and Control ...75

7.1.1 AcpiInitializeSubsystem .. 75
7.1.2 AcpiInstallInitializationHandler .. 76

7.1.2.1 Interface to User Callback Function .. 76
7.1.3 AcpiEnableSubsystem.. 77
7.1.4 AcpiInitializeObjects.. 78
7.1.5 AcpiSubsystemStatus ... 79
7.1.6 AcpiTerminate... 79

7.2 ACPI Table Management...81
7.2.1 AcpiInitializeTables ... 81
7.2.2 AcpiReallocateRootTable ... 82
7.2.3 AcpiFindRootPointer ... 82
7.2.4 AcpiLoadTables .. 83
7.2.5 AcpiGetTableHeader .. 84
7.2.6 AcpiGetTable .. 85
7.2.7 AcpiGetTableByIndex ... 86
7.2.8 AcpiInstallTableHandler .. 87

7.2.8.1 Interface to Table Event Handlers... 87
7.2.9 AcpiRemoveTableHandler .. 88

7.3 ACPI Namespace Management ..90
7.3.1 AcpiEvaluateObject... 90

6 Ref No SC-<xxxx>

 ACPI Component Architecture Programmer Reference

7.3.2 AcpiEvaluateObjectTyped... 94
7.3.3 AcpiGetObjectInfo... 95
7.3.4 AcpiGetNextObject ... 97
7.3.5 AcpiGetParent... 98
7.3.6 AcpiGetType ... 99
7.3.7 AcpiGetHandle.. 100
7.3.8 AcpiGetName.. 101
7.3.9 AcpiGetDevices .. 103
7.3.10 AcpiAttachData ... 104
7.3.11 AcpiDetachData .. 105
7.3.12 AcpiGetData.. 105
7.3.13 AcpiWalkNamespace.. 106

7.3.13.1 Interface to User Callback Function 108
7.4 ACPI Hardware Management ..109

7.4.1 AcpiEnable.. 109
7.4.2 AcpiDisable ... 109
7.4.3 AcpiReset.. 110
7.4.4 AcpiReadBitRegister... 111
7.4.5 AcpiWriteBitRegister ... 112
7.4.6 AcpiRead... 113
7.4.7 AcpiWrite... 114
7.4.8 AcpiAcquireGlobalLock... 114
7.4.9 AcpiReleaseGlobalLock.. 115
7.4.10 AcpiGetTimerResolution ... 116
7.4.11 AcpiGetTimerDuration .. 116
7.4.12 AcpiGetTimer .. 117

7.5 ACPI Sleep/Wake Support...118
7.5.1 AcpiSetFirmwareWakingVector .. 118
7.5.2 AcpiSetFirmwareWakingVector64 .. 118
7.5.3 AcpiGetSleepTypeData .. 119
7.5.4 AcpiEnterSleepStatePrep ... 120
7.5.5 AcpiEnterSleepState... 120
7.5.6 AcpiEnterSleepStateS4Bios ... 121
7.5.7 AcpiLeaveSleepState.. 122

7.6 ACPI Fixed Event Management...123
7.6.1 AcpiEnableEvent... 123
7.6.2 AcpiDisableEvent.. 124
7.6.3 AcpiClearEvent ... 124
7.6.4 AcpiGetEventStatus.. 125
7.6.5 AcpiInstallFixedEventHandler ... 126

7.6.5.1 Interface to Fixed Event Handlers... 127
7.6.6 AcpiRemoveFixedEventHandler ... 127

7.7 ACPI General Purpose Event Management ..129
7.7.1 AcpiEnableGpe ... 129
7.7.2 AcpiDisableGpe .. 130
7.7.3 AcpiClearGpe.. 131
7.7.4 AcpiSetGpeType... 132
7.7.5 AcpiGetGpeStatus .. 133
7.7.6 AcpiGetGpeDevice ... 134
7.7.7 AcpiDisableAllGpes .. 135
7.7.8 AcpiEnableAllRuntimeGpes.. 135
7.7.9 AcpiInstallGpeBlock .. 136
7.7.10 AcpiRemoveGpeBlock .. 137
7.7.11 AcpiInstallGpeHandler .. 138

7.7.11.1 Interface to General Purpose Event Handlers 139
7.7.12 AcpiRemoveGpeHandler .. 139

Ref No SC-<xxxx> 7

ACPI Component Architecture Programmer Reference

7.8 Miscellaneous Handler Support ...141
7.8.1 AcpiInstallNotifyHandler.. 141

7.8.1.1 Interface to Notification Event Handlers................................ 142
7.8.2 AcpiRemoveNotifyHandler.. 143
7.8.3 AcpiInstallAddressSpaceHandler.. 144

7.8.3.1 Interface to Address Space Setup Handlers......................... 145
7.8.3.2 Interface to Address Space Handlers 146
7.8.3.3 Context for the Default PCI Address Space Handler 147

7.8.4 AcpiRemoveAddressSpaceHandler ... 147
7.8.5 AcpiInstallExceptionHandler ... 148

7.8.5.1 Interface to Exception Handlers .. 149
7.9 ACPI Resource Management ..150

7.9.1 AcpiGetCurrentResources.. 150
7.9.2 AcpiGetPossibleResources .. 151
7.9.3 AcpiSetCurrentResources .. 152
7.9.4 AcpiGetIRQRoutingTable ... 153
7.9.5 AcpiGetVendorResource .. 154
7.9.6 AcpiResourceToAddress64 .. 155
7.9.7 AcpiWalkResources.. 155

7.9.7.1 Interface to User Callback Function 156
7.10 Memory Management ..158

7.10.1 ACPI_ALLOCATE... 158
7.10.2 ACPI_ALLOCATE_ZEROED.. 159
7.10.3 ACPI_FREE .. 159

7.11 Formatted Output ...160
7.11.1 AcpiInfo and ACPI_INFO.. 160
7.11.2 AcpiWarning and ACPI_WARNING.. 161
7.11.3 AcpiError and ACPI_ERROR.. 162
7.11.4 AcpiException and ACPI_EXCEPTION.. 163
7.11.5 AcpiDebugPrint and ACPI_DEBUG_PRINT... 164
7.11.6 AcpiDebugPrintRaw and ACPI_DEBUG_PRINT_RAW 166

7.12 Miscellaneous Utilities..166
7.12.1 AcpiFormatException.. 166
7.12.2 AcpiDebugTrace ... 167
7.12.3 AcpiGetSystemInfo ... 168
7.12.4 AcpiGetStatistics... 169
7.12.5 AcpiPurgeCachedObjects... 170

7.13 Global Variables...170
7.13.1 AcpiDbgLevel & AcpiDbgLayer... 170
7.13.2 AcpiGbl_FADT .. 171
7.13.3 AcpiCurrentGpeCount... 171

8 OS Services Layer - External Interface Definition ... 172
8.1 Environmental and ACPI Tables..172

8.1.1 AcpiOsInitialize ... 172
8.1.2 AcpiOsTerminate .. 173
8.1.3 AcpiOsGetRootPointer.. 173
8.1.4 AcpiOsPredefinedOverride ... 174
8.1.5 AcpiOsTableOverride.. 174

8.2 Memory Management ..176
8.2.1 AcpiOsCreateCache ... 176
8.2.2 AcpiOsDeleteCache.. 177
8.2.3 AcpiOsPurgeCache .. 177
8.2.4 AcpiOsAcquireObject.. 178
8.2.5 AcpiOsReleaseObject... 178

8 Ref No SC-<xxxx>

 ACPI Component Architecture Programmer Reference

8.2.6 AcpiOsMapMemory .. 179
8.2.7 AcpiOsUnmapMemory.. 180
8.2.8 AcpiOsGetPhysicalAddress .. 180
8.2.9 AcpiOsAllocate.. 181
8.2.10 AcpiOsFree ... 181
8.2.11 AcpiOsReadable ... 182
8.2.12 AcpiOsWritable ... 182

8.3 Multithreading and Scheduling Services..183
8.3.1 AcpiOsGetThreadId .. 183
8.3.2 AcpiOsExecute ... 183
8.3.3 AcpiOsSleep ... 184
8.3.4 AcpiOsStall.. 185

8.4 Mutual Exclusion and Synchronization ..185
8.4.1 AcpiOsCreateMutex.. 185
8.4.2 AcpiOsDeleteMutex .. 186
8.4.3 AcpiOsAcquireMutex .. 186
8.4.4 AcpiOsReleaseMutex ... 187
8.4.5 AcpiOsCreateSemaphore ... 187
8.4.6 AcpiOsDeleteSemaphore ... 188
8.4.7 AcpiOsWaitSemaphore... 189
8.4.8 AcpiOsSignalSemaphore.. 190
8.4.9 AcpiOsCreateLock .. 190
8.4.10 AcpiOsDeleteLock .. 191
8.4.11 AcpiOsAcquireLock... 191
8.4.12 AcpiOsReleaseLock.. 192

8.5 Interrupt Handling ..192
8.5.1 AcpiOsInstallInterruptHandler ... 193

8.5.1.1 Interface to OS-independent Interrupt Handlers 194
8.5.2 AcpiOsRemoveInterruptHandler... 194

8.6 Address Space Access ..195
8.6.1 AcpiOsValidateAddress .. 195
8.6.2 Memory and Memory Mapped I/O .. 196

8.6.2.1 AcpiOsReadMemory ... 196
8.6.2.2 AcpiOsWriteMemory ... 197

8.6.3 Port Input/Output... 197
8.6.3.1 AcpiOsReadPort.. 197
8.6.3.2 AcpiOsWritePort.. 198

8.6.4 PCI Configuration Space .. 198
8.6.4.1 AcpiOsReadPciConfiguration.. 199
8.6.4.2 AcpiOsWritePciConfiguration.. 199
8.6.4.3 AcpiOsDerivePciId .. 200

8.7 Formatted Output ...201
8.7.1 AcpiOsPrintf .. 201
8.7.2 AcpiOsVprintf .. 201
8.7.3 AcpiOsRedirectOutput .. 202

8.8 Miscellaneous ..202
8.8.1 AcpiOsValidateInterface ... 202
8.8.2 AcpiOsGetTimer ... 203
8.8.3 AcpiOsSignal... 203
8.8.4 AcpiOsGetLine.. 204

9 ACPICA Deployment Guide ... 206
9.1 Using the ACPICA Core Subsystem Interfaces...206

9.1.1 Initialization Sequence .. 206
9.1.2 ACPICA Initialization Examples.. 206

Ref No SC-<xxxx> 9

ACPI Component Architecture Programmer Reference

9.1.2.1 Full ACPICA Initialization .. 206
9.1.2.2 ACPICA Initialization With Early ACPI Table Access 207

9.1.3 Shutdown Sequence... 208
9.1.4 Traversing the ACPI Namespace (Low Level)...................................... 209
9.1.5 Traversing the ACPI Namespace (High Level)..................................... 211

9.2 Implementing the OS Services Layer ..212
9.2.1 Parameter Validation .. 212
9.2.2 Memory Management ... 212
9.2.3 Scheduling Services ... 212
9.2.4 Mutual Exclusion and Synchronization ... 212
9.2.5 Interrupt Handling ... 212
9.2.6 Stream I/O... 213
9.2.7 Hardware Abstraction (I/O, Memory, PCI Configuration) 213

10 Tools and Utilities ... 214
10.1 iASL Compiler ..214
10.2 AcpiExec – User Mode ACPI Execution/Simulation ..215
10.3 AcpiXtract – Extract ACPI Tables ..215
10.4 AcpiSrc – Convert ACPICA Source Code ...215

11 ACPICA Debugger Reference .. 217
11.1 Overview ..217
11.2 Supported Environments ...217

11.2.1 The AcpiExec Utility .. 217
11.3 Debugger Architecture ...217
11.4 Configuration and Installation ..218
11.5 Command Overview ..220
11.6 General Purpose Commands ..220

11.6.1 Allocations... 220
11.6.2 Dump... 220
11.6.3 Exit .. 221
11.6.4 Help... 221
11.6.5 History (! And !!) .. 221
11.6.6 Level.. 221
11.6.7 Locks... 222
11.6.8 Quit.. 222
11.6.9 Stats .. 222
11.6.10 Tables ... 223
11.6.11 Unload... 223

11.7 Namespace Access Commands..223
11.7.1 BusInfo .. 223
11.7.2 Disassemble.. 223
11.7.3 Event ... 224
11.7.4 Find ... 224
11.7.5 Gpe ... 224
11.7.6 Gpes.. 224
11.7.7 Integrity ... 225
11.7.8 Methods .. 225
11.7.9 Namespace... 225
11.7.10 Notify ... 225
11.7.11 Object.. 226
11.7.12 Owner.. 226
11.7.13 Predefined... 227
11.7.14 Prefix ... 227

10 Ref No SC-<xxxx>

 ACPI Component Architecture Programmer Reference

11.7.15 References.. 227
11.7.16 Resources... 227
11.7.17 Set N ... 228
11.7.18 Sleep ... 228
11.7.19 Terminate .. 228
11.7.20 Type .. 228

11.8 Control Method Execution Commands ..229
11.8.1 Arguments... 229
11.8.2 Breakpoint ... 229
11.8.3 Call .. 229
11.8.4 Debug.. 229
11.8.5 Execute ... 230
11.8.6 Go ... 230
11.8.7 Information .. 230
11.8.8 Into .. 230
11.8.9 List... 231
11.8.10 Locals.. 231
11.8.11 Results .. 231
11.8.12 Set... 231
11.8.13 Stop... 232
11.8.14 Thread... 232
11.8.15 Trace ... 232
11.8.16 Tree... 232

11.9 File I/O Commands ..233
11.9.1 Close ... 233
11.9.2 Load .. 233
11.9.3 Open ... 233

Figures

Figure 1. The ACPI Component Architecture ... 14
Figure 2. ACPICA Subsystem Architecture .. 16
Figure 3. Interaction between the Architectural Components... 17
Figure 4. Internal Modules of the ACPICA Core Subsystem.. 18
Figure 5. Operating System to ACPICA Subsystem Request Flow 21
Figure 6. ACPICA Subsystem to Operating System Request Flow 22
Figure 7. Internal Namespace Structure... 25
Figure 8. Global Lock Architecture.. 43
Figure 9. ACPICA Debugger Architecture .. 218

Tables
Table 1. C Library Functions Used within the Subsystem .. 47
Table 2. ACPI Object Type Codes.. 53
Table 3. Exception Code Values... 58

Ref No SC-<xxxx> 11

ACPI Component Architecture Programmer Reference

1 Introduction

1.1 Document Structure
This document consists of these major sections:

Introduction: Contains a brief overview of the ACPI Component Architecture (CA) and the
interfaces for both the Core Subsystem and OS Services Layers.

1.

Architecture Overview: Overview of the main architectural components and interface to the
host operating system. Summary of the computational and architectural model that is
implemented by the ACPI component architecture.

2.

Design Details: Details concerning design decisions and execution model. 3.

Implementation Details: Details concerning implementation specifics. 4.

Data Types and Interface Parameters: Descriptions of the major data types and data
structures that are exposed via the external interfaces. Other related information required to
use the ACPICA subsystems and interfaces.

5.

Subsystem Configuration: Description of the available configuration options to tailor the
subsystem to different compilers and machines, as well as run-time tuning options.

6.

ACPICA Core Subsystem Interfaces: Detailed description of the programmatic interfaces
that are implemented by the core component of the ACPI Component Architecture.

7.

OS Services Layer Interfaces: Detailed description of the programmatic interfaces that must
be implemented by operating system vendors in the layer that interfaces the ACPICA Core
Subsystem to the host operating system.

8.

ACPICA Deployment Guide: Tips and techniques on how to use the Core Subsystem
interfaces, and how to implement the OSL interfaces to host a new operating system.

9.

Tools and Utilities: A brief overview of the miscellaneous tools and utilities that are part of
the ACPICA package.

10.

ACPICA Debugger Reference: Overview, installation and configuration, and detailed
descriptions of the command set.

11.

1.2 Rationale and Justification
The complexity of the ACPI specification leads to a lengthy and difficult implementation in
operating system software. The purpose of the ACPI component architecture is to simplify ACPI
implementations for operating system vendors (OSVs) by providing major portions of an ACPI
implementation in OS-independent ACPI modules that can be integrated into any operating system.

The ACPICA software can be hosted on any operating system by writing a small and relatively
simple translation service between the ACPICA subsystem and the host operating system (This
service is known as the OS Services Layer).

12 Ref No SC-<xxxx>

 ACPI Component Architecture Programmer Reference

1.3 Reference Documents
ACPI documents are available at http://www.acpi.info

Advanced Configuration and Power Interface Specification, Revision 1.0b, February 8, 1999 •

•

•

•

•

•

•

•

•

•

•

•

•

Advanced Configuration and Power Interface Specification, Revision 2.0, July 27, 2000

Advanced Configuration and Power Interface Specification, Revision 2.0a, March 32, 2002

Advanced Configuration and Power Interface Specification, Revision 2.0b, October 11, 2002

Advanced Configuration and Power Interface Specification, Revision 2.0c, August 23, 2003

Advanced Configuration and Power Interface Specification, Revision 3.0, September 2, 2004

Advanced Configuration and Power Interface Specification, Revision 3.0a, December 30, 2005

Advanced Configuration and Power Interface Specification, Revision 3.0b, October 10, 2006

iASL Compiler User Reference

1.4 Overview of the ACPI Component Architecture
The ACPI Component Architecture (also referred to by the term “ACPICA” in this document)
defines and implements a group of software components that together create an implementation of
the ACPI specification. A major goal of the architecture is to isolate all operating system
dependencies to a relatively small translation or conversion layer (the OS Services Layer) so that the
bulk of the ACPICA code is independent of any individual operating system. Therefore, hosting the
ACPICA code on new operating systems requires no source changes within the ACPICA code itself.
The components of the architecture include:

An OS-independent ACPICA Core Subsystem component that provides the fundamental
ACPI services such as the AML interpreter and namespace management.

An OS-dependent OS Services Layer for each host operating system to provide OS support
for the ACPICA Core Subsystem.

An ASL compiler-disassembler for translating ASL code to AML byte code and for
disassembling existing binary ACPI tables back to ASL source code.

Several ACPI utilities for executing the interpreter in ring 3 user space, extracting binary
ACPI tables from the output of the AcpiDump utility, and translating the ACPICA source
code to Linux/Unix format.

This document describes the ACPICA Subsystem, OS services layer, and utilities. The iASL
compiler is documented in the iASL Compiler User Reference.

In the diagram below, the ACPICA subsystem is shown in relation to the host operating system,
device driver, OSPM software, and the ACPI hardware.

Ref No SC-<xxxx> 13

ACPI Component Architecture Programmer Reference

Figure 1. The ACPI Component Architecture

Host Operating System

OSPM / Policy
Manager

Device Drivers

ACPICA Subsystem

ACPI –
Related

Hardware

User Interface

14 Ref No SC-<xxxx>

 ACPI Component Architecture Programmer Reference

2 Architecture Overview

2.1 Overview of the ACPICA Subsystem
The ACPICA Subsystem implements the low level or fundamental aspects of the ACPI
specification. Included are an AML parser/interpreter, ACPI namespace management, ACPI table
and device support, and event handling. Since the ACPICA core provides low-level system services,
it also requires low-level operating system services such as memory management, synchronization,
scheduling, and I/O.

To allow the Core Subsystem to easily interface to any operating system that provides such services,
an Operating System Services Layer translates ACPICA-to-OS requests into the system calls
provided by the host operating system. The OS Services Layer is the only component of the
ACPICA that contains code that is specific to a host operating system.

Thus, the ACPICA Subsystem consists of two major software components:

1.

2.

The ACPICA Core Subsystem provides the fundamental ACPI services that are independent
of any particular operating system.

The OS Services Layer (OSL) provides the conversion layer that interfaces the ACPICA Core
Subsystem to a particular host operating system.

When combined into a single static or loadable software module such as a device driver or kernel
subsystem, these two major components form the ACPICA Subsystem. Throughout this document,
the term “ACPICA Subsystem” refers to the combination of the ACPICA Core Subsystem with the
OS Services Layer components into a single module, driver, or load unit.

2.1.1 ACPICA Core Subsystem

The ACPICA Core Subsystem supplies the major building blocks or subcomponents that are
required for all ACPI implementations — including an AML interpreter, a namespace manager,
ACPI event and resource management, and ACPI hardware support.

One of the goals of the ACPICA Core Subsystem is to provide an abstraction level high enough
such that the host operating system does not need to understand or know about the very low-level
ACPI details. For example, all AML code is hidden from the host. Also, the details of the ACPI
hardware are abstracted to higher-level software interfaces.

The Core Subsystem implementation makes no assumptions about the host operating system or
environment. The only way it can request operating system services is via interfaces provided by the
OS Services Layer.

The primary user of the services provided by the ACPICA Core Subsystem are the host OS device
drivers and power/thermal management software.

2.1.2 Operating System Services Layer

The OS Services Layer (or OSL) operates as a translation service for requests from the ACPICA
core subsystem back to the host OS. The OSL implements a generic set of OS service interfaces by
using the primitives available from the host OS.

Ref No SC-<xxxx> 15

ACPI Component Architecture Programmer Reference

Because of its nature, the OS Services Layer must be implemented anew for each supported host
operating system. There is a single ACPICA Core Subsystem, but there must be an OS Services
Layer for each operating system supported by the ACPI component architecture.

The primary function of the OSL in the ACPI Component Architecture is to be the small glue layer
that binds the much larger ACPICA Core Subsystem to the host operating system. Because of the
nature of ACPI itself — such as the requirement for an AML interpreter and management of a large
namespace data structure — most of the implementation of the ACPI specification is independent of
any operating system services. Therefore, the Core Subsystem is the larger of the two components.

The overall ACPI Component Architecture in relation to the host operating system is diagrammed
below.

Figure 2. ACPICA Subsystem Architecture

OS Services Layer

ACPICA Core Subsystem

Host Operating System

ACPICA Subsystem Module

2.1.3 Relationships Between the Host OS, Core Subsystem, and
OSL

2.1.3.1 Host Operating System Interaction

The Host Operating System makes direct calls to the Acpi* interfaces within the ACPICA Core
Subsystem to request ACPI services.

Whenever the ACPICA Core Subsystem requires operating system services, it makes calls the OS
Services Layer. The OSL component “calls up” to the host operating system whenever operating
system services are required, either for the OSL itself, or on behalf of the Core Subsystem

16 Ref No SC-<xxxx>

 ACPI Component Architecture Programmer Reference

component. All native (OS-dependent) calls made directly to the host are confined to the OS
Services Layer. The core ACPICA code contains no operating system-specific code.

2.1.3.2 OS Services Layer Interaction

The OS Services Layer provides operating-system dependent implementations of the predefined
AcpiOs* interfaces. These interfaces provide common operating system services to the Core
Subsystem such as memory allocation, mutual exclusion, hardware access, and I/O. The Core
Subsystem component uses these interfaces to gain access to OS services in an OS-independent
manner. Therefore, the OSL component makes calls to the host operating system to implement the
AcpiOs * interfaces.

2.1.3.3 ACPICA Core Subsystem Interaction

The ACPICA Core Subsystem implements a set of external interfaces that can be directly called
from the host OS. These Acpi* interfaces provide the actual ACPI services for the host. When
operating system services are required during the servicing of an ACPI request, the Core Subsystem
makes requests to the host OS indirectly via the fixed AcpiOs* interfaces.

The diagram below illustrates the relationships and interaction between the various architectural
elements by showing the flow of control between them. Note that the Core Subsystem never calls
the host directly -- instead it makes calls to the AcpiOs * interfaces in the OSL. This provides the
ACPICA code with OS-independence.

Figure 3. Interaction between the Architectural Components

OS Services Layer

Implements
Acpi*

Interfaces

Implements
AcpiOs*

Interfaces

Host

Operating

System

ACPICA Subsystem

ACPICA Core Components

Ref No SC-<xxxx> 17

ACPI Component Architecture Programmer Reference

2.2 Architecture of the ACPICA Core Subsystem
The Core Subsystem is divided into several logical modules or sub-components. Each module
implements a service or group of related services. This section describes each sub-component and
identifies the classes of external interfaces to the components, the mapping of these classes to the
individual components, and the interface names.

These ACPICA modules are the OS-independent parts of an ACPI implementation that can share
common code across all operating systems. These modules are delivered in source code form (the
language used is ANSI C), and can be compiled and integrated into an OS-specific ACPI driver or
subsystem (or whatever packaging is appropriate for the host OS.)

The diagram below shows the various internal modules of the ACPICA Core Subsystem and their
relationship to each other. The AML interpreter forms the foundation of the component, with
additional services built upon this foundation.

Figure 4. Internal Modules of the ACPICA Core Subsystem

ACPI Table
Mangement

Event
Management

ACPI Hardware
Management

Resource
Management

Namespace
Management

AML Interpreter

2.2.1 ACPI Table Management

This component manages all ACPI tables such as the RSDT/XSDT, FADT, FACS, DSDT, SSDT,
etc. The tables may be loaded from the firmware or directly from a buffer provided by the host
operating system. Services include:

ACPI Table Verification •

•

•

ACPI Table installation and removal

Access to all available ACPI tables

2.2.2 Early ACPI Table Access

In many cases, certain ACPI tables are required by the host OS very early during system/kernel
initialization. For example, the ECDT (Embedded Controller Boot Resources Table) and MADT
(Multiple APIC Description Table) may be required before hardware elements can be initialized

18 Ref No SC-<xxxx>

 ACPI Component Architecture Programmer Reference

properly. This initialization and thus these ACPI tables may be required before the kernel dynamic
memory (and virtual memory) is available.

To support this need, the ACPICA Table Manager component is designed as a standalone service
that can be initialized and used independently from the rest of the ACPICA core subsystem. It can
be executed with no need for any dynamic memory, and only the need for a single memory mapping
at any given time.

2.2.3 AML Interpreter

The AML interpreter is responsible for the parsing and execution of the AML byte code that is
provided by the computer system vendor. Most of the other services are built upon the AML
interpreter. Therefore, there are no direct external interfaces to the interpreter. The services that the
interpreter provides to the other services include:

ACPI Table Parsing •

•

•

•

•

•

•

•

•

•

•

•

AML Control Method Execution

Evaluation of Namespace Objects

2.2.4 Namespace Management

The Namespace component provides ACPI namespace services on top of the AML interpreter. It
builds and manages the internal ACPI namespace. Services include:

Namespace Initialization from ACPI tables

Device Enumeration

Namespace Access

Access to ACPI data and tables

2.2.5 Resource Management

The Resource component provides resource query and configuration services on top of the
Namespace manager and AML interpreter. Services include:

Getting and Setting Current Resources

Getting Possible Resources

Getting IRQ Routing Tables

Getting Power Dependencies

2.2.6 ACPI Hardware Management

The hardware manager controls access to the ACPI registers, timers, and other ACPI-related
hardware. Services include:

ACPI Status register and Enable register access

Ref No SC-<xxxx> 19

ACPI Component Architecture Programmer Reference

•

•

•

•

•

•

•

•

•

•

ACPI Register access (generic read and write)

Power Management Timer access

ACPI mode enable/disable

Global Lock support

Sleep Transitions support (S-states)

2.2.7 Event Handling

The Event Handling component manages the ACPI System Control Interrupt (SCI). The single SCI
multiplexes the ACPI timer, Fixed Events, and General Purpose Events (GPEs). This component
also manages dispatch of notification and Address Space/Operation Region events. Services
include:

ACPI event enable/disable (Fixed Events, GPEs)

Fixed Event Handlers (Installation, removal, and dispatch)

General Purpose Event (GPE) Handlers (Installation , removal, and dispatch)

Notify Handlers (Installation, removal, and dispatch)

Address Space and Operation Region Handlers (Installation, removal, and dispatch)

2.2.8 Requests from Host OS to ACPICA Subsystem

The host operating system can make direct calls to the Acpi* external interfaces to request ACPI
services.

The exact ACPI services required (and the requests made to those services) will vary from OS to
OS. However, it can be expected that most OS requests will fit into the broad categories of the
functional service groups described earlier: boot time functions, device load time functions, and
runtime functions.

The flow of OS to ACPICA requests is shown in the diagram below.

20 Ref No SC-<xxxx>

 ACPI Component Architecture Programmer Reference

Figure 5. Operating System to ACPICA Subsystem Request Flow

ACPICA Subsystem

OSPM Code

SMBus Driver

PCI and Plug n Play
Drivers

Other ACPI –
Related Drivers

Embedded
Controller

Driver

Battery Drivers

2.3 Architecture of the OS Services Layer (OSL)
The OS Services Layer component of the architecture enables the rehosting or retargeting of the
ACPICA components to execute under different operating systems, or to even execute in
environments where there is no host operating system. In other words, the OSL component provides
the glue that joins ACPICA to a particular operating system and/or environment. The OSL
implements interfaces and services using the system calls and utilities that are available from the
host OS. Therefore, an OS Services Layer must be written for each target operating system.

The OSL component implements a standard set of interfaces that perform OS dependent functions
(such as memory allocation and hardware access) on behalf of the Core Subsystem component.
These interfaces are themselves OS-independent because they are constant across all OSL
implementations. It is the implementations of these interfaces that are OS-dependent, because they
must use the native services and interfaces of the host operating system.

These standard interfaces (defined in this document as the AcpiOs* interfaces) include functions
such as memory management and thread scheduling, and must be implemented using the available
services of the host operating system.

2.3.1 Types of OSL Services

The services provided for the ACPICA Core Subystem by the OS Services Layer can be categorized
into the following groups:

• Environmental – global initialization and environment setup.

• Memory Management – dynamic memory allocation and memory mapping.

• Multitasking Support – scheduling and asynchronous execution.

Ref No SC-<xxxx> 21

ACPI Component Architecture Programmer Reference

• Mutual Exclusion and Synchronization – Mutexes, Semaphores, and Spin Locks.

• Interrupt handling – interrupt handlers.

• Address Spaces – memory, I/O port, and PCI configuration space access.

• Stream I/O – support for console I/O with printf-like functions. This provides error, warning,
debug, and trace output from the subsystem.

2.3.2 Requests from ACPICA Subsystem to OS

ACPI to OS requests are requests for OS services made by the ACPICA subsystem. These requests
must be serviced (and therefore implemented) in a manner that is appropriate to the host operating
system. These requests include calls for OS dependent functions such as I/O, resource allocation,
error logging, and user interaction. The ACPI Component Architecture defines interfaces to the OS
Services Layer for this purpose. These interfaces are constant (i.e. they are OS-independent), but
they must be implemented uniquely for each target OS.

The flow of ACPI to OS requests is shown in the diagram below.

Figure 6. ACPICA Subsystem to Operating System Request Flow

ACPICA Subsystem

OS Services Layer

ACPICA Core Subsystem

Requests to Host OS

22 Ref No SC-<xxxx>

 ACPI Component Architecture Programmer Reference

3 Design Details
This section contains information about concepts, data types, and data structures that are common to
both the Core Subsystem and OSL components of the ACPICA Subsystem.

3.1 ACPI Namespace Fundamentals
The ACPI Namespace is a large data structure that is constructed and maintained by the Core
Subsystem component. Constructed primarily from the AML defined within an ACPI Differentiated
System Description Table (DSDT), the namespace contains a hierarchy of named ACPI objects.

3.1.1 Named Objects

Each object in the namespace has a fixed 4-character name (32-bits) associated with it. The root
object is referenced by the backslash as the first character in a pathname. Pathnames are constructed
by concatenating multiple 4-character object names with a period as the name separator.

3.1.2 Scopes

The concept of an object scope relates directly to the original source ASL that describes and defines
an object. An object’s scope is defined as all objects that appear between the pair of open and close
brackets immediately after the object. In other words, the scope of an object is the container for all
of the children of that object.

In some of the ACPICA interfaces, it is convenient to define a scope parameter that is meant to
represent this container. For example, when converting an ACPI name into an object handle, the two
parameters required to resolve the name are the name itself, and a containing scope where the name
can be found. When the object that matches the name is found within the scope, a handle to that
object can be returned.

3.1.2.1 Example Namespace Scopes, Names, and Objects

In the ASL code below, the scope of the object _GPE contains the objects _L08 and _L0A.

Scope (_GPE)
{
 Method (_L08)
 {
 Notify (_SB.PCI0.DOCK, 1)
 }
 Method (_L0A)
 {
 Store (0, _SB.PCI0.ISA.EC0.DCS)
 }
}

In this example, there are three ACPI namespace objects, about which we can observe the
following:

The names of the three objects are _GPE, _L08, and _L0A. •

The child objects of parent object _GPE are _L08 and _L0A. •

Ref No SC-<xxxx> 23

ACPI Component Architecture Programmer Reference

•

The absolute pathname (or fully-qualified pathname) of object _L08 is “_GPE._L08”.

The scope of object _GPE contains both the _L08 and _L0A objects. •

The scope of control methods _L08 and _L0A contain executable AML code. •

The containing scope of object _L08 is the scope owned by the object _GPE. •

The parent of both objects _L08 and _L0A is object _GPE. •

The type of both objects _L08 and _L0A is ACPI_TYPE_METHOD. •

The next object (or peer object) after object _L08 is object _L0A. In the example _GPE
scope, there are no additional objects after object _L0A.

•

Since _GPE is a namespace object at the root level (as indicated by the preceding backslash
in the name), its parent is the root object, and its containing scope is the root scope.

•

3.1.3 Predefined Objects

During initialization of the internal namespace within Core Subsystem component, there are several
predefined objects that are always created and installed in the namespace, regardless of whether they
appear in any of the loaded ACPI tables. These objects and their associated types are shown below.
"_GPE", ACPI_TYPE_ANY // General Purpose Event block
"_PR_", ACPI_TYPE_ANY // Processor block
"_SB_", ACPI_TYPE_ANY // System Bus block
"_SI_", ACPI_TYPE_ANY // System Indicators block
"_TZ_", ACPI_TYPE_ANY // Thermal Zone block
"_REV", ACPI_TYPE_NUMBER // Supported ACPI specification revision
"_OS_", ACPI_TYPE_STRING // OS Name
"_GL_", ACPI_TYPE_MUTEX // Global Lock
"_OSI", ACPI_TYPE_METHOD // Query OS Interfaces

3.1.4 Logical Namespace Layout

The diagram below shows the logical namespace after the predefined objects and the _GPE scope
has been entered.

24 Ref No SC-<xxxx>

 ACPI Component Architecture Programmer Reference

Figure 7. Internal Namespace Structure

\

ACPI_ROOT_OBJECT

ACPI_ROOT_SCOPE

_GPE Scope
_GPE

PR

SB

SI

_L08

_L0A

TZ

_REV

OS

GL

3.2 Execution Model

3.2.1

1. Perform a global initialization of the ACPICA Subsystem – this initializes the global data and

 FADT, FACS, DSDT, and SSDTs

t buffer, or some combination of both.
PI tables includes an RSDT/XSDT, FADT, FACS, and a DSDT. Any
other ACPI tables defined by the ACPI specification are not directly

T, ECDT, etc.

3. s and
 from the objects found therein.

4. chine must be put
into ACPI mode. The ACPICA Subsystem installs an interrupt handler for the System Control

Initialization

The initialization of the ACPICA Subsystem must be driven entirely by the host operating system.
Since it may be appropriate (depending on the requirements of the host OS) to initialize different
parts of the ACPICA Subsystem at different times, this initialization is split into a multi-step
process. The four main steps are outlined below.

other items within the subsystem.

2. Initialize the table manager and load the ACPI tables – The
must be acquired and mapped before the internal namespace can be constructed. The tables
may be loaded from the firmware, loaded from an inpu
The minimum set of AC
SSDTs are optional. All
used by the ACPICA subsystem, but they are available to ACPI-related device drivers via the
table manager external interfaces. These tables include the MAD

Build the internal namespace – this causes ACPICA to parse the DSDT and any SSDT
build an internal namespace

Enable ACPI mode of the machine. Before ACPI events can occur, the ma

Interrupts (SCIs), and transitions the hardware from legacy mode to ACPI mode.

Ref No SC-<xxxx> 25

ACPI Component Architecture Programmer Reference

3.2.2 Memory Allocation

There are two models of memory allocation that can be used. In the first model, the caller to the
ACPICA subsystem pre-allocates any required memory. This allows maximum flexibility for the

ace. Although this
d

el is described below.

3.2.2.1 Ca

h A
subs he ACPI_BUFFER data type.

ze is not known by even the ACPICA subsystem until
ion of a control method has been completed. Therefore,

buffer that is thought to be large enough for the data.

3. If the return exception code is AE_BUFFER_OVERFLOW, the buffer length field has been

 can be posted in the
original call. If this call fails, only then is a larger buffer allocated. See Section 5.2.7 -

emory Buffers” for additional discussion on

3.2.2.2

f

caller since only the caller knows what is the appropriate memory pool to allocate from, whether to
statically or dynamically allocate the memory, etc. In the second model, the caller can choose to
have the ACPICA subsystem allocate memory via the AcpiOsAllocate interf
mo el is less flexible, it is far easier to use and is sufficient for most environments.

Each memory allocation mod

ller Allocates All Buffers

In t is model, the caller preallocates buffers of a large enough size and posts them to the ACPIC
ystem via t

It is often the case that the required buffer si
after the evaluation of an object or the execut
the “get size” model of a separate interface to obtain the required buffer size is insufficient. Instead,
a model that allows the caller to pre-post a buffer of a large enough size has been chosen. This
model is described below.

For ACPI interfaces that use the ACPI_BUFFER data type as an output parameter, the following
protocol can be used to determine the exact buffer size required:

1. Set the buffer length field of the ACPI_BUFFER structure to zero, or to the size of a local

2. Call the Acpi interface.

set by the interface to the buffer length that is actually required.

4. Allocate a buffer of this length and initialize the length and buffer pointer field of the
ACPI_BUFFER structure.

5. Call the Acpi interface again with this valid buffer of the required length.

Alternately, if the caller has some idea of the buffer size required, a buffer

“ACPI_BUFFER – Input and Output M
using the ACPI_BUFFER data type.

ACPI Allocates Return Buffers

In this model, the caller lets the ACPICA subsystem allocate return buffers. It is the responsibility o
the caller to delete these returned buffers.

For the ACPI interfaces that use the ACPI_BUFFER data type as an output parameter, the following
protocol is used to allow the ACPICA subsystem to allocate return buffers:

1. Set the buffer length field of the ACPI_BUFFER structure ACPI_ALLOCATE_BUFFER.

2. Call the Acpi interface.

3. If the return exception code is AE_OK, the interface completed successfully and a buffer was
allocated. The length of the buffer is contained in the ACPI_BUFFER structure.

26 Ref No SC-<xxxx>

 ACPI Component Architecture Programmer Reference

4. Delete the buffer by calling A
structure.

cpiOsFree with the pointer contained in the ACPI_BUFFER

3.2.3

Only l alidation is performed on all input parameters passed to the ACPICA Core
Subsystem
strings

The lim s and
out-of ngth
valida calls the ACPICA code.

3.2.4 Exception Handling

uring the processing of a request to the ACPICA Core Subsystem are
urn code and bubbled up to the original caller. Names for the

All exception handling is performed inline by the caller to the Core Subsystem interfaces. There are
th either the Acpi* or AcpiOs* calls.

3.2.5

pendent on the correct implementation of

ency
he specification states

ntrol
ay

specification precludes the concurrent execution of
ponent of

l

ts.

Parameter Validation

imited parameter v
. Therefore, the host OS should perform all limit and range checks on buffer pointers,

, and other input parameters before passing them down to the Core Subsystem code.

ited parameter validation consists of sanity checking input parameters for null pointer
-range values and nothing more. Any additional parameter validation (such as buffer le
tion) must occur before the host

All exceptions that occur d
returned in an ACPI_STATUS ret
ACPICA exceptions are all prefixed with “AE_”. For example, AE_OK indicates successful
completion of a request.

no exception handlers associated wi

Multitasking and Reentrancy

All components of the ACPICA subsystem are intended to be fully reentrant and support multiple
threads of execution. To achieve this, there are several mutual exclusion OSL interfaces that must be
properly implemented with the native host OS primitives to ensure that mutual exclusion and
synchronization can be performed correctly. Although de
these interfaces, the ACPICA Core Subsystem is otherwise fully reentrant and supports multiple
threads throughout the component, with the exception of the AML interpreter, as explained below.

Because of the constraints of the ACPI specification, there is a major limitation on the concurr
that can be achieved within the AML interpreter portion of the subsystem. T
that at most one control method can be actually executing AML code at any given time. If a co
method blocks (an event that can occur only under a few limited conditions), another method m
begin execution. However, it can be said that the
control methods. Therefore, the AML interpreter itself is essentially a single-threaded com
the ACPICA subsystem. Serialization of both internal and external requests for execution of contro
methods is performed and managed by the front-end of the interpreter.

3.2.6 Event Handling

The term Event Handling is used somewhat loosely to describe the class of asynchronous events that
can occur during the execution of the ACPICA subsystem. These events include:

• System Control Interrupts (SCIs) that are generated by both the ACPI Fixed and General
Purpose Even

• Notify events that are generated via the execution of the ASL Notify keyword in a control
method.

Ref No SC-<xxxx> 27

ACPI Component Architecture Programmer Reference

• Events that are caused by accesses to an address space or ope
execution of a control method.

ration region during the

3.2.6.1 Fixed

3.2.6.2

at is
 a

 is never executed in the context of the SCI interrupt handler, but is instead

 and

3.2.6.3

PI object, and this object must be a
dler

ons will be received.

3.2.7 s Spaces and Operation Regions

L code use the Address Space mechanism to access
ample, Address Spaces are used to access the
here are several pre-defined Address Spaces

that m user-defined Address Spaces are allowed.

The Operating System software (which includes the AML Interpreter) allows access to the various
addres ation Region (OpRegion) construct. An OpRegion is a named
windo reation of an OpRegion, the ASL programmer defines

Each of these events and the support for them in the ACPICA subsystem are described in more
detail below.

Events

Incoming Fixed Events can be handled by the default ACPICA subsystem event handlers, or
individual handlers can be installed for each event. Only device drivers or system services should
install such handlers.

General Purpose Events

Incoming General Purpose Events (GPEs) are usually handled by executing a control method th
associated with a particular GPE. According to the ACPI specification, each GPE level may have
method associated with it whose name is of the form _Exx for edge-triggered or _Lxx for level-
triggered. xx is the GPE level in hexadecimal (See the ACPI specification for complete details.)
This control method
queued for later execution by the host operating system.

In addition to this mechanism, individual handlers for GPE levels may be installed. It is not required
that a handler be installed for a GPE level, and in fact, currently the only device that requires a
dedicated GPE handler is the ACPI Embedded Controller. A device driver for the Embedded
Controller would install a handler for the GPE that is dedicated to the EC.

If a GPE handler is installed for a given GPE, the handler is invoked first, then the associated
control method (if any) is queued for execution.

GPE Block Devices are also supported. These GPE blocks may be installed and removed
dynamically as necessary. The ACPICA Core Subsystem provides centralized GPE handling
dispatch, and provides the necessary interfaces to install and remove GPE Block Devices.

Notify Events

An ACPI Notify Event occurs as a result of the execution of a Notify opcode during the execution of
a control method. A notify event occurs on a particular AC
device or thermal zone. If a handler is installed for notifications on a particular device, this han
is invoked during the execution of the Notify opcode, in the context of the thread that is executing
the control method.

Notify handlers should be installed by device drivers and other system services that know about the
particular device or thermal zone on which notificati

Addres

ASL source code and the corresponding AM
data that is out of the direct scope of the ASL. For ex
CMOS RAM and the ACPI Embedded Controller. T

ay be accessed and

s spaces via the ASL Oper
w into an address space. During the c

28 Ref No SC-<xxxx>

 ACPI Component Architecture Programmer Reference

both th size) and the address space to be accessed by the OpRegion. Specific
addres n the access window can then be defined as named fields to simplify their use.

The A responsible for translating ASL/AML references to named Fields into
accesses to the Space. The interpreter resolves locations within an address

 handler who is responsible for performing the actual physical access of
the ad

3.2.7.1 Insta Space Handlers

has been installed for
 handlers or install

andler interface.

ve by virtue of being governed by the ACPI address space
scoping rules. For example, picture a platform with two SMBus devices, one an embedded

Bus. Each SMBus must expose its own address
 the other. In this case, there may be two device

drivers and two distinctly different address space handlers, one for each type of SMBus. This

ust be installed on a named object in the ACPI namespace or on the
special object ACPI_ROOT_OBJECT. This is required to maintain the scoping rules of address

d for the namespace object representing the device that
s, regions that access that address space must be declared in

object.

PICA user to enumerate the namespace and install address handlers
as needed.

3.2.7.2

e

• System Management Bus (SMBus)

The ACPICA subsystem implements default address space handlers for the following ACPI defined
address spaces:
• System Memory

e boundaries (window
ses withi

ML Interpreter is
appropriate Address

space using the fields’ address within an OpRegion and then the OpRegion’s offset within the
address space. The resolved address, address access width, and function (read or write) are then
passed to the address space

dress space.

llation of Address

At runtime, the ASL/AML code cannot access an address space until a handler
that address space. An ACPICA user can either install the default address space
user defined address space handlers using the AcpiInstallAddressSpaceH

Each Address Space is “owned” by a particular device such that all references to that address space
within the scope of the device will be handled by that devices address space handler. This
mechanism allows multiple address space/operation region handlers to be installed for the same type
of address space, each mutually exclusi

controller based SMBus; the other a PCI based SM
space to the ASL without disrupting the function of

mechanism can be employed in a similar manner for the other predefined address spaces. For
example, the PCI Configuration space for each PCI bus is unique to that bus. Creation of a region
within the scope of a PCI bus must refer only to that bus.

Address space handlers m

space access. Address handlers are installe
“owns” that address space. Per ASL rule
the ASL within the scope of that namespace

It is the responsibility of the AC

ACPI-Defined Address Spaces

The ACPI specification defines address spaces for:
• System Memory

• System I/O

• PCI Configuration Spac

• Embedded Controller

• CMOS

• PCI Bar Target

Ref No SC-<xxxx> 29

ACPI Component Architecture Programmer Reference

• System I/O

• PCI Configuration Space

an be installed by supplying the special value

SMBus device drivers.

3.3 Pol
This s
implem

PI specification. Still others are simply standards that have been agreed upon during the
design of the subsystem.

3.3.1 External

3.3.1.1 Exc

All external interfaces (Acpi*) return an exception code as the function return. Any other return
values
synchr

Since
system xception code is stored in the task descriptor (such as the errno
mecha

3.3.1.2 Mem

Memo is returned via the external interfaces is rarely allocated
 is to force the caller to always pre-allocate memory. This

h the creation and deletion of its own buffers — hopefully
iding memory leaks. The exception to this is the

ACPICA subsystem to allocate return buffers.

3.3.2

3.3.2.1

m undergo some minimal
 in the RSDT regardless of

1. The Table pointer must point to valid physical memory

Default address space handlers c
ACPI_DEFAULT_HANDLER as the handler address when calling the
AcpiInstallAddressSpaceHandler interface.

The other predefined address spaces (Embedded Controller and SMBus) have no default handlers
and will not be accessible without OS provided handlers. This is typically the role of the Embedded
Controller and

icies and Philosophies
ection provides insight into the policies and philosophies that were used during the design and

entation of the ACPICA Core Subsystem. Many of these policies are a direct interpretation
of the ACPI specification. Others are a direct or indirect result of policies and procedures dictated
by the AC

Interfaces

eption Codes

 are returned via pointer(s) passed as parameters. This provides a consistent and simple
onous exception-handling model.

 the ACPICA Core Subsystem is reentrant and supports multiple threads on multiple operating
s, a model where an e
nism) was purposefully avoided to improve portability.

ory Buffers

ry for return objects, buffers, etc. that
by the subsystem itself. The model chosen
forces the calling software to manage bot
minimizing memory fragmentation and avo
ACPI_BUFFER type, where the caller can direct the

Subsystem Initialization

ACPI Table Validation

All ACPI tables that are examined by the ACPICA Core Subsyste
validation before they are accepted. This includes all tables found
whether the signature is recognized, and all tables loaded from user buffers. The following
validations are performed on each table. A warning is issued for tables that do not pass one or more
of these tests:

30 Ref No SC-<xxxx>

 ACPI Component Architecture Programmer Reference

2. The signature (in the table header) must be 4 ASCII chars, even if the name is not recogniz

3. The table must be readable for length specified in the header

ed.

4. The table checksum must be valid (with the exception of the FACS, which has no checksum).

Other than this validation, tables that are not recognized by their table header signature are simply
ignored.

3.3.2.2 Required ACPI Tables

At the very minimum, the ACPICA Core Subsystem requires the following ACPI tables:

1. One Fixed ACPI Description Table (FADT — signature “FACP”). This table contains
configuration information about the ACPI hardware and pointers to the FACS and DSDT
tables.

2. One Firmware ACPI Control Structure (FACS). This table contains the OS-to-firmware
interface including the firmware waking vector and the Global Lock.

3. One Differentiated System Description Table (DSDT). This table contains the primary AML
code for the system.

4. Optional are one or more Secondary System Description Tables (SSDTs) that contain
additional AML code. All SSDTs found in the RSDT/XSDT root table are loaded during the
table/namespace initialization. Other SSDTs and OEM tables can be loaded at runtime via the
Load or LoadTable AML operators.

3.3.3 Major Design Decisions

3.3.3.1 Performance versus Code/Data Size

The ACPICA subsystem is optimized to minimize code and data size at the expense of performance.
The relatively static internal namespace data structure has been optimized to minimize non-paged
kernel memory use, and control method execution parse trees are freed immediately upon method
termination.

3.3.3.2 Object Management – No Garbage Collection

Creation and deletion of all internal objects are managed such that garbage collection is never
required or performed. Objects are deleted deterministicatlly when they are no longer needed. This
is achieved through the use of object reference counts and object trees.

Internal object caches allow the reuse of commonly used objects without burdening the OS free
space manager. This greatly improves the performance of the entire subsystem.

Ref No SC-<xxxx> 31

ACPI Component Architecture Programmer Reference

4 Implementation Details

4.1 Required Host OS Initialization Sequence
This section describes a generic operating system initialization sequence that includes the ACPICA
subsystem. The ACPICA subsystem must be loaded very early in the kernel initialization. In fact,
ACPI support must be considered to be one of the fundamental startup modules of the kernel. The
basic OS requirements of the ACPICA subsystem include memory management, synchronization
primitives, and interrupt support. As soon as these services are available, ACPICA should be
initialized. Only after ACPI is available can motherboard device enumeration and configuration
begin.

In summary, ACPI Tables are descriptions of the hardware, therefore must be loaded into the OS
very early.

4.1.1 Bootload and Low Level Kernel Initialization
OS is loaded into memory via bootloader or downloader •

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

Initialize OS data structures, objects and run-time environment

Initialize low-level kernel subsystems

Initialize ACPI Table Manager if early ACPI table access is required

Initialize and enable free space manager

Initialize and enable synchronization primitives

Initialize basic interrupt mechanism and hardware

Initialize and start system timer

4.1.2 ACPICA Subsystem Initialization
Initialize ACPICA Table Manager and Load ACPI Tables

Initialize Namespace

Initialize ACPI Hardware and install SCI interrupt handler

Initialize ACPI Address Spaces (Default handlers and user handlers)

Initialize ACPI Objects (_STA, _INI)

Find PCI Root Bus(es) and install PCI config space handlers

4.1.3 Other OS Initialization
Remaining non-ACPI Kernel initialization

Initialize and start System Resource Manager

Determine processor configuration

32 Ref No SC-<xxxx>

 ACPI Component Architecture Programmer Reference

4.1.4 Device Enumeration, Configuration, and Initialization
Match motherboard devices to drivers via _HID •

•

•

•

•

•

•

•

Initialize PCI subsystem: Obtain _PRT interrupt routing table and Initialize PCI routing. PCI
driver enumerates PCI bus and loads appropriate drivers.

Initialize Embedded Controller support/driver

Initialize SM Bus support/driver

Load and initialize drivers for any other motherboard devices

4.1.5 Final OS Initialization
Load and initialize any remaining device drivers

Initialize upper layers of the OS

Activate user interface

4.2 Required ACPICA Initialization Sequence
This section presents a detailed description of the initialization process for the ACPICA subsystem.
The initialization interfaces are provided at a sufficient granularity to allow customization of the
initialization sequence for each host operating system and host environment.

4.2.1 Global Initialization - AcpiInitializeSubsystem

This mandatory step begins the initialization process and must be first. It initializes the ACPICA
Subsystem software, including all global variables, tables, and data structures. All components of
the ACPICA Subsystem are initialized, including the OSL interface layer and the OSPM layer. The
interface provided is AcpiInitializeSubsystem.

4.2.2 ACPI Table and Namespace Initialization

This required phase loads the ACPI tables from the BIOS and initializes the internal ACPI
namespace.

4.2.2.1 AcpiInitializeTables

This function initializes the ACPICA Table Manager. This component is independent of the rest of
the ACPICA core subsystem and may be initialized and executed at any time during kernel
initialization, even before dynamic/virtual memory is available. This allows the ACPI tables to be
acquired very early in the kernel initialization process. Some ACPI tables are required during early
kernel initialization/configuration -- such as the SLIT (System Locality Distance Information
Table), SRAT (System Resource Affinity Table), and MADT (Multiple APIC Description Table.)

4.2.2.2 AcpiGetTable, AcpiGetTableHeader, AcpiGetTableByIndex

These functions may be used by the host OS and device drivers to obtain individual ACPI tables as
necessary. The only ACPI tables that are consumed by the ACPICA subsystem are the FADT,
FACS, DSDT, and any SSDTs. All other ACPI tables present on the platform must be consumed by

Ref No SC-<xxxx> 33

ACPI Component Architecture Programmer Reference

the host OS and device drivers. For example, the ECDT (Embedded Controller Boot Resources
Table) is used by the host-dependent Embedded Controller device driver.

4.2.2.3 AcpiLoadTables

This interface creates the internal ACPI namespace data structure from the DSDT and SSDTs found
in the RSDT/XSDT root table. All SSDTs found in the root table are loaded. Other SSDTs may be
loaded by AML code at runtime via the AML Load operator. OEM tables that appear in the
RSDT/XSDT can only be loaded via the AML LoadTable operator.

4.2.2.4 Internal ACPI Namespace Initialization

As the various ACPI tables are loaded (installed into the internal data structures of the CA
subsystem), the internal ACPI Namespace (database of named ACPI objects) is constructed from
those tables. As each table is loaded, the following tasks are automatically performed:

First pass parse – Load all named ACPI objects into the internal namespace •

•

•

•

Second pass parse – Resolve all forward references within the ACPI table

First pass parse of all control methods – Sanity check to ensure that the tables can be
completely parsed, including the control methods. The resulting parse tree is not stored, since
control methods are parsed on the fly every time they are executed. (This task represents
minimal CPU overhead, and saves huge amounts of memory that would be consumed by
storing parse trees.)

Lock the namespace so that GPEs will not cause control methods to run

4.2.3 Handler Installation

Once the namespace has been constructed, the OS should install any handlers that it may require
during execution of the ACPICA subsystem. The purpose of installing these handlers at this point in
the initialization process is so that the handlers are in place before execution of any control methods
is allowed – thereby insuring that any custom handlers will not miss any of the events that they are
intended to handle. Any handlers installed in this phase will override any default handlers.

4.2.3.1 Handler Types

The following handler installation interfaces are available

Initialization Handler: AcpiInstallInitializationHandler

This function is used to install a global handler for ACPICA initialization events. Currently, the
handler is called after the execution of every device _INI method.

Table Event Handler: AcpiInstallTableHandler

This function is used to install a global handler for ACPI table load/unload events.

AML Exception Handler: AcpiInstallExceptionHandler

This function is used to install a global handler for AML run-time exceptions.

Address Space Handlers: AcpiInstallAddressSpaceHandler

34 Ref No SC-<xxxx>

 ACPI Component Architecture Programmer Reference

This function is used to install address space handlers to override the default address space
handlers (for the predefined address spaces) or install handlers for custom address spaces. These
handlers are invoked to implement Operation Region requests.

Fixed Event Handlers: AcpiInstallFixedEventHandler

This function is used to install handlers for ACPI Fixed Events.

General-Purpose Event Handlers: AcpiInstallGpeHandler

This function is used to install handlers for ACPI General Purpose Events (GPEs).

Notify Handlers: AcpiInstallNotifyHandler

This function is used to install handlers for ACPI device notifications.

4.2.4 Hardware Initialization - AcpiEnableSubsystem

This step continues the subsystem initialization and is more hardware oriented. It first puts the
system into ACPI mode, then installs the default Operation Region handlers, initializes the event
manager, and installs the SCI and Global Lock handlers.

During the event manager initialization, fixed events are initialized and enabled. GPEs are
initialized, but are not enabled at this time.

To summarize the actions performed by this call:

Enter ACPI Mode. •

•

•

•

1.

2.

Install default operation region handlers for the following address spaces that must always be
available: SystemMemory, SystemIO, PCI_Config, and DataTable.

Initialize ACPI Fixed and General Purpose events (not enabled at this time, however.)

Install the SCI and Global Lock interrupt handlers.

4.2.4.1 ACPI Hardware and Event Initialization

This step puts the system into ACPI mode if necessary, sets up the ACPI hardware, initializes the
ACPI Event handling, and installs the ACPI interrupt handlers. This step is optional when running
in “hardware-independent” mode – when there is no access to hardware by the ACPICA subsystem
(For example, the AcpiExec utility runs in this mode.)

The ACPI hardware must be initialized and an SCI interrupt handler must be installed before it is
architecturally safe to evaluate ACPI objects and execute control methods, for the following
reasons:

Any ACPI named object (predefined or otherwise) can be implemented as a control method
and there is no way to safely make any assumptions about which objects are and are not
implemented as control methods. This is dependent on the individual AML on each platform.

Because control methods can access the ACPI hardware, cause ACPI interrupts (SCIs), and
most interesting of all, can block while waiting for an SCI to be serviced, it is inherently
unsafe and architecturally incorrect to attempt to execute control methods without first
initializing the hardware and installing the SCI interrupt handler

Ref No SC-<xxxx> 35

ACPI Component Architecture Programmer Reference

This step is only optional when running in “hardware-independent” mode. Otherwise it is required
to setup the ACPI hardware and System Control Interrupt handling. ACPI mode is entered if the
machine is in legacy mode. If the machine is already in ACPI mode (such as an IA-64 machine), no
action is required.

When this step is complete, control methods may be executed because the hardware is now
initialized and the subsystem is able to take ACPI-related interrupts (System Control Interrupts or
SCIs). The execution of any control method (including the _REG methods) can cause the generation
of an SCI – therefore, the hardware must be initialized before control methods may be run.
Additional ACPICA subsystem initialization that requires control method execution can now be
completed.

4.2.5 Object Initialization – AcpiIntializeObjects

This step completes the initialization of all objects within the loaded namespace, then initializes and
enables the runtime general-purpose events:

• Initialize all Operation Regions. This step runs all Operation Region _REG methods for the
address spaces with default handlers – SystemMemory, SystemIO, PCI_Config, and
DataTable. Note: Operation Regions that are declared within control methods are not
initialized until actual execution of the method.

• Finish initialization of complex objects (Operation Regions, BufferFields, Buffers,
BankFields, and Packages) that contain executable AML code within the declaration.

• Initialize all Device, Processor and Thermal objects within the namespace by executing
the_STA and _INI methods on each of these objects.

• Initialize the FADT-defined GPE blocks.

• Execute all _PRW methods within the namespace. These methods identify and define the
GPEs that are used for wake events. These types of GPEs are never enabled at runtime, they
are only enabled as the system enters a sleep state.

• Enable all runtime GPEs. The GPEs can only be enabled after the _REG, _STA, and _INI
methods have been run. This ensures that all Operation Regions and all Devices have been
initialized and are ready.

4.2.5.1 ACPI Device Initialization

During this step, all Device, Processor, and Thermal objects found within the ACPI namespace are
initialized. The _INI method is executed for all devices that are present as indicated by the _STA
method. This is not an actual initialization of the device hardware – this is left to the actual device
drivers for the hardware.

The entire namespace is traversed and the_STA and _INI methods are run on all ACPI objects of
type Device, Processor, and Thermal found therein. Any operation regions accessed by these
methods will be automatically initialized by the just-in-time address space initialization mechanism.
The initialization is performed via the following steps:

• A namespace analysis is performed to identify all subtrees that contain devices that have a
corresponding _INI method. This greatly enhances the speed of this step and can reduce
operating system boot time. If there is no _INI method for a given device, then no attempt is
made to execute the _STA method for the device.

• If the device has an _INI method, attempt to execute the _STA method for the device.

36 Ref No SC-<xxxx>

 ACPI Component Architecture Programmer Reference

• If _STA does not exist within the scope of the device, the device is assumed to be both
present and functional – as per the ACPI specification.

• If the _STA flags indicate the device is not present but functioning, do not run _INI on the
device, but continue to examine the children of the device.

• If the _STA flags indicate the device is not present and not functioning, do not examine the
children of this device – abort the walk of this subtree of the namespace.

• If the _STA flags indicate that the device is present, then attempt to execute the _INI method
for the device.

• The global initialization handler is called after the execution of every _INI method.

4.2.5.2 Other ACPI Object Initialization

This step initializes the remaining AML Operation Regions and Fields that were not initialized
during the device and address space initialization.

Operation Regions and CreateField ASL statements can contain executable AML code and therefore
the initialization of the objects must be deferred until the CA subsystem and ACPI hardware are
both initialized. Some of this initialization may have been completed during the earlier steps. This
step completes that initialization.

This final pass through the loaded ACPI tables will execute all AML code outside of the control
methods that has not already been executed on-demand during the previous phases. The purpose is
to initialize the Field and OpRegion objects by executing all CreateField, OperationRegion code in
the AML. ACPI 2.0 has additional elements that will need to be initialized this way (Not yet
implemented.)

4.2.6 Other Operating System ACPI-related Initialization

All external ACPI interfaces are available and the host OS can perform the following initialization
steps:

Enumerate devices using the _HID method •

•

•

•

Load, configure, and install device drivers

Device Drivers install handlers for other address spaces such as SmBus, EC, and custom
address spaces

The PCI driver enumerates PCI devices and loads PCIConfig handlers for PCI-to-PCI-bridge
devices (which causes the associated child PCI bus_REG methods to run, etc.)

4.2.7 Just-in-time Operation Region Initialization

This phase includes just-in-time initialization for any Operation Regions, Packages, Buffers, or
Fields that are accessed by the control methods executed here. For example, if a _REG method for a
PCIConfig address space accesses a SystemMemory Operation Region, the definition of that
particular SystemMemory region is fully evaluated at that time. (Operation Regions and CreateField
ASL statements can contain executable AML code and therefore the initialization of the objects
must be deferred until the CA subsystem and ACPI hardware are both initialized).

Ref No SC-<xxxx> 37

ACPI Component Architecture Programmer Reference

Therefore, Address Spaces are initialized in the order in which they are accessed, not in the order
that they are declared in the ASL source code.

When any Address Space is initialized, the associated _REG method (if any) is executed as well.

4.2.7.1 SystemMemory Region Initialization

For each operation region within the SystemMemory address space, a memory mapped window of
maximum size ACPI_SYSMEM_REGION_WINDOW_SIZE is maintained, in an attempt to
minimize the overhead of mapping entire operation regions if they are very large.

When a request is received that is outside of the current window, the existing mapping is deleted
and a new mapping that can service the request is created.

This mapping feature is implemented in the default handler for the SystemMemory address space.

4.2.7.2 PCI_Config Region Initialization

For these operation regions, the namespace is searched upwards from the region to find the
corresponding PCI Root Bridge.

If a _HID or _CID method under a device object indicates the presence of a PCI Root Bridge (an ID
value of PNP0A03 or PNP0A08 for PCI Express), perform PCI Configuration Space initialization
on the bridge. Install the PCI address space handler on the bridge (and on all descendents) and run
the _REG method for the device if it is present. Then execute the _ADR, _SEG, and _BBN
methods (in the bridge scope) to obtain the PCI Device, Function, Segment, and Bus numbers.
Finally, run the associated _REG method to indicate the availability of the region.

• The initial PCI Device and Function values are obtained from the _ADR method.

• The initial PCI Segment number is obtained from the _SEG method.

• The initial PCI Bus number is obtained from the _BBN method.

• The final PCI ID consisting of Device, Function, Segment, and Bus is obtained by calling the
AcpiOsDerivePciId OSL interface. This allows the host OS to make any adjustments to the
PCI ID as required.

When accessing a PCI_Config operation region, all I/O from/to the PCI confituration space is
performed via the OSL interfaces AcpiOsReadPciConfiguration and AcpiOsWritePciConfiguration.

4.2.8 System Shutdown - AcpiTerminate

This step frees all dynamically allocated resources back to the host operating system The ACPICA
subsystem may be re-initialized and restarted from the beginning anytime after this step completes.

4.3 Multithreading Support

4.3.1 Reentrancy

All external interfaces to the ACPICA Core Subsystem are fully reentrant. There are limitations to
the amount of concurrency allowed during control method execution, but these limitations are

38 Ref No SC-<xxxx>

 ACPI Component Architecture Programmer Reference

transparent to the calling threads — in the sense that threads that attempt to execute control methods
will simply block until the interpreter becomes available.

4.3.2 Mutual Exclusion and Synchronization

Three different types of synchronization objects are used by the ACPICA code:

1. Mutex objects. These objects are used for high-level mutual exclusion within the ACPICA
core and AML interpreter and to implement the ASL Mutex operators, as well as the ACPI
Global Lock. If there are no mutex primitives available in the host OS, they can be
implemented with semaphore objects (binary semaphores.)

2. Semaphore objects. These objects are used for synchronization and to implement the ASL
Event operators.

3. Spin Locks. These objects are only used at interrupt level (in interrupt handlers).

4.3.3 Control Method Execution

Most of the multithread support within the ACPICA subsystem is implemented using traditional
locks and mutexes around critical (shared) data areas. However, the AML interpreter design is
different in that the ACPI specification defines a special threading behavior for the execution of
control methods. The design implements the following portion of the ACPI specification that
defines a partially multithreaded AML interpreter in these four sentences:

A control method can use other internal, or well-defined, control methods to accomplish the
task at hand, which can include defined control methods provided by the operating
software. Interpretation of a Control Method is not preemptive, but can block. When a
control method does block, the operating software can initiate or continue the execution of
a different control method. A control method can only assume that access to global objects
is exclusive for any period the control method does not block.

4.3.3.1 Control Method Blocking

First of all, how can a control method block? This is a fairly exhaustive list of the possibilities:

Executes the Sleep() ASL opcode 1.

2.

3.

4.

5.

6.

7.

8.

Executes the Acquire() ASL opcode and the request cannot be immediately satisfied

Executes the Wait() ASL opcode and the request cannot be immediately satisfied

Attempts to acquire the Global Lock (via Operation Region access, etc), but must wait

Attempts to execute a control method that is serialized and already executing (or is blocked),
or has reached its concurrency limit

Invokes the host debugger via a write to the debug object or executes the BreakPoint() ASL
opcode

Accesses an Operation Region which results in a dispatch to a user-installed handler that
blocks on I/O or other long-term operation

A Notify AML opcode results in a dispatch to a user-installed handler that blocks in a similar
way

Ref No SC-<xxxx> 39

ACPI Component Architecture Programmer Reference

4.3.3.2 Control Method Execution Rules

Here are some Control Method execution “rules” that the ACPICA multithread support is built
upon. These rules are not always stated explicitly in the ACPI specification — some of them are
inferred.

1.

2.

3.

4.

1.

2.

3.

4.

5.

6.

7.

8.

1.

2.

A Control Method will run to completion (as far as the interpreter is concerned - this doesn’t
include thread preemption and interrupt handling by the OS) unless it blocks (i.e. a control
method will not be arbitrarily preempted by the interpreter.)

If a Control Method blocks, the next Control Method in the queue will be executed. When the
original (blocked) control method becomes ready, it will not preempt the executing method.
Instead, it will be placed back on the execution queue (We could place the method at the tail
or the head of the execution queue, or leave this decision to the OSL implementers).

Methods can be serialized (non-reentrant) or reentrant. A thread will block if an attempt is
made to execute (either via direct invocation or indirectly via a method call) a serialized
method that is already executing (or is blocked).

The “implicit” synchronization supported by Operation Regions and mentioned in the ACPI
specification seems to depend entirely on the non-preemptive control method execution model
(see above.)

4.3.3.3 A Simple Multithreading Model

The actual mechanisms to block a thread are simple and are already in place on the OSL side:

Sleep () - directly implemented via AcpiOsSleep (), will block the caller and free the
processor.

Acquire () - implemented via an AcpiOsMutex.

Wait () - implemented via an AcpiOsSemaphore.

Global Lock - implemented via an AcpiOsMutex and the interrupt caused by the release of
the lock.

Concurrency limit - we could put a queue at each method (high overhead), or simply re-queue
the thread (perhaps in a high-priority queue if we implement one).

Host Debugger - These are simply AcpiOs* calls that we assume will block for a long time.

Operation Region Handler blocks on some OS primitive

Notify handler blocks in the same manner as (7).

These mechanisms are sufficient to implement the blocking, but this isn’t enough to implement the
execution semantics of “no preemption unless the method does something to block itself”. This
requires additional support. I will take a stab at a multithread model here; please feel free to modify
or comment.

True concurrent control method execution is not allowed. Although the interpreter is
“reentrant” in the sense that more than one thread can call into the interpreter, only one thread
at any given time (system wide) can be actively interpreting a control method. All other
control methods (and the threads that are executing them) must be either blocked or awaiting
execution/resumption.

Therefore, we can put a mutex around the entire interpreter and only allow a thread access to
the interpreter when there are no other accessing threads.

40 Ref No SC-<xxxx>

 ACPI Component Architecture Programmer Reference

3.

4.

The implication and result is that when an executing control method blocks, it is defined to
have stopped accessing the interpreter, and is no longer executing within the interpreter.

If any interrupt handler needs interpreter services (such as the EC driver and the _Qxx control
methods), it must schedule a thread for execution. When it runs, this thread calls the
interpreter to execute the method.

The algorithm below implements the model described above:
AmlExecuteControlMethod ()

Acquire (Global Interpreter Lock)
If <the method does anything that might block>
Check if it will block (such as wait on a semaphore with a zero
timeout, or grab global lock)
If <we know or the method will block or still think that it might
block>
(such as sleep, acquire-no-units, wait-no-event, global lock not
available, reached concurrency limit) - and perhaps before we
dispatch to a user OpRegion or Notify handler)

Release (Global Interpreter Lock) (Allow another thread to
execute a method)

Execute the blocking call (AcpiOsSleep or AcpiOsWaitSemaphore)
Acquire (Global Interpreter Lock) (Must re-enter the

interpreter, can’t preempt running thread!)
Release (Global Interpreter Lock) (Finished with this method, free
the interpreter)

4.3.3.4 A More Complex Multithreading Model

This extension to the model shown above adds a mechanism to implement a “priority” system where
all executing and blocked Control Methods have a higher priority than methods that are queued and
have never executed yet. This allows the interpreter some control over the scheduling of threads that
are executing control methods, without relying directly on an OS-defined priority mechanism. In
other words, it provides an OS-dependent way to schedule threads the way we want.

Two semaphores are used, call them an “Outer Gate” and an “Inner Gate”. A thread must pass
through both gates before it can begin execution. Once inside both gates, it releases the outer gate,
allowing a thread in to wait at the inner gate. When the first thread completes execution of the
method, it releases the inner gate, allowing the next thread to proceed. If at any time during
execution a thread must block, it releases the inner gate, blocks, then re-acquires the inner gate when
it resumes execution.

The maximum length of the queue at the inner gate will never exceed <the number of blocked
threads (running a method)> + 1 (the last thread allowed in through the outer gate).

In the typical (blocking) case, T1 blocks allowing T2 to run. T1 unblocks and eventually waits on
the inner gate. T2 eventually completes and signals the inner gate. T1 now runs to completion. All
of this happens regardless of the number of threads waiting at the outer gate - therefore, it gives
priority to threads that are already running a method.

The algorithm below implements the modified model described above:

Ref No SC-<xxxx> 41

ACPI Component Architecture Programmer Reference

AmlExecuteControlMethod ()
Acquire (Outer Lock)
Acquire (Inner Lock) (Must acquire both locks to begin execution)
Release (Outer Lock) (Allow one thread into the outer lock)
If <the method does anything that might block>

Check if it will block (such as wait on a semaphore with a zero
timeout)
If <we know or the method will block or still think that it might
block>
(such as sleep, acquire-no-units, wait-no-event, global lock not
available, reached concurrency limit) - and perhaps before we
dispatch to a user OpRegion or Notify handler)

Release (Inner Lock) (Allow another thread to begin
execution of a method)
Execute the blocking call (AcpiOsSleep, AcpiOsWaitSemaphore,
etc.)
Acquire (Inner Lock) (Must re-enter the interpreter since
we cannot preempt running thread!)

Release (Inner Lock) (Finished with this method, free the
interpreter)

Note: It is not so important that the threads free the locks in reverse order as it is that they all unlock the
locks in the same order. Since they are all executing the same code, this behavior is ensured.

While the simple multithreading model will be sufficient, the more complex model allows a more
“fair” allocation of resources under heavy load. The outstanding question is whether there will ever
be enough concurrent use of the AML interpreter to justify the complexity of the second model.

4.3.4 ACPI Global Lock Support

The ACPI Global Lock is intended to be a mutual exclusion mechanism that allows both the host
operating system and the resident firmware to access common hardware and data structures. It is not
intended to be a mutual exclusion mechanism between threads implemented by the host OS.

The one and only purpose of the Global Lock is to provide synchronization between the resident
firmware (SMI BIOS, etc.) and all other software on the platform.

The ACPICA subsystem manages the global lock in the following manner:

When the firmware owns the global lock, ACPICA queues up all requests to acquire the
global lock.

•

• When the firmware releases the global lock, ACPICA satisfies all queued requests one at a
time. A separate hardware acquire and release is performed for each thread that has requested
the lock.

This algorithm prevents starvation of the global lock if many OS threads are requesting it. The BIOS
has the opportunity to acquire the lock after each requesting thread releases it.

The diagram below shows the global lock in relation to the BIOS and other system software.

42 Ref No SC-<xxxx>

 ACPI Component Architecture Programmer Reference

Figure 8. Global Lock Architecture

Global Lock

Shared Data

Resident
Firmware

(BIOS)

Operating System

Device Drivers

ACPI Subsystem

4.3.4.1 Obtaining The Global Lock
/* Only one thread can acquire the lock at a time */

Acquire the internal global lock mutex
If (AcquireHardwareGlobalLock())
{

GlobalLockAquired = TRUE;
return; /* All done! */

}

/* Must wait until the BIOS releases the lock and generates interrupt */

AmlExitInterpreter ();
AcpiOsWaitSemaphore (GlobalLockSemaphore, WAIT_FOREVER);
AmlEnterInterpreter ();

4.3.4.2 Releasing the Global Lock
If global lock is not acquired

Error, return;

ReleaseHardwareGlobalLock ();
If Pending bit set

Write the GBL_RLS bit to the control register

GlobalLockAquired = FALSE;
Release the internal global lock mutex

Ref No SC-<xxxx> 43

ACPI Component Architecture Programmer Reference

4.3.4.3 Global Lock Interrupt Handler
/* We get an SCI when the firmware releases the lock */

AcquireHardwareGlobalLock ()
If (Global Locak was acquired)
{

GlobalLockAcquired = TRUE;
AcpiOsSignalSemaphore (GlobalLockSemaphore);

}

4.3.5 Single Thread Environments

Both the design and implementation of the ACPICA Core Subsystem is targeted primarily for
inclusion within the kernel of a multitasking operating system. However, it is possible to generate
and operate the subsystem within a single threaded environment — with either a primitive operating
system or loader, or even standalone with no additional system software other than a few device
drivers.

The successful operation of the ACPICA in any environment depends upon the correct
implementation of the OSL layer underneath it. This requirement is no different for a single
threaded environment, but some special considerations must be made:

The primary mechanisms used for mutual exclusion and multithread synchronization throughout the
ACPICA subsystem are the OSL Spinlock, Mutex, and Semaphore. Since these mechanisms are not
required in a single threaded environment, it is sufficient to implement these interfaces to simply
always return an AE_OK exception code.

When used within an OS kernel at ring 0, the ACPI debugger requires a dedicated thread to perform
command line processing. Since this mechanism is not required in a single threaded environment, it
can be configured out during generation of the subsystem.

4.4 Debugging Support
Two styles of debugging are supported with the debugging tools available with the ACPICA
Subsystem:

1. Extraordinary amounts of trace and debug output can be generated from debug output and
trace statements that are embedded in the debug version of the ACPICA subsystem. This data
can be used to track down problems after the fact. So much data can be generated that the
debug output can be selectively enabled on a per-subcomponent basis and even a finer
granularity of the type of debug statement can be selected.

2. An AML debugger is provided that has the ability to single step control methods to examine
the results of individual AML opcodes, and to change the values of local variables and
method arguments if necessary.

4.4.1 Error and Warning Messages

There are several macros used throughout the ACPICA subsystem to format and print error and
warning messages. In addition to the input message, each of these macros automatically print the
module name, line number, and current ACPICA version number.

44 Ref No SC-<xxxx>

 ACPI Component Architecture Programmer Reference

These macros are conditionally compiled and can be removed if desired by defining
ACPI_NO_ERROR_MESSAGES during subsystem compilation. However, they are used only for
serious issues in order to limit their overhead.

ACPI_ERROR – Displays an error message.

ACPI_EXCEPTION – Displays an error message with a decoded ACPI_STATUS exception.

ACPI_WARNING – Displays a warning message.

ACPI_INFO – Information message only.

The current statistics for the use of these macros within the ACPICA source is as follows:

ACPI_ERROR 284 invocations
ACPI_EXCEPTION 55 invocations
ACPI_WARNING 41 invocations
ACPI_INFO 8 invocations

4.4.2 Execution Debug Output (ACPI_DEBUG_PRINT Macro)

The ACPI_DEBUG_PRINT macro is used throughout the source code of the ACPICA Core
Subsystem to selectively print debug messages. Over 350 invocations of the ACPI_DEBUG_PRINT
are scattered throughout the ACPICA subsystem source. This macro is compiled out entirely for
non-debug versions of the subsystem.

Output from ACPI_ DEBUG_PRINT can be enabled at two levels: on a per-subcomponent level
(Namespace manager, Parser, Interpreter, etc.), and on a per-type level (informational, warnings,
errors, and more.) There are two global variables that set these output levels:

AcpiDbgLayer Bit field that enables/disables debug output from entire subcomponents
within the ACPICA subsystem.

1.

2. AcpiDbgLevel Bit field that enables/disables the various debug output levels

The example below shows some of the debug output from a namespace search. None of the output
of the function tracing is shown here, but the enter/exit traces would appear interspersed with the
other debug output.
nsutils-0346: NsInternalizeName: returning [00821F30] (abs) "\BITZ"
nsaccess-0424: NsLookup: Searching from root [007F09B4]
nsaccess-0477: NsLookup: Multi Name (1 Segments, Flags=0)
nsaccess-0494: NsLookup: [BITZ/]
nssearch-0166: NsSearchOnly: Searching \/ [007F09B4]
nssearch-0168: NsSearchOnly: For BITZ (type 0)
nssearch-0239: NsSearchOnly: Name BITZ (actual type 8) found at 007FC384
nseval-0302: NsEvaluateByName: \BITZ [007FC384] Value 007FE0C0

4.4.3 Function Tracing (ACPI_FUNCTION_TRACE Macro)

Most of the functions within the subsystem use the ACPI_FUNCTION_TRACE macro upon entry
and the return_ACPI_STATUS macro upon exit. For the debug version of the subsystem, if the
function trace debug level is enabled, the ACPI_FUNCTION_TRACE macro displays the name of
the module and function and the current call nesting level. Upon exit, the return_ACPI_STATUS
macro again displays the name of the function, the call nesting level, and the return status code of
the call.

Ref No SC-<xxxx> 45

ACPI Component Architecture Programmer Reference

The next few lines show examples of the function tracing. On each invocation of the
ACPI_FUNCTION_TRACE macro, we see the module name and line number, followed by the call
nesting level (2 digits), followed by the name of the actual procedure entered. Some versions of the
ACPI_FUNCTION_TRACE macro allow one of the function parameters to be displayed as well.
Executing \BITZ
nsobject-0356 [07] NsGetAttachedObject : ----Entry 004A2CC8
nsobject-0373 [07] NsGetAttachedObject : ----Exit- 004A2728
dswscope-0186 [07] DsScopeStackPush : ----Entry
 utalloc-0235 [07] UtAcquireFromCache : 004A1DC8 from State Cache
 utmisc-0711 [08] UtPushGenericState : ----Entry
 utmisc-0719 [08] UtPushGenericState : ----Exit-
dswscope-0223 [07] DsScopeStackPush : ----Exit- AE_OK
dsmthdat-0274 [07] DsMethodDataInitArgs : ----Entry 004A1438
dsmthdat-0655 [08] DsStoreObjectToLocal : ----Entry
dsmthdat-0657 [08] DsStoreObjectToLocal : Opcode=104 Idx=0 Obj=004A2F08

The function entry and exit macros have the ability to generate huge amounts of output data.
However, this is often the best way to determine the actual execution path taken by subsystem. If the
problem being debugged can be narrowed to a single control method, tracing can be enabled for that
method only, thus reducing the amount of debug data generated.

4.4.4 ACPICA Debugger

Provided as a subcomponent of the ACPICA Core Subsystem, the AML Debugger provides the
capability to display subsystem data structures and objects (such as the namespace and associated
internal object), and to debug the execution of control methods (including single step and breakpoint
support.) By using only two OSL interfaces, AcpiOsGetLine for input and AcpiOsPrint for output,
the debugger can operate standalone or as an extension to a host debugger.

The debugger provides a more active debugging environment where data can be examined and
altered during the execution of control methods.

4.5 Environmental Support Requirements
This section describes the environmental requirements of the ACPICA subsystem. This includes the
external functions and header files that the subsystem uses, as well as the resources that are
consumed from the host operating system.

4.5.1 Resource Requirements

Static Memory - example Code and Data Size: These are the sizes for the OS-independent acpica.lib
produced by the Microsoft Visual C++ 6.0 32-bit compiler. The debug version of the code includes
the debug output trace mechanism and has a much larger code and data size.

Non-Debug Version: 81.2K Code, 17.0K Data, 98.2K Total
Debug Version: 155.8K Code, 49.1K Data, 204.9K Total

Dynamic Memory: The size of the internal ACPI namespace is dependent on the size of the loaded
ACPI tables – DSDT and any SSDTs – and the number of named ACPI objects they create at table
load time. All resources used during control method execution are freed at control method
termination.

46 Ref No SC-<xxxx>

 ACPI Component Architecture Programmer Reference

4.5.2 C Library Functions

In order to make the ACPICA Core Subsystem as portable and truly OS-independent as possible,
there is only extremely limited use of standard C library functions within the Core Subsystem
component itself. The calls are limited to those that can generate code in-line or link to small,
independent code modules. Below is a comprehensive list of the C library functions that are used by
the Core Subsystem code.

Table 1. C Library Functions Used within the Subsystem
isalpha

isdigit

isprint

isspace

isupper

isxdigit

memcmp

memcpy

memset

strcat

strcmp

strcpy

strlen

strncat

strncmp

strncpy

strstr

strtoul

strupr

tolower

toupper

va_end

va_list

va_start

If ACPI_USE_SYSTEM_CLIBRARY is defined during the compilation of the subsystem, the
subsystem must be linked to a local C library to resolve these Clib references. If
ACPI_USE_SYSTEM_CLIBRARY is not set, the subsystem will automatically link to local
implementations of these functions. Note that the local implementations are written in portable
ANSI C, and may not be as efficient as local assembly code implementations of the same functions.
Therefore, it is recommended that the local versions of the C library functions be used if at all
possible.

4.5.3 System Include Files

The following include files (header files) are useful for users of both the Acpi* and AcpiOs*
interfaces:

Ref No SC-<xxxx> 47

ACPI Component Architecture Programmer Reference

•

•

•

•

•

•

•

•

•

acpi.h Includes all of the files below.

acexcep.h The ACPI_STATUS exception codes

acpiosxf.h The prototypes for all of the AcpiOs* interfaces

acpixf.h The prototypes for all of the Acpi* interfaces

actypes.h Common data types used across all interfaces

4.5.3.1 Customization to the Target Environment

The use of header files that are external to the ACPICA subsystem is confined to a single header file
named acenv.h. These external include files are used only if the following symbols are defined:

• ACPI_USE_SYSTEM_CLIBRARY
• ACPI_USE_STANDARD_HEADERS

Several of the standard C library headers are used:
stdarg.h

stdlib.h

string.h

ctype.h

When generating the Core Subsystem component from source, the acenv.h header may be modified
if the filenames above are not appropriate for generation on the target system. For example, some
environments use a different set of header files for the kernel-level C library versus the user-level C
library. Use of C library routines within the Core Subsystem component has been kept to a
minimum in order to enhance portability and to ensure that the Core Subsystem will run as a kernel-
level component in most operating systems.

48 Ref No SC-<xxxx>

 ACPI Component Architecture Programmer Reference

5 Data Types and Interface
Parameters

5.1 ACPICA Interface Parameters

5.1.1 ACPI Names and Pathnames

As defined in the ACPI Specification, all ACPI object names (the names for all ACPI objects such
as control methods, regions, buffers, packages, etc.) are exactly four ASCII characters long. The
ASL compiler automatically pads names out to four characters if an input name in the ASL source is
shorter. (The padding character is the underscore.) Since all ACPI names are always of a fixed
length, they can be stored in a single 32-bit integer to simplify their use.

Pathnames are null-terminated ASCII strings that reference named objects in the ACPI namespace.
A pathname can be composed of multiple 4-character ACPI names separated by a period. In
addition, two special characters are defined. The backslash appearing at the start of a pathname
indicates to begin the search at the root of the namespace. A carat in the pathname directs the search
to traverse upwards in the namespace by one level. The ACPI namespace is defined in the ACPI
specification. The ACPICA subsystem honors all of the naming conventions that are defined in the
ACPI specification.

Frequently in this document, pathnames are referred to as “fully qualified pathname” or “absolute
pathname” or “relative pathname”. A pathname is fully qualified if it begins with the backslash
character (‘\’) since it defines the complete path to an object from the root of the namespace. All
other pathnames are relative since they specify a path to an object from somewhere in the
namespace besides the root.

The ACPI specification defines special search rules for single segment (4-character) or standalone
names. These rules are intended to apply to the execution of AML control methods that reference
named ACPI objects. The ACPICA Core Subsystem component implements these rules fully for the
execution of control methods. It does not implement the so-called “parent tree” search rules for the
external interfaces in order to avoid object reference ambiguities.

5.1.2 Pointers

Many of the interfaces defined here pass pointers as parameters. It is the responsibility of the caller
to ensure that all pointers passed to the ACPICA subsystem are valid and addressable. The
interfaces only verify that pointers are non-NULL. If a pointer is any value other than NULL, it will
be assumed to be a valid pointer and will be used as such.

5.1.3 Buffers

It is the responsibility of the caller to ensure that all input and output buffers supplied to the Core
Subsystem component are at least as long as the length specified in the ACPI_BUFFER structure,
readable, and writable in the case of output buffers. The Core Subsystem does not perform
addressability checking on buffer pointers, nor does it perform range validity checking on the
buffers themselves. In the ACPI Component Architecture, it is the responsibility of the OS Services
Layer to validate all buffers passed to it by application code, create aliases if necessary to address

Ref No SC-<xxxx> 49

ACPI Component Architecture Programmer Reference

buffers, and ensure that all buffers that it creates locally are valid. In other words, the ACPICA Core
Subsystem trusts the OS Services Layer to validate all buffers.

When the length field of ACPI_BUFFER is set to ACPI_ALLOCATE_BUFFER before a call that
returns data in an output buffer, the core subsystem will allocate a return buffer on behalf of the
caller. It is the responsibility of the caller to free this buffer when it is no longer needed.

5.2 ACPICA Basic Data Types

5.2.1 UINT64 and COMPILER_DEPENDENT_UINT64

Beginning with the ACPI version 2.0 specification, the width of integers within the AML interpreter
are defined to be 64 bits on all platforms (both 32- and 64-bit). The implementation of this
requirement requires the deployment of 64-bit integers across the entire ACPICA Core Subsystem.
Since there is (currently) no standard method of defining a 64-bit integer in the C language, the
COMPILER_DEPENDENT_UINT64 macro is used to allow the UINT64 typedef to be defined by
each host compiler. The UINT64 data type is used at the Acpi* interface level for both physical
memory addresses and ACPI (interpreter) integers.

5.2.2 ACPI_PHYSICAL_ADDRESS

The width of all physical addresses is fixed at 64 bits, regardless of the platform or operating
system. Logical addresses (pointers) remain the natural width of the machine (i.e. 32 bit pointers on
32-bit machines, 64-bit pointers on 64-bit machines.) This allows for a full 64 bit address space on
64-bit machines as well as “extended” physical addresses (above 4Gbytes) on 32-bit machines.

5.2.3 ACPI_IO_ADDRESS

Similar to ACPI_PHYSICAL_ADDRESS, except it is used for I/O addresses.

5.2.4 ACPI_SIZE

This data type is 32-bits or 64 bits depending on the platform. It is used in leiu of the C library
size_t, which cannot be guaranteed to be available.

5.2.5 ACPI_INTEGER

This is the data type that directly corresponds to the ACPI-defined Integer data type. Beginning with
ACPI 2.0, the width of this data type is 64 bits on all platforms.

5.2.6 ACPI_STRING – ASCII String

The ACPI_STRING data type is a conventional “char *” null-terminated ASCII string. It is used
whenever a full ACPI pathname or other variable-length string is required. This data type was
defined to strongly differentiate it from the ACPI_NAME data type.

50 Ref No SC-<xxxx>

 ACPI Component Architecture Programmer Reference

5.2.7 ACPI_BUFFER – Input and Output Memory Buffers

Many of the ACPICA interfaces require buffers to be passed into them and/or buffers to be returned
from them. A common structure is used for all input and output buffers across the interfaces. The
buffer structure below is used for both input and output buffers. The Core Subsystem component
only allocates memory for return buffers if requested to do so — this allows the caller complete
flexibility in where and how memory is allocated. This is especially important in kernel level code.

typedef struct
{

UINT32 Length; // Length of the buffer in bytes;
void *Pointer; // pointer to buffer

} ACPI_BUFFER;

5.2.7.1 Input Buffer

An input buffer is defined to be a buffer that is filled with data by the user (caller) before it is passed
in as a parameter to one of the ACPI interfaces. When passing an input buffer to one of the Core
Subsystem interfaces, the user creates an ACPI_BUFFER structure and initializes it with a pointer
to the actual buffer and the length of the valid data in the buffer. Since the memory for the actual
ACPI_BUFFER structure is small, it will typically be dynamically allocated on the CPU stack. For
example, a user may allocate a 4K buffer for common storage. The buffer may be reused many
times with data of various lengths. Each time the number of bytes of significant data contained in
the buffer is entered in the Length field of the ACPI_BUFFER structure before an Core Subsystem
interface is called.

5.2.7.2 Output Buffer

An output buffer is defined to be a buffer that is filled with data by an ACPI interface before it is
returned to the caller. When the ACPI_BUFFER structure is used as an output buffer the caller must
always initialize the structure by either

1. Placing a value in the Length field that indicates the maximum size of the buffer that is
pointed to by the Pointer field. The length is used by the ACPI interface to ensure that there is
sufficient user provided space for the return value.

2. Initializing the Length field to ACPI_ALLOCATE_BUFFER to cause the ACPICA
subsystem to allocate a buffer.

If a buffer that was passed in by the caller is too small, the ACPI interfaces that require output
buffers will indicate the failure by returning the error code AE_BUFFER_OVERFLOW. The
interfaces will never attempt to put more data into the caller’s buffer than is specified by the Length
field of the ACPI_BUFFER structure (unless ACPI_ALLOCATE_BUFFER is used). The caller
may recover from this failure by examining the Length field of the ACPI_BUFFER structure. The
interface will place the required length in this field in the event that the buffer was too small.

During normal operation, the ACPI interface will copy data into the buffer. It will indicate to the
caller the length of data in the buffer by setting the Length field of the ACPI_BUFFER to the actual
number of bytes placed in the buffer.

Therefore, the Length field is both an input and output parameter. On input, it indicates either the
size of the buffer or an indication to the ACPICA subsystem to allocate a return buffer on behalf of
the caller. On output, it either indicates the actual amount of data that was placed in the buffer (if the
buffer was large enough), or it indicates the buffer size that is required (if the buffer was too small)
and the exception is set to AE_BUFFER_OVERFLOW.

Ref No SC-<xxxx> 51

ACPI Component Architecture Programmer Reference

5.2.8 ACPI_STATUS – Interface Exception Return Codes

Most of the external ACPI interfaces return an exception code of type ACPI_STATUS as the
function return value, as shown in the example below:

ACPI_STATUS Status;

Status = AcpiInitializeSubsystem ();
if (ACPI_FAILURE (Status))
{

// Exception handling code here
}

5.2.9 ACPI_HANDLE – Object Handle

References to ACPI objects managed by the Core Subsystem component are made via the
ACPI_HANDLE data type. A handle to an object is obtained by creating an attachment to the object
via the AcpiPathnameToHandle or AcpiNameToHandle primitives. The concept is similar to
opening a file and receiving a connection – after the pathname has been resolved to an object
handle, no additional internal searching is performed whenever additional operations are needed on
the object.

References to object scopes also use the ACPI_HANDLE type. This allows objects and scopes to be
used interchangeably as parameters to Acpi interfaces. In fact, a scope handle is actually a handle to
the first object within the scope.

5.2.9.1 Predefined Handles

One predefined handle is provided in order to simplify access to the ACPI namespace:

ACPI_ROOT_OBJECT: A handle to the root object of the namespace. All objects contained
within the root scope are children of the root object.

52 Ref No SC-<xxxx>

 ACPI Component Architecture Programmer Reference

5.2.10 ACPI_OBJECT_TYPE – Object Type Codes

Each ACPI object that is managed by the ACPICA subsystem has a type associated with it. The
valid ACPI object types are defined as follows:

Table 2. ACPI Object Type Codes
ACPI_TYPE_ANY

ACPI_TYPE_INTEGER

ACPI_TYPE_STRING

ACPI_TYPE_BUFFER

ACPI_TYPE_PACKAGE

ACPI_TYPE_FIELD_UNIT

ACPI_TYPE_DEVICE

ACPI_TYPE_EVENT

ACPI_TYPE_METHOD

ACPI_TYPE_MUTEX

ACPI_TYPE_REGION

ACPI_TYPE_POWER

ACPI_TYPE_PROCESSOR

ACPI_TYPE_THERMAL

ACPI_TYPE_BUFFER_FIELD

ACPI_TYPE_DDB_HANDLE

ACPI_TYPE_DEBUG_OBJECT

5.2.11 ACPI_OBJECT – Method Parameters and Return Objects

The general purpose ACPI_OBJECT is used to pass parameters to control methods, and to receive
results from the evaluation of namespace objects. The point of this data structure is to provide a
common object that can be used to contain multiple ACPI data types.

When passing parameters to a control method, each parameter is contained in an ACPI_OBJECT.
All of the parameters are then grouped together in an ACPI_OBJECT_LIST.

When receiving a result from the evaluation of a namespace object, an ACPI_OBJECT is returned
in an ACPI_BUFFER structure. This allows variable length objects such as ACPI Packages to be
returned in the buffer. The first item in the buffer is always the base ACPI_OBJECT.

typedef union acpi_object
{
 ACPI_OBJECT_TYPE Type; /* See definition of AcpiNsType for values */
 struct
 {
 ACPI_OBJECT_TYPE Type; /* ACPI_TYPE_INTEGER */
 ACPI_INTEGER Value; /* The actual number */
 } Integer;

Ref No SC-<xxxx> 53

ACPI Component Architecture Programmer Reference

 struct
 {
 ACPI_OBJECT_TYPE Type; /* ACPI_TYPE_STRING */
 UINT32 Length; /* # of bytes in string, minus null */
 char *Pointer; /* points to the string value */
 } String;

 struct
 {
 ACPI_OBJECT_TYPE Type; /* ACPI_TYPE_BUFFER */
 UINT32 Length; /* # of bytes in buffer */
 UINT8 *Pointer; /* points to the buffer */
 } Buffer;

 struct
 {
 ACPI_OBJECT_TYPE Type; /* ACPI_TYPE_PACKAGE */
 UINT32 Count; /* # of elements in package */
 union acpi_object *Elements; /* Pointer to array of ACPI_OBJECTs */
 } Package;

 struct
 {
 ACPI_OBJECT_TYPE Type; /* ACPI_TYPE_LOCAL_REFERENCE */
 ACPI_OBJECT_TYPE ActualType; /* Type associated with the Handle */
 ACPI_HANDLE Handle; /* object reference */
 } Reference;

 struct
 {
 ACPI_OBJECT_TYPE Type; /* ACPI_TYPE_PROCESSOR */
 UINT32 ProcId;
 ACPI_IO_ADDRESS PblkAddress;
 UINT32 PblkLength;
 } Processor;

 struct
 {
 ACPI_OBJECT_TYPE Type; /* ACPI_TYPE_POWER */
 UINT32 SystemLevel;
 UINT32 ResourceOrder;
 } PowerResource;

} ACPI_OBJECT;

5.2.12 ACPI_OBJECT_LIST – List of Objects

This object is used to pass parameters to control methods via the AcpiEvaluateMethod interface. The
Count is the number of ACPI objects pointed to by the Pointer field. In other words, the Pointer
field must point to an array that contains Count ACPI objects.

typedef struct AcpiObjList
{

UINT32 Count;
ACPI_OBJECT *Pointer;

} ACPI_OBJECT_LIST;

54 Ref No SC-<xxxx>

 ACPI Component Architecture Programmer Reference

5.2.13 ACPI_EVENT_TYPE – Fixed Event Type Codes

The ACPI fixed events are defined in the ACPI specification. The event codes below are used to
install handlers for the individual events.

ACPI_EVENT_PMTIMER // Power Management Timer rollover
ACPI_EVENT_GLOBAL // Global Lock released
ACPI_EVENT_POWER_BUTTON // Power Button (pressed)
ACPI_EVENT_SLEEP_BUTTON // Sleep Button (pressed)
ACPI_EVENT_RTC // Real Time Clock alarm

5.2.14 ACPI_TABLE_HEADER – Common ACPI Table Header

This is the header used for most of the BIOS-provided ACPI tables.

typedef struct /* ACPI common table header */
{

char Signature [4]; /* Identifies type of table */
UINT32 Length; /* Length of table, in bytes, */
 * including header */
UINT8 Revision; /* Specification minor version # */
UINT8 Checksum; /* To make sum of entire table = 0 */
char OemId [6]; /* OEM identification */
char OemTableId [8]; /* OEM table identification */
UINT32 OemRevision; /* OEM revision number */
char AslCompilerId [4]; /* ASL compiler vendor ID */
UINT32 AslCompilerRevision;/* ASL compiler revision number */

} ACPI_TABLE_HEADER;

5.3 ACPI Resource Data Types
These data types are used by the ACPICA resource interfaces.

5.3.1 PCI IRQ Routing Tables

The AcpiGetIrqRoutingTable interface retrieves the PCI IRQ routing tables. This interface returns
the routing table in the ACPI_BUFFER provided by the caller. Upon return, the Length field of the
ACPI_BUFFER will indicate the amount of the buffer used to store the PCI IRQ routing tables. If
the returned status is AE_BUFFER_OVERFLOW, the Length indicates the size of the buffer
needed to contain the routing table.

The ACPI_BUFFER Pointer points to a buffer of at least Length size. The buffer contains a series
of PCI_ROUTING_TABLE entries, each of which contains both a Length member and a Data
member. The Data member is a PRT_ENTRY. The Length member specifies the length of the
PRT_ENTRY and can be used to walk the PCI_ROUTING_TABLE entries. By incrementing a
buffer walking pointer by Length bytes, the pointer will reference each succeeding table element.
The final PCI_ROUTING_TABLE entry will contain no data and have a Length member of zero.

Each PRT_ENTRY contains the Address, Pin, Source, and Source Index information as described in
Chapter 6 of the ACPI Specification. While all structure members are UINT32 types, the valid
portion of both the Pin and SourceIndex members are only UINT8 wide. Although the Source
member is defined as “char Source[4]”, it can be de-referenced as a null-terminated string.

Ref No SC-<xxxx> 55

ACPI Component Architecture Programmer Reference

typedef struct acpi_pci_routing_table
{
 UINT32 Length;
 UINT32 Pin; /* PCI Pin */
 ACPI_INTEGER Address; /* PCI Address of device */
 UINT32 SourceIndex; /* Index of resource, allocating dev */
 char Source[4]; /* pad to 64 bits so sizeof() works */

} ACPI_PCI_ROUTING_TABLE;

5.3.2 Device Resources

Device resources are returned by indirectly executing the _CRS and _PRS control methods via the
AcpiGetCurrentResources and AcpiGetPossibleResources interfaces. These device resources are
needed to properly execute the _SRS control method using the AcpiSetCurrentResources interface.

These interfaces require an ACPI_BUFFER parameter. If the Length member of the
ACPI_BUFFER is set to zero, the AcpiGet* interfaces will return an ACPI_STATUS of
AE_BUFFER_OVERFLOW with Length set to the size buffer needed to contain the resource
descriptors. If the Length member is non-zero and Pointer in non-NULL, it is assumed that Pointer
points to a memory buffer of at least Length size. Upon return, the Length member will indicate the
amount of the buffer used to store the resource descriptors.

5.3.2.1 ACPI_RESOURCE_TYPE – Resource Data Types

The following resource types are supported by the ACPICA subsystem. The resource types that
follow are use in the resource definitions used in the resource handling interfaces:
AcpiGetCurrentResources, AcpiGetPossibleResources, and AcpiSetCurrentResources.

1. Irq
3. Dma
4. StartDependentFunctions
5. EndDependentFunctions
6. Io
7. FixedIo
8. VendorSpecific
9. EndTag
10. Memory24
11. Memory32
12. FixedMemory32
13. Address16
14. Address32
15. Address64
16. ExtendedAddress64
17. ExtendedIrq
18. GenericRegister

56 Ref No SC-<xxxx>

 ACPI Component Architecture Programmer Reference

typedef union acpi_resource_data /* union of all resources */
{
 ACPI_RESOURCE_IRQ Irq;
 ACPI_RESOURCE_DMA Dma;
 ACPI_RESOURCE_START_DEPENDENT StartDpf;
 ACPI_RESOURCE_IO Io;
 ACPI_RESOURCE_FIXED_IO FixedIo;
 ACPI_RESOURCE_VENDOR Vendor;
 ACPI_RESOURCE_VENDOR_TYPED VendorTyped;
 ACPI_RESOURCE_END_TAG EndTag;
 ACPI_RESOURCE_MEMORY24 Memory24;
 ACPI_RESOURCE_MEMORY32 Memory32;
 ACPI_RESOURCE_FIXED_MEMORY32 FixedMemory32;
 ACPI_RESOURCE_ADDRESS16 Address16;
 ACPI_RESOURCE_ADDRESS32 Address32;
 ACPI_RESOURCE_ADDRESS64 Address64;
 ACPI_RESOURCE_EXTENDED_ADDRESS64 ExtAddress64;
 ACPI_RESOURCE_EXTENDED_IRQ ExtendedIrq;
 ACPI_RESOURCE_GENERIC_REGISTER GenericReg;

} ACPI_RESOURCE_DATA;

typedef struct acpi_resource
{
 UINT32 Type;
 UINT32 Length;
 ACPI_RESOURCE_DATA Data;

} ACPI_RESOURCE;

The ACPI_BUFFER Pointer points to a buffer of at least Length size. The buffer is filled with a
series of RESOURCE entries, each of which begins with an Id that indicates the type of resource
descriptor, a Length member and a Data member that is a RESOURCE_DATA union. The
RESOURCE_DATA union can be any of fourteen different types of resource descriptors. The
Length member will allow the caller to walk the RESOURCE entries. By incrementing a buffer
walking pointer by Length bytes, the pointer will reference each succeeding table element. The final
element in the list of RESOURCE entries will have an Id of EndTag. An EndTag entry contains no
additional data.

When walking the RESOURCE entries, the Id member determines how to interpret the structure.
For example, if the Id member evaluates to StartDependentFunctions, then the Data member is two
32-bit values, a CompatibilityPriority value and a PerformanceRobustness value. These values are
interpreted using the constant definitions that are found in actypes.h, GOOD_CONFIGURATION,
ACCEPTABLE_CONFIGURATION or SUB_OPTIMAL_CONFIGURATION. The interpretation
of these constant definitions is discussed in the Start Dependent Functions section of the ACPI
specification, Chapter 6.

As another, more complex example, consider a RESOURCE entry with an Id member that evaluates
to Address32, then the Data member is an ADDRESS32_RESOURCE structure. The
ADDRESS32_RESOURCE structure contains fourteen members that map to the data discussed in
the DWORD Address Space Descriptor section of the ACPI specification, Chapter 6. The
Data.Address32.ResourceType member is interpreted using the constant definitions
MEMORY_RANGE, IO_RANGE or BUS_NUMBER_RANGE. This value also effects the
interpretation of the Data.Address32.Attribute structure because it contains type specific
information.

The General Flags discussed in the ACPI specification are interpreted and given separate members
within the ADDRESS32_RESOURCE structure. Each of the bits in the General Flags that describe

Ref No SC-<xxxx> 57

ACPI Component Architecture Programmer Reference

whether the maximum and minimum addresses is fixed or not, whether the address is subtractively
or positively decoded and whether the resource simply consumes or both produces and consumes a
resource are represented by the members MaxAddressFixed, MinAddressFixed, Decode and
ProducerConsumer respectively.

The Attribute member is interpreted based upon the ResourceType member. For example, if the
ResourceType is MEMORY_RANGE, then the Attribute member contains two 16-bit values, a
Data.Address32.Attribute.Memory.CacheAttribute value and a ReadWriteAttribute value.

The Data.Address32.Granularity, MinAddressRange, MaxAddressRange, AddressTranslationOffset
and AddressLength members are simply interpreted as UINT32 numbers.

The optional Data.Address32.ResourceSourceIndex is valid only if the ResourceSourceStringLength
is non-zero. Although the ResourceSource member is defined as UINT8 ResourceSource[1], it can
be de-referenced as a null-terminated string whose length is ResourceSourceStringLength.

5.4 ACPICA Exception Codes
A common and consistent set of return codes is used throughout the ACPICA subsystem. For
example, all of the public ACPI interfaces return the exception AE_BAD_PARAMETER when an
invalid parameter is detected.

The exception codes are contained in the public acexcep.h file.

The entire list of available exception codes is given below, along with a generic description of each
code. See the description of each public primitive for a list of possible exceptions, along with
specific reason(s) for each exception.

Table 3. Exception Code Values

Exception Name Typical Meaning

AE_OK No error

Environmental Exceptions

AE_ERROR Unspecified error

AE_NO_ACPI_TABLES ACPI tables could not be found

AE_NO_NAMESPACE A namespace has not been loaded

AE_NO_MEMORY Insufficient dynamic memory

AE_NOT_FOUND The name was not found in the namespace

AE_NOT_EXIST A required entity does not exist

AE_ALREADY_EXISTS An entity already exists

AE_TYPE The object type is incorrect

AE_NULL_OBJECT A required object was missing

AE_NULL_ENTRY The requested object does not exist

AE_BUFFER_OVERFLOW The buffer provided is too small

AE_STACK_OVERFLOW An internal stack overflowed

AE_STACK_UNDERFLOW An internal stack underflowed

AE_NOT_IMPLEMENTED The feature is not implemented

AE_SUPPORT The feature is not supported

58 Ref No SC-<xxxx>

 ACPI Component Architecture Programmer Reference

Exception Name Typical Meaning

AE_LIMIT A predefined limit was exceeded

AE_TIME A time limit or timeout expired

AE_ACQUIRE_DEADLOCK Internal error – attempt was made to
acquire a mutex in improper order

AE_RELEASE_DEADLOCK Internal error – attempt was made to
release a mutex in improper order

AE_NOT_ACQUIRED An attempt to release a mutex or the Global
Lock without a previous acquire

AE_ALREADY_ACQUIRED Internal error – attempt was made to
acquire a mutex twice

AE_NO_HARDWARE_RESPONSE Hardware did not respond after an I/O
operation

AE_NO_GLOBAL_LOCK There is no hardware Global Lock

AE_ABORT_METHOD A control method was aborted

AE_SAME_HANDLER Attempt was made to install the same
handler that is already installed.

AE_OWNER_ID_LIMIT There are no more Owner IDs available for
ACPI tables or control methods

Programmer Exceptions (ACPI external interfaces)

AE_BAD_PARAMETER A parameter is out of range or invalid

AE_BAD_CHARACTER An invalid character was found in a name

AE_BAD_PATHNAME An invalid character was found in a
pathname

AE_BAD_DATA A package or buffer contained incorrect
data

AE_BAD_HEX_CONSTANT Invalid character in a Hex constant

AE_BAD_OCTAL_CONSTANT Invalid character in an Octal constant

AE_BAD_DECIMAL_CONSTANT Invalid character in a Decimal constant

AE_MISSING_ARGUMENTS To few arguments were passed to a control
method

ACPI Table Exceptions

AE_BAD_SIGNATURE An ACPI table has an invalid signature

AE_BAD_HEADER Invalid field in an ACPI table header

AE_BAD_CHECKSUM An ACPI table checksum is not correct

AE_BAD_VALUE An invalid value was found in a table

AE_INVALID_TABLE_LENGTH The FADT or FACS has improper length

AML (Interpreter) Exceptions

AE_AML_BAD_OPCODE Invalid AML opcode encountered

AE_AML_NO_OPERAND An operand is missing (such as a method
that did not return a required value)

AE_AML_OPERAND_TYPE An operand of an incorrect type was
encountered

Ref No SC-<xxxx> 59

ACPI Component Architecture Programmer Reference

Exception Name Typical Meaning

AE_AML_OPERAND_VALUE The operand had an inappropriate or invalid
value

AE_AML_UNINITIALIZED_LOCAL Method tried to use an uninitialized local
variable

AE_AML_UNINITIALIZED_ARG Method tried to use an uninitialized
argument

AE_AML_UNINITIALIZED_ELEMENT Method tried to use an empty package
element

AE_AML_NUMERIC_OVERFLOW Overflow during BCD conversion or other

AE_AML_REGION_LIMIT Tried to access beyond the end of an
Operation Region

AE_AML_BUFFER_LIMIT Tried to access beyond the end of a buffer

AE_AML_PACKAGE_LIMIT Tried to access beyond the end of a package

AE_AML_DIVIDE_BY_ZERO During execution of AML Divide operator

AE_AML_BAD_NAME An ACPI name contains invalid character(s)

AE_AML_NAME_NOT_FOUND Could not resolve a named reference

AE_AML_INTERNAL An internal error within the interpreter

AE_AML_INVALID_SPACE_ID An Operation Region SpaceID is invalid

AE_AML_STRING_LIMIT String is longer than 200 characters

AE_AML_NO_RETURN_VALUE A method did not return a required value

AE_AML_METHOD_LIMIT A control method reached the maximum
reentrancy limit of 255

AE_AML_NOT_OWNER A thread tried to release a mutex that it
does not own

AE_AML_MUTEX_ORDER Mutex SyncLevel release mismatch

AE_AML_MUTEX_NOT_ACQUIRED Attempt to release a mutex that was not
previously acquired

AE_AML_INVALID_RESOURCE_TYPE Invalid resource type in resource list

AE_AML_INVALID_INDEX Invalid Argx or Localx (x too large)

AE_AML_REGISTER_LIMIT Bank value or Index value beyond range of
register

AE_AML_NO_WHILE Break or Continue without a While

AE_AML_ALIGNMENT Non-aligned memory transfer on platform
that does not support this

AE_AML_NO_RESOURCE_END_TAG No End Tag in a resource list

AE_AML_BAD_RESOURCE_VALUE Invalid value of a resource element

AE_AML_CIRCULAR_REFERENCE Two references refer to each other

AE_AML_BAD_RESOURCE_LENGTH The length of a Resource Descriptor in the
AML was incorrect

AE_AML_ILLEGAL_ADDRESS An operation region address was disallowed
by the host OS

AE_AML_INFINITE_LOOP An AML While loop appears to have been
stuck infinitely and the method was aborted

60 Ref No SC-<xxxx>

 ACPI Component Architecture Programmer Reference

Exception Name Typical Meaning

Internal Exceptions used for control

AE_CTRL_RETURN_VALUE A Method returned a value

AE_CTRL_PENDING Method is calling another method

AE_CTRL_TERMINATE Terminate the executing method

AE_CTRL_TRUE An If or While predicate result

AE_CTRL_FALSE An If or While predicate result

AE_CTRL_DEPTH Maximum search depth has been reached

AE_CTRL_END An If or While predicate is false

AE_CTRL_TRANSFER Transfer control to called method

AE_CTRL_BREAK A Break has been executed

AE_CTRL_CONTINUE A Continue has been executed

AE_CTRL_PARSE_CONTINUE Used to skip over bad opcodes

AE_CTRL_PARSE_PENDING Used to implement AML While loops

Ref No SC-<xxxx> 61

ACPI Component Architecture Programmer Reference

6 Subsystem Configuration
There are several methods of configuring the OS-independent ACPICA Core Subsystem:

1. Selection of individual ACPICA components.

2. Configuration of platform-specific data types.

3. Per-machine configuration for machine-specific dependencies.

4. Per-compiler configuration for compiler dependencies.

5. Other compile-time configuration through the use of compiler switches.

6. Run-time global variables which are statically initialized from the configuration header file.

6.1 Configuration Files
The ACPICA subsystem has three types of configuration header files to allow the subsystem to be
tailored to the particular machine and compiler, as well as allowing for the tuning of subsystem
constants.

These three include files perform the subsystem configuration:

• An include file that is specific to the particular compiler being used to compile the ACPICA
subsystem provides macros and defines that must be implemented on a per-compiler basis.
These files appear in the include/platform directory.

• An include file that is specific to the particular machine being targeted for the ACPICA
subsystem provides macros and defines that must be implemented on a per-machine basis.
These files appear in the include/platform directory.

• A global include file, acconfig.h allows for the tailoring and tuning of various subsystem
constants and options. This file appears in the include directory

6.2 Component Selection

6.2.1 ACPI_DISASSEMBLER

This switch enables the AML Disassembler component, which is usually used in conjunction with
the ACPI Debugger.

6.2.2 ACPI_DEBUGGER

This switch enables the ACPICA Debugger component. It also enables the various object dumping
routines.

62 Ref No SC-<xxxx>

 ACPI Component Architecture Programmer Reference

6.3 Configurable Data Types
The configurable data types are used to help tailor the ACPICA subsystem to a particular operation
system or compiler. Any changes from the default values should be specified in a system-dependent
header file under the include/platform directory.

6.3.1 ACPI_SPINLOCK

This type is an OS-dependent handle for a spinlock. It is returned by the AcpiOsCreateLock
interface, and passed as a parameter to the AcpiOsAcquireLock and AcpiOsReleaseLock interfaces.
The default value for ACPI_SPINLOCK is (void *). It can be changed to whatever type the host
OS uses for spinlocks.

6.3.2 ACPI_SEMAPHORE

This type is an OS-dependent handle for a semaphore. It is returned by the AcpiOsCreateSemaphore
interface, and passed as a parameter to the AcpiOsWaitSemaphore and AcpiOsSignalSemaphore
interfaces. The default value for ACPI_SEMAPHORE is (void *). It can be changed to whatever
type the host OS uses for semaphore objects.

6.3.3 ACPI_MUTEX

This type is an OS-dependent handle for a mutex. It is returned by the AcpiOsCreateMutex
interface, and passed as a parameter to the AcpiOsAcquireMutex and AcpiOsReleaseMutex
interfaces. The default value for ACPI_MUTEX is (void *). It can be changed to whatever type the
host OS uses for mutex objects.

If mutex objects are not supported by the host operating system, use the ACPI_MUTEX_TYPE
with the ACPI_BINARY_SEMAPHORE option (described later). This option causes mutexes to
be automatically implemented via ACPI_SEMAPHORE objects, and the OSL mutex interfaces are
not required.

6.3.4 ACPI_CPU_FLAGS

This type is used for the value returned from AcpiOsAcquireLock, and the value passed as a
parameter to AcpiOsReleaseLock. It can be configured to whatever type the host OS uses for CPU
flags that need to be saved and restored across the acquisition and release of a spinlock. The default
value is ACPI_SIZE.

6.3.5 ACPI_THREAD_ID

This type is an OS-dependent Thread ID that is returned by the AcpiOsGetThreadId interface. The
default type for ACPI_THREAD_ID is ACPI_SIZE, but it is configurable since some operating
systems implement a thread ID as a pointer.

Ref No SC-<xxxx> 63

ACPI Component Architecture Programmer Reference

6.3.6 ACPI_CACHE_T

This type is used for the value returned from AcpiOsCreateCache. It is used as a parameter to the
various OSL cache interfaces to identify a cache object for operating systems that implement a
cache manager. If the local ACPICA cache memory manager is used (configured), the value for this
type is ACPI_MEMORY_LIST. Otherwise, the value is OS-dependent.

6.3.7 ACPI_UINTPTR_T

This type is introduced to assist compilation of ACPICA under a C99 compiler that implements the
uintptr_t type. It is used for casting of pointers to eliminate compiler warnings. The default value
for the non-C99 case is (void *).

6.4 Subsystem Options
These defines are used to customize the ACPICA Subsystem at compile time by selecting or
disabling various features.

6.4.1 ACPI_USE_SYSTEM_CLIBRARY

This switch allows the use of a system-supplied C library for the Clib functions used by the
subsystem. If this switch is not set, the subsystem uses its own implementations of these functions.
Use of a system C library (when available) may be more efficient in terms of reused system code
and efficiency of the function implementations.

6.4.2 ACPI_USE_STANDARD_HEADERS

This switch allows the use of standard C library headers that are provided by the host. The following
C library headers are used:

#include <stdarg.h>
#include <stdlib.h>
#include <string.h>
#include <ctype.h>

6.4.3 ACPI_DEBUG_OUTPUT

This switch enables all debug facilities within ACPICA. This includes the ACPI_DEBUG_PRINT
output statements, the ACPI_FUNCTION_TRACE tracing statements, and the various object
dumping routines. If disabled, all of these macros evaluate to NULL and no code is produced.

6.4.4 ACPI_USE_LOCAL_CACHE

This switch enable the local ACPICA cache manager code. The use of a cache can improve the
ACPICA performance considerably, since it frequently allocations and deallocates objects of
identical size. If the host OS provides a similar cache manager, the ACPICA cache manager is not
needed.

64 Ref No SC-<xxxx>

 ACPI Component Architecture Programmer Reference

6.4.5 ACPI_DBG_TRACK_ALLOCATIONS

This switch enables the ACPICA cache statistics mechanism, and is only applicable if the local
ACPICA cache manager is enabled (ACPI_USE_LOCAL_CACHE.) When enabled, information
about each cache is saved, including the total memory allocated/freed, total requests, cache
hits/misses, etc. This information can be displayed via the ACPICA Debugger.

6.4.6 ACPI_MUTEX_TYPE

This macro is used to define the type of mutex support desired. Either native (host OS) mutexes may
be used, or binary semaphores may be used. The default behavior is to use binary semaphores.

The ACPI_MUTEX_TYPE must be one of the two following values:

ACPI_BINARY_SEMAPHORE (default)

Use this value if the host OS does not support mutex objects. If set, this switch enables the
automatic use of macros that implement the mutex interfaces via binary semaphores, and the various
mutex interfaces do not need to be implemented in the OSL.

ACPI_OSL_MUTEX

Use this value if the host OS supports mutex objects. The various mutex interfaces must be
implemented in the OSL:

• AcpiOsCreateMutex
• AcpiOsDeleteMutex
• AcpiOsAcquireMutex
• AcpiOsReleaseMutex

6.4.7 ACPI_MUTEX_DEBUG

Enables code that performs error checking on the use of mutex objects. It checks for possible
deadlock conditions by enforcing a mutex ordering rule. Use of this option can impact performance
considerably, so it it should only used for debugging.

6.4.8 ACPI_SIMPLE_RETURN_MACROS

Enables simplified return macros. The default implementation for the return macros has extra
protection so that the macro parameter is not evaluated twice. The simplified versions of these
macros are smaller, but the parameter can be evaluated twice

Protected macro:

#define return_ACPI_STATUS(s) \
 ACPI_DO_WHILE0 ({ \
 register ACPI_STATUS _s = (s); \
 AcpiUtStatusExit (ACPI_DEBUG_PARAMETERS, _s); \
 return (_s); })

Ref No SC-<xxxx> 65

ACPI Component Architecture Programmer Reference

Simplified macro:

#define return_ACPI_STATUS(s) \
 ACPI_DO_WHILE0 ({ \
 AcpiUtStatusExit (ACPI_DEBUG_PARAMETERS, (s)); \
 return((s)); })

6.4.9 ACPI_USE_DO_WHILE_0

Inserts a do … while(0) statement around the return macros (see examples above). Prevents some
compilers from issuing warnings for these macros.

Default implementation:

#define ACPI_DO_WHILE0(a) do a while(0)

6.5 Per-Compiler Configuration
These macros and defines allow the ACPICA subsystem to be tailored to a particular compiler.

6.5.1 COMPILER_DEPENDENT_INT64

Defines the name of a signed 64-bit integer on for this compiler. This macro is required because
there is (currently) no standard method to define 64-bit integers in the C language. There is no
default, this macro must be defined by the platform configuration file.

Examples

#define COMPILER_DEPENDENT_INT64 int64_t
#define COMPILER_DEPENDENT_INT64 long
#define COMPILER_DEPENDENT_INT64 __int64
#define COMPILER_DEPENDENT_INT64 long long

6.5.2 COMPILER_DEPENDENT_UINT64

Defines the name of an unsigned 64-bit integer on for this compiler. This macro is required because
there is (currently) no standard method to define 64-bit integers in the C language. There is no
default, this macro must be defined by the platform configuration file.

Examples

#define COMPILER_DEPENDENT_UINT64 uint64_t
#define COMPILER_DEPENDENT_UINT64 unsigned long
#define COMPILER_DEPENDENT_UINT64 unsigned __int64
#define COMPILER_DEPENDENT_UINT64 unsigned long long

66 Ref No SC-<xxxx>

 ACPI Component Architecture Programmer Reference

6.5.3 ACPI_USE_NATIVE_DIVIDE

This switch enables native 64-bit divides. It is set by default for 64-bit machine widths. It is optional
for 32-bit platforms. Only use this option on a 32-bit platform if a 64-bit double-precision math
library is available for use by ACPICA. If the library is not available, then do not use this option and
a local ACPICA double-precision divide function is enabled instead.

6.5.4 ACPI_DIV_64_BY_32 (Short 64-bit Divide)

This macro performs a simple 64-bit divide with a 64-bit dividend and a 32-bit divisor. The purpose
of this macro is to perform a short divide on 32-bit platforms without invoking a double-precision
math library. Both the quotient and remainder must be returned. There is no default, this macro
must be defined by the platform configuration file.

Example 32-bit Implementation

#define ACPI_DIV_64_BY_32(n_hi, n_lo, d32, q32, r32) \
{ \
 __asm mov edx, n_hi \
 __asm mov eax, n_lo \
 __asm div d32 \
 __asm mov q32, eax \
 __asm mov r32, edx \
}

Example 64-bit Implementation

#define ACPI_DIV_64_BY_32(n, n_hi, n_lo, d32, q32, r32) \
{ \
 q32 = n / d32; \
 r32 = n % d32; \
}

6.5.5 ACPI_SHIFT_RIGHT_64 (64-bit Shift)

This macro performs a 64-bit right shift by one bit. The purpose of this macro is to perform a shift
right on 32-bit platforms without invoking a double-precision math library. There is no default, this
macro must be defined by the platform configuration file.

Example 32-bit Implementation

#define ACPI_SHIFT_RIGHT_64(n_hi, n_lo) \
{ \
 __asm shr n_hi, 1 \
 __asm rcr n_lo, 1 \
}

Example 64-bit Implementation

#define ACPI_SHIFT_RIGHT_64(n, n_hi, n_lo) \
{ \
 n <<= 1; \
}

Ref No SC-<xxxx> 67

ACPI Component Architecture Programmer Reference

6.5.6 ACPI_EXPORT_SYMBOL

This macro is used to define the mechanism used to export public symbols, if applicable. Within
ACPICA, it is invoked for each of the public interfaces. The default value is NULL.

Example

#define ACPI_EXPORT_SYMBOL(Symbol) EXPORT_SYMBOL(Symbol);

6.5.7 ACPI_EXTERNAL_XFACE

This macro allows the definition of an interface type prefix (such as _cdecl, pascal, etc.) to be used
in the declaration of all ACPICA external interfaces (the Acpi* interfaces.) The default value is
NULL.

Example

#define ACPI_EXTERNAL_XFACE APIENTRY

6.5.8 ACPI_INTERNAL_XFACE

This macro allows the definition of an interface type prefix (such as _cdecl, pascal, etc.) to be used
in the declaration of all ACPICA internal interfaces. The default value is NULL.

6.5.9 ACPI_INTERNAL_VAR_XFACE

This macro allows the definition of an interface type prefix (such as _cdecl, pascal, etc.) to be used
in the declaration of all ACPICA variable-argument list internal interfaces. The default value is
NULL.

Example

#define ACPI_INTERNAL_VAR_XFACE __cdecl

6.5.10 ACPI_SYSTEM_XFACE

This macro allows the definition of an interface type prefix (such as _cdecl, pascal, etc.) to be used
in the declaration of all interfaces to the host OS. The default value is NULL.

Examples

#define ACPI_SYSTEM_XFACE __cdecl
#define ACPI_SYSTEM_XFACE APIENTRY

6.5.11 ACPI_PRINTF_LIKE

This macro defines a suffix to be used in the definitions and prototypes of internal print functions
that accept a printf-like format string. Some compilers have the ability to perform additional
typechecking on such functions. The default value is NULL.

68 Ref No SC-<xxxx>

 ACPI Component Architecture Programmer Reference

Example

#define ACPI_PRINTF_LIKE(c) \
 __attribute__ ((__format__ (__printf__, c, c+1)))

6.5.12 ACPI_UNUSED_VAR

This macro defines a prefix to be used in the definition of variables that may not be used in a
module (such as the ACPI_MODULE_NAME). This can prevent compiler warnings for such
variables. The default value is NULL.

Example

#define ACPI_UNUSED_VAR __attribute__ ((unused))

6.6 Per-Machine Configuration
These macros and defines allow the ACPICA subsystem to be tailored to a particular machine or
machine architecture.

6.6.1 ACPI_MACHINE_WIDTH

This macro defines the standard integer width of the target machine, either 32 or 64. There is no
default, this macro must be defined by the platform configuration file.

Examples

#define ACPI_MACHINE_WIDTH 32
#define ACPI_MACHINE_WIDTH 64

6.6.2 ACPI_FLUSH_CPU_CACHE

Defines the instruction or instructions necessary to flush the CPU cache(s) on this machine.

Examples

#define ACPI_FLUSH_CPU_CACHE() __asm {WBINVD}
#define ACPI_FLUSH_CPU_CACHE() wbinvd()

6.6.3 ACPI_OS_NAME

This defines the string that is returned by the predefined “_OS_” method in the ACPI namespace.

#define ACPI_OS_NAME "Microsoft Windows NT"

The _OS_ object is essentially obsolete, but there is a large base of ASL/AML code in existing
machines that check for the string above. The use of this string usually guarantees that the ASL will
execute down the most tested code path. Also, there is some code that will not execute the _OSI
method unless _OS_ matches the string avove. Therefore, change this string at your own risk.

Ref No SC-<xxxx> 69

ACPI Component Architecture Programmer Reference

6.6.4 ACPI_ACQUIRE_GLOBAL_LOCK

This macro defines the code (in assembly or C) necessary to acquire the ACPI Global Lock on this
machine.

ACPI_ACQUIRE_GLOBAL_LOCK (FacsPtr, Acquired)

Where:

FacsPtr is a pointer to the FACS table.

Acquired is a boolean return value. TRUE if the lock was acquired; FALSE otherwise.

Example:

#define ACPI_ACQUIRE_GLOBAL_LOCK(FacsPtr, Acq) __asm \
{ \
 __asm mov eax, 0xFF \
 __asm mov ecx, FacsPtr \
 __asm or ecx, ecx \
 __asm jz exit_acq \
 __asm lea ecx, [ecx].GlobalLock \
 \
 __asm acq10: \
 __asm mov eax, [ecx] \
 __asm mov edx, eax \
 __asm and edx, 0xFFFFFFFE \
 __asm bts edx, 1 \
 __asm adc edx, 0 \
 __asm lock cmpxchg dword ptr [ecx], edx \
 __asm jnz acq10 \
 \
 __asm cmp dl, 3 \
 __asm sbb eax, eax \
 \
 __asm exit_acq: \
 __asm mov Acq, al \
}

6.6.5 ACPI_RELEASE_GLOBAL_LOCK

This macro defines the code (in assembly or C) necessary to release the ACPI Global Lock on this
machine.

ACPI_RELEASE_GLOBAL_LOCK (FacsPtr, Pending)

Where:

FacsPtr is a pointer to the FACS table.

Pending is a boolean return value. TRUE if the global lock pending bit is set; FALSE
otherwise.

70 Ref No SC-<xxxx>

 ACPI Component Architecture Programmer Reference

Example:

#define ACPI_RELEASE_GLOBAL_LOCK(FacsPtr, Pnd) __asm \
{ \
 __asm xor eax, eax \
 __asm mov ecx, FacsPtr \
 __asm or ecx, ecx \
 __asm jz exit_rel \
 __asm lea ecx, [ecx].GlobalLock \
 \
 __asm Rel10: \
 __asm mov eax, [ecx] \
 __asm mov edx, eax \
 __asm and edx, 0xFFFFFFFC \
 __asm lock cmpxchg dword ptr [ecx], edx \
 __asm jnz Rel10 \
 \
 __asm cmp dl, 3 \
 __asm and eax, 1 \
 \
 __asm exit_rel: \
 __asm mov Pnd, al \
}

6.7 Dynamic Configuration
This section describes features that may be enabled or disabled at run-time by setting various
ACPICA global option variables.

The global option variables are found in the include/acglobal.h header.

6.7.1 Interpreter Slack Mode

When enabled, this mode provides better compatibility with other existing ACPI implementation(s)
by ignoring certain errors and improper AML sequences. It also enables the Implicit Return feature.

Implicit Return Value: This feature will automatically return the result of the last AML operation
in a control method, in the absence of an explicit Return() operator. Since other ACPI
implementations have implemented this feature by default, there are many existing machines whose
ASL/AML depends on this behavior.

Operation Region Range Checking: Allow access beyond the end of of a region. The default
behavior is to strictly limit access to the end of the operation region. Typically, access beyond the
end of the region occurs when the access data width causes the overrun. For example, a one-byte
operation region and a field with DWORD access. Normally, access to the field will cause an error.
This option will allow the access to continue.

Uninitialized Method Locals and Arguments: Allow access to uninitialized Locals and
Arguments as if they were initialized to an Integer object with a value of zero. If this feature is not
enabled, an error is generated an the method is aborted.

Source Operand Types for Store Operator: Allow objects of any type to be the source for the
ASL/AML Store operator. The ACPI specification restricts the source operand to be one of a subset
of the available ACPI object types. This option overrides the ACPI specification and allows source
operands of any type.

Ref No SC-<xxxx> 71

ACPI Component Architecture Programmer Reference

Unresolved References within Packages: Allow references within Package objects to go
unresolved with no error or warning. A NULL package element is inserted instead. This is another
compatibility issue with other AML interpreters, and there are existing machines that depend on this
feature.

ACPI_INIT_GLOBAL (AcpiGbl_EnableInterpreterSlack, FALSE);

6.7.2 ACPI Register Widths

This option can be used to override the ACPI register widths that are specified in the FADT in the
case where the FADT contains one or more incorrect register widths (lengths). The default value is
FALSE, do not use the default register widths -- use the values as specified in the FADT.

The default register widths are as follows:

PM1A Enable,
PM1A Status,
PM1A Control,
PM1B Enable,
PM1B Status,
PM1B Control -- 16 bits each, = ACPI_PM1_REGISTER_WIDTH

PM2 Control -- 8 bits, = ACPI_PM2_REGISTER_WIDTH

PM Timer -- 32 bits, = ACPI_PM_TIMER_WIDTH

ACPI_INIT_GLOBAL (AcpiGbl_UseDefaultRegisterWidths, FALSE);

6.7.3 Serialized Methods

This option can be used to force all control methods to be serialized. Meaning that only one thread
can enter the method at a time, similar to the Serialized control method option. The default is to not
force serialization and let each control method dictate the serialization mode for itself. The use of
this option essentially forces the AML interpreter to be single threaded.

ACPI_INIT_GLOBAL (AcpiGbl_AllMethodsSerialized, FALSE);

6.7.4 Wake GPEs

This option controls whether “wake” GPEs should be enabled at runtime or not. A wake GPE is
defined as a GPE that is used only to wake the system. The default is for all wake GPEs to be
disabled at runtime. They are only enabled when the system is about to sleep. The wake GPEs are
determined from the _PRW methods contained in the system AML.

ACPI_INIT_GLOBAL (AcpiGbl_LeaveWakeGpesDisabled, TRUE);

6.7.5 Creation of_OSI Method

This option controls whether the predefined _OSI method is created or not. The _OSI method was
defined in ACPI 2.0 and is implemented internally within the ACPICA subsystem.

ACPI_INIT_GLOBAL (AcpiGbl_CreateOsiMethod, TRUE);

72 Ref No SC-<xxxx>

 ACPI Component Architecture Programmer Reference

6.8 Subsystem Configuration Constants
The configurable subsystem constants are specified in the include/acconfig.h header file. These
constants may be modified at either compile time by changing the constants in acconfig.h, or at run-
time by changing the contents of the global variables where these constants are stored.

6.8.1 ACPI_CHECKSUM_ABORT

Defines whether the table manager should abort the loading of an ACPI table if the table checksum
is incorrect. Possible values are TRUE or FALSE. The default is FALSE.

In practice, often table checksums are found to be incorrect, not because of corruption, but because
the BIOS has modified the table on the fly according to BIOS configuration options, and has
inadvertently forgotten to update the checksum. Therefore, the ACPI table checksum isn’t very
useful and the default is to ignore checksum errors.

6.8.2 ACPI_MAX_LOOP_INTERATIONS

This defines the number of AML While() loop executions that are permitted before the infinite loop
break mechanism is invoked. The default is 64K iterations, which is a very large number of
interations for an AML loop. This mechanism prevents a catastrophic infinite loop which would
block the AML interpreter forever, effectively locking up most of the ACPICA subsystem.

Infinite loops can occur in poorly written AML in a hardware polling loop. For example, if the
hardware simply does not respond and the loop does not implement a timeout.

6.8.3 ACPI_MAX_STATE_CACHE_DEPTH

The maximum number of objects in the generic state object cache used to avoid recursive calls
within the subsystem. These are small objects, but are used frequently. A larger cache will improve
the performance of the entire subsystem (loading tables, parsing methods, and executing methods.)

6.8.4 ACPI_MAX_PARSE_CACHE_DEPTH

The maximum number of objects in the parse object cache. These are the objects used to build parse
trees. A larger cache will improve the execution performance of control methods (when the parse
just-in-time strategy is used) by improving the time to parse the AML.

6.8.5 ACPI_MAX_OBJECT_CACHE_DEPTH

The maximum number of objects in the interpreter operand object cache. These objects are used
during control methods to pass the operands for individual AML opcodes to the interpreter. A larger
cache will improve the performance of control method execution

6.8.6 ACPI_MAX_WALK_CACHE_DEPTH

The maximum number of objects in the parse tree walk object cache. These are relatively large
objects (about 512 bytes) that are used to contain the entire state of a control method during its
execution. Each nested control method requires an additional walk object. Since only one object is

Ref No SC-<xxxx> 73

ACPI Component Architecture Programmer Reference

required per control method, it is not necessary to cache a large number of these objects. A few
cached walk objects are sufficient to increase the performance of control method execution and
reduce memory fragmentation.

74 Ref No SC-<xxxx>

 ACPI Component Architecture Programmer Reference

7 ACPICA Core Subsystem -
External Interface Definition
This section contains documentation for the specific interfaces exported by the ACPICA Core. The
interfaces are grouped based upon their functionality. These groups are closely related to the internal
modules (or sub-components) of the Core Subsystem described earlier in this document. These
interfaces are intended to be used by the OSL only. The host OS does not call these interfaces
directly. All interfaces to the ACPICA Core Subsystem are prefixed by the letters “Acpi”.

7.1 ACPICA Subsystem Initialization and Control

7.1.1 AcpiInitializeSubsystem

Initialize all ACPICA globals and sub-components.

ACPI_STATUS
AcpiInitializeSubsystem (

void)

PARAMETERS

None

RETURN

Status Exception code that indicates success or reason for failure.

EXCEPTIONS

AE_OK The subsystem was successfully initialized.

AE_ERROR The system is not capable of supporting ACPI mode.

AE_NO_MEMORY Insufficient dynamic memory to complete the ACPI
initialization.

Functional Description:

This function initializes the entire ACPICA subsystem, including the OS Services Layer. It must be
called once before any of the other Acpi* interfaces are called (with the exception of the Table
Manager interfaces these interfaces are independent and can be called at any time.)

Ref No SC-<xxxx> 75

ACPI Component Architecture Programmer Reference

7.1.2 AcpiInstallInitializationHandler

Install a global handler for initialization handling.

ACPI_STATUS
AcpiInstallInitializationHandler (

ACPI_INIT_HANDLER Handler,
UINT32 Function)

PARAMETERS

Handler A pointer to the initialization handler.

Function Reserved.

EXCEPTIONS

AE_OK The ACPI namespace was successfully loaded and
initialized.

AE_BAD_PARAMETER The Handler parameter is invalid.

AE_ALREADY_EXISTS A global initialization handler has already been installed.

Functional Description:

This function installs a global initialization handler that is called during the subsystem initialization.

Currently, the handler is called after each Device object within the namespace has been initialized
(The _INI and _STA methods have been run on the device.)

7.1.2.1 Interface to User Callback Function

Interface to the user function that is installed via AcpiInstallInitializationHandler.

ACPI_STATUS (*ACPI_INIT_HANDLER) (
ACPI_HANDLE Object,
UINT32 Function)

PARAMETERS

Object A handle for the object that is being or has just been
initialized.

Function One of the following manifest constants:

 ACPI_INIT_DEVICE_INI – the Object is a handle to a
Device that has just been initialized.

76 Ref No SC-<xxxx>

 ACPI Component Architecture Programmer Reference

RETURN VALUE

Status AE_OK Continue the walk.

 AE_TERMINATE Stop the walk immediately.

 AE_DEPTH Go no deeper into the namespace tree.

 All others Abort the walk with this exception
code.

Functional Description:

This function is called during subsystem initialization.

7.1.3 AcpiEnableSubsystem

Complete the ACPICA Subsystem initialization and enable ACPI operations.

ACPI_STATUS
AcpiEnableSubsystem (

UINT32 Flags)

PARAMETERS

Flags Specifies how the subsystem should be initialized. Must be
one of these manifest constants:

 ACPI_FULL_INITIALIZATION – Perform completed
initialization. This is the normal use of this interface.

 ACPI_NO_ACPI_ENABLE. Do not attempt to enter
ACPI mode. For hardware-independent mode only.

 ACPI_NO_ADDRESS_SPACE_INIT. Do not install the
default address space handlers. For debug purposes only.

 ACPI_NO_HANDLER_INIT. Do not install the SCI and
global lock handlers. For hardware-independent mode only.

RETURN

Status Exception code that indicates success or reason for failure.

EXCEPTIONS

AE_OK The ACPI namespace was successfully loaded and
initialized.

AE_NO_MEMORY Insufficient memory to build the internal namespace.

Ref No SC-<xxxx> 77

ACPI Component Architecture Programmer Reference

Functional Description:

This function completes initialization of the ACPICA Subsystem.

7.1.4 AcpiInitializeObjects

Initialize objects within the ACPI namespace.

ACPI_STATUS
AcpiInitializeObjects (

UINT32 Flags)

PARAMETERS

Flags Specifies how the subsystem should be initialized. Must be
one of these manifest constants:

 ACPI_FULL_INITIALIZATION – Perform completed
initialization. This is the normal use of this interface.

 ACPI_NO_ADDRESS_SPACE_INIT. Do not execute the
operation region _REG control methods. For debug
purposes only.

 ACPI_NO_OBJECT_INIT. Do not run the final
initialization pass to complete initialization of all address
spaces and fields.

 ACPI_NO_DEVICE_INIT. Do not attempt to run the
_STA and _INI methods on devices in the ACPI namespace.

 ACPI_NO_EVENT_INIT. Do not initialize the FADT-
defined GPE blocks. For hardware independent mode only.

RETURN

Status Exception code that indicates success or reason for failure.

EXCEPTIONS

AE_OK The ACPI namespace was successfully loaded and
initialized.

AE_NO_MEMORY Insufficient memory to build the internal namespace.

Functional Description:

This function completes initialization of the ACPICA Subsystem by initializing all ACPI Devices,
Operation Regions, Buffer Fields, Buffers, and Packages. It must be called and it should only be
called after a call to AcpiEnableSubsystem. The object cache is purged after these objects are
initialized, in case an overly large number of cached objects were created during initialization
(versus the size of the caches at runtime.)

78 Ref No SC-<xxxx>

 ACPI Component Architecture Programmer Reference

7.1.5 AcpiSubsystemStatus

Obtain initialization status of the ACPICA subsystem.

ACPI_STATUS
AcpiSubsystemStatus (

void)

PARAMETERS

None

RETURN

Status Exception code indicates success or reason for failure.

EXCEPTIONS

AE_OK The subsystem was successfully initialized.

AE_ERROR The subsystem has not been initialized

Functional Description:

This function allows device drivers to determine the initialization status of the ACPICA subsystem.:

7.1.6 AcpiTerminate

Shutdown all ACPI Components.

ACPI_STATUS
AcpiTerminate (

void)

PARAMETERS

None

RETURN

Status Exception code indicates success or reason for failure.

EXCEPTIONS

AE_OK The subsystem was successfully shutdown.

AE_ERROR The OS-dependent layer did not shutdown properly.

Ref No SC-<xxxx> 79

ACPI Component Architecture Programmer Reference

Functional Description:

This function performs a shutdown of the Core Subsystem portion of the ACPICA subsystem. The
namespace tables are unloaded, and all resources are freed to the host operating system. This
function should be called prior to unloading the ACPICA subsystem. In more detail, the terminate
function performs the following:

Free all memory associated with the ACPI tables (either allocated or mapped memory).

Free all internal objects associated with the namespace.

Free all objects within the object caches.

Free all OS resources associated with mutual exclusion.

80 Ref No SC-<xxxx>

 ACPI Component Architecture Programmer Reference

7.2 ACPI Table Management

7.2.1 AcpiInitializeTables

Initialize the ACPICA table manager.

ACPI_STATUS
AcpiInitializeTables (

ACPI_TABLE_DESC *InitialTableArray,
UINT32 InitialTableCount,
BOOLEAN AllowResize)

PARAMETERS

InitialTableArray Pointer to an array of pre-allocated ACPI_TABLE_DESC
structures. If NULL, the array is dynamically allocated.

InitialTableCount Requested size of InitialTableArray, in number of
ACPI_TABLE_DESC structures.

AllowResize Flag to tell the Table Manager if a resize of the pre-allocated
array is allowed. Ignored if InitialTableArray is NULL.

RETURN VALUE

Status Exception code that indicates success or reason for failure.

EXCEPTIONS

AE_OK The table manager was successfully initialized.

AE_NOT_FOUND A valid RSDP could not be located.

AE_NO_MEMORY Insufficient dynamic memory to complete the operation.

Functional Description:

This function initializes the table manager component. A memory array is required to store
information about the BIOS-provided ACPI tables. It can be pre-allocated by the caller (if dynamic
memory is not available yet) or it can be allocated by this function.

Specify a static memory array for the InitialTableArray if the Table Manager is to be used early
during kernel initialization, before dynamic memory is available. Otherwise, use a NULL pointer
and the Table Manager will use dynamic memory to allocate the array.

Ref No SC-<xxxx> 81

ACPI Component Architecture Programmer Reference

7.2.2 AcpiReallocateRootTable

Copy the root ACPI information table into dynamic memory.

ACPI_STATUS
AcpiReallocateRootTable (

void)

PARAMETERS

None

RETURN

Status Exception code indicates success or reason for failure.

EXCEPTIONS

AE_OK The table was successfully enlarged.

AE_NO_MEMORY Insufficient dynamic memory to complete the operation.

Functional Description:

This function copies the root table into dynamic memory. The root table is used to store information
about the BIOS-provided ACPI tables. This function should be called after dynamic memory is
available within the kernel and if AcpiInitializeTables was called with a pre-allocated static table
array.

7.2.3 AcpiFindRootPointer

Locate the RSDP via memory scan (IA-32).

ACPI_STATUS
AcpiFindRootPointer (

ACPI_SIZE *TableAddress)

PARAMETERS

TableAddress A pointer to where the physical address of the ACPI RSDP
table will be returned.

RETURN VALUE

Status Exception code that indicates success or reason for failure.

EXCEPTIONS

AE_OK The RSDP was found and returned.

82 Ref No SC-<xxxx>

 ACPI Component Architecture Programmer Reference

AE_NOT_FOUND A valid RSDP could not be located.

AE_NO_MEMORY Insufficient dynamic memory to complete the operation.

Functional Description:

This function locates and returns the ACPI Root System Description Pointer by scanning within the
first megabyte of physical memory for the RSDP signature. This mechanism is only applicable to
IA-32 systems.

This interface should only be called from the OSL function AcpiOsGetRootPointer if this memory
scanning mechanism is appropropriate for the current platform.

If the operation fails an appropriate status will be returned and the value of RsdpPhysicalAddress is
undefined.

This function is always available, regardless of the initialization state of the rest of ACPICA.

7.2.4 AcpiLoadTables

Load the BIOS-provided ACPI tables and build an internal ACPI namespace.

ACPI_STATUS
AcpiLoadTables (

void)

PARAMETERS

None

RETURN VALUE

Status Exception code that indicates success or reason for failure.

EXCEPTIONS

AE_OK The table was successfully loaded and a handle returned.

AE_BAD_CHECKSUM The computed table checksum does not match the checksum
in the table.

AE_BAD_HEADER The table header is invalid or is not a valid type.

AE_NO_ACPI_TABLES The ACPI tables (RSDT, DSDT, FADT, etc.) could not be
found in physical memory.

AE_NO_MEMORY Insufficient dynamic memory to complete the operation.

Functional Description:

This function loads ACPI tables that are pointed to by the RSDP/RSDT and installs them into the
internal ACPI namespace database. The Root System Description Pointer (RSDP) points to the Root

Ref No SC-<xxxx> 83

ACPI Component Architecture Programmer Reference

System Description Table (RSDT), and the remaining ACPI tables are found via pointers contained
in RSDT.

The minimum required set of ACPI tables that will allow the ACPICA core subsystem to initialize
consists of the following:

♦ RSDT/XSDT

♦ FADT

♦ FACS

♦ DSDT

Only tables that are used directly by the ACPICA subsystem are loaded. Other tables (such as the
MADT, SRAT, etc.) are obtained and consumed by different kernel subsystems and/or device
drivers.

All SSDTs found within the RSDT/XSDT are loaded.

If the operation fails an appropriate status will be returned.

7.2.5 AcpiGetTableHeader

Get the header portion of a specific installed ACPI table.

ACPI_STATUS
AcpiGetTableHeader (

char *Signature,
UINT32 Instance,
ACPI_TABLE_HEADER *OutTableHeader)

PARAMETERS

Signature A pointer to the 4-character ACPI signature for the
requested table.

Instance For table types that support multiple tables (SSDT), the
instance of the table to be returned. For table types that
support only a single table, this parameter must be set to
one.

OutTableHeader A pointer to a location where the table header is to be
returned.

RETURN VALUE

Status Exception code that indicates success or reason for failure.

EXCEPTIONS

AE_OK The table header was successfully located and returned.

AE_BAD_PARAMETER At least one of the following is true:

• The Signature pointer is NULL.

84 Ref No SC-<xxxx>

 ACPI Component Architecture Programmer Reference

• The OutTableHeader pointer is NULL.

AE_NOT_FOUND There is no table of this type currently loaded, or the table of
the specified Instance is not loaded.

AE_TYPE The table Type is not supported (RSDP).

Functional Description:

This function obtains the header of an installed ACPI table. The header contains a length field that
can be used to determine the size of the buffer needed to contain the entire table. This function is not
valid for the RSDP table since it does not have a standard header and is fixed length.

For table types that support more than one table, the Instance parameter is used to specify which
table header of the given type should be returned. For table types that only support single tables, the
Instance parameter must be set to one.

If the operation fails an appropriate status will be returned and the contents of OutTableHeader are
undefined.

7.2.6 AcpiGetTable

Obtain a specific installed ACPI table.

ACPI_STATUS
AcpiGetTable (

char *Signature,
UINT32 Instance,
ACPI_TABLE_HEADER **Table)

PARAMETERS

Signature A pointer to the 4-character ACPI signature for the
requested table.

Instance Which table instance, if multiple instances of the table are
allowed (SSDT).

Table A pointer to where the address of the requested ACPI table
is returned.

RETURN VALUE

Status Exception code that indicates success or reason for failure.

EXCEPTIONS

AE_OK The requested table was found and returned.

AE_BAD_PARAMETER At least one of the following is true:

• The Signature pointer is NULL.

• The OutTableHeader pointer is NULL.

Ref No SC-<xxxx> 85

ACPI Component Architecture Programmer Reference

AE_NO_ACPI_TABLES A valid RSDP could not be located.

AE_NOT_FOUND There is no table of this type currently loaded, or the table of
the specified Instance is not loaded.

AE_NO_MEMORY Insufficient dynamic memory to complete the operation.

Functional Description:

This function locates and returns one of the ACPI tables that are supplied by the system firmware.
On IA-32 systems, this involves scanning within the first megabyte of physical memory for the
RSDP signature.

This function may be called at any time after the Table Manager is initialized, even before the
ACPICA subsystem has been initialized. This allows early access to ACPI tables -- even before the
system virtual memory manager has been started.

If the operation fails an appropriate status will be returned and the value of Table is undefined.

7.2.7 AcpiGetTableByIndex

Obtain an installed ACPI table via an index into the Root Table

ACPI_STATUS
AcpiGetTableByIndex (

UINT32 TableIndex,
ACPI_TABLE_HEADER **OutTable)

PARAMETERS

TableIndex Index of the table within the internal Root Table list.

OutTable A pointer to location where the table is to be returned.

RETURN VALUE

Status Exception code that indicates success or reason for failure.

EXCEPTIONS

AE_OK The table was successfully located and returned.

AE_BAD_PARAMETER At least one of the following is true:

• The OutTable pointer is NULL.

AE_NOT_EXIST There is no table of this type currently loaded, or the table of
the specified Instance is not loaded.

Functional Description:

This function obtains an installed ACPI table. It is useful for iterating through the entire set of
installed ACPI tables. To obtain a specific ACPI table, use AcpiGetTable or AcpiGetTableHeader.

86 Ref No SC-<xxxx>

 ACPI Component Architecture Programmer Reference

If the operation fails an appropriate status will be returned and the contents of OutTable is
undefined.

7.2.8 AcpiInstallTableHandler

Install a handler for ACPI table load and unload events.

ACPI_STATUS
AcpiInstallTableHandler (

ACPI_TABLE_HANDLER Handler,
void *Context)

PARAMETERS

Handler Address of the handler to be installed.

Context A context value that will be passed to the handler as a
parameter.

RETURN VALUE

Status Exception code that indicates success or reason for failure.

EXCEPTIONS

AE_OK The handler was successfully installed.

AE_BAD_PARAMETER At least one of the following is true:

• The Handler pointer is NULL.

AE_ALREADY_EXISTS A global table handler is already installed.

Functional Description:

This function installs a global handler for table load/unload events.

7.2.8.1 Interface to Table Event Handlers

Definition of the handler interface for Table Events.

typedef
ACPI_STATUS (*ACPI_TABLE_HANDLER) (

UINT32 Event,
void *Table,
void *Context)

PARAMETERS

Event The table event that occurred. One of these manifest
constants:

Ref No SC-<xxxx> 87

ACPI Component Architecture Programmer Reference

 ACPI_TABLE_EVENT_LOAD – The table was just
loaded.

 ACPI_TABLE_EVENT_UNLOAD – The table is about to
be unloaded.

Table The table that was either just loaded or is about to be
unloaded.

Context The Context value that was passed as a parameter to the
AcpiInstallTableHandler function.

RETURN VALUE

None

Functional Description:

This handler is installed via AcpiInstallTableHandler. It is called whenever an ACPI table is either
loaded or unloaded.

This function does not execute in the context of an interrupt handler.

7.2.9 AcpiRemoveTableHandler

Remove a handler for ACPI table events.

ACPI_STATUS
AcpiRemoveTableHandler (

ACPI_TABLE_HANDLER Handler)

PARAMETERS

Handler Address of the previously installed handler.

RETURN VALUE

Status Exception code that indicates success or reason for failure.

EXCEPTIONS

AE_OK The handler was successfully removed.

AE_BAD_PARAMETER At least one of the following is true:

• The Handler pointer is NULL.

• The Handler address is not the same as the one that is
installed.

AE_NOT_EXIST There is no handler installed for notifications on this object.

88 Ref No SC-<xxxx>

 ACPI Component Architecture Programmer Reference

Functional Description:

This function removes a handler for notify events that was previously installed via a call to
AcpiInstallTableHandler.

Ref No SC-<xxxx> 89

ACPI Component Architecture Programmer Reference

7.3 ACPI Namespace Management

7.3.1 AcpiEvaluateObject

Evaluate an ACPI namespace object and return the result.

ACPI_STATUS
AcpiEvaluateObject (

ACPI_HANDLE Object,
ACPI_STRING Pathname,
ACPI_OBJECT_LIST *MethodParams,
ACPI_BUFFER *ReturnBuffer)

PARAMETERS

Object One of the following:

• A handle to the object to be evaluated.

• A handle to a parent object that is a prefix to the pathname.

• A NULL handle if the pathname is fully qualified.

Pathname Pathname of namespace object to evaluate. May be either an
absolute path or a path relative to the Object.

MethodParams If the object is a control method, this is a pointer to a list of
parameters to pass to the method. This pointer may be
NULL if no parameters are being passed to the method or if
the object is not a method.

ReturnBuffer A pointer to a location where the return value of the object
evaluation (if any) is placed. If this pointer is NULL, no
value is returned.

RETURN VALUE

Status Exception code that indicates success or reason for failure.

EXCEPTIONS

AE_OK The object was successfully evaluated.

AE__LIMIT More than the maximum number of 7 arguments
were passed to a method.

AE_AML_ERROR An unspecified error occurred during the parsing of
the AML code.

AE_AML_PARSE The control method could not be parsed due to
invalid AML code.

90 Ref No SC-<xxxx>

 ACPI Component Architecture Programmer Reference

AE_AML_BAD_OPCODE An invalid opcode was encountered in the AML
code.

AE_AML_NO_OPERAND An required operand was missing. This could be
caused by a method that does not return any object.

AE_AML_OPERAND_TYPE An operand object is not of the required ACPI type.

AE_AML_OPERAND_VALUE An operand object has an invalid value

AE_AML_UNINITIALIZED_LOCAL A method attempted to access a local variable that
was not initialized.

AE_AML_UNINITIALIZED_ARG A method attempted to access an argument that was
not part of the argument list, or was not passed into
the method properly.

AE_AML_UNITIALIZED_ELEMENT A method attempted to use (dereference) a reference
to an element of a package object that is empty
(uninitialized).

AE_AML_NUMERIC_OVERFLOW An overflow occurred during a numeric conversion
(Such as BCD conversion.)

AE_AML_REGION_LIMIT A method attempted to access beyond the end of an
Operation Region defined boundary.

AE_ AML_BUFFER_LIMIT A method attempted to access beyond the end of a
Buffer object.

AE_ AML_PACKAGE_LIMIT A method attempted to access beyond the end of a
Package object.

AE_ AML_DIVIDE_BY_ZERO A method attempted to execute a divide instruction
with a zero divisor.

AE_AML_BAD_NAME A name contained within the AML code has one or
more invalid characters.

AE_AML_NAME_NOT_FOUND A name reference within the AML code could not be
found and therefore could not be resolved.

AE_AML_INTERNAL An error that is internal to the ACPICA subsystem
occurred.

AE_BAD_CHARACTER An invalid character was found in the Pathname
parameter.

AE_BAD_DATA Bad or invalid data was found in a package object.

AE_BAD_PATHNAME The path contains at least one ACPI name that is not
exactly four characters long.

AE_BAD_PARAMETER At least one of the following is true:

• Both the Object and Pathname parameters are
NULL.

Ref No SC-<xxxx> 91

ACPI Component Architecture Programmer Reference

• The Object handle is NULL, but the Pathname is
not absolute.

• The Pathname is relative but the Object is
invalid.

• The Length field of OutBuffer is not
ACPI_ALLOCATE_BUFFER, but the Pointer
field of OutBuffer is NULL.

AE_BUFFER_OVERFLOW The Length field of the ReturnBuffer is too small to
hold the actual returned object. Upon return, the
Length field contains the minimum required buffer
length.

AE_ERROR An unspecified error occurred.

AE_NO_MEMORY Insufficient dynamic memory to complete the
request.

AE_NOT_FOUND The object referenced by the combination of the
Object and Pathname was not found within the
namespace.

AE_NULL_OBJECT A required object was missing. This is an internal
error.

AE_STACK_OVERFLOW An internal stack overflow occurred because of an
error in the AML, or because control methods or
objects are nested too deep.

AE_STACK_UNDERFLOW An internal stack underflow occurred during
evaluation.

AE_TYPE The object is of a type that cannot be evaluated.

Functional Description:

This function locates and evaluates objects in the namespace. This interface has two modes of
operation, depending on the type of object that is being evaluated:

1.

1.

If the target object is a control method, the method is executed and the result (if any) is
returned.

If the target is not a control method, the current “value” of that object is returned. The type of
the returned value corresponds to the type of the object; for example, the object (and the
corresponding returned result) may be a Integer, a String, or a Buffer.

Specifying a Target Object: The target object may be any valid named ACPI object. To specify the
object, a valid Object, a valid Pathname, or both may be provided. However, at least one of these
parameters must be valid.

If the Object is NULL, the Pathname must be a fully qualified (absolute) namespace path.

If the Object is non-NULL, the Pathname may be either:

A path relative to the Object handle (a relative pathname as defined in the ACPI specification) 1.

2. An absolute pathname. In this case, the Object handle is ignored.

92 Ref No SC-<xxxx>

 ACPI Component Architecture Programmer Reference

Parameters to Control Methods: If the object to be evaluated is a control method, the caller can
supply zero or more parameters that will be passed to the method when it is executed.. The
MethodParams parameter is a pointer to an ACPI_OBJECT_LIST that in turn is a counted array of
ACPI_OBJECTs. If MethodParams is NULL, then no parameters are passed to the control method.
If the Count field of MethodParams is zero, then the entire parameter is treated exactly as if it is a
NULL pointer. If the object to be evaluated is not a control method, the MethodParams field is
ignored.

Receiving Evaluation Results: The ReturnObject parameter optionally receives the results of the
object evaluation. If this parameter is NULL, the evaluation results are not returned and are
discarded. If there is no result from the evaluation of the object and no error occurred, the Length
field of the ReturnObject parameter is set to zero.

Unsupported Object Types: The object types that cannot be evaluated are the following:
ACPI_TYPE_DEVICE. Others TBD.

Exceptional Conditions: Any exceptions that occur during the execution of a control method result
in the immediate termination of the control methods. All nested control methods are also terminated,
up to and including the parent method.

EXAMPLES

Example 1: Executing the control method with an absolute path, two input parameters, with no
return value expected:

ACPI_OBJECT_LIST Params;
ACPI_OBJECT Obj[2];

/* Initialize the parameter list */

Params.Count = 2;
Params.Pointer = &Obj;

/* Initialize the parameter objects */

Obj[0].Type = ACPI_TYPE_STRING;
Obj[0].String.Pointer = “ACPI User”;

Obj[1].Type = ACPI_TYPE_NUMBER;
Obj[1].Number.Value = 0x0E00200A;

/* Execute the control method */

Status = AcpiEvaluateObject (NULL,”_SB.PCI0._TWO” , &Params, NULL);

Example 2: Before executing a control method that returns a result, we must declare and initialize an
ACPI_BUFFER to contain the return value:

ACPI_BUFFER Results;
ACPI_OBJECT Obj;

/* Initialize the return buffer structure */

Results.Length = sizeof (Obj);
Results.Pointer = &Obj;

The three examples that follow are functionally identical.

Ref No SC-<xxxx> 93

ACPI Component Architecture Programmer Reference

Example 3: Executing a control method using an absolute path. In this example, there are no input
parameters, but a return value is expected.

Status = AcpiEvaluateObject (NULL,”_SB.PCI0._STA” , NULL, &Results);

Example 4: Executing a control method using a relative path. A return value is expected.

Status = AcpiPathnameToHandle (”_SB.PCI0”, &Object)
Status = AcpiEvaluateObject (Object, ”_STA” , NULL, &Results);

Example 5: Executing a control method using a relative path. A return value is expected.

Status = AcpiPathnameToHandle (”_SB.PCI0._STA”, &Object)
Status = AcpiEvaluateObject (Object, NULL, NULL, &Results);

7.3.2 AcpiEvaluateObjectTyped

Evaluate an ACPI namespace object and return the type-validated result.

ACPI_STATUS
AcpiEvaluateObjectTyped (

ACPI_HANDLE Object,
ACPI_STRING Pathname,
ACPI_OBJECT_LIST *MethodParams,
ACPI_BUFFER *ReturnBuffer,
ACPI_OBJECT_TYPE ReturnType)

PARAMETERS

Object One of the following:

• A handle to the object to be evaluated.

• A handle to a parent object that is a prefix to the pathname.

• A NULL handle if the pathname is fully qualified.

Pathname Pathname of namespace object to evaluate. May be either an
absolute path or a path relative to the Object.

MethodParams If the object is a control method, this is a pointer to a list of
parameters to pass to the method. This pointer may be
NULL if no parameters are being passed to the method or if
the object is not a method.

ReturnBuffer A pointer to a location where the return value of the object
evaluation (if any) is placed. If this pointer is NULL, no
value is returned.

ReturnType The expected type of the returned object.

RETURN VALUE

Status Exception code that indicates success or reason for failure.

94 Ref No SC-<xxxx>

 ACPI Component Architecture Programmer Reference

EXCEPTIONS

AE_OK The object was successfully evaluated and the correct
object type was returned.

AE_NULL_OBJECT No object was returned from the evaluation.

AE_TYPE An object of the incorrect type was returned.

Others See the definition of AcpiEvaluateObject.

Functional Description:

This function locates and evaluates objects in the namespace and validates that the object returned
from the evaluation is of the expected type. It is a front-end to AcpiEvaluateObject. See the
description of AcpiEvaluateObject for more information.

7.3.3 AcpiGetObjectInfo

Get information about an ACPI-related device.

ACPI_STATUS
AcpiGetObjectInfo (

ACPI_HANDLE Object,
ACPI_BUFFER *OutBuffer)

PARAMETERS

Object A handle to an ACPI object for which information is to be
returned.

OutBuffer A pointer to a location where the device info is returned.

RETURN

Status Exception code that indicates success or reason for failure.

EXCEPTIONS

AE_OK Device info was successfully returned. See the
ACPI_DEVICE_INFO structure for valid returned fields.

AE_BAD_PARAMETER At least one of the following is true:

• The Object handle is invalid.

• The OutBuffer pointer is NULL.

AE_TYPE The Device handle does not refer to an object of type
ACPI_TYPE_DEVICE.

AE_NO_MEMORY Insufficient dynamic memory to complete the operation.

Ref No SC-<xxxx> 95

ACPI Component Architecture Programmer Reference

Functional Description:

This function obtains information about an object contained within the ACPI namespace. For
Device objects, the information returned is a composite of static internal information and the results
of evaluating the following standard ACPI device methods and objects on behalf of the device:

Type — The ACPI object type of the object
Name — The 4-character ACPI name of the object
ParamCount For a control method, the required number of input parameters
_HID — The hardware ID of the object
_UID — The Unique ID of the object
_CID — The Compatibility ID list of the object
_ADR — The address of the object (bus and device specific)
_STA — The current status of the object/device

Returned Data Format: The device information is returned in the ACPI_DEVICE_INFO structure
that is defined as follows:

typedef struct
{

ACPI_OBJECT_TYPE Type;
UINT32 Name;
UINT32 ParamCount;
UINT32 Valid;
UINT32 CurrentStatus;
ACPI_INTEGER Address;
ACPI_DEVICE_ID HardwareId;
ACPI_DEVICE_ID UniqueId;
UINT8 HighestDstates[4];
ACPI_COMPATIBILITY_ID_LIST CompatibilityId;

} ACPI_DEVICE_INFO;

Where:

Type Is the object type code.

Name The 4-character ACPI name of the object.

ParamCount If the object is a control method, this is the number of
parameters defined for the method.

Valid A bit field that indicates which of the remaining fields are
valid.

CurrentStatus The result of evaluating _STA method for this object.

Address The result of evaluating _ADR for this object.

HardwareId The result of evaluating _HID for this object.

UniqueId The result of evaluating _UID for this object.

HighestDstates _SxD values. 0xFF indicates that the field is invalid.

CompatibilityId The result of evaluating _CID for this object (A list of
_CIDs.)

96 Ref No SC-<xxxx>

 ACPI Component Architecture Programmer Reference

The fields of the structure that are valid because the corresponding method or object has been
successfully found under the device are indicated by the values of the Valid bitfield via the
following constants:

ACPI_VALID_ADR
ACPI_VALID_STA
ACPI_VALID_HID
ACPI_VALID_UID
ACPI_VALID_CID
ACPI_VALID_SXDS

Each bit should be checked before the corresponding value in the structure can be considered valid.
None of the methods/objects that are used by this interface are required by the ACPI specification.
Therefore, there is no guarantee that all or even any of them are available for a particular device.
Even if none of the methods are found, the interface will return an AE_OK status — but none of the
bits set in the Valid field return structure will be set.

The _HID, _UID, and _CID values can be of either type ACPI_TYPE_STRING or
ACPI_TYPE_INTEGER within the ACPI tables. However, in order to provide a consistent data
type in the external interface, these values are always returned as NULL terminated strings,
regardless of the original data type in the source ACPI table. An internal data type conversion is
performed if necessary.

7.3.4 AcpiGetNextObject

Get a handle to the next child ACPI object of a parent object.

ACPI_STATUS
AcpiGetNextObject (

ACPI_OBJECT_TYPE Type,
ACPI_HANDLE Parent,
ACPI_HANDLE Child,
ACPI_HANDLE *OutHandle)

PARAMETERS

Type The desired type of the next object.

Parent A handle to a parent object to be searched for the next child
object.

Child A handle to a child object. The next child object of the
parent object that matches the Type will be returned. Use
the value of NULL to get the first child of the parent.

OutHandle A pointer to a location where a handle to the next child
object is to be returned. If this pointer is NULL, the child
object handle is not returned.

RETURN VALUE

Status Exception code that indicates success or reason for failure.

Ref No SC-<xxxx> 97

ACPI Component Architecture Programmer Reference

EXCEPTIONS

AE_OK The next object was successfully found and returned.

AE_BAD_PARAMETER At least one of the following is true:

• The Parent handle is invalid.

• The Child handle is invalid.

• The Type parameter refers to an invalid type.

AE_NOT_FOUND The child object parameter is the last object of the given
type within the parent — a next child object was not found.
If Child is NULL, this exception means that the parent
object has no children.

Functional Description:

This function obtains the next child object of the parent object that is of type Type. Both the Parent
and the Child parameters are optional. The behavior for the various combinations of Parent and
Child is as follows:

If the Child is non-NULL, it is used as the starting point (the current object) for the search. 1.

2.

3.

If the Child is NULL and the Parent is non-NULL, the search is performed starting at the
beginning of the scope.

If both the Parent and the Child parameters are NULL, the search begins at the start of the
namespace (the search begins at the Root Object).

If the search fails, an appropriate status will be returned and the value of OutHandle is undefined.

This interface is appropriate for use within a loop that looks up a group of objects within the internal
namespace. However, the AcpiWalkNamespace primitive implements such a loop and may be
simpler to use in your application; see the description of this interface for additional details.

7.3.5 AcpiGetParent
Get a handle to the parent object of an ACPI object.

ACPI_STATUS
AcpiGetParent (

ACPI_HANDLE Child,
ACPI_HANDLE *OutParent)

PARAMETERS

Child A handle to an object whose parent is to be returned.

OutParent A pointer to a location where the handle to the parent object
is to be returned.

98 Ref No SC-<xxxx>

 ACPI Component Architecture Programmer Reference

RETURN VALUE

Status Exception code that indicates success or reason for failure.

EXCEPTIONS

AE_OK The parent object was successfully found and returned.

AE_BAD_PARAMETER At least one of the following is true:

• The Child handle is invalid.

• The OutParent pointer is NULL.

AE_NULL_ENTRY The referenced object has no parent. (Entries at the root
level do not have a parent object.)

Functional Description:

This function returns a handle to the parent of the Child object. If an error occurs, a status code is
returned and the value of OutParent is undefined.

7.3.6 AcpiGetType

Get the type of an ACPI object.

ACPI_STATUS
AcpiGetType (

ACPI_HANDLE Object,
ACPI_OBJECT_TYPE *OutType)

PARAMETERS

Object A handle to an object whose type is to be returned.

OutType A pointer to a location where the object type is to be
returned.

RETURN

Status Exception code that indicates success or reason for failure.

EXCEPTIONS

AE_OK The object type was successfully returned.

AE_BAD_PARAMETER At least one of the following is true:

• The Object handle is invalid.

• The OutType pointer is NULL.

Ref No SC-<xxxx> 99

ACPI Component Architecture Programmer Reference

Functional Description:

This function obtains the type of an ACPI namespace object. See the definition of the
ACPI_OBJECT_TYPE for a comprehensive listing of the available object types.

7.3.7 AcpiGetHandle

Get the object handle associated with an ACPI name.

ACPI_STATUS
AcpiGetHandle (

ACPI_HANDLE Parent,
ACPI_STRING Pathname,
ACPI_HANDLE *OutHandle)

PARAMETERS

Parent A handle to the parent of the object specified by Pathname.
In other words, the Pathname is relative to the Parent. If
Parent is NULL, the pathname must be a fully qualified
pathname.

Pathname A name or pathname to an ACPI object (a NULL terminated
ASCII string). The string can be either a single segment
ACPI name or a multiple segment ACPI pathname (with
path separators).

OutHandle A pointer to a location where a handle to the object is to be
returned.

RETURN VALUE

Status Exception code that indicates success or reason for failure.

EXCEPTIONS

AE_OK The pathname was successfully associated with an object
and the handle was returned.

AE_BAD_CHARACTER An invalid character was found in the pathname.

AE_BAD_PATHNAME The path contains at least one ACPI name that is not exactly
four characters long.

AE_BAD_PARAMETER At least one of the following is true:

• The Pathname pointer is NULL.

• The Pathname does not begin with a backslash
character.

• The OutHandle pointer is NULL.

AE_NO_NAMESPACE The namespace has not been successfully loaded.

100 Ref No SC-<xxxx>

 ACPI Component Architecture Programmer Reference

AE_NOT_FOUND One or more of the segments of the pathname refers to a
non-existent object.

Functional Description:

This function translates an ACPI pathname into an object handle. It locates the object in the
namespace via the combination of the Parent and Pathame parameters. Only the specified Parent
object will be searched for the name — this function will not perform a walk of the namespace tree
(See AcpiWalkNamespace).

The pathname is relative to the Parent. If the parent object is NULL, the Pathname must be fully
qualified (absolute), meaning that the path to the object must be a complete path from the root of the
namespace, and the pathname must begin with a backslash (‘\’).

Multiple instances of the same name under a given parent (within a given scope) are not allowed by
the ACPI specification. However, if more than one instance of a particular name were to appear
under a single parent in the ACPI DSDT, only the first one would be successfully loaded into the
internal namespace. The second attempt to load the name would collide with the first instance of the
name, and the second instance would be ignored.

If the operation fails an appropriate status will be returned and the value of OutHandle is undefined.

7.3.8 AcpiGetName

Get the name of an ACPI object.

ACPI_STATUS
AcpiGetName (

ACPI_HANDLE Object,
UINT32 NameType
ACPI_BUFFER *OutName)

PARAMETERS

Object A handle to an object whose name or pathname is to be
returned.

NameType The type of name to return; must be one of these manifest
constants:

• ACPI_FULL_PATHNAME – return a complete
pathname (from the namespace root) to the object.

• ACPI_SINGLE_NAME – return a single segment
ACPI name for the object (4 characters, null
terminated).

OutName A pointer to a location where the fully qualified and NULL
terminated name or pathname is to be returned.

RETURN VALUE

Status Exception code that indicates success or reason for failure.

Ref No SC-<xxxx> 101

ACPI Component Architecture Programmer Reference

EXCEPTIONS

AE_OK The full pathname associated with the handle was
successfully retrieved and returned.

AE_BAD_PARAMETER At least one of the following is true:

• The Parent handle is invalid.

• The Object handle is invalid.

• The OutName pointer is NULL.

• The Length field of OutName is not
ACPI_ALLOCATE_BUFFER, but the Pointer field
of OutName is NULL.

AE_BUFFER_OVERFLOW The Length field of OutName indicates that the buffer is too
small to hold the actual pathname. Upon return, the Length
field contains the minimum required buffer length.

AE_NO_NAMESPACE The namespace has not been successfully loaded.

Functional Description:

This function obtains the name that is associated with the Object parameter. The returned name can
be either a full pathname (from the root, with path segment separators) or a single segment, 4-
character ACPI name. This function and AcpiGetHandle are complementary functions, as shown in
the examples below.

EXAMPLES

Example 1: The following operations:

Status = AcpiGetName (Handle, ACPI_FULL_PATHNAME, &OutName)
Status = AcpiGetHandle (NULL, OutName.BufferPtr, &OutHandle))

Yield this result:

Handle == OutHandle;

Example 2: If Name is a 4-character ACPI name, the following operations:

Status = AcpiGetHandle (Parent, Name, &OutHandle))
Status = AcpiGetName (OutHandle, ACPI_SINGLE_NAME, &OutName)

Yield this result:

Name == OutName.BufferPtr

102 Ref No SC-<xxxx>

 ACPI Component Architecture Programmer Reference

7.3.9 AcpiGetDevices

Walk the ACPI namespace to find all objects of type Device.

ACPI_STATUS
AcpiGetDevices (

char *HID,
ACPI_WALK_CALLBACK UserFunction,
void *UserContext,
void **ReturnValue)

PARAMETERS

HID A device Hardware ID to search for. If NULL, all objects of
type Device are passed to the UserFunction.

UseFunction A pointer to a function that is called when the namespace
object is deleted:

UserContext A value that will be passed as a parameter to the user
function each time it is invoked.

ReturnValue A pointer to a location where the (void *) return value from
the UserFunction is to be placed if the walk was terminated
early. Otherwise, NULL is returned.

RETURN VALUE

Status Exception code that indicates success or reason for failure.

EXCEPTIONS

AE_OK The walk was successful. Termination occurred from
completion of the walk or by the user function, depending
on the value of the return parameter.

AE_BAD_PARAMETER The UserFunction address is NULL.

Functional Description:

This function performs a modified depth-first walk of the namespace tree. The UserFunction is
invoked whenever an object of type Device with a matching HID is found. If the user function
returns a non-zero value, the search is terminated immediately and this value is returned to the
caller.

If the HID parameter is NULL, all objects of type Device within the namespace are passed to the
User Function.

Ref No SC-<xxxx> 103

ACPI Component Architecture Programmer Reference

7.3.10 AcpiAttachData

Attach user data to an ACPI namespace object.

ACPI_STATUS
AcpiAttachData (

ACPI_HANDLE Object,
ACPI_OBJECT_HANDLER Handler
void *Data)

PARAMETERS

Object A handle to an object to which the data will be attached.

Handler A pointer to a function that is called when the namespace
object is deleted:

Data A pointer to arbitrary user data. The pointer is stored in the
namespace with the namespace object.

RETURN VALUE

Status Exception code that indicates success or reason for failure.

EXCEPTIONS

AE_OK The data was successfully attached.

AE_BAD_PARAMETER At least one of the following is true:

• The Object handle is invalid.

• The Handler pointer is NULL.

• The Data pointer is NULL.

AE_NO_MEMORY Insufficient dynamic memory to complete the operation.

AE_NO_NAMESPACE The namespace has not been successfully loaded.

Functional Description:

This function allows arbitrary data to be associated with a namespace object.

104 Ref No SC-<xxxx>

 ACPI Component Architecture Programmer Reference

7.3.11 AcpiDetachData

Remove a data attachment to a namespace object.

ACPI_STATUS
AcpiAttachData (

ACPI_HANDLE Object,
ACPI_OBJECT_HANDLER Handler)

PARAMETERS

Object A handle to an object to which the data will be attached.

Handler A pointer to a function that is called when the namespace
object is deleted. This must be the same pointer used when
the original call to AcpiAttachData was used.

RETURN VALUE

Status Exception code that indicates success or reason for failure.

EXCEPTIONS

AE_OK The data was successfully detached.

AE_BAD_PARAMETER At least one of the following is true:

• The Object handle is invalid.

• The Handler pointer is NULL.

AE_NO_NAMESPACE The namespace has not been successfully loaded.

Functional Description:

This function removes a previous association between user data and a namespace object.

7.3.12 AcpiGetData

Retrieve data that was associated with a namespace object.

ACPI_STATUS
AcpiGetData (

ACPI_HANDLE Object,
ACPI_OBJECT_HANDLER Handler
void **Data)

PARAMETERS

Object A handle to an object to from which the attached data will
be returned.

Ref No SC-<xxxx> 105

ACPI Component Architecture Programmer Reference

Handler A pointer to a function that is called when the namespace
object is deleted: This must be the same pointer used when
the original call to AcpiAttachData was used.

Data A pointer to where the arbitrary user data pointer will be
returned. The pointer is stored in the namespace with the
namespace object.

RETURN VALUE

Status Exception code that indicates success or reason for failure.

EXCEPTIONS

AE_OK The data was successfully returned.

AE_BAD_PARAMETER At least one of the following is true:

• The Object handle is invalid.

• The Handler pointer is NULL.

• The Data pointer is NULL.

AE_NO_MEMORY Insufficient dynamic memory to complete the operation.

AE_NO_NAMESPACE The namespace has not been successfully loaded.

Functional Description:

This function retrieves data that was previously associated with a namespace object.

7.3.13 AcpiWalkNamespace

Traverse a portion of the ACPI namespace to find objects of a given type.

ACPI_STATUS
AcpiWalkNamespace (

ACPI_OBJECT_TYPE Type,
ACPI_HANDLE StartObject,
UINT32 MaxDepth,
ACPI_WALK_CALLBACK UserFunction,
void *UserContext,
void **ReturnValue

PARAMETERS

Type The type of object desired.

StartObject A handle to an object where the namespace walk is to begin.
The constant ACPI_ROOT_OBJECT indicates to start the
walk at the root of the namespace (walk the entire
namespace.)

106 Ref No SC-<xxxx>

 ACPI Component Architecture Programmer Reference

MaxDepth The maximum number of levels to descend in the
namespace during the walk.

UserFunction A pointer to a user-written function that is invoked for each
matching object that is found during the walk. (See the
interface specification for the user function below.)

UserContext A value that will be passed as a parameter to the user
function each time it is invoked.

ReturnValue A pointer to a location where the (void *) return value from
the UserFunction is to be placed if the walk was terminated
early. Otherwise, NULL is returned.

RETURN VALUE

Status Exception code that indicates success or reason for failure.

EXCEPTIONS

AE_OK The walk was successful. Termination occurred from
completion of the walk or by the user function, depending
on the value of the return parameter.

AE_BAD_PARAMETER At least one of the following is true:

• The MaxDepth is zero.

• The UserFunction address is NULL.

• The StartObject handle is invalid.

• The Type is invalid.

Functional Description:

This function performs a modified depth-first walk of the namespace tree, starting (and ending) at
the object specified by the StartObject handle. The UserFunction is invoked whenever an object that
matches the type parameter is found. If the user function returns a non-zero value, the search is
terminated immediately and this value is returned to the caller.

The point of this procedure is to provide a generic namespace walk routine that can be called from
multiple places to provide multiple services; the user function can be tailored to each task —
whether it is a print function, a compare function, etc.

Ref No SC-<xxxx> 107

ACPI Component Architecture Programmer Reference

7.3.13.1 Interface to User Callback Function

Interface to the user function that is invoked from AcpiWalkNamespace.

ACPI_STATUS (*ACPI_WALK_CALLBACK) (
ACPI_HANDLE ObjHandle,
UINT32 NestingLevel,
void *Context,
void **ReturnValue)

PARAMETERS

ObjHandle A handle to an object that matches the search criteria.

Nesting Level Depth of this object within the namespace (distance from
the root.)

Context The UserContext value that was passed as a parameter to the
AcpiWalkNamespace function.

ReturnValue A pointer to a location where the return value (if any) from
the user function is to be stored.

RETURN VALUE

Status AE_OK Continue the walk.

 AE_TERMINATE Stop the walk immediately.

 AE_DEPTH Go no deeper into the namespace tree.

 All others Abort the walk with this exception
code.

Functional Description:

This function is called from AcpiWalkNamespace whenever a object of the desired type is found.
The walk can be modified by the exception code returned from this function. AE_TERMINATE
will abort the walk immediately, and AcpiWalkNamespace will return AE_OK to the original caller.
AE_DEPTH will prevent the walk from progressing any deeper down the current branch of the
namespace tree. AE_OK is the normal return that allows the walk to continue normally. All other
exception codes will cause the walk to terminate and the exception is returned to the original caller
of AcpiWalkNamespace.

108 Ref No SC-<xxxx>

 ACPI Component Architecture Programmer Reference

7.4 ACPI Hardware Management

7.4.1 AcpiEnable

Put the system into ACPI mode.

ACPI_STATUS
AcpiEnable (

void)

PARAMETERS

None

RETURN VALUE

Status Exception code that indicates success or reason for failure.

EXCEPTIONS

AE_OK ACPI mode was successfully enabled.

AE_ERROR Either ACPI mode is not supported by this system (legacy
mode only), the SCI interrupt handler could not be installed,
or the system could not be transitioned into ACPI mode.

AE_NO_ACPI_TABLES The ACPI tables have not been successfully loaded.

Functional Description:

This function enables ACPI mode on the host computer system. It ensures that the system control
interrupt (SCI) is properly configured, disables SCI event sources, installs the SCI handler, and
transfers the system hardware into ACPI mode.

7.4.2 AcpiDisable

Take the system out of ACPI mode.

ACPI_STATUS
AcpiDisable (

void)

PARAMETERS

None

Ref No SC-<xxxx> 109

ACPI Component Architecture Programmer Reference

RETURN VALUE

Status Exception code that indicates success or reason for failure.

EXCEPTIONS

AE_OK ACPI mode was successfully disabled.

AE_ERROR The system could not be transitioned out of ACPI mode.

Functional Description:

This function disables ACPI mode on the host computer system. It returns the system hardware to
original ACPI/legacy mode, disables all events, and removes the SCI interrupt handler.

7.4.3 AcpiReset

Perform a system reset.

ACPI_STATUS
AcpiReset (

void)

PARAMETERS

None

RETURN VALUE

Status Exception code that indicates success or reason for failure.

EXCEPTIONS

AE_OK The reset register was successfully written.

AE_NOT_EXIST The FADT flags indicate that the reset register is not
supported, or the reset register address is zero.

Functional Description:

This function performs a system reset by writing the FADT-defined Reset Value to the FADT-
defined Reset Register (if the register is supported, as indicated by the FADT Flags).

Reset registers in both memory and I/O space are supported. A reset register in PCI configuration
space is not supported by this function and must be handled by the host.

110 Ref No SC-<xxxx>

 ACPI Component Architecture Programmer Reference

7.4.4 AcpiReadBitRegister

Get the contents of an ACPI-defined Bit Register.

ACPI_STATUS
AcpiGetRegister (

UINT32 RegisterId,
UINT32 *ReturnValue)

PARAMETERS

RegisterId The ID of the desired bit register, one of the following
manifest constants:

 ACPI_BITREG_TIMER_STATUS
 ACPI_BITREG_BUS_MASTER_STATUS
 ACPI_BITREG_GLOBAL_LOCK_STATUS
 ACPI_BITREG_POWER_BUTTON_STATUS
 ACPI_BITREG_SLEEP_BUTTON_STATUS
 ACPI_BITREG_RT_CLOCK_STATUS
 ACPI_BITREG_WAKE_STATUS
 ACPI_BITREG_PCIEXP_WAKE_STATUS
 ACPI_BITREG_TIMER_ENABLE
 ACPI_BITREG_GLOBAL_LOCK_ENABLE
 ACPI_BITREG_POWER_BUTTON_ENABLE
 ACPI_BITREG_SLEEP_BUTTON_ENABLE
 ACPI_BITREG_RT_CLOCK_ENABLE
 ACPI_BITREG_PCIEXP_WAKE_DISABLE
 ACPI_BITREG_SCI_ENABLE
 ACPI_BITREG_BUS_MASTER_RLD
 ACPI_BITREG_GLOBAL_LOCK_RELEASE
 ACPI_BITREG_SLEEP_TYPE
 ACPI_BITREG_SLEEP_ENABLE
 ACPI_BITREG_ARB_DISABLE

ReturnValue A pointer to a location where the data is to be returned.

RETURN VALUE

Status Exception code that indicates success or reason for failure.

EXCEPTIONS

AE_OK The register was read successfully.

AE_BAD_PARAMETER Invalid RegisterId.

Other The function failed at the operating system level.

Ref No SC-<xxxx> 111

ACPI Component Architecture Programmer Reference

Functional Description:

This function reads the bit register specified in the RegisterId. The value returned is normalized to
bit zero. Can be used with interrupts enabled or disabled. The hardware is not locked during the
read, as it is not necessary

7.4.5 AcpiWriteBitRegister

Set the contents of an ACPI-defined Bit Register.

ACPI_STATUS
AcpiSetRegister (

UINT32 RegisterId,
UINT32 Value)

PARAMETERS

RegisterId The ID of the desired register, one of the following manifest
constants:

 ACPI_BITREG_TIMER_STATUS
 ACPI_BITREG_BUS_MASTER_STATUS
 ACPI_BITREG_GLOBAL_LOCK_STATUS
 ACPI_BITREG_POWER_BUTTON_STATUS
 ACPI_BITREG_SLEEP_BUTTON_STATUS
 ACPI_BITREG_RT_CLOCK_STATUS
 ACPI_BITREG_WAKE_STATUS
 ACPI_BITREG_PCIEXP_WAKE_STATUS
 ACPI_BITREG_TIMER_ENABLE
 ACPI_BITREG_GLOBAL_LOCK_ENABLE
 ACPI_BITREG_POWER_BUTTON_ENABLE
 ACPI_BITREG_SLEEP_BUTTON_ENABLE
 ACPI_BITREG_RT_CLOCK_ENABLE
 ACPI_BITREG_PCIEXP_WAKE_DISABLE
 ACPI_BITREG_SCI_ENABLE
 ACPI_BITREG_BUS_MASTER_RLD
 ACPI_BITREG_GLOBAL_LOCK_RELEASE
 ACPI_BITREG_SLEEP_TYPE
 ACPI_BITREG_SLEEP_ENABLE
 ACPI_BITREG_ARB_DISABLE

Value The data to be written.

RETURN VALUE

Status Exception code that indicates success or reason for failure.

EXCEPTIONS

AE_OK The register was read successfully.

112 Ref No SC-<xxxx>

 ACPI Component Architecture Programmer Reference

AE_BAD_PARAMETER Invalid RegisterId.

Other The function failed at the operating system level.

Functional Description:

This function writes the bit register specified in the RegisterId. The value written must be
normalized to bit zero before calling. Can be used with interrupts enabled or disabled.

7.4.6 AcpiRead

Read the contents of an ACPI Register (low-level read).

ACPI_STATUS
AcpiRead (

UINT32 *ReturnValue,
ACPI_GENERIC_ADDRESS *Register)

PARAMETERS

ReturnValue A pointer to where the data is returned. The entire 32-bit
Value is set, regardless of the width of the register.

Register A pointer to a valid ACPI register in generic address format.

RETURN VALUE

Status Exception code that indicates success or reason for failure.

EXCEPTIONS

AE_OK The register was read successfully.

AE_SUPPORT The register width was not 8/16/32.

Other The function failed at the operating system level.

Functional Description:

This function reads a register defined in the generic address format. It supports reads from memory
or I/O space only. Registers must have a width of either 8, 16, or 32 bits.

Ref No SC-<xxxx> 113

ACPI Component Architecture Programmer Reference

7.4.7 AcpiWrite

Write an ACPI Register (low-level write).

ACPI_STATUS
AcpiWrite (

UINT32 Value,
ACPI_GENERIC_ADDRESS *Register)

PARAMETERS

Value The data to be written.

Register A pointer to a valid ACPI register in generic address format.

RETURN VALUE

Status Exception code that indicates success or reason for failure.

EXCEPTIONS

AE_OK The register was read successfully.

AE_SUPPORT The register width was not 8/16/32.

Other The function failed at the operating system level.

Functional Description:

This function writes a register defined in the generic address format. It supports writes to memory or
I/O space only. Registers must have a width of either 8, 16, or 32 bits.

7.4.8 AcpiAcquireGlobalLock

Acquire the ACPI Global Lock.

ACPI_STATUS
AcpiAcquireGlobalLock (

UINT16 Timeout,
UINT32 *OutHandle)

PARAMETERS

Timeout The maximum time (in System Ticks) the caller is willing to
wait for the global lock.

OutHandle A pointer to where a handle to the lock is to be returned.
This handle is required to release the global lock.

114 Ref No SC-<xxxx>

 ACPI Component Architecture Programmer Reference

RETURN VALUE

Status Exception code that indicates success or reason for failure.

EXCEPTIONS

AE_OK The global lock was successfully acquired.

AE_BAD_PARAMETER The OutHandle pointer is NULL.

AE_TIME The global lock could not be acquired within the specified
time limit.

Functional Description:

This function obtains exclusive access to the single system-wide ACPI Global Lock. The purpose of
the global lock is to ensure exclusive access to resources that must be shared between the operating
system and the firmware.

7.4.9 AcpiReleaseGlobalLock

Release the ACPI Global Lock.

ACPI_STATUS
AcpiReleaseGlobalLock (

UINT32 Handle)

PARAMETERS

Handle The handle that was obtained when the Global Lock was
acquired. This allows different threads to acquire and
release the lock, as long as they share the handle.

RETURN VALUE

Status Exception code that indicates success or reason for failure.

EXCEPTIONS

AE_OK The global lock was successfully released

AE_BAD_PARAMETER The Handle is invalid.

Functional Description:

This function releases the global lock. The releasing thread may be different from the thread that
acquired the lock. However, the Handle must be the same handle that was returned by
AcpiAcquireGlobalLock.

Ref No SC-<xxxx> 115

ACPI Component Architecture Programmer Reference

7.4.10 AcpiGetTimerResolution

Get the resolution of the ACPI Power Management Timer.

ACPI_STATUS
AcpiGetTimerResolution (

UINT32 *OutValue)

PARAMETERS

OutValue A pointer to where the current value of the PM Timer
resolution is to be returned.

RETURN VALUE

Status Exception code that indicates success or reason for failure.

EXCEPTIONS

AE_OK The PM Timer resolution was successfully retrieved and
returned.

AE_BAD_PARAMETER The OutValue pointer is NULL.

Functional Description:

This function returns the PM Timer resolution – either 24 (for 24-bit) or 32 (for 32-bit timers).

7.4.11 AcpiGetTimerDuration

Calculates the time elapsed (in microseconds) between two values of the ACPI Power
Management Timer.

ACPI_STATUS
AcpiGetTimer (

UINT32 StartTicks,
UINT32 EndTicks,
UINT32 *OutValue)

PARAMETERS

StartTicks The value of the PM Timer at the start of a time
measurement (obtained by calling AcpiGetTimer).

EndTicks The value of the PM Timer at the end of a time
measurement (obtained by calling AcpiGetTimer).

OutValue A pointer to where the elapsed time (in microseconds) is to
be returned.

116 Ref No SC-<xxxx>

 ACPI Component Architecture Programmer Reference

RETURN VALUE

Status Exception code that indicates success or reason for failure.

EXCEPTIONS

AE_OK The time elapsed was successfully calculated and returned.

AE_BAD_PARAMETER The OutValue pointer is NULL.

Functional Description:

This function calculates and returns the time elapsed (in microseconds) between StartTicks and
EndTicks, taking into consideration the PM Timer frequency, resolution, and counter rollovers.

7.4.12 AcpiGetTimer

Get the current value of the ACPI Power Management Timer.

ACPI_STATUS
AcpiGetTimer (

UINT32 *OutValue)

PARAMETERS

OutValue A pointer to where the current value of the ACPI Timer is to
be returned.

RETURN VALUE

Status Exception code that indicates success or reason for failure.

EXCEPTIONS

AE_OK The current value of the timer was successfully retrieved
and returned.

AE_BAD_PARAMETER The OutValue pointer is NULL.

Functional Description:

This function returns the current value of the PM Timer (in ticks).

Ref No SC-<xxxx> 117

ACPI Component Architecture Programmer Reference

7.5 ACPI Sleep/Wake Support

7.5.1 AcpiSetFirmwareWakingVector

Set the 32-bit firmware wake vector.

ACPI_STATUS
AcpiSetFirmwareWakingVector (

UINT32 Address32)

PARAMETERS

Address32 The physical address to be stored in the waking vector.

RETURN VALUE

Status Exception code that indicates success or reason for failure.

EXCEPTIONS

AE_OK The vector was set successfully.

AE_NO_ACPI_TABLES The FACS is not loaded or could not be found.

Functional Description:

This function sets the 32-bit firmware (ROM BIOS) wake vector. If a 64-bit vector exists in the
current FACS, it is set to zero.

If the function fails an appropriate status will be returned and the value of the waking vector will be
undisturbed.

7.5.2 AcpiSetFirmwareWakingVector64

Set the 64-bit firmware wake vector.

ACPI_STATUS
AcpiSetFirmwareWakingVector64 (

UINT64 Address64)

PARAMETERS

Address64 The physical address to be stored in the waking vector.

RETURN VALUE

Status Exception code that indicates success or reason for failure.

118 Ref No SC-<xxxx>

 ACPI Component Architecture Programmer Reference

EXCEPTIONS

AE_OK The vector was set successfully.

AE_NOT_EXIST The 64-bit vector does not exist in the current FACS. Either
the table is too small or the revision is less than 1.

AE_NO_ACPI_TABLES The FACS is not loaded or could not be found.

Functional Description:

This function sets the 64-bit firmware (ROM BIOS) wake vector. The 32-bit vector is set to zero.

If the function fails an appropriate status will be returned and the value of the waking vector will be
undisturbed.

7.5.3 AcpiGetSleepTypeData

Get the SLP_TYP data for the requested sleep state.

ACPI_STATUS
AcpiGetSleepTypeData (

UINT8 SleepState,
UINT8 *SleepTypeA,
UINT8 *SleepTypeB)

PARAMETERS

SleepState The SleepState value (0 through 5) for which the
SLP_TYPa and SLP_TYPb values will be returned.

SleepTypeA A pointer to a location where the value of SLP_TYPa will
be returned.

SleepTypeB A pointer to a location where the value of SLP_TYPb will
be returned.

RETURN VALUE

Status Exception code that indicates success or reason for failure.

EXCEPTIONS

AE_OK Both SLP_TYP values were returned successfully.

AE_BAD_PARAMETER Either SleepState has an invalid value, or one of the
SleepType pointers is invalid.

AE_AML_NO_OPERAND Could not locate one or more of the SLP_TYP values.

AE_AML_OPERAND_TYPE One or more of the SLP_TYP objects was not a numeric
type.

Ref No SC-<xxxx> 119

ACPI Component Architecture Programmer Reference

Functional Description:

This function returns the SLP_TYP object for the requested sleep state.

7.5.4 AcpiEnterSleepStatePrep

Prepare to enter a system sleep state (S1-S5).

ACPI_STATUS
AcpiEnterSleepStatePrep (

UINT8 SleepState)

PARAMETERS

SleepState The sleep state to prepare to enter. Must be in the range 1
through 5.

RETURN VALUE

Status Exception code that indicates success or reason for failure.

EXCEPTIONS

AE_OK The PTS and GTS methods were successfully run

Other Exception from AcpiEvaluateObject.

Functional Description:

Prepare to enter a system sleep state.

This function evaluates the _PTS and _GTS methods.

7.5.5 AcpiEnterSleepState

Enter a system sleep state (S1-S5).

ACPI_STATUS
AcpiEnterSleepState (

UINT8 SleepState)

PARAMETERS

SleepState The sleep state to enter. Must be in the range 1 through 5.

RETURN VALUE

Status Exception code that indicates success or reason for failure.

120 Ref No SC-<xxxx>

 ACPI Component Architecture Programmer Reference

EXCEPTIONS

AE_OK The sleep state (S1) was successfully entered.

AE_BAD_PARAMETER Invalid SleepState value.

Other Hardware access exception.

Functional Description:

This function only returns for transitions to the S1 state or when an error occurs. Sleep states S2-S4
use the firmware waking vector during wakeup.

This function must be called with interrupts disabled.

7.5.6 AcpiEnterSleepStateS4Bios

Enter S4 BIOS sleep

ACPI_STATUS
AcpiEnterSleepStateS4bios (

void)

PARAMETERS

None

RETURN VALUE

Status Exception code that indicates success or reason for failure.

EXCEPTIONS

AE_OK The sleep state (S1) was successfully entered.

Other Hardware access exception.

Functional Description:

This function performs an S4 BIOS request.

This function must be called with interrupts disabled.

Ref No SC-<xxxx> 121

ACPI Component Architecture Programmer Reference

7.5.7 AcpiLeaveSleepState

Leave (cleanup) a system sleep state (S1-S5).

ACPI_STATUS
AcpiLeaveSleepState (

UINT8 SleepState)

PARAMETERS

SleepState The sleep state to leave.

RETURN VALUE

Status Exception code that indicates success or reason for failure.

EXCEPTIONS

AE_OK The cleanup was successful.

Other Hardware access exception.

Functional Description:

Perform cleanup after leaving a sleep state.

122 Ref No SC-<xxxx>

 ACPI Component Architecture Programmer Reference

7.6 ACPI Fixed Event Management

7.6.1 AcpiEnableEvent

Enable an ACPI Fixed Event.

ACPI_STATUS
AcpiEnableEvent (

UINT32 Event,
UINT32 Flags)

PARAMETERS

Event The fixed event to be enabled. This parameter must be one
of the following manifest constants:

ACPI_EVENT_PMTIMER
ACPI_EVENT_GLOBAL
ACPI_EVENT_POWER_BUTTON
ACPI_EVENT_SLEEP_BUTTON
ACPI_EVENT_RTC

Flags Reserved, set to zero.

RETURN VALUE

Status Exception code that indicates success or reason for failure.

EXCEPTIONS

AE_OK The event was successfully enabled.

AE_BAD_PARAMETER The Event is invalid.

Other Hardware access exception.

Functional Description:

This function enables a single ACPI fixed event.

Ref No SC-<xxxx> 123

ACPI Component Architecture Programmer Reference

7.6.2 AcpiDisableEvent

Disable an ACPI Fixed Event.

ACPI_STATUS
AcpiDisableEvent (

UINT32 Event,
UINT32 Flags)

PARAMETERS

Event The fixed event to be disabled. This parameter must be one
of the following manifest constants:

ACPI_EVENT_PMTIMER
ACPI_EVENT_GLOBAL
ACPI_EVENT_POWER_BUTTON
ACPI_EVENT_SLEEP_BUTTON
ACPI_EVENT_RTC

Flags Reserved, set to zero.

RETURN VALUE

Status Exception code that indicates success or reason for failure.

EXCEPTIONS

AE_OK The event was successfully disabled.

AE_BAD_PARAMETER The Event is invalid.

Other Hardware access exception.

Functional Description:

This function disables a single ACPI fixed event.

7.6.3 AcpiClearEvent

Clear a pending ACPI Fixed Event.

ACPI_STATUS
AcpiClearEvent (

UINT32 Event)

PARAMETERS

Event The fixed event to be cleared. This parameter must be one
of the following manifest constants:

124 Ref No SC-<xxxx>

 ACPI Component Architecture Programmer Reference

ACPI_EVENT_PMTIMER
ACPI_EVENT_GLOBAL
ACPI_EVENT_POWER_BUTTON
ACPI_EVENT_SLEEP_BUTTON
ACPI_EVENT_RTC

RETURN VALUE

Status Exception code that indicates success or reason for failure.

EXCEPTIONS

AE_OK The event was successfully cleared.

AE_BAD_PARAMETER The Event is invalid.

Other Hardware access exception.

Functional Description:

This function clears (zeros the status bit for) a single ACPI fixed event.

7.6.4 AcpiGetEventStatus

Obtain the status of an ACPI Fixed Event.

ACPI_STATUS
AcpiGetEventStatus (

UINT32 Event,
ACPI_EVENT_STATUS *EventStatus)

PARAMETERS

Event The fixed event for which status will be obtained. This
parameter must be one of the following manifest constants:

ACPI_EVENT_PMTIMER
ACPI_EVENT_GLOBAL
ACPI_EVENT_POWER_BUTTON
ACPI_EVENT_SLEEP_BUTTON
ACPI_EVENT_RTC

EventStatus Where the event status is returned. The following bits may
be set:

ACPI_EVENT_FLAG_SET

RETURN VALUE

Status Exception code that indicates success or reason for failure.

Ref No SC-<xxxx> 125

ACPI Component Architecture Programmer Reference

EXCEPTIONS

AE_OK The event was successfully disabled.

AE_BAD_PARAMETER At least one of the following is true:

• The Event is invalid.

• The EventStatus pointer is NULL or invalid

Other Hardware access exception.

Functional Description:

This function obtains the current status of a single ACPI fixed event.

7.6.5 AcpiInstallFixedEventHandler

Install a handler for ACPI Fixed Events.

ACPI_STATUS
AcpiInstallFixedEventHandler (

UINT32 Event,
ACPI_EVENT_HANDLER Handler,
void *Context)

PARAMETERS

Event The fixed event to be managed by this handler.

Handler Address of the handler to be installed.

Context A context value that will be passed to the handler as a
parameter.

RETURN VALUE

Status Exception code that indicates success or reason for failure.

EXCEPTIONS

AE_OK The handler was successfully installed.

AE_BAD_PARAMETER At least one of the following is true:

• The Event is invalid.

• The Handler pointer is NULL.

AE_ERROR The fixed event enable register could not be written.

AE_ALREADY_EXISTS A handler for this event is already installed.

126 Ref No SC-<xxxx>

 ACPI Component Architecture Programmer Reference

Functional Description:

This function installs a handler for a predefined fixed event.

7.6.5.1 Interface to Fixed Event Handlers

Definition of the handler interface for Fixed Events.

typedef
UINT32 (*ACPI_EVENT_HANDLER) (

void *Context)

PARAMETERS

Context The Context value that was passed as a parameter to the
AcpiInstallFixedEventHandler function.

RETURN VALUE

Reserved Handler should return zero.

Functional Description:

This handler is installed via AcpiInstallFixedEventHandler. It is called whenever the particular fixed
event it was installed to handle occurs.

This function executes in the context of an interrupt handler.

7.6.6 AcpiRemoveFixedEventHandler

Remove an ACPI Fixed Event handler.

ACPI_STATUS
AcpiRemoveFixedEventHandler (

UINT32 Event,
ACPI_EVENT_HANDLER Handler)

PARAMETERS

Event The fixed event whose handler is to be removed.

Handler Address of the previously installed handler.

RETURN VALUE

Status Exception code that indicates success or reason for failure.

EXCEPTIONS

AE_OK The handler was successfully removed.

Ref No SC-<xxxx> 127

ACPI Component Architecture Programmer Reference

AE_BAD_PARAMETER At least one of the following is true:

• The Event is invalid.

• The Handler pointer is NULL.

• The Handler address is not the same as the one that is
installed.

AE_ERROR The fixed event enable register could not be written.

AE_NOT_EXIST There is no handler installed for this event.

Functional Description:

This function removes a handler for a predefined fixed event that was previously installed via a call
to AcpiInstallFixedEventHandler.

128 Ref No SC-<xxxx>

 ACPI Component Architecture Programmer Reference

7.7 ACPI General Purpose Event Management

7.7.1 AcpiEnableGpe

Enable an ACPI General Purpose Event.

ACPI_STATUS
AcpiEnableGpe (

ACPI_HANDLE GpeDevice,
UINT32 GpeNumber,
UINT32 Flags)

PARAMETERS

GpeDevice A handle for the parent GPE Block Device of the GPE to be
enabled. Specify a NULL handle to indicate that the
permanent GPE blocks defined in the FADT (GPE0 and
GPE1) are to be used.

GpeNumber The GPE number to be enabled within the specified GPE
Block. The GPE0 block always begins at zero. GPE1 begins
at GPE1_BASE (in the FADT). Named GPE Block Devices
always begin at zero.

Flags ACPI_NOT_ISR – Caller is not executing from an
Interrupt Service Routine (interrupt level.)

RETURN VALUE

Status Exception code that indicates success or reason for failure.

EXCEPTIONS

AE_OK The GPE was successfully enabled.

AE_BAD_PARAMETER At least one of the following is true:

• The GpeDevice is invalid or does not refer to a valid
GPE Block Device.

• The GpeNumber is out of range for the referenced
GpeDevice.

Functional Description:

This function enables a single General Purpose Event. Both the FADT–defined GPE blocks and
GPE Block Devices are supported. The GPE blocks defined in the FADT are permanent and
installed during system initialization. These permanent blocks, GPE0 and GPE1, are treated as a
single logical block differentiated by non-overlapping GPE numbers. GPE Block Devices are
installed via AcpiInstallGpeBlock during bus/device enumeration.

This function may be called from an interrupt service routine (typically a GPE handler) or a device
driver, depending on the setting of the Flags parameter.

Ref No SC-<xxxx> 129

ACPI Component Architecture Programmer Reference

7.7.2 AcpiDisableGpe

Disable an ACPI General Purpose Event.

ACPI_STATUS
AcpiDisableGpe (

ACPI_HANDLE GpeDevice,
UINT32 GpeNumber,
UINT32 Flags)

PARAMETERS

GpeDevice A handle for the parent GPE Block Device of the GPE to be
disabled. Specify a NULL handle to indicate that the
permanent GPE blocks defined in the FADT (GPE0 and
GPE1) are to be used.

GpeNumber The GPE number to be disabled within the specified GPE
Block. The GPE0 block always begins at zero. GPE1 begins
at GPE1_BASE (in the FADT). Named GPE Block Devices
always begin at zero.

Flags ACPI_NOT_ISR – Caller is not executing from an
Interrupt Service Routine (interrupt level.)

RETURN VALUE

Status Exception code that indicates success or reason for failure.

EXCEPTIONS

AE_OK The GPE was successfully disabled.

AE_BAD_PARAMETER At least one of the following is true:

• The GpeDevice is invalid or does not refer to a valid
GPE Block Device.

• The GpeNumber is out of range for the referenced
GpeDevice.

Functional Description:

This function disables a single General Purpose Event. Both the FADT–defined GPE blocks and
GPE Block Devices are supported. The GPE blocks defined in the FADT are permanent and
installed during system initialization. These permanent blocks, GPE0 and GPE1, are treated as a
single logical block differentiated by non-overlapping GPE numbers. GPE Block Devices are
installed via AcpiInstallGpeBlock during bus/device enumeration.

This function may be called from an interrupt service routine (typically a GPE handler) or a device
driver, depending on the setting of the Flags parameter.

130 Ref No SC-<xxxx>

 ACPI Component Architecture Programmer Reference

7.7.3 AcpiClearGpe

Clear a pending ACPI General Purpose Event.

ACPI_STATUS
AcpiClearGpe (

ACPI_HANDLE GpeDevice,
UINT32 GpeNumber,
UINT32 Flags)

PARAMETERS

GpeDevice A handle for the parent GPE Block Device of the GPE to be
cleared. Specify a NULL handle to indicate that the
permanent GPE blocks defined in the FADT (GPE0 and
GPE1) are to be used.

GpeNumber The GPE number to be cleared within the specified GPE
Block. The GPE0 block always begins at zero. GPE1 begins
at GPE1_BASE (in the FADT). Named GPE Block Devices
always begin at zero.

Flags ACPI_NOT_ISR – Caller is not executing from an
Interrupt Service Routine (interrupt level.)

RETURN VALUE

Status Exception code that indicates success or reason for failure.

EXCEPTIONS

AE_OK The GPE was successfully cleared.

AE_BAD_PARAMETER At least one of the following is true:

• The GpeDevice is invalid or does not refer to a valid
GPE Block Device.

• The GpeNumber is out of range for the referenced
GpeDevice.

Functional Description:

This function clears a single General Purpose Event. Both the FADT–defined GPE blocks and GPE
Block Devices are supported. The GPE blocks defined in the FADT are permanent and installed
during system initialization. These permanent blocks, GPE0 and GPE1, are treated as a single
logical block differentiated by non-overlapping GPE numbers. GPE Block Devices are installed via
AcpiInstallGpeBlock during bus/device enumeration.

This function may be called from an interrupt service routine (typically a GPE handler) or a device
driver, depending on the setting of the Flags parameter.

Ref No SC-<xxxx> 131

ACPI Component Architecture Programmer Reference

7.7.4 AcpiSetGpeType

Set the type (wake/run) of an individual ACPI General Purpose Event.

ACPI_STATUS
AcpiSetGpeType (

ACPI_HANDLE GpeDevice,
UINT32 GpeNumber,
UINT8 Type)

PARAMETERS

GpeDevice A handle for the parent GPE Block Device of the GPE.
Specify a NULL handle to indicate that the permanent GPE
blocks defined in the FADT (GPE0 and GPE1) are to be
used.

GpeNumber The GPE number within the specified GPE Block. The
GPE0 block always begins at zero. GPE1 begins at
GPE1_BASE (in the FADT). Named GPE Block Devices
always begin at zero.

Type ACPI_GPE_TYPE_RUNTIME – This GPE is used for
runtime events only.

 ACPI_GPE_TYPE_WAKE – This GPE is used for wake
events only.

 ACPI_GPE_TYPE_WAKE_RUN – This GPE is used for
both runtime and wake events.

RETURN VALUE

Status Exception code that indicates success or reason for failure.

EXCEPTIONS

AE_OK The type of the GPE was successfully set.

AE_BAD_PARAMETER At least one of the following is true:

• The GpeDevice is invalid or does not refer to a valid
GPE Block Device.

• The GpeNumber is out of range for the referenced
GpeDevice.

• The Type is invalid.

Functional Description:

This function sets the type of a single General Purpose Event. Runtime GPEs are only enabled when
the system is operational. Wake GPEs are enabled only when the system is going into suspend
mode. Run/wake GPEs are always enabled.

132 Ref No SC-<xxxx>

 ACPI Component Architecture Programmer Reference

Both the FADT–defined GPE blocks and GPE Block Devices are supported. The GPE blocks
defined in the FADT are permanent and installed during system initialization. These permanent
blocks, GPE0 and GPE1, are treated as a single logical block differentiated by non-overlapping GPE
numbers. GPE Block Devices are installed via AcpiInstallGpeBlock during bus/device enumeration.

7.7.5 AcpiGetGpeStatus

Obtain the status of an ACPI General Purpose Event.

ACPI_STATUS
AcpiGetGpeStatus (

ACPI_HANDLE GpeDevice,
UINT32 GpeNumber,
UINT32 Flags,
ACPI_EVENT_STATUS *EventStatus)

PARAMETERS

GpeDevice A handle for the parent GPE Block Device of the GPE for
which status is to be obtained. Specify a NULL handle to
indicate that the permanent GPE blocks defined in the
FADT (GPE0 and GPE1) are to be used.

GpeNumber The GPE number to be enabled within the specified GPE
Block. The GPE0 block always begins at zero. GPE1 begins
at GPE1_BASE (in the FADT). Named GPE Block Devices
always begin at zero.

Flags ACPI_NOT_ISR – Caller is not executing from an
Interrupt Service Routine (interrupt level.)

EventStatus Where the event status is returned. The following bits may
be set:

ACPI_EVENT_FLAG_SET

RETURN VALUE

Status Exception code that indicates success or reason for failure.

EXCEPTIONS

AE_OK The GPE was successfully enabled.

AE_BAD_PARAMETER At least one of the following is true:

• The GpeDevice is invalid or does not refer to a valid
GPE Block Device.

• The GpeNumber is out of range for the referenced
GpeDevice.

Ref No SC-<xxxx> 133

ACPI Component Architecture Programmer Reference

Functional Description:

This function obtains the status of a single General Purpose Event. Both the FADT–defined GPE
blocks and GPE Block Devices are supported. The GPE blocks defined in the FADT are permanent
and installed during system initialization. These permanent blocks, GPE0 and GPE1, are treated as a
single logical block differentiated by non-overlapping GPE numbers. GPE Block Devices are
installed via AcpiInstallGpeBlock during bus/device enumeration.

This function may be called from an interrupt service routine (typically a GPE handler) or a device
driver, depending on the setting of the Flags parameter.

7.7.6 AcpiGetGpeDevice

Get the GPE Block Device associated with the GPE index.

ACPI_STATUS
AcpiGetGpeDevice (

UINT32 Index,
ACPI_HANDLE *GpeDevice)

PARAMETERS

Index The system index of the GPE, defined to be from zero to the
value of AcpiCurrentGpeCount.

GpeDevice A pointer to where the handle of the GPE block device is
returned. NULL indicates that the GPE is within one of the
FADT-defined GPE blocks.

RETURN VALUE

Status Exception code that indicates success or reason for failure.

EXCEPTIONS

AE_OK The GPE block device was successfully returned.

AE_BAD_PARAMETER At least one of the following is true:

• The GpeDevice pointer is invalid.

AE_NOT_EXIST The Index refers to a non-existent GPE (it is larger than
AcpiCurrentGpeCount).

Functional Description:

This function obtains the GPE block device associated with the Index parameter. A returned NULL
GPE device indicates that the Index refers to a GPE that is contained in one of the FADT-defined
GPE blocks.

The Index is a system index used to track all GPEs. First are the FADT GPE0 block GPEs, then the
FADT GPE1 GPEs (if present), then any GPE block device GPEs. Valid values for the Index are

134 Ref No SC-<xxxx>

 ACPI Component Architecture Programmer Reference

from zero to the value of the public global variable AcpiCurrentGpeCount. Index values are
consecutive with no ‘holes’.

7.7.7 AcpiDisableAllGpes

Disable all system GPEs

ACPI_STATUS
AcpiDisableAllGpes (

void)

PARAMETERS

None

RETURN VALUE

Status Exception code that indicates success or reason for failure.

EXCEPTIONS

AE_OK All GPEs were successfully disabled.

Other Hardware access exception.

Functional Description:

This function disables all GPEs currently defined in the system. This includes all runtime and wake
GPEs, in both the FADT-defined GPE blocks as well as any installed GPE block devices.

7.7.8 AcpiEnableAllRuntimeGpes

Enable all runtime GPEs

ACPI_STATUS
AcpiEnableAllRuntimeGpes (

void)

PARAMETERS

None

RETURN VALUE

Status Exception code that indicates success or reason for failure.

EXCEPTIONS

AE_OK All runtime GPEs were successfully enabled.

Ref No SC-<xxxx> 135

ACPI Component Architecture Programmer Reference

Other Hardware access exception.

Functional Description:

This function enables all runtime GPEs currently defined in the system. This includes all runtime
GPEs in both the FADT-defined GPE blocks as well as any installed GPE block devices. Runtime
GPEs are defined to be any GPEs that are not Wake GPEs, as determined from the _PRW methods
within the system AML.

7.7.9 AcpiInstallGpeBlock

Install a GPE Block Device.

ACPI_STATUS
AcpiInstallGpeBlock (

ACPI_HANDLE GpeDevice,
ACPI_GENERIC_ADDRESS *GpeBlockAddress,
UINT32 RegisterCount,
UINT32 InterruptLevel)

PARAMETERS

GpeDevice A handle for the GPE Block Device to be installed.

GpeNumber The GPE number to be enabled within the specified GPE
Block. Named GPE Block Devices always begin at zero.

RegisterCount The number of status/enable GPE register pairs in this
block.

InterruptLevel The hardware interrupt level that this GPE block is to be
associated with. Can be SCI_INT or any other system
interrupt level.

RETURN VALUE

Status Exception code that indicates success or reason for failure.

EXCEPTIONS

AE_OK The GPE was successfully enabled.

AE_BAD_PARAMETER At least one of the following is true:

• The GpeDevice is invalid or does not refer to a valid
GPE Block Device.

• The GpeNumber is out of range for the referenced
GpeDevice.

136 Ref No SC-<xxxx>

 ACPI Component Architecture Programmer Reference

Functional Description:

This function installs a GPE Block Device. It is intended for use by a device driver that supports the
enumeration of GPE Block Devices. The caller must identify each Block Device in the ACPI
namespace (each has a _HID of ACPI0006) and obtain the resource requirements (_CRS, etc.) and
make this call for each device found.

Gpe Block Device handling is supported in the ACPICA core subsystem because the SCI_INT is
owned by the core subystem, and the FADT-defined GPE blocks are also owned by the core. Via
this interface, the core also supports GPE Block Devices and the associated interrupts, detection,
dispatch, and GPE control method execution — thus centralizing all GPE support to the core.

7.7.10 AcpiRemoveGpeBlock

Remove a GPE Block Device.

ACPI_STATUS
AcpiRemoveGpeBlock (

ACPI_HANDLE GpeDevice)

PARAMETERS

GpeDevice A handle for the GPE Block Device to be removed.

RETURN VALUE

Status Exception code that indicates success or reason for failure.

EXCEPTIONS

AE_OK The GPE was successfully enabled.

AE_BAD_PARAMETER At least one of the following is true:

• The GpeDevice is invalid or does not refer to a valid
GPE Block Device.

• The GpeNumber is out of range for the referenced
GpeDevice.

Functional Description:

This function removed a GPE Block Device that was previously installed via AcpiInstallGpeBlock.

Ref No SC-<xxxx> 137

ACPI Component Architecture Programmer Reference

7.7.11 AcpiInstallGpeHandler

Install a handler for ACPI General Purpose Events.

ACPI_STATUS
AcpiInstallGpeHandler (

ACPI_HANDLE GpeDevice,
UINT32 GpeNumber,
UINT32 Type,
ACPI_EVENT_HANDLER Handler,
void *Context)

PARAMETERS

GpeDevice A handle for the parent GPE Block Device of the GPE for
which the handler is to be installed. Specify a NULL handle
to indicate that the permanent GPE blocks defined in the
FADT (GPE0 and GPE1) are to be used.

GpeNumber A zero based GPE number. GPE numbers start with GPE
register bank zero, and continue sequentially through GPE
bank one.

Type Whether this GPE is edge or level triggered:

 ACPI_GPE_LEVEL_TRIGGERED
 ACPI_GPE_EDGE_TRIGGERED

Handler Address of the handler to be installed.

Context A context value that will be passed to the handler as a
parameter.

RETURN VALUE

Status Exception code that indicates success or reason for failure.

EXCEPTIONS

AE_OK The handler was successfully installed.

AE_BAD_PARAMETER At least one of the following is true:

• The GpeNumber is invalid.

• The Handler pointer is NULL.

AE_ALREADY_EXISTS A handler for this general-purpose event is already installed.

AE_NO_MEMORY Insufficient dynamic memory to complete the operation.

Functional Description:

This function installs a handler for a general-purpose event

138 Ref No SC-<xxxx>

 ACPI Component Architecture Programmer Reference

7.7.11.1 Interface to General Purpose Event Handlers

Definition of the handler interface for General Purpose Events.

typedef
void (*ACPI_EVENT_HANDLER) (

void *Context)

PARAMETERS

Context The Context value that was passed as a parameter to the
AcpiInstallGpeHandler function.

RETURN VALUE

None

Functional Description:

This handler is installed via AcpiInstallGpeHandler. It is called whenever the particular general-
purpose event it was installed to handle occurs.

 This function executes in the context of an interrupt handler.

7.7.12 AcpiRemoveGpeHandler

Remove an ACPI General-Purpose Event handler.

ACPI_STATUS
AcpiRemoveGpeHandler (

ACPI_HANDLE GpeDevice,
UINT32 GpeNumber,
ACPI_EVENT_HANDLER Handler)

PARAMETERS

GpeDevice A handle for the parent GPE Block Device of the GPE for
which the handler is to be removed. Specify a NULL handle
to indicate that the permanent GPE blocks defined in the
FADT (GPE0 and GPE1) are to be used.

GpeNumber A zero based GPE number. GPE numbers start with GPE
register bank zero, and continue sequentially through GPE
bank one.

Handler Address of the previously installed handler.

RETURN VALUE

Status Exception code that indicates success or reason for failure.

Ref No SC-<xxxx> 139

ACPI Component Architecture Programmer Reference

EXCEPTIONS

AE_OK The handler was successfully removed.

AE_BAD_PARAMETER At least one of the following is true:

• The GpeNumber is invalid.

• The Handler pointer is NULL.

• The Handler address is not the same as the one that is
installed.

AE_NOT_EXIST There is no handler installed for this general-purpose event.

Functional Description:

This function removes a handler for a general-purpose event that was previously installed via a call
to AcpiInstallGpeHandler.

140 Ref No SC-<xxxx>

 ACPI Component Architecture Programmer Reference

7.8 Miscellaneous Handler Support

7.8.1 AcpiInstallNotifyHandler

Install a handler for notification events on an ACPI object.

ACPI_STATUS
AcpiInstallNotifyHandler (

ACPI_HANDLE Object,
UINT32 Type,
ACPI_NOTIFY_HANDLER Handler,
void *Context)

PARAMETERS

Object Handle to the object for which notify events will be handled.
Notifies on this object will be dispatched to the handler. If
ACPI_ROOT_OBJECT is specified, the handler will
become a global handler that receives all (system wide)
notifications of the Type specified. Otherwise, this object
must be one of the following types:

ACPI_TYPE_DEVICE
ACPI_TYPE_PROCESSOR
ACPI_TYPE_THERMAL

Type Specifies the type of notifications that are to be received by
this handler:

ACPI_SYSTEM_NOTIFY – Notification values
from 0x00 to 0x7F.

ACPI_DEVICE_NOTIFY – Notification values
from 0x80 to 0xFF.

Handler Address of the handler to be installed.

Context A context value that will be passed to the handler as a
parameter.

RETURN VALUE

Status Exception code that indicates success or reason for failure.

EXCEPTIONS

AE_OK The handler was successfully installed.

AE_BAD_PARAMETER At least one of the following is true:

• The Object handle is invalid.

Ref No SC-<xxxx> 141

ACPI Component Architecture Programmer Reference

• The Type is not a valid value.

• The Handler pointer is NULL.

AE_ALREADY_EXISTS A handler for notifications on this object is already installed.

AE_TYPE The type of the Object is not one of the supported object
types.

AE_NO_MEMORY Insufficient dynamic memory to complete the operation.

Functional Description:

This function installs a handler for notify events on an ACPI object. According to the ACPI
specification, the only objects that can receive notifications are Devices and Thermal Zones.

A global handler for each notify type may be installed by using the ACPI_ROOT_OBJECT constant
as the object handle. When a notification is received, it is first dispatched to the global handler (if
there is one), and then to the device-specific notify handler (if there is one)

7.8.1.1 Interface to Notification Event Handlers

Definition of the handler interface for Notification Events.

typedef
void (*ACPI_NOTIFY_HANDLER) (

ACPI_HANDLE Device
UINT32 Value,
void *Context)

PARAMETERS

Device The handle for the device on which the notify occurred.

Value The notify value that was passed as a parameter to the AML
notify operation.

Context The Context value that was passed as a parameter to the
AcpiInstallNotifyHandler function.

RETURN VALUE

None

Functional Description:

This handler is installed via AcpiInstallNotifyHandler. It is called whenever a notify occurs on the
target object. If the handler is installed as a global notification handler, it is called for every notify of
the type specified when it was installed.

This function does not execute in the context of an interrupt handler.

142 Ref No SC-<xxxx>

 ACPI Component Architecture Programmer Reference

7.8.2 AcpiRemoveNotifyHandler

Remove a handler for ACPI notification events.

ACPI_STATUS
AcpiRemoveNotifyHandler (

ACPI_HANDLE Object,
UINT32 Type,
ACPI_NOTIFY_HANDLER Handler)

PARAMETERS

Object Handle to the object for which a notify handler will be
removed. If ACPI_ROOT_OBJECT is specified, the global
handler of the Type specified is removed. Otherwise, this
object must be one of the following types:

ACPI_TYPE_DEVICE
ACPI_TYPE_PROCESSOR
ACPI_TYPE_THERMAL

HandlerType Specifies the type of notify handler to be removed:

ACPI_SYSTEM_NOTIFY – Notification values
from 0x00 to 0x7F.

ACPI_DEVICE_NOTIFY – Notification values
from 0x80 to 0xFF.

Handler Address of the previously installed handler.

RETURN VALUE

Status Exception code that indicates success or reason for failure.

EXCEPTIONS

AE_OK The handler was successfully removed.

AE_BAD_PARAMETER At least one of the following is true:

• The Object handle is invalid.

• The Handler pointer is NULL.

• The Handler address is not the same as the one that is
installed.

AE_NOT_EXIST There is no handler installed for notifications on this object.

AE_TYPE The type of the Object is not one of the supported object
types.

Ref No SC-<xxxx> 143

ACPI Component Architecture Programmer Reference

Functional Description:

This function removes a handler for notify events that was previously installed via a call to
AcpiInstallNotifyHandler.

7.8.3 AcpiInstallAddressSpaceHandler

Install handlers for ACPI Operation Region events.

ACPI_STATUS
AcpiInstallAddressSpaceHandler (

ACPI_HANDLE Object,
ACPI_ADR_SPACE_TYPE SpaceId,
ACPI_ADR_SPACE_HANDLER Handler,
ACPI_ADR_SPACE_SETUP Setup,
void *Context)

PARAMETERS

Object Handle for the object for which a address space handler will
be installed. This object may be specified as the
ACPI_ROOT_OBJECT to request global scope. Otherwise,
this object must be one of the following types:

ACPI_TYPE_DEVICE
ACPI_TYPE_PROCESSOR
ACPI_TYPE_THERMAL

SpaceId The ID of the Address Space or Operation Region to be
managed by this handler.

Handler Address of the handler to be installed if the special value
ACPI_DEFAULT_HANDLER is used the handler
supplied with by the ACPICA for that address space will be
installed.

Setup Address of a start/stop initialization/termination function
that is called when the region first becomes available and
also if and when it becomes unavailable.

Context A context value that will be passed to the handler as a
parameter.

RETURN VALUE

Status Exception code that indicates success or reason for failure.

EXCEPTIONS

AE_OK The handler was successfully installed.

AE_BAD_PARAMETER At least one of the following is true:

144 Ref No SC-<xxxx>

 ACPI Component Architecture Programmer Reference

• The object handle does not refer to an object of type
Device, Processor, ThermalZone, or the root object.

• The SpaceId is invalid.

• The Handler pointer is NULL.

AE_ALREADY_EXISTS A handler for this address space or operation region is
already installed.

AE_NOT_EXIST ACPI_DEFAULT_HANDLER was specified for an
address space that has no default handler.

AE_NO_MEMORY There was insufficient memory to install the handler.

Functional Description:

This function installs a handler for an Address Space.

7.8.3.1 Interface to Address Space Setup Handlers

Definition of the setup (Address Space start/stop) handler interface for Operation Region
Events.

typedef
void (*ACPI_ADR _SPACE_SETUP) (

ACPI_HANDLE RegionHandle,
UINT32 Function
void *HandlerContext)
void **ReturnContext)

PARAMETERS

RegionHandle Handle to the region that is initializing or terminating.

Function The type of function to be performed; must be one of the
following manifest constants:

ACPI_REGION_ACTIVATE (init)
ACPI_REGION_DEACTIVATE (terminate)

HandlerContext An address space specific Context value. Typically this is
the context that was passed as a parameter to the
AcpiInstallAddressSpaceHandler function.

ReturnContext An address space specific Context value. This context
subsumes the HandlerContext, and this is the context value
that is passed to the actual address space handler routine.

RETURN VALUE

None

Ref No SC-<xxxx> 145

ACPI Component Architecture Programmer Reference

Functional Description:

This handler is installed via AcpiInstallAddressSpaceHandler. It is invoked to both initialize and
terminate the operation region handling code. The setup handler is first invoked with a function
value of ACPI_REGION_ACTIVATE upon the first access to the region from AML code. It is
called again with a function value of ACPI_REGION_DEACTIVATE just before the address
space handler is removed.

This function does not execute in the context of an interrupt handler.

7.8.3.2 Interface to Address Space Handlers

Definition of the handler interface for Operation Region Events.

typedef
void (*ACPI_ADR _SPACE_HANDLER) (

UINT32 Function,
ACPI_PHYSICAL_ADDRESS Address,
UINT32 BitWidth,
ACPI_INTEGER *Value,
void *HandlerContext,
void *RegionContext)

PARAMETERS

Function The type of function to be performed; must be one of the
following manifest constants:

ADDRESS_SPACE_READ
ADDRESS_SPACE_WRITE

Address A space-specific address where the operation is to be
performed.

BitWidth The width of the operation, typically 8, 16, 32, or 64.

*Value A pointer to the value to be written (WRITE), or where the
value that was read should be returned (READ).

HandlerContext An address space specific Context value. Typically this is
the context that was passed as a parameter to the
AcpiInstallAddressSpaceHandler function.

RegionContext An operation region specific context. Created during the
region setup.

RETURN VALUE

None

146 Ref No SC-<xxxx>

 ACPI Component Architecture Programmer Reference

Functional Description:

This handler is installed via AcpiInstallAddressSpaceHandler. It is invoked whenever AML code
attempts to access the target Operation Region.

This function does not execute in the context of an interrupt handler.

7.8.3.3 Context for the Default PCI Address Space Handler

Definition of the context required for installation of the default PCI address space handler.

UINT32 PCIContext

Where PCIContext contains the PCI bus number and the PCI segment number. The bus number is
in the low 16 bits and the segment number in the high 16 bits.

7.8.4 AcpiRemoveAddressSpaceHandler

Remove an ACPI Operation Region handler.

ACPI_STATUS
AcpiRemoveAddressSpaceHandler (

ACPI_HANDLE Object,
ACPI_ADR_SPACE_TYPE SpaceId,
ACPI_ADR _SPACE_HANDLER Handler)

PARAMETERS

Object Handle for the object for which a address space handler will
be installed. This object may be specified as the
ACPI_ROOT_OBJECT to request global scope. Otherwise,
this object must be one of the following types:

ACPI_TYPE_DEVICE
ACPI_TYPE_PROCESSOR
ACPI_TYPE_THERMAL

SpaceId The ID of the Address Space or Operation Region whose
handler is to be removed.

Handler Address of the previously installed handler.

RETURN VALUE

Status Exception code that indicates success or reason for failure.

EXCEPTIONS

AE_OK The handler was successfully removed.

AE_BAD_PARAMETER At least one of the following is true:

Ref No SC-<xxxx> 147

ACPI Component Architecture Programmer Reference

• The object handle does not refer to an object of type
Device, Processor, ThermalZone, or the root object.

• The SpaceId is invalid.

• The Handler pointer is NULL.

• The Handler address is not the same as the one that is
installed.

AE_NOT_EXIST There is no handler installed for this address space or
operation region.

Functional Description:

This function removes a handler for an Address Space or Operation Region that was previously
installed via a call to AcpiInstallAddressSpaceHandler.

7.8.5 AcpiInstallExceptionHandler

Install a handler for ACPI interpreter run-time exceptions.

ACPI_STATUS
AcpiInstallExceptionHandler (

ACPI_EVENT_HANDLER Handler)

PARAMETERS

Handler Address of the handler to be installed.

RETURN VALUE

Status Exception code that indicates success or reason for failure.

EXCEPTIONS

AE_OK The handler was successfully installed.

AE_BAD_PARAMETER At least one of the following is true:

• The Handler pointer is NULL.

AE_ALREADY_EXISTS A handler for this general-purpose event is already installed.

Functional Description:

This function installs a global handler for exceptions generated during the execution of control
methods. Useful for error logging and debugging.

148 Ref No SC-<xxxx>

 ACPI Component Architecture Programmer Reference

7.8.5.1 Interface to Exception Handlers

Definition of the handler interface for General Purpose Events.

typedef
ACPI_STATUS (*ACPI_EXCEPTION_HANDLER) (

ACPI_STATUS AmlStatus,
ACPI_NAME Name,
UINT16 Opcode,
UINT32 AmlOffset,
void *Context)

PARAMETERS

AmlStatus The exception code that was raised.

Name Name of the executing control method.

Opcode AML opcode whose execution caused the exception.

AmlOffset Offset of the AML opcode within the control method.

Context Reserved for future use. Currently NULL.

RETURN VALUE

None

Functional Description:

This handler is installed via AcpiInstallExceptionHandler. It is called whenever an exception is
raised within the AML interpreter during control method execution.

The ACPI_STATUS that is returned by the handler is then used by the AML interpreter instead of
the original exception code.

Ref No SC-<xxxx> 149

ACPI Component Architecture Programmer Reference

7.9 ACPI Resource Management

7.9.1 AcpiGetCurrentResources

Get the current resource list associated with an ACPI-related device.

ACPI_STATUS
AcpiGetCurrentResources (

ACPI_HANDLE Device,
ACPI_BUFFER *OutBuffer)

PARAMETERS

Device A handle to a device object for which the current resources
are to be returned.

OutBuffer A pointer to a location where the current resource list is to
be returned.

RETURN VALUE

Status Exception code that indicates success or reason for failure.

EXCEPTIONS

AE_OK The resource list was successfully returned.

AE_BAD_PARAMETER At least one of the following is true:

• The Device handle is invalid.

• The OutBuffer pointer is NULL.

• The Length field of OutBuffer is not
ACPI_ALLOCATE_BUFFER, but the Pointer field
of OutBuffer is NULL.

AE_BUFFER_OVERFLOW The Length field of OutBuffer indicates that the buffer is too
small to hold the resource list. Upon return, the Length field
contains the minimum required buffer length.

AE_TYPE The Device handle refers to an object that is not of type
ACPI_TYPE_DEVICE.

Functional Description:

This function obtains the current resources for a specific device. The caller must first acquire a
handle for the desired device. The resource data is placed in the buffer pointed contained in the
OutBuffer structure. Upon completion the Length field of OutBuffer will indicate the number of
bytes copied into the Pointer field of the OutBuffer buffer. This routine will never return a partial
resource structure.

If the function fails an appropriate status will be returned and the value of OutBuffer is undefined.

150 Ref No SC-<xxxx>

 ACPI Component Architecture Programmer Reference

7.9.2 AcpiGetPossibleResources

Get the possible resource list associated with an ACPI-related device.

ACPI_STATUS
AcpiGetPossibleResources (

ACPI_HANDLE Device,
ACPI_BUFFER *OutBuffer)

PARAMETERS

Device A handle to a device object for which the possible resources
are to be returned.

OutBuffer A pointer to a location where the possible resource list is to
be returned.

RETURN VALUE

Status Exception code that indicates success or reason for failure.

EXCEPTIONS

AE_OK The resource list was successfully returned.

AE_BAD_PARAMETER At least one of the following is true:

• The Device handle is invalid.

• The OutBuffer pointer is NULL.

• The Length field of OutBuffer is not
ACPI_ALLOCATE_BUFFER, but the Pointer field
of OutBuffer is NULL.

AE_BUFFER_OVERFLOW The Length field of OutBuffer indicates that the buffer is too
small to hold the resource table. Upon return, the Length
field contains the minimum required buffer length.

AE_TYPE The Device handle refers to an object that is not of type
ACPI_TYPE_DEVICE.

Functional Description:

This function obtains the list of the possible resources for a specific device. The caller must first
acquire a handle for the desired device. The resource data is placed in the buffer contained in the
OutBuffer structure. Upon completion the Length field of OutBuffer will indicate the number of
bytes copied into the Pointer field of the OutBuffer buffer. This routine will never return a partial
resource structure.

If the function fails an appropriate status will be returned and the value of OutBuffer is undefined.

Ref No SC-<xxxx> 151

ACPI Component Architecture Programmer Reference

7.9.3 AcpiSetCurrentResources

Set the current resource list associated with an ACPI-related device.

ACPI_STATUS
AcpiSetCurrentResources (

ACPI_HANDLE Device,
ACPI_BUFFER *Buffer)

PARAMETERS

Device A handle to a device object for which the current resource
list is to be set.

Buffer A pointer to an ACPI_BUFFER containing the resources to
be set for the device.

RETURN VALUE

Status Exception code that indicates success or reason for failure.

EXCEPTIONS

AE_OK The resources were set successfully.

AE_BAD_PARAMETER At least one of the following is true:

• The Device handle is invalid.

• The InBuffer pointer is NULL.

• The Pointer field of InBuffer is NULL.

• The Length field of InBuffer is zero.

AE_TYPE The Device handle refers to an object that is not of type
ACPI_TYPE_DEVICE.

Functional Description:

This function sets the current resources for a specific device. The caller must first acquire a handle
for the desired device. The resource data is passed to the routine the buffer pointed to by the
InBuffer variable.

152 Ref No SC-<xxxx>

 ACPI Component Architecture Programmer Reference

7.9.4 AcpiGetIRQRoutingTable

Get the ACPI Interrupt Request (IRQ) Routing Table for an ACPI-related device.

ACPI_STATUS
AcpiGetIRQRoutingTable (

ACPI_HANDLE Device,
ACPI_BUFFER *OutBuffer)

PARAMETERS

Device A handle to a device object for which the IRQ routing table
is to be returned.

OutBuffer A pointer to a location where the IRQ routing table is to be
returned.

RETURN VALUE

Status Exception code that indicates success or reason for failure.

EXCEPTIONS

AE_OK The system information list was successfully returned.

AE_BAD_PARAMETER At least one of the following is true:

• The Device handle is invalid.

• The OutBuffer pointer is NULL.

• The Length field of OutBuffer is not
ACPI_ALLOCATE_BUFFER, but the Pointer field
of OutBuffer is NULL.

AE_BUFFER_OVERFLOW The Length field of OutBuffer indicates that the buffer is
too small to hold the IRQ table. Upon return, the Length
field contains the minimum required buffer length.

AE_TYPE The Device handle refers to an object that is not of type
ACPI_TYPE_DEVICE.

Functional Description:

This function obtains the IRQ routing table for a specific bus. It does so by attempting to execute the
_PRT method contained in the scope of the device whose handle is passed as a parameter.

If the function fails an appropriate status will be returned and the value of OutBuffer is undefined.

Ref No SC-<xxxx> 153

ACPI Component Architecture Programmer Reference

7.9.5 AcpiGetVendorResource

Find a resource of type Vendor-Defined

ACPI_STATUS
AcpiGetVendorResource (

ACPI_HANDLE DeviceHandle,
char *Name,
ACPI_VENDOR_UUID *Uuid,
ACPI_BUFFER *OutBuffer)

PARAMETERS

DeviceHandle A handle to the parent Device that owns the vendor
resource.

Name Name of the parent resource list (_CRS or _PRS).

Uuid A pointer to the UUID to be matched. Includes both subtype
and 16-byte UUID.

OutBuffer Where the vendor resource is returned.

RETURN VALUE

Status Exception code that indicates success or reason for failure.

EXCEPTIONS

AE_OK The vendor resource was successfully acquired.

AE_BAD_PARAMETER At least one of the following is true:

• The DeviceHandle is invalid.

• The Name does not refer to a _CRS or _PRS control
method.

• The OutBuffer of UUID pointer is NULL.

• The Length field of OutBuffer is not
ACPI_ALLOCATE_BUFFER, but the Pointer field
of OutBuffer is NULL.

AE_NOT_EXIST The Name could not be found.

Functional Description:

This function retrieves a resource of type vendor-defined that matches the supplied UUID and
UUID subtype.

154 Ref No SC-<xxxx>

 ACPI Component Architecture Programmer Reference

7.9.6 AcpiResourceToAddress64

Convert an address resource descriptor to 64 bits

ACPI_STATUS
AcpiResourceToAddress64 (

ACPI_RESOURCE *Resource,
ACPI_RESOURCE_ADDRESS64 *OutResource)

PARAMETERS

Resource The resource descriptor to be converted. This resource must
be one of the following types:

 ACPI_RESOURCE_TYPE_ADDRESS16
 ACPI_RESOURCE_TYPE_ADDRESS32
 ACPI_RESOURCE_TYPE_ADDRESS64

OutResource Where the converted resource is returned.

RETURN VALUE

Status Exception code that indicates success or reason for failure.

EXCEPTIONS

AE_OK The resource was successfully converted.

AE_BAD_PARAMETER The resource is not of the correct type.

Functional Description:

This utility function converts resources of type ADDRESS16 and ADDRESS32 to ADDRESS64.
This saves the caller from having to duplicate code for different-sized address descriptors. If the
input descriptor is of type ADDRESS64, a simple copy is performed.

7.9.7 AcpiWalkResources

Parse an ACPI Resource List.

ACPI_STATUS
AcpiWalkResources (

ACPI_HANDLE DeviceHandle,
char *Name,
ACPI_WALK_RESOURCE_CALLBACK UserFunction,
void *UserContext)

PARAMETERS

DeviceHandle A handle to the Device for which one of the resource lists
will be walked:

Ref No SC-<xxxx> 155

ACPI Component Architecture Programmer Reference

Name Name of a resource method (either a _CRS or _PRS
method.)

UserFunction A pointer to a user-written function that is invoked for each
resource object within the resource list. (See the interface
specification for the user function below.)

UserContext A value that will be passed as a parameter to the user
function each time it is invoked.

RETURN VALUE

Status Exception code that indicates success or reason for failure.

EXCEPTIONS

AE_OK The event was successfully enabled.

AE_BAD_PARAMETER The DeviceHandle is invalid or the Name does not refer to a
_CRS or _PRS control method.

AE_NO_MEMORY Insufficient dynamic memory to complete the operation.

Functional Description:

This function retrieves the current or possible resource list for the specified device. The User
Function is called once for each resource in the list – freeing the caller from having to parse the list
itself.

7.9.7.1 Interface to User Callback Function

Interface to the user function that is invoked from AcpiWalkResources.

ACPI_STATUS (*ACPI_WALK_RESOURCE_CALLBACK) (
ACPI_RESOURCE *Resource,
void *Context)

PARAMETERS

Resource A pointer to a single resource within the resource list.

Context The UserContext value that was passed as a parameter to the
AcpiWalkResources function.

RETURN VALUE

Status AE_OK Continue the walk.

 AE_TERMINATE Stop the walk immediately.

 AE_DEPTH Go no deeper into the namespace tree.

 All others Abort the walk with this exception
code.

156 Ref No SC-<xxxx>

 ACPI Component Architecture Programmer Reference

Functional Description:

This function is called from AcpiWalkResource for each resource object in the resource list.

Ref No SC-<xxxx> 157

ACPI Component Architecture Programmer Reference

7.10 Memory Management
The ACPICA Core Subsystem provides memory management services that are built upon the
memory management services exported by the OS services layer. If enabled (in debug mode), the
core memory manager tracks and logs each allocation to detect the following conditions:

1) Detect attempts to release (free) an allocated memory block more than once.

2) Detect memory leaks by keeping a list of all outstanding allocated memory blocks. This list
can be examined at any time; however, the best time to find memory leaks is after the
subsystem is shutdown -- any remaining allocations represent leaked blocks.

Do not mix memory manager calls. In other words, if the Acpi* memory manager is used to
allocate memory, do not free memory via the OS Services Layer (AcpiOsFree), via the C library
(free), or directly call the host OS memory management primitives.

7.10.1 ACPI_ALLOCATE

Allocate memory from the dynamic memory pool.

void *
ACPI_ALLOCATE (

ACPI_SIZE Size)

PARAMETERS

Size Amount of memory to allocate.

RETURN VALUE

Memory A pointer to the allocated memory. A NULL pointer is
returned on error.

Functional Description:

This function dynamically allocates memory. The returned memory cannot be assumed to be
initialized to any particular value or values.

158 Ref No SC-<xxxx>

 ACPI Component Architecture Programmer Reference

7.10.2 ACPI_ALLOCATE_ZEROED

Allocate and initialize memory.

void *
ACPI_ALLOCATE_ZEROED (

ACPI_SIZE Size)

PARAMETERS

Size Amount of memory to allocate.

RETURN VALUE

Memory A pointer to the allocated memory. A NULL pointer is
returned on error.

Functional Description:

This function dynamically allocates and initializes memory. The returned memory is guaranteed to
be initialized to all zeros.

7.10.3 ACPI_FREE

Free previously allocated memory.

void
ACPI_FREE (

void *Memory)

PARAMETERS

Memory A pointer to the memory to be freed.

RETURN VALUE

None

Functional Description:

This function frees memory that was previously allocated via ACPI_ALLOCATE or
ACPI_ALLOCATE_ZEROED.

Ref No SC-<xxxx> 159

ACPI Component Architecture Programmer Reference

7.11 Formatted Output

7.11.1 AcpiInfo and ACPI_INFO

Print a formatted information/comment string.

void
AcpiInfo (

const char *ModuleName,
UINT32 LineNumber,
const char *Format,
…)

PARAMETERS

ModuleName The name of the currently executing module or filename.

LineNumber The current line number within the currently executing
module.

Format A standard printf-style format string.

RETURN VALUE

None

EXCEPTIONS

None

Functional Description:

This function prints a formatted error message using the AcpiOsPrintf and AcpiOsVprintf OSL
interfaces. The format of the output string is as follows:

ACPI: (ModuleName-LineNumber): <message> [ACPICA version number]

The ACPI_INFO macro

The front-end to this function is the ACPI_INFO macro.

Example: The following invocation of the ACPI_INFO macro:

 ACPI_INFO ((AE_INFO, "ACPICA example info message"));

Produces this output:

 ACPI: ACPICA example info message

The AE_INFO macro is required and automatically injects the module name and line number into
the invoation of AcpiError. Note the use of double parentheses which are required in order to pass
the parameters to the printf OSL functions.

160 Ref No SC-<xxxx>

 ACPI Component Architecture Programmer Reference

7.11.2 AcpiWarning and ACPI_WARNING

Print a formatted warning string.

void
AcpiWarning (

const char *ModuleName,
UINT32 LineNumber,
const char *Format,
…)

PARAMETERS

ModuleName The name of the currently executing module or filename.

LineNumber The current line number within the currently executing
module.

Format A standard printf-style format string.

RETURN VALUE

None

EXCEPTIONS

None

Functional Description:

This function prints a formatted error message using the AcpiOsPrintf and AcpiOsVprintf OSL
interfaces. The format of the output string is as follows:

ACPI Error (ModuleName-LineNumber): <message> [ACPICA version number]

The ACPI_WARNING macro

The front-end to this function is the ACPI_WARNING macro.

Example: The following invocation of the ACPI_ WARNING macro:

 ACPI_WARNING ((AE_INFO, "ACPICA example warning message"));

Produces this output:

 ACPI Warning (examples-0187): ACPICA example warn message [20080926]

The AE_INFO macro is required and automatically injects the module name and line number into
the invoation of AcpiError. Note the use of double parentheses which are required in order to pass
the parameters to the printf OSL functions.

Ref No SC-<xxxx> 161

ACPI Component Architecture Programmer Reference

7.11.3 AcpiError and ACPI_ERROR

Print a formatted error string.

void
AcpiError (

const char *ModuleName,
UINT32 LineNumber,
const char *Format,
…)

PARAMETERS

ModuleName The name of the currently executing module or filename.

LineNumber The current line number within the currently executing
module.

Format A standard printf-style format string.

RETURN VALUE

None

EXCEPTIONS

None

Functional Description:

This function prints a formatted error message using the AcpiOsPrintf and AcpiOsVprintf OSL
interfaces. The format of the output string is as follows:

ACPI Error (ModuleName-LineNumber): <message> [ACPICA version number]

The ACPI_ERROR macro

The front-end to this function is the ACPI_ERROR macro.

Example: The following invocation of the ACPI_ERROR macro:

 ACPI_ERROR ((AE_INFO, "ACPICA example error message"));

Produces this output:

 ACPI Error (examples-0187): ACPICA example error message [20080926]

The AE_INFO macro is required and automatically injects the module name and line number into
the invoation of AcpiError. Note the use of double parentheses which are required in order to pass
the parameters to the printf OSL functions.

162 Ref No SC-<xxxx>

 ACPI Component Architecture Programmer Reference

7.11.4 AcpiException and ACPI_EXCEPTION

Print a formatted error string with decoded ACPICA exception code

void
AcpiException (

const char *ModuleName,
UINT32 LineNumber,
ACPI_STATUS Status,
const char *Format,
…)

PARAMETERS

ModuleName The name of the currently executing module or filename.

LineNumber The current line number within the currently executing
module.

Status ACPICA status to be decoded and displayed.

Format A standard printf-style format string.

RETURN VALUE

None

EXCEPTIONS

None

Functional Description:

This function prints a formatted error message using the AcpiOsPrintf and AcpiOsVprintf OSL
interfaces. The format of the output string is as follows:

ACPI Exception (ModuleName-LineNumber): <message> [ACPICA version number]

The ACPI_EXCEPTION macro

The front-end to this function is the ACPI_EXCEPTION macro.

Example: The following invocation of the ACPI_ EXCEPTION macro:

 ACPI_EXCEPTION ((AE_INFO, Status, "ACPICA example error message"));

Produces this output:

 ACPI Exception (examples-0187): AE_ERROR, ACPICA status [20080926]

The AE_INFO macro is required and automatically injects the module name and line number into
the invoation of AcpiError. Note the use of double parentheses which are required in order to pass
the parameters to the printf OSL functions.

Ref No SC-<xxxx> 163

ACPI Component Architecture Programmer Reference

7.11.5 AcpiDebugPrint and ACPI_DEBUG_PRINT

Print a formatted debug string.

void
AcpiDebugPrint (

UINT32 RequestedDebugLevel,
UINT32 LineNumber,
const char *FunctionName,
const char *ModuleName,
UINT32 ComponentId,
const char *Format,
…)

PARAMETERS

RequestedDebugLevel The debug level for this statement. This value is compared
to the current AcpiDbgLevel mask to determine if this
message will be output or not. Must be one of the following:

ACPI_DB_INIT
ACPI_DB_DEBUG_OBJECT
ACPI_DB_INFO
ACPI_DB_ALL_EXCEPTIONS
ACPI_DB_INIT_NAMES
ACPI_DB_PARSE
ACPI_DB_LOAD
ACPI_DB_DISPATCH
ACPI_DB_EXEC
ACPI_DB_NAMES
ACPI_DB_OPREGION
ACPI_DB_BFIELD
ACPI_DB_TABLES
ACPI_DB_VALUES
ACPI_DB_OBJECTS
ACPI_DB_RESOURCES
ACPI_DB_USER_REQUESTS
ACPI_DB_PACKAGE
ACPI_DB_ALLOCATIONS
ACPI_DB_FUNCTIONS
ACPI_DB_OPTIMIZATIONS
ACPI_DB_MUTEX
ACPI_DB_THREADS
ACPI_DB_IO
ACPI_DB_INTERRUPTS
ACPI_DB_EVENTS
ACPI_DB_ALL

LineNumber The current line number within the currently executing
module.

FunctionName The name of the currently executing function.

164 Ref No SC-<xxxx>

 ACPI Component Architecture Programmer Reference

ModuleName The name of the currently executing module or filename.

ComponentId The ID of the executing component. Currently defined IDs
are:

ACPI_UTILITIES
ACPI_HARDWARE
ACPI_EVENTS
ACPI_TABLES
ACPI_NAMESPACE
ACPI_PARSER
ACPI_DISPATCHER
ACPI_EXECUTER
ACPI_RESOURCES
ACPI_CA_DEBUGGER
ACPI_OS_SERVICES
ACPI_CA_DISASSEMBLER
ACPI_COMPILER
ACPI_TOOLS
ACPI_EXAMPLE
ACPI_DRIVER

Format A standard printf-style format string.

RETURN VALUE

None

EXCEPTIONS

None

Functional Description:

This function prints debug messages only if the debug level and the component ID match in the
global level/layer masks. This mechanism is useful to pare down the amount of debug output that is
produced. In addition to the input string, the module name, the line number, and the function name
are added to the output.

The ACPI_DEBUG_PRINT macro

The front end to the AcpiDebugPrint interface

Example: The following invocation of the ACPI_ DEBUG_PRINT macro

 ACPI_DEBUG_PRINT ((ACPI_DB_INFO, "Example Debug output"));

Produces this output:

 examples-0200 [00] Examples-main : Example Debug output

Ref No SC-<xxxx> 165

ACPI Component Architecture Programmer Reference

7.11.6 AcpiDebugPrintRaw and ACPI_DEBUG_PRINT_RAW

Print a formatted debug string, with no extra data.

void
AcpiDebugPrintRaw (

UINT32 RequestedDebugLevel,
UINT32 LineNumber,
const char *FunctionName,
const char *ModuleName,
UINT32 ComponentId,
const char *Format,
…)

PARAMETERS

See the definition of AcpiDebugPrint

Functional Description:

This function prints debug messages only if the debug level and the component ID match in the
global level/layer masks. This mechanism is useful to pare down the amount of debug output that is
produced. The message produced by this function is not embellished with the line number, function
name, and module name as is performed by ACPI_DEBUG_PRINT.

The ACPI_DEBUG_PRINT_RAW macro

The front end to the AcpiDebugPrintRaw interface.

Example: The following invocation of the ACPI_ DEBUG_PRINT_RAW macro

 ACPI_DEBUG_PRINT_RAW ((ACPI_DB_INFO, "Example Debug output"));

Produces this output:

 Example Debug output

7.12 Miscellaneous Utilities

7.12.1 AcpiFormatException

Return the ASCII name of an ACPI exception code.

const char *
AcpiFormatException (

ACPI_STATUS Status)

PARAMETERS

Status The ACPI status/exception code to be translated.

166 Ref No SC-<xxxx>

 ACPI Component Architecture Programmer Reference

RETURN VALUE

Exception String A pointer to the formatted exception string.

EXCEPTIONS

None

Functional Description:

This function converts an ACPI exception code into a human-readable string. It returns the
exception name string as the function return value. The string is a const value that does not require
deletion by the caller.

7.12.2 AcpiDebugTrace

Enable debug tracing of control method execution

ACPI_STATUS
AcpiDebugTrace (

char *Name,
UINT32 DebugLevel,
UINT32 DebugLayer,
UINT32 Flags)

PARAMETERS

Name Name of the control method to be traced. Currently, only a
4-character ACPI name is supported.

DebugLevel The debug level used for the trace.

DebugLayer The debug layer used for the trace.

Flags Sets the type of trace:

 1 – One shot trace
 0 – Persistent trace

RETURN VALUE

Status Exception code that indicates success or reason for failure.

EXCEPTIONS

AE_OK The system information list was successfully returned.

Functional Description:

This function enables debug tracing of an individual control method.

Ref No SC-<xxxx> 167

ACPI Component Architecture Programmer Reference

7.12.3 AcpiGetSystemInfo

Get global ACPI-related system information.

ACPI_STATUS
AcpiGetSystemInfo (

ACPI_BUFFER *OutBuffer)

PARAMETERS

OutBuffer A pointer to a location where the system information is to be
returned.

RETURN VALUE

Status Exception code that indicates success or reason for failure.

EXCEPTIONS

AE_OK The system information list was successfully returned.

AE_BAD_PARAMETER At least one of the following is true:

• The OutBuffer pointer is NULL.

• The Length field of OutBuffer is not
ACPI_ALLOCATE_BUFFER, but the Pointer field
of OutBuffer is NULL.

AE_BUFFER_OVERFLOW The Length field of OutBuffer indicates that the buffer is
too small to hold the system information. Upon return, the
Length field contains the minimum required buffer length.

Functional Description:

This function obtains information about the current state of the ACPI system. It will return system
information in the OutBuffer structure. Upon completion the Length field of OutBuffer will indicate
the number of bytes copied into the Pointer field of the OutBuffer buffer. This routine will never
return a partial resource structure.

If the function fails an appropriate status will be returned and the value of OutBuffer is undefined.

The structure that is returned in OutBuffer is defined as follows:

typedef struct _AcpiSysInfo
{

UINT32 AcpiCaVersion;
UINT32 Flags;
UINT32 TimerResolution;
UINT32 Reserved1;
UINT32 Reserved2;
UINT32 DebugLevel;
UINT32 DebugLayer;

} ACPI_SYSTEM_INFO;

168 Ref No SC-<xxxx>

 ACPI Component Architecture Programmer Reference

Where:

AcpiCaVersion Version number of the ACPICA core subsystem, in the form
0xYYYYMMDD.

Flags Static information about the system:

ACPI_SYS_MODE_ACPI ACPI mode is supported
on this system.

ACPI_SYS_MODE_LEGACY Legacy mode is
supported.

TimerResolution Resolution of the ACPI Power Management Timer. Either
24 or 32 indicating the corresponding number of bits of
resolution.

DebugLevel Current value of the global variable that controls the debug
output verbosity.

DebugLayer Current value of the global variable that controls the internal
layers whose debug output is enabled.

7.12.4 AcpiGetStatistics

Returns miscellaneous run-time statistics.

ACPI_STATUS
AcpiGetStatistics (

ACPI_STATISTICS *OutStats)

PARAMETERS

OutStats Where the statistics are returned.

RETURN

Status Exception code indicates success or reason for failure.

EXCEPTIONS

AE_OK Statistics were successfully returned.

Functional Description:

This function returns execution statistics of the subsystem. Included are the number of GPEs, SCIs,
and Fixed Events. Also, the number of control methods executed.

The returned ACPI_STATISTICS structure is shown below:

Ref No SC-<xxxx> 169

ACPI Component Architecture Programmer Reference

typedef struct acpi_statistics
{
 UINT32 SciCount;
 UINT32 GpeCount;
 UINT32 FixedEventCount[ACPI_NUM_FIXED_EVENTS];
 UINT32 MethodCount;

} ACPI_STATISTICS;

7.12.5 AcpiPurgeCachedObjects

Empty all internal object caches.

ACPI_STATUS
AcpiPurgeCachedObjects (

void)

PARAMETERS

None

RETURN

Status Exception code indicates success or reason for failure.

EXCEPTIONS

AE_OK The caches were successfully purged.

Functional Description:

This function purges all internal object caches, freeing all memory blocks: It can be used to purge
the cache after particularly large operations, or the cache can be periodically flushed to ensure that
no large amounts of stagnant cache objects are present. It is implemented by calling
AcpiOsPurgeCache for each of the object caches.

7.13 Global Variables
There are several global variables that are useful for ACPICA users.

7.13.1 AcpiDbgLevel & AcpiDbgLayer

These globals control the debug output mechanism. AcpiDbgLevel specifies the current debug level
and AcpiDbgLayer specifies which ACPICA components will output debug information.

See the description of ACPI_DEBUG_PRINT for more information.

170 Ref No SC-<xxxx>

 ACPI Component Architecture Programmer Reference

7.13.2 AcpiGbl_FADT

This is a local copy of the system FADT, converted to a common internal format. ACPI-related
device drivers often require information directly from the FADT. The table can be directly accessed
via this symbol.

7.13.3 AcpiCurrentGpeCount

The current number of active (available) system GPEs. This includes the GPE blocks defined in the
FADT, as well as any installed GPE block devices. This is a dynamic value that can increase or
decrease as GPE block devices are installed or removed. This value also serves as the maximum
index value for the AcpiGetGpeDevice interface.

Ref No SC-<xxxx> 171

ACPI Component Architecture Programmer Reference

8 OS Services Layer - External
Interface Definition
This section contains the definitions of the interfaces that must be exported by the OS Services
Layer. The ACPICA Core Subsystem requires that all of these interfaces be present. All interfaces
to the OS Services Layer that are intended for use by the ACPICA Core Subsystem are prefixed by
the letters “AcpiOs”.

Only the external definitions of the AcpiOs* interfaces are clearly defined by this document. The
actual implementation of the services and interfaces is by definition OS dependent and may be very
different for different operating systems.

8.1 Environmental and ACPI Tables

8.1.1 AcpiOsInitialize

Initialize the OSL subsystem.

ACPI_STATUS
AcpiOsInitialize (

void)

PARAMETERS

None

RETURN VALUE

Status Initialization status.

Functional Description:

This function allows the OSL to initialize itself. It is called during initialization of the ACPICA
subsystem.

172 Ref No SC-<xxxx>

 ACPI Component Architecture Programmer Reference

8.1.2 AcpiOsTerminate

Terminate the OSL subsystem.

ACPI_STATUS
AcpiOsTerminate (

void)

PARAMETERS

None

RETURN VALUE

Status Termination status.

Functional Description:

This function allows the OSL to cleanup and terminate. It is called during termination of the
ACPICA subsystem.

8.1.3 AcpiOsGetRootPointer

Obtain the Root ACPI table pointer (RSDP).

ACPI_PHYSICAL_ADDRESS
AcpiOsGetRootPointer (

void)

PARAMETERS

None.

RETURN VALUE

Address The physical address of the RSDP.

Functional Description:

This function returns the physical address of the.ACPI RSDP (Root System Description Pointer)
table. The mechanism used to obtain this pointer is platform and/or OS dependent. There are two
primary methods used to obtain this pointer and thus implement this interface:

1) On IA-32 platforms, the RSDP is obtained by searching the first megabyte of physical memory
for the RSDP signature (“RSD PTR “). On these platforms, this interface should be implemented via
a call to the AcpiFindRootPointer interface.

2) On IA-64 platforms, the RSDP is obtained from the EFI (Extended Firmware Interface). The
pointer in the EFI information block that is passed to the OS at OS startup.

Ref No SC-<xxxx> 173

ACPI Component Architecture Programmer Reference

8.1.4 AcpiOsPredefinedOverride

Allow the host OS to override a predefined ACPI object.

ACPI_STATUS
AcpiOsPredefinedOverride (

const ACPI_PREDEFINED_NAMES *PredefinedObject,
ACPI_STRING *NewValue)

PARAMETERS

PredefinedObject A pointer to a predefined object (name and initial value.)

NewValue Where a new value for the predefined object is returned.
NULL if there is no override for this object.

RETURN VALUE

Status Exception code that indicates success or reason for failure.

Functional Description:

This function allows the host to override the predefined objects in the ACPI namespace.

8.1.5 AcpiOsTableOverride

Allow the host OS to override a firmware ACPI table.

ACPI_STATUS
AcpiOsTableOverride (

ACPI_TABLE_HEADER *ExistingTable,
ACPI_TABLE_HEADER **NewTable)

PARAMETERS

ExistingTable A pointer to the header of the existing ACPI table.

NewTable Where the pointer to the replacement table is returned. The
OSL returns NULL if no replacement is provided.

RETURN VALUE

Status Exception code that indicates success or reason for failure.

Functional Description:

This function allows the host to override an ACPI table that was found in the firmware. The host OS
can examine the existing table header for the table signature and version number(s) and decide to
replace it if desired. Note, only the table header is guaranteed to be valid and accessible, not the
entire table. Further, the header is only guaranteed to be valid and accessible for the duration of the
execution of this function. It may be unmapped immediately afterwards.

174 Ref No SC-<xxxx>

 ACPI Component Architecture Programmer Reference

The full identification of an ACPI table includes the following header items:

• The 4-character ACPI signature
• The Revision
• The table Length
• The OEM ID string
• The OEM Table ID string
• The OEM Revision

ACPI Table Header Definition

typedef struct /* ACPI common table header */
{

char Signature [4]; /* Identifies type of table */
UINT32 Length; /* Length of table, in bytes, */
 * including header */
UINT8 Revision; /* Specification minor version # */
UINT8 Checksum; /* To make sum of entire table = 0 */
char OemId [6]; /* OEM identification */
char OemTableId [8]; /* OEM table identification */
UINT32 OemRevision; /* OEM revision number */
char AslCompilerId [4]; /* ASL compiler vendor ID */
UINT32 AslCompilerRevision;/* ASL compiler revision number */

} ACPI_TABLE_HEADER;

During initialization, ACPICA will invoke this interface once for each table defined in the
RSDT/XSDT, and once for the DSDT (pointed to by the FADT). This includes all tables in the
RSDT/XSDT, even tables that are not directly consumed by ACPICA such as ECDT, MADT,
SRAT, SLIT, etc., and all of the OEMx tables.

Tables are installed and AcpiOsTableOverride is called in the order that they appear in the
RSDT/XSDT. This may be important for tables that can have multiple instantiations such as the
SSDT. If the host wishes to replace an individual SSDT, it can keep track of the SSDT
instantiations, or it can differentiate SSDTs based upon the full ACPI table identification described
above.

ACPICA will also call this interface for each table that is dynamically loaded via the Load AML
operator. Tables that are loaded via this mechanism are typically SSDTs and OEMx tables.

The LoadTable AML operator is used to load the namespace from tables that appear in the
RSDT/XSDT with signatures other than SSDT, typically the OEMx tables that contain executable
AML code. These tables can be replaced during the initialization phase when ACPICA traverses the
RSDT/XSDT as above. AcpiOsTableOverride is therefore not invoked when a LoadTable is
executed.

Ref No SC-<xxxx> 175

ACPI Component Architecture Programmer Reference

8.2 Memory Management
These interfaces provide an OS-independent memory management interface.

8.2.1 AcpiOsCreateCache

Create a memory cache object

ACPI_STATUS
AcpiOsCreateCache (

char *CacheName,
UINT16 ObjectSize,
UINT16 MaxDepth,
ACPI_CACHE_T **ReturnCache)

PARAMETERS

CacheName An ASCII identifier for the cache. May or may not be used
by the host.

ObjectSize The size of each object in the cache.

MaxDepth Maximum depth of the cache (max number of objects.) May
or may not be used by the host.

ReturnCache Where a pointer to the cache object is returned.

RETURN VALUE

Status Exception code that indicates success or reason for failure.

EXCEPTIONS

AE_OK The cache was successfully created.

AE_BAD_PARAMETER At least one of the following is true:

• The ReturnCache pointer is NULL.

• The ObjectSize is less than 16.

AE_NO_MEMORY Insufficient dynamic memory to complete the operation.

Functional Description:

This function creates a cache object. Many host operating systems have a cache manager that can be
used to implement the cache functions. The ACPICA code uses many dynamic objects of the same
size (such as the ACPI_OPERAND_OBJECT), and the use of a cache can improve performance
considerably.

176 Ref No SC-<xxxx>

 ACPI Component Architecture Programmer Reference

8.2.2 AcpiOsDeleteCache

Delete a memory cache object.

ACPI_STATUS
AcpiOsDeleteCache (

ACPI_CACHE_T *Cache)

PARAMETERS

Cache The cache object to be deleted.

RETURN VALUE

Status Exception code that indicates success or reason for failure.

EXCEPTIONS

AE_OK The cache was successfully created.

AE_BAD_PARAMETER The Cache pointer is NULL.

Functional Description:

This function deletes a cache object that was created via AcpiOsCreateCache. Any objects currently
within the cache must also be deleted.

8.2.3 AcpiOsPurgeCache

Free all objects currently within a cache object.

ACPI_STATUS
AcpiOsPurgeCache (

ACPI_CACHE_T *Cache)

PARAMETERS

Cache The cache object to be deleted.

RETURN VALUE

Status Exception code that indicates success or reason for failure.

EXCEPTIONS

AE_OK The cache was successfully created.

AE_BAD_PARAMETER The Cache pointer is NULL.

Ref No SC-<xxxx> 177

ACPI Component Architecture Programmer Reference

Functional Description:

This function deletes all objects that currently reside within a cache.

8.2.4 AcpiOsAcquireObject

Acquire an object from a cache.

void *
AcpiOsAcquireObject (

ACPI_CACHE_T *Cache)

PARAMETERS

Cache The cache object from which to acquire an object.

RETURN VALUE

Object A pointer to a cache object. NULL if the object could not be
acquired.

EXCEPTIONS

NULL is returned if an object could not be acquired.

Functional Description:

This function acquires an object from the specified cache.

8.2.5 AcpiOsReleaseObject

Release an object to a cache.

ACPI_STATUS
AcpiOsReleaseObject (

ACPI_CACHE_T *Cache,
void *Object)

PARAMETERS

Cache The cache object to which the object will be released.

Object The object to be released.

RETURN VALUE

Status Exception code that indicates success or reason for failure.

178 Ref No SC-<xxxx>

 ACPI Component Architecture Programmer Reference

EXCEPTIONS

AE_OK The cache was successfully created.

AE_BAD_PARAMETER The Cache or Object pointer is NULL.

Functional Description:

This function releases an object back to the specified cache. It must have been previously acquired
from the same cache via AcpiOsAcquireObject.

8.2.6 AcpiOsMapMemory

Map physical memory into the caller’s address space.

void *
AcpiOsMapMemory (

ACPI_PHYSICAL_ADDRESS PhysicalAddress,
ACPI_SIZE Length)

PARAMETERS

PhysicalAddress A full physical address of the memory to be mapped into the
caller’s address space.

Length The amount of memory to be mapped starting at the given
physical address.

RETURN VALUE

LogicalAddress Pointer to the mapped memory. A NULL pointer indicates
failure.

EXCEPTIONS

NULL is returned if there was a mapping failure.

Functional Description:

This function maps a physical address into the caller’s address space. A logical pointer is returned.

Ref No SC-<xxxx> 179

ACPI Component Architecture Programmer Reference

8.2.7 AcpiOsUnmapMemory

Remove a physical to logical memory mapping.

void
AcpiOsUnmapMemory (

void *LogicalAddress,
ACPI_SIZE Length)

PARAMETERS

LogicalAddress The logical address that was returned from a previous call to
AcpiOsMapMemory.

Length The amount of memory that was mapped. This value must
be identical to the value used in the call to
AcpiOsMapMemory.

RETURN VALUE

None

Functional Description:

This function deletes a mapping that was created by AcpiOsMapMemory.

8.2.8 AcpiOsGetPhysicalAddress

Translate a logical address to a physical address.

ACPI_STATUS
AcpiOsGetPhysicalAddress (

void *LogicalAddress,
ACPI_PHYSICAL_ADDRESS *PhysicalAddress)

PARAMETERS

LogicalAddress The logical address to be translated.

PhysicalAddress The physical memory address of the logical address.

RETURN VALUE

AE_OK The logical address translation was successfully.

AE_ERROR An error occurred in the translation system call.

AE_BAD_PARAMETER One or both of the parameters are NULL, no translation was
attempted.

180 Ref No SC-<xxxx>

 ACPI Component Architecture Programmer Reference

Functional Description:

This function translates a logical address to its physical address location.

8.2.9 AcpiOsAllocate

Allocate memory from the dynamic memory pool.

void *
AcpiOsAllocate (

ACPI_SIZE Size)

PARAMETERS

Size Amount of memory to allocate.

RETURN VALUE

Memory A pointer to the allocated memory. A NULL pointer is
returned on error.

Functional Description:

This function dynamically allocates memory. The returned memory is not assumed to be initialized
to any particular value or values.

8.2.10 AcpiOsFree

Free previously allocated memory.

void
AcpiOsFree (

void *Memory)

PARAMETERS

Memory A pointer to the memory to be freed.

RETURN VALUE

None

Functional Description:

This function frees memory that was previously allocated via AcpiOsAllocate.

Ref No SC-<xxxx> 181

ACPI Component Architecture Programmer Reference

8.2.11 AcpiOsReadable

Check if a memory region is readable.

BOOLEAN
AcpiOsReadable (

void *Memory
ACPI_SIZE Length)

PARAMETERS

Memory A pointer to the memory region to be checked.

Length The length of the memory region, in bytes.

RETURN VALUE

TRUE If the entire memory region is readable without faults.

FALSE If one or more bytes within the region are unreadable.

Functional Description:

This function validates that a pointer to a memory region is valid and the entire region is readable.
Used to validate input parameters to the ACPICA subsystem.

8.2.12 AcpiOsWritable

Check if a memory region is writable (and readable).

BOOLEAN
AcpiOsWritable (

void *Memory,
ACPI_SIZE Length)

PARAMETERS

Memory A pointer to the memory region to be checked.

Length The length of the memory region, in bytes.

RETURN VALUE

TRUE If the entire memory region is both readable and writable
without faults

FALSE If one or more bytes within the region are unreadable or
unwritable.

182 Ref No SC-<xxxx>

 ACPI Component Architecture Programmer Reference

Functional Description:

This function validates that a pointer to a memory region is valid and the entire region is both
writable and readable. Used to validate input parameters to the ACPICA subsystem..

8.3 Multithreading and Scheduling Services

8.3.1 AcpiOsGetThreadId

Obtain the ID of the currently executing thread.

ACPI_THREAD_ID
AcpiOsGetThreadId (

void)

PARAMETERS

None

RETURN VALUE

ThreadId A unique value that represents the ID of the currently
executing thread. For single threaded implementations, a
constant integer is acceptable. The value 0xFFFFFFFF (-1)
is reserved and must not be returned by this interface.

Functional Description:

This function returns the ID of the currently executing thread. The value must be non-zero and must
be unique to the executing thread.

8.3.2 AcpiOsExecute

Schedule a procedure for deferred execution.

ACPI_STATUS
AcpiOsExecute (

ACPI_EXECUTE_TYPE Type,
ACPI_OSD_EXEC_CALLBACK Function,
void *Context)

PARAMETERS

Type Type of the callback function:

OSL_GLOBAL_LOCK_HANDLER
OSL_NOTIFY_HANDLER
OSL_GPE_HANDLER

Ref No SC-<xxxx> 183

ACPI Component Architecture Programmer Reference

OSL_DEBUGGER_THREAD
OSL_EC_POLL_HANDLER
OSL_EC_BURST_HANDLER

Function Address of the procedure to execute.

Context A context value to be passed to the called procedure.

RETURN VALUE

Status Exception code that indicates success or reason for
failure.

EXCEPTIONS

AE_OK The procedure was successfully queued for execution by
the host operating system. This does not indicate that the
procedure has actually executed, however.

AE_BAD_PARAMETER At least one of the following is true:

• The Priority is invalid.

• The Function pointer is NULL.

Functional Description:

This function queues a procedure for later scheduling and execution.

8.3.3 AcpiOsSleep

Suspend the running task (course granularity).

void
AcpiOsSleep (

ACPI_INTEGER Milliseconds)

PARAMETERS

Milliseconds The amount of time to sleep, in milliseconds.

RETURN VALUE

None

Functional Description:

This function sleeps for the specified time. Execution of the running thread is suspended for this
time. The sleep granularity is one millisecond.

184 Ref No SC-<xxxx>

 ACPI Component Architecture Programmer Reference

8.3.4 AcpiOsStall

Wait for a short amount of time (fine granularity).

void
AcpiOsStall (

UINT32 Microseconds)

PARAMETERS

Microseconds The amount of time to delay, in microseconds.

RETURN VALUE

None

Functional Description:

This function waits for the specified time. Execution of the running thread is not suspended for this
time. The time granularity is one microsecond.

8.4 Mutual Exclusion and Synchronization
Thread synchronization and locking.

These interfaces MUST perform parameter validation of the input handle to at least the extent of
detecting a null handle and returning the appropriate exception.

8.4.1 AcpiOsCreateMutex

Create a mutex object.

ACPI_STATUS
AcpiOsCreateMutex (

ACPI_MUTEX *OutHandle)

PARAMETERS

OutHandle A pointer to a location where a handle to the mutex is to be
returned.

RETURN VALUE

Status Exception code that indicates success or reason for failure.

EXCEPTIONS

AE_OK The mutex was successfully created.

Ref No SC-<xxxx> 185

ACPI Component Architecture Programmer Reference

AE_BAD_PARAMETER The OutHandle pointer is NULL.

AE_NO_MEMORY Insufficient memory to create the mutex.

Functional Description:

Create a mutex object. Some host operating systems have separate mutex interfaces that can be used
to implement this and the other OSL mutex interfaces. If not, the the mutex interfaces can be
implemented with semaphore interfaces.

8.4.2 AcpiOsDeleteMutex

Delete a mutex object.

void
AcpiOsDeleteMutex (

ACPI_MUTEX Handle)

PARAMETERS

Handle The mutex to be deleted.

RETURN VALUE

None.

Functional Description:

Deletes a mutex object.

8.4.3 AcpiOsAcquireMutex

Acquire ownership of a mutex object.

ACPI_STATUS
AcpiOsAcquireMutex (

ACPI_MUTEX Handle,
UINT16 Timeout)

PARAMETERS

Handle The mutex to be acquired.

Timeout How long the caller is willing to wait for the requested
units. The timeout is specified in milliseconds. A value of
0xFFFF (-1) indicates that the calling thread is willing to
wait forever.

186 Ref No SC-<xxxx>

 ACPI Component Architecture Programmer Reference

RETURN VALUE

Status Exception code that indicates success or reason for failure.

EXCEPTIONS

AE_OK The mutex was successfully acquired.

AE_BAD_PARAMETER The Handle pointer is NULL.

Functional Description:

Acquire ownership of a mutex object.

8.4.4 AcpiOsReleaseMutex

Release ownership of a mutex object.

void
AcpiOsReleaseMutex (

ACPI_MUTEX Handle)

PARAMETERS

Handle The mutex to be released.

RETURN VALUE

None

Functional Description:

Release a mutex object. The mutex must have be previously acquired via AcpiOsAcquireMutex.

8.4.5 AcpiOsCreateSemaphore

Create a semaphore.

ACPI_STATUS
AcpiOsCreateSemaphore (

UINT32 MaxUnits,
UINT32 InitialUnits,
ACPI_SEMAPHORE *OutHandle)

PARAMETERS

MaxUnits The maximum number of units this semaphore will be
required to accept.

InitialUnits The initial number of units to be assigned to the semaphore.

Ref No SC-<xxxx> 187

ACPI Component Architecture Programmer Reference

OutHandle A pointer to a location where a handle to the semaphore is
to be returned.

RETURN VALUE

Status Exception code that indicates success or reason for failure.

EXCEPTIONS

AE_OK The semaphore was successfully created.

AE_BAD_PARAMETER At least one of the following is true:

• The InitialUnits is invalid.

• The OutHandle pointer is NULL.

AE_NO_MEMORY Insufficient memory to create the semaphore.

Functional Description:

Create a standard semaphore. The MaxUnits parameter allows the semaphore to be tailored to
specific uses. For example, a MaxUnits value of one indicates that the semaphore is to be used as a
mutex. The underlying OS object used to implement this semaphore may be different than if
MaxUnits is greater than one (thus indicating that the semaphore will be used as a general purpose
semaphore.) The ACPICA Core Subsystem creates semaphores of both the mutex and general-
purpose variety.

8.4.6 AcpiOsDeleteSemaphore

Delete a semaphore.

ACPI_STATUS
AcpiOsDeleteSemaphore (

ACPI_SEMAPHORE Handle)

PARAMETERS

Handle A handle to a semaphore object that was returned by a
previous call to AcpiOsCreateSemaphore.

RETURN VALUE

Status Exception code that indicates success or reason for failure.

EXCEPTIONS

AE_OK The semaphore was successfully deleted.

AE_BAD_PARAMETER The Handle is invalid.

188 Ref No SC-<xxxx>

 ACPI Component Architecture Programmer Reference

Functional Description:

Delete a semaphore.

8.4.7 AcpiOsWaitSemaphore

Wait for units from a semaphore.

ACPI_STATUS
AcpiOsWaitSemaphore (

ACPI_SEMAPHORE Handle,
UINT32 Units,
UINT16 Timeout)

PARAMETERS

Handle A handle to a semaphore object that was returned by a
previous call to AcpiOsCreateSemaphore.

Units The number of units the caller is requesting.

Timeout How long the caller is willing to wait for the requested
units. The timeout is specified in milliseconds. A value of
0xFFFF (-1) indicates that the calling thread is willing to
wait forever.

RETURN VALUE

Status Exception code that indicates success or reason for failure.

EXCEPTIONS

AE_OK The requested units were successfully received.

AE_BAD_PARAMETER The Handle is invalid.

AE_TIME The units could not be acquired within the specified time
limit.

Functional Description:

Wait for the specified number of units from a semaphore.

Implementation notes:

1.

2.

The implementation of this interface must support timeout values of zero. This is frequently
used to determine if a call to the interface with an actual timeout value would block. In this
case, AcpiOsWaitSemaphore must return either an E_OK if the units were obtained
immediately, or an AE_TIME to indicate that the requested units are not available. Single
threaded OSL implementations should always return AE_OK for this interface.

The implementation must also support arbitrary timed waits in order for ASL functions such
as Wait () to work properly.

Ref No SC-<xxxx> 189

ACPI Component Architecture Programmer Reference

8.4.8 AcpiOsSignalSemaphore

Send units to a semaphore.

ACPI_STATUS
AcpiOsSignalSemaphore (

ACPI_SEMAPHORE Handle,
UINT32 Units)

PARAMETERS

Handle A handle to a semaphore object that was returned by a
previous call to AcpiOsCreateSemaphore.

Units The number of units to send to the semaphore.

RETURN VALUE

Status Exception code that indicates success or reason for failure.

EXCEPTIONS

AE_OK The semaphore was successfully signaled.

AE_BAD_PARAMETER The Handle is invalid.

AE_LIMIT The semaphore has already been signaled MaxUnits times.
No more units can be accepted.

Functional Description:

Send the requested number of units to a semaphore. Single threaded OSL implementations should
always return AE_OK for this interface.

8.4.9 AcpiOsCreateLock

Create a spin lock.

ACPI_STATUS
AcpiOsCreateLock (

ACPI_SPINLOCK *OutHandle)

PARAMETERS

OutHandle A pointer to a location where a handle to the lock is to be
returned.

RETURN VALUE

Status Exception code that indicates success or reason for failure.

190 Ref No SC-<xxxx>

 ACPI Component Architecture Programmer Reference

EXCEPTIONS

AE_OK The semaphore was successfully created.

AE_BAD_PARAMETER The OutHandle pointer is NULL.

AE_NO_MEMORY Insufficient memory to create the semaphore.

Functional Description:

Create a spin lock. Spin locks are used in the ACPICA subsystem only when there is requirement
for mutual exclusion on data structures that are accessed by both interrupt handlers and normal code.

8.4.10 AcpiOsDeleteLock

Delete a spin lock.

void
AcpiOsDeleteLock (

ACPI_HANDLE Handle)

PARAMETERS

Handle A handle to a lock object that was returned by a previous
call to AcpiOsCreateLock.

RETURN VALUE

None Exception code that indicates success or reason for failure.

EXCEPTIONS

AE_OK The Lock was successfully deleted.

AE_BAD_PARAMETER The Handle is invalid.

Functional Description:

Delete a spin lock.

8.4.11 AcpiOsAcquireLock

Acquire a spin lock.

ACPI_CPU_FLAGS
AcpiOsAcquireLock (

ACPI_SPINLOCK Handle)

Ref No SC-<xxxx> 191

ACPI Component Architecture Programmer Reference

PARAMETERS

Handle A handle to a lock object that was returned by a previous
call to AcpiOsCreateLock.

RETURN VALUE

Flags Platform-dependent CPU flags. To be used when the lock is
released.

Functional Description:

Wait for and acquire a spin lock. May be called from interrupt handlers, GPE handlers, and Fixed
event handlers. Single threaded OSL implementations should always return AE_OK for this
interface.

8.4.12 AcpiOsReleaseLock

Release a spin lock.

void
AcpiOsReleaseLock (

ACPI_SPINLOCK Handle,
ACPI_CPU_FLAGS Flags)

PARAMETERS

Handle A handle to a lock object that was returned by a previous
call to AcpiOsCreateLock.

Flags CPU flags that were returned from AcpiOsAcquireLock

RETURN VALUE

None Exception code that indicates success or reason for failure.

Functional Description:

Release a previouslly acquired spin lock. Single threaded OSL implementations should always
return AE_OK for this interface.

8.5 Interrupt Handling
Interrupt handler installation and removal.

192 Ref No SC-<xxxx>

 ACPI Component Architecture Programmer Reference

8.5.1 AcpiOsInstallInterruptHandler

Install a handler for a hardware interrupt level.

ACPI_STATUS
AcpiOsInstallInterruptHandler (

UINT32 InterruptLevel,
ACPI_OSD_HANDLER Handler,
void *Context)

PARAMETERS

InterruptLevel Interrupt level that the handler will service.

Handler Address of the handler.

Context A context value that is passed to the handler when the
interrupt is dispatched.

RETURN VALUE

Status Exception code that indicates success or reason for failure.

EXCEPTIONS

AE_OK The handler was successfully installed.

AE_BAD_PARAMETER At least one of the following is true:

• The InterruptNumber is invalid.

• The Handler pointer is NULL.

AE_ALREADY_EXISTS A handler for this interrupt level is already installed.

Functional Description:

This function installs an interrupt handler for a hardware interrupt level. The ACPI driver must
install an interrupt handler to service the SCI (System Control Interrupt) which it owns. The
interrupt level for the SCI interrupt is obtained from the ACPI tables.

Ref No SC-<xxxx> 193

ACPI Component Architecture Programmer Reference

8.5.1.1 Interface to OS-independent Interrupt Handlers

Definition of the interface for OS-independent interrupt handlers.

typedef
UINT32 (*ACPI_OSD_HANDLER) (

void *Context)

PARAMETERS

Context The Context value that was passed as a parameter to the
AcpiOsInstallInterruptHandler function.

RETURN VALUE

HandlerActionTaken The handler should return one of the following manifest
constants:

ACPI_INTERRUPT_HANDLED

ACPI_INTERRUPT_NOT_HANDLED

Functional Description:

The OS-independent interrupt handler must be called from an OSL interrupt handler “wrapper” that
exists within the OS Services Layer. It is the responsibility of the OS Services Layer to manage the
installed interrupt handler(s), and dispatch interrupts to the handler(s) appropriately.

8.5.2 AcpiOsRemoveInterruptHandler

Remove an interrupt handler.

ACPI_STATUS
AcpiOsRemoveInterruptHandler (

UINT32 InterruptNumber,
ACPI_OSD_HANDLER Handler)

PARAMETERS

InterruptNumber Interrupt number that the handler is currently servicing.

Handler Address of the handler that was previously installed.

RETURN VALUE

Status Exception code that indicates success or reason for failure.

EXCEPTIONS

AE_OK The handler was successfully removed.

194 Ref No SC-<xxxx>

 ACPI Component Architecture Programmer Reference

AE_BAD_PARAMETER At least one of the following is true:

• The InterruptNumber is invalid.

• The Handler pointer is NULL.

• The Handler address is not the same as the one that is
installed.

AE_NOT_EXIST There is no handler installed for this interrupt level.

Functional Description:

Remove a previously installed hardware interrupt handler.

8.6 Address Space Access
These interfaces support operation region access to several address spaces:

1. Memory and memory-mapped I/O (ACPI_ADR_SPACE_SYSTEM_MEMORY)

2. I/O ports (ACPI_ADR_SPACE_SYSTEM_IO)

3. PCI configuration space (ACPI_ADR_SPACE_PCI_CONFIG)

8.6.1 AcpiOsValidateAddress

Validate an operation region address.

ACPI_STATUS
AcpiOsValidateAddress (

UINT8 SpaceId,
ACPI_PHYSICAL_ADDRESS Address,
ACPI_SIZE Length)

PARAMETERS

SpaceId ACPI space ID for the address (SystemMemory, SystemIO,
etc.)

Address The physical address to be validated.

Length Length of the region to be validated.

RETURN VALUE

Status Exception code that indicates success or reason for failure.

EXCEPTIONS

AE_OK The address is allowed.

Ref No SC-<xxxx> 195

ACPI Component Architecture Programmer Reference

AE_AML_ILLEGAL_ADDRESS The address is not allowed.

AE_BAD_PARAMETER The SpaceId parameter is invalid.

Functional Description:

This function validates a system address. It is used to validate the operation region addresses before
the region is accessed.

8.6.2 Memory and Memory Mapped I/O

These interfaces allow the OS Services Layer to implement memory access in any manner that is
acceptable to the host OS. The actual hardware I/O instructions may execute within the OS Services
Layer itself, or these calls may be translated into additional OS calls — such as calls to a Hardware
Abstraction Component.

These calls are used by the ACPICA for small amounts of data transfer only, such as memory
mapped I/O. For large transfers (such as reading the ACPI tables), the ACPICA code will call
AcpiOsMapMemory instead.

8.6.2.1 AcpiOsReadMemory

Read a value from a memory location.

ACPI_STATUS
AcpiOsReadMemory (

ACPI_PHYSICAL_ADDRESS Address,
UINT32 *Value,
UINT32 Width)

PARAMETERS

Address Memory address to be read.

Value A pointer to a location where the data is to be returned.

Width The memory width in bits, either 8, 16, or 32.

RETURN VALUE

Status Exception code that indicates success or reason for failure.

Functional Description:

This function is used to read a data from the specified memory location. The data is zero extended to
fill the 32-bit return value even if the bit width of the location is less than 32. In other words, a full
32 bits are written to the return Value regardless of the number of bits that were read from the
memory at Address. The caller must ensure that no data will be overwritten by this call.

196 Ref No SC-<xxxx>

 ACPI Component Architecture Programmer Reference

8.6.2.2 AcpiOsWriteMemory

Write a value to a memory location.

ACPI_STATUS
AcpiOsWriteMemory (

ACPI_PHYSICAL_ADDRESS Address,
UINT32 Value,
UINT32 Width)

PARAMETERS

Address Memory address where data is to be written.

Value Data to be written to the memory location.

Width The memory width in bits, either 8, 16, or 32.

RETURN VALUE

Status Exception code that indicates success or reason for failure.

Functional Description:

This function writes data to the specified memory location. If the bit width of the memory location
is less than 32, only the lower significant bits of the Value parameter are written.

8.6.3 Port Input/Output

These interfaces allow the OS Services Layer to implement hardware I/O services in any manner
that is acceptable to the host OS. The actual hardware I/O instructions may execute within the OS
Services Layer itself, or these calls may be translated into additional OS calls — such as calls to a
Hardware Abstraction Component.

8.6.3.1 AcpiOsReadPort

Read a value from an input port.

ACPI_STATUS
AcpiOsReadPort (

ACPI_IO_ADDRESS Address,
UINT32 *Value,
UINT32 Width)

PARAMETERS

Address Hardware I/O port address to read from.

Value A pointer to a location where the data is to be returned.

Width The port width in bits, either 8, 16, or 32.

Ref No SC-<xxxx> 197

ACPI Component Architecture Programmer Reference

RETURN VALUE

Status Exception code that indicates success or reason for failure.

Functional Description:

This function reads data from the specified input port. The data is zero extended to fill the 32-bit
return value even if the bit width of the port is less than 32.

8.6.3.2 AcpiOsWritePort

Write a value to an output port.

ACPI_STATUS
AcpiOsWritePort (

ACPI_IO_ADDRESS Address,
UINT32 Value,
UINT32 Width)

PARAMETERS

Address Hardware I/O port address to read from.

Value The value to be written.

Width The port width in bits, either 8, 16, or 32.

RETURN VALUE

Status Exception code that indicates success or reason for failure.

Functional Description:

This function writes data to the specified input port. If the bit width of the port is less than 32, only
the lower significant bits of the Value parameter are written.

8.6.4 PCI Configuration Space

These interfaces allow the OS Services Layer to implement PCI Configuration Space services in any
manner that is acceptable to the host OS. The actual hardware I/O instructions may execute within
the OS Services Layer itself, or these calls may be translated into additional OS calls — such as
calls to a Hardware Abstraction Component.

198 Ref No SC-<xxxx>

 ACPI Component Architecture Programmer Reference

8.6.4.1 AcpiOsReadPciConfiguration

Read a value from a PCI configuration register.

ACPI_STATUS
AcpiOsReadPciConfiguration (

ACPI_PCI_ID PciId,
UINT32 Register,
ACPI_INTEGER *Value,
UINT32 Width)

PARAMETERS

PciId The full PCI configuration space address, consisting of a
segment number, bus number, device number, and function
number.

Register The PCI register address to be read from.

Value A pointer to a location where the data is to be returned.

Width The register width in bits, either 8, 16, 32, or 64.

RETURN VALUE

Status Exception code that indicates success or reason for failure.

Functional Description:

This function reads data from the specified PCI configuration port. The data is zero extended to fill
the 64-bit return value even if the bit width of the location is less than 64.

8.6.4.2 AcpiOsWritePciConfiguration

Write a value to a PCI configuration register.

ACPI_STATUS
AcpiOsWritePciConfiguration (

ACPI_PCI_ID PciId,
UINT32 Register,
ACPI_INTEGER Value,
UINT32 Width)

PARAMETERS

PciId The full PCI configuration space address, consisting of a
segment number, bus number, device number, and function
number.

Register The PCI register address to be written to.

Value Data to be written.

Ref No SC-<xxxx> 199

ACPI Component Architecture Programmer Reference

Width The register width in bits, either 8, 16, 32, or 64.

RETURN VALUE

Status Exception code that indicates success or reason for failure.

Functional Description:

This function writes data to the specified PCI configuration port. If the bit width of the register is
less than 64, only the lower significant bits of the Value are written.

8.6.4.3 AcpiOsDerivePciId

Derive and update a PCI ID for a PCI device object and PCI operation region.

ACPI_STATUS
AcpiOsDerivePciId (

ACPI_HANDLE DeviceHandle,
ACPI_HANDLE PciRegionHandle,
ACPI_PCI_ID **PciId)

PARAMETERS

DeviceHandle A handle to the PCI device.

PciRegionHandle A handle to the PCI configuration space Operation Region.

PciId Input: The full PCI ID (The full PCI configuration space
address, consisting of a segment number, bus number,
device number, and function number) as obtained from
control methods within the BIOS ACPI tables.

 Output: Where the derived PCI ID is returned. Some or all
of the PCI ID subfields may be updated by this function.

RETURN VALUE

Status Exception code that indicates success or reason for failure.

Functional Description:

This function derives a full PCI ID for a PCI device, consisting of a Segment number, a Bus
number, and a Device number.

The PCI hardware dynamically configures PCI bus numbers depending on the bus topology
discovered during system initialization. The AcpiOsDerivePciId function is invoked by the ACPICA
subsystem during configuration of a PCI_Config Operation Region in order to (possibly) update the
Bus number in the PciId with the actual Bus number as determined by the hardware and operating
system configuration.

The PciId parameter is initially populated by the ACPICA subsystem during the Operation Region
initialization. ACPICA then calls AcpiOsDerivePciId, which is expected to make any necessary
modifications to the Segment, Bus, or Device number PCI ID subfields as appropriate for the
current hardware and OS configuration.

200 Ref No SC-<xxxx>

 ACPI Component Architecture Programmer Reference

8.7 Formatted Output
These interfaces provide formatted stream output. Used mainly for debug output, these functions
may be redirected to whatever output device or file is appropriate for the host operating system.

8.7.1 AcpiOsPrintf

Formatted stream output.

void ACPI_INTERNAL_VAR_XFACE
AcpiOsPrintf (

const char *Format,
… <variable argument list>)

PARAMETERS

Format A standard print format string.

… Variable printf parameter list.

RETURN VALUE

None.

Functional Description:

This function provides formatted output to an open stream.

8.7.2 AcpiOsVprintf

Formatted stream output.

void
AcpiOsVprintf (

const char *Format,
va_list Args)

PARAMETERS

Format A standard printf format string.

Args A variable parameter list.

RETURN VALUE

None

Ref No SC-<xxxx> 201

ACPI Component Architecture Programmer Reference

Functional Description:

This function provides formatted output to an open stream via the va_list argument format.

8.7.3 AcpiOsRedirectOutput

Redirect the debug output.

void
AcpiOsRedirectOutput (

void *Destination)

PARAMETERS

Destination An open file handle or pointer. Debug output will be
redirected to this handle/pointer. The format of this
parameter is OS-specific.

RETURN VALUE

None

Functional Description:

This function redirects the output of AcpiOsPrintf and AcpiOsVprintf to the specified destination.
Usually used to redirect output to a file.

8.8 Miscellaneous

8.8.1 AcpiOsValidateInterface

Check if an_OSI interface is supported by the host OS.

ACPI_STATUS
AcpiOsValidateInterface (

char *Interface)

PARAMETERS

Interface Requested interface to be validated

RETURN VALUE

Status Exception code that indicates success or reason for failure.

EXCEPTIONS

AE_OK The interface is supported by the host OS.

202 Ref No SC-<xxxx>

 ACPI Component Architecture Programmer Reference

AE_SUPPORT The interface is not supported by the host.

AE_BAD_PARAMETER The interface parameter is NULL.

Functional Description:

This function matches an interface string to the interfaces supported by the host OS. Strings
originate from an AML call to the _OSI control method. See the description of _OSI in the ACPI
specification for a list of currently defined strings.

8.8.2 AcpiOsGetTimer

Get current value of the system timer

UINT64
AcpiOsGetTimer (

void)

PARAMETERS

None.

RETURN VALUE

TimerValue The current value of the system timer in 100-nanosecond
units.

Functional Description:

This function returns the current value of a fine-granularity 64-bit system timer. This interface is
used to implement the Timer ASL/AML function.

8.8.3 AcpiOsSignal

Break to the debugger or display a breakpoint message.

ACPI_STATUS
AcpiOsSignal (

UINT32 Function,
void *Info)

PARAMETERS

Function Signal to be sent to the host operating system – one of these
manifest constants:

ACPI_SIGNAL_FATAL

ACPI_SIGNAL_BREAKPOINT

Ref No SC-<xxxx> 203

ACPI Component Architecture Programmer Reference

RETURN VALUE

Status Exception code that indicates success or reason for failure.

Functional Description:

This function is used to pass various signals and notifications to the host operating system. The
following signals are supported:

ACPI_SIGNAL_FATAL

This signal corresponds to the AML Fatal opcode. It is sent to the host OS only when this opcode is
encountered in the AML stream. The host OS may or may not return control from this signal.

The definition of the Info structure for this signal is as follows:

typedef struct AcpiFatalInfo
{
 UINT32 Type;
 UINT32 Code;
 UINT32 Argument;

} ACPI_SIGNAL_FATAL_INFO;

ACPI_SIGNAL_BREAKPOINT

This signal corresponds to the AML Breakpoint opcode. The OSL implements a “Breakpoint”
operation as appropriate for the host OS. If in debug mode, this interface may cause a break into the
host kernel debugger.

The definition of the Info structure for this signal is as follows:

char *BreakpointMessage;

8.8.4 AcpiOsGetLine

Get a input line of data.

ACPI_STATUS
AcpiOsGetLine (

char *Buffer)

PARAMETERS

Message A message string related to the breakpoint

RETURN VALUE

Status Exception code that indicates success or reason for failure.

204 Ref No SC-<xxxx>

 ACPI Component Architecture Programmer Reference

Functional Description:

The purpose of this function is to support the ACPI Debugger, and it is therefore optional depending
on whether ACPI debugger support is desired.

Ref No SC-<xxxx> 205

ACPI Component Architecture Programmer Reference

9 ACPICA Deployment Guide

9.1 Using the ACPICA Core Subsystem Interfaces

9.1.1 Initialization Sequence

In order to allow the most flexibility for the host operating system, there is no single interface that
initializes the entire ACPICA subsystem. Instead, the subsystem is initialized in stages, at the times
that are appropriate for the host OS. The following example shows the sequence of initialization
calls that must be made; it is up to the host interface (OS Services Layer) to make these calls when
they are appropriate.

1.

2.

3.

{
 ACPI_STATUS Status;

 /* Initialize the ACPICA subsystem */

 Status = AcpiInitializeSubsystem ();
 if (ACPI_FAILURE (Status))
 {
 return (Status);
 }

 /* Initialize the ACPICA Table Manager and get all ACPI tables */

 Status = AcpiInitializeTables (NULL, 16, FALSE);
 if (ACPI_FAILURE (Status))
 {
 return (Status);
 }

Initialize all ACPI Code:

Status = AcpiInitializeSubsystem ();

Load the ACPI tables from the firmware and build the internal namespace:

Status = AcpiLoadTables ();

Complete initialization and put the system into ACPI mode:

Status = AcpiEnableSubsystem ();

9.1.2 ACPICA Initialization Examples

9.1.2.1 Full ACPICA Initialization

ACPI_STATUS
InitializeFullAcpi (void)

206 Ref No SC-<xxxx>

 ACPI Component Architecture Programmer Reference

 /* Create the ACPI namespace from ACPI tables */

 Status = AcpiLoadTables ();
 if (ACPI_FAILURE (Status))
 {
 return (Status);
 }

 /* Note: Local handlers should be installed here */

 /* Initialize the ACPI hardware */

 Status = AcpiEnableSubsystem (ACPI_FULL_INITIALIZATION);
 if (ACPI_FAILURE (Status))
 {
 return (Status);
 }

 /* Complete the ACPI namespace object initialization */

 Status = AcpiInitializeObjects (ACPI_FULL_INITIALIZATION);
 if (ACPI_FAILURE (Status))
 {
 return (Status);
 }

 return (AE_OK);
}

9.1.2.2 ACPICA Initialization With Early ACPI Table Access

#define ACPI_MAX_INIT_TABLES 16
static ACPI_TABLE_DESC TableArray[ACPI_MAX_INIT_TABLES];

ACPI_STATUS
InitializeAcpiTables (void)
{
 ACPI_STATUS Status;

 /* Initialize the ACPICA Table Manager and get all ACPI tables */

 Status = AcpiInitializeTables (TableArray, ACPI_MAX_INIT_TABLES, TRUE);
 return (Status);
}

ACPI_STATUS
InitializeAcpi (void)
{
 ACPI_STATUS Status;

Ref No SC-<xxxx> 207

ACPI Component Architecture Programmer Reference

 /* Initialize the ACPICA subsystem */

 Status = AcpiInitializeSubsystem ();
 if (ACPI_FAILURE (Status))
 {
 return (Status);
 }

 /* Copy the root table list to dynamic memory */

 Status = AcpiReallocateRootTable ();
 if (ACPI_FAILURE (Status))
 {
 return (Status);
 }

 /* Create the ACPI namespace from ACPI tables */

 Status = AcpiLoadTables ();
 if (ACPI_FAILURE (Status))
 {
 return (Status);
 }

 /* Note: Local handlers should be installed here */

 /* Initialize the ACPI hardware */

 Status = AcpiEnableSubsystem (ACPI_FULL_INITIALIZATION);
 if (ACPI_FAILURE (Status))
 {
 return (Status);
 }

 /* Complete the ACPI namespace object initialization */

 Status = AcpiInitializeObjects (ACPI_FULL_INITIALIZATION);
 if (ACPI_FAILURE (Status))
 {
 return (Status);
 }

 return (AE_OK);
}

9.1.3 Shutdown Sequence

The ACPICA Core Subsystem does not absolutely require a shutdown before the system terminates.
It does not hold any cached data that must be flushed before shutdown. However, if the ACPICA
subsystem is to be unloaded at any time during system operation, the subsystem should be shutdown
so that resources that are held internally can be released back to the host OS. These resources
include memory segments, an interrupt handler, and the ACPI hardware itself. To shutdown the
ACPICA Core Subsystem, the following calls should be made:

208 Ref No SC-<xxxx>

 ACPI Component Architecture Programmer Reference

1. Unload the namespace and free all resources:

Status = AcpiTerminate ();

9.1.4 Traversing the ACPI Namespace (Low Level)

This example demonstrates traversal of the APCI namespace using the low-level Acpi* primitives.
The code is in fact the implementation of the higher-level AcpiWalkNamespace interface, and
therefore this example has two purposes:

1. Demonstrate how the low-level namespace interfaces are used.

2. Provide an understanding of how the namespace walk interface works.

ACPI_STATUS
AcpiWalkNamespace (
 ACPI_OBJECT_TYPE Type,
 ACPI_HANDLE StartHandle,
 UINT32 MaxDepth,
 WALK_CALLBACK UserFunction,
 void *Context,
 void **ReturnValue)
{
 ACPI_HANDLE ObjHandle = 0;
 ACPI_HANDLE Scope;
 ACPI_HANDLE NewScope;
 void *UserReturnVal;
 UINT32 Level = 1;

/* Parameter validation */

 if ((Type > ACPI_TYPE_MAX) ||
 (!MaxDepth) ||
 (!UserFunction))
 {
 return_ACPI_STATUS (AE_BAD_PARAMETER);
 }

 /* Special case for the namespace root object */

 if (StartObject == ACPI_ROOT_OBJECT)
 {
 StartObject = Gbl_RootObject;
 }

 /* Null child means "get first object" */

 ParentHandle = StartObject;
 ChildHandle = 0;
 ChildType = ACPI_TYPE_ANY;
 Level = 1;

 /*
 * Traverse the tree of objects until we bubble back up to where we
 * started. When Level is zero, the loop is done because we have
 * bubbled up to (and passed) the original parent handle (StartHandle)
 */

 while (Level > 0)
 {
 /* Get the next typed object in this scope. Null returned if not found */

 Status = AE_OK;

Ref No SC-<xxxx> 209

ACPI Component Architecture Programmer Reference

 if (ACPI_SUCCESS (AcpiGetNextObject (ACPI_TYPE_ANY, ParentHandle, ChildHandle,
 &ChildHandle)))
 {
 /* Found an object, Get the type if we are not searching for ANY */

 if (Type != ACPI_TYPE_ANY)
 {
 AcpiGetType (ChildHandle, &ChildType);
 }

 if (ChildType == Type)
 {
 /* Found a matching object, invoke the user callback function */

 Status = UserFunction (ChildHandle, Level, Context, ReturnValue);
 switch (Status)
 {

 case AE_TERMINATE:
 return_ACPI_STATUS (AE_OK); /* Exit now, with OK status */
 break;

 default:
 return_ACPI_STATUS (Status); /* All others are valid exceptions */
 break;
 }
 }

 /*
 * Depth first search: Attempt to go down another
 * level in the namespace if we are allowed to. Don't go any further if we
 * have reached the caller specified maximum depth or if the user function
 * has specified that the maximum depth has been reached.
 */

 if ((Level < MaxDepth) && (Status != AE_DEPTH))
 {
 if (ACPI_SUCCESS (AcpiGetNextObject (ACPI_TYPE_ANY, ChildHandle,
 0, NULL)))
 {
 /* There is at least one child of this object, visit the object */

 Level++;
 ParentHandle = ChildHandle;
 ChildHandle = 0;
 }
 }
 }

 else
 {
 /*
 * No more children in this object (AcpiGetNextObject failed),
 * go back upwards in the namespace tree to the object's parent.
 */
 Level--;
 ChildHandle = ParentHandle;
 AcpiGetParent (ParentHandle, &ParentHandle);
 }
 }

 return_ACPI_STATUS (AE_OK); /* Complete walk, not terminated by user function */
}

 case AE_OK:
 case AE_DEPTH:
 break; /* Just keep going */

210 Ref No SC-<xxxx>

 ACPI Component Architecture Programmer Reference

9.1.5 Traversing the ACPI Namespace (High Level)

This example demonstrates the use of the AcpiWalkNamespace interface and other Acpi* interfaces.
It shows how to properly invoke AcpiWalkNamespace and write a callback routine.

This code searches for all device objects in the namespace under the system bus (where most, if not
all devices usually reside.) The callback function always returns NULL, meaning that the walk is not
terminated until the entire namespace under the system bus has been traversed.

Part 1: This is the top-level procedure that invokes AcpiWalkNamespace.

DisplaySystemDevices (void)
{
 ACPI_HANDLE SysBusHandle;

 AcpiNameToHandle (0, NS_SYSTEM_BUS, &SysBusHandle);

 printf ("Display of all devices in the namespace:\n");

 AcpiWalkNamespace (ACPI_TYPE_DEVICE, SysBusHandle, INT_MAX,
 DisplayOneDevice, NULL, NULL);
}

Part 2: This is the callback routine that is repeatedly invoked from AcpiWalkNamespace.

void *
DisplayOneDevice (
 ACPI_HANDLE ObjHandle,
 UINT32 Level,
 void *Context)
{
 ACPI_STATUS Status;
 ACPI_DEVICE_INFO Info;
 ACPI_BUFFER Path;
 char Buffer[256];

 Path.Length = sizeof (Buffer);
 Path.Pointer = Buffer;

 /* Get the full path of this device and print it */

 Status = AcpiHandleToPathname (ObjHandle, &Path);
 if (ACPI_SUCCESS (Status))
 {
 printf ("%s\n", Path.Pointer));
 }

 /* Get the device info for this device and print it */

 Status = AcpiGetDeviceInfo (ObjHandle, &Info);
 if (ACPI_SUCCESS (Status))
 {
 printf (" HID: %.8X, ADR: %.8X, Status: %x\n",
 Info.HardwareId, Info.Address, Info.CurrentStatus));
 }

 return NULL;
}

Ref No SC-<xxxx> 211

ACPI Component Architecture Programmer Reference

9.2 Implementing the OS Services Layer

9.2.1 Parameter Validation

In all implementations of the OS Services Layer, the interfaces should adhere to the descriptions in
the document as far as the actual interface parameters as well as the returned exception codes. This
means that the parameter validation is not optional and that the Core Subsystem layer depends on
correct exception codes returned from the OSL.

9.2.2 Memory Management

Implementation of the memory allocation functions should be straightforward. If the host operating
system has several kernel-level memory pools that can be used for allocation, it may be useful to
know some of the dynamic memory requirements of the ACPICA Core Subsystem.

During initialization, the ACPI tables are either mapped from BIOS memory or copied into local
memory segments. Some of these tables (especially the DSDT) can be fairly large, up to about 64K.
The namespace is built from multiple small memory segments, each of a fixed (but configurable)
length. The default namespace table length is 16 entries times about 32 bytes each for a total of 512
bytes per table and per allocation.

During operation, many internal objects are created and deleted while servicing requests. The size of
an internal object is about 32 bytes, and this is the primary run-time memory request size.

Several internal caches are used within the core subsystem to minimize the number of requests to
the memory manager.

9.2.3 Scheduling Services

The intent of the AcpiOsQueueForExecution interface is to schedule another thread. It makes no
difference whether this is a new thread created at the time this call is made, or simply a thread that is
allocated out of a pool of system threads. Only the ACPICA Debugger creates a permanent thread.

9.2.4 Mutual Exclusion and Synchronization

In a single thread environment, the spinlock, mutex, and semaphore interfaces can simply return
AE_OK. In a multiple thread environment, these interfaces must be implemented with real blocking
spinlocks, mutexes, and semaphores since the mutual exclusion support in the core subsystem relies
completely upon the proper implementation of this mechanism and these interfaces.

9.2.5 Interrupt Handling

In order to support the OS-independent interrupt handler that is implemented within the Core
Subsystem, the OSL must provide a local interrupt handler whose interface conforms to the
requirements of the host operating system. This local interrupt handler is a wrapper for the OS-
independent handler; it is the actual handler that is installed for the given interrupt level. The task of
this wrapper is to handle incoming interrupts and dispatch them to the OS-independent handler via
the OS-independent handler interface. When the handler returns, the wrapper performs any
necessary cleanup and exits the interrupt.

212 Ref No SC-<xxxx>

 ACPI Component Architecture Programmer Reference

9.2.6 Stream I/O

The AcpiOsPrintf and AcpiOsVprintf functions can usually be implemented using a kernel-level
debug print facility. Kernel printf functions usually output data to a serial port or some other special
debug facility. If there is more than one type of debug print routine, use one that can be called from
within an interrupt handler so that Fixed Events and General-Purpose events can be traced.

9.2.7 Hardware Abstraction (I/O, Memory, PCI Configuration)

The intent of the hardware I/O interfaces is to allow these calls to be translated into calls or macros
provided by the host OS for this purpose. However, if the host does not provide a hardware
abstraction service, these functions can be implemented simply and directly via I/O machine
instructions.

Ref No SC-<xxxx> 213

ACPI Component Architecture Programmer Reference

10 Tools and Utilities

10.1 iASL Compiler
The iASL compiler is a fully-featured translator for the ACPI Source Language (ASL). As part of
the Intel ACPI Component Architecture, the Intel ASL compiler implements translation for the
ACPI Source Language (ASL) to the ACPI Machine Language (AML).

iASL also includes the ACPICA disassembler, and will disassemble any ACPI table, including both
tables that contain AML (DSDT, SSDT, OEMx) and tables that contain data only (all other ACPI
tables such as FADT, MADT, ECDT, etc.)

The compiler is fully documented in the iASL Compiler User Reference.

Intel ACPI Component Architecture
ASL Optimizing Compiler version 20081031 [Oct 31 2008]
Copyright (C) 2000 - 2008 Intel Corporation
Supports ACPI Specification Revision 3.0a

Usage: iasl [Options] [Files]

General Output:
 -p <prefix> Specify path/filename prefix for all output files
 -vi Less verbose errors and warnings for use with IDEs
 -vo Enable optimization comments
 -vr Disable remarks
 -vs Disable signon
 -w<1|2|3> Set warning reporting level

AML Output Files:
 -s<a|c> Create AML in assembler or C source file (*.asm or *.c)
 -i<a|c> Create assembler or C include file (*.inc or *.h)
 -t<a|c> Create AML in assembler or C hex table (*.hex)

AML Code Generation:
 -oa Disable all optimizations (compatibility mode)
 -of Disable constant folding
 -oi Disable integer optimization to Zero/One/Ones
 -on Disable named reference string optimization
 -r<Revision> Override table header Revision (1-255)

Listings:
 -l Create mixed listing file (ASL source and AML) (*.lst)
 -ln Create namespace file (*.nsp)
 -ls Create combined source file (expanded includes) (*.src)

AML Disassembler:
 -d [file] Disassemble or decode binary ACPI table to file (*.dsl)
 -dc [file] Disassemble AML and immediately compile it
 (Obtain DSDT from current system if no input file)
 -e [f1,f2] Include ACPI table(s) for external symbol resolution
 -2 Emit ACPI 2.0 compatible ASL code
 -g Get ACPI tables and write to files (*.dat)

214 Ref No SC-<xxxx>

 ACPI Component Architecture Programmer Reference

Help:
 -h Additional help and compiler debug options
 -hc Display operators allowed in constant expressions
 -hr Display ACPI reserved method names

10.2 AcpiExec – User Mode ACPI Execution/Simulation
This utility can be used to load any ACPI tables from file(s), execute control methods, single step
control methods, inspect the ACPI namespace, etc. When generated from source, it contains the
entire ACPICA Core Subsystem including the ACPICA Debugger. All hardware access via the
AML is simulated. All ACPICA debugger commands are available (See the ACPICA Debugger
Reference later in this document.)

Intel ACPI Component Architecture
AML Execution/Debug Utility version 20081031 [Oct 31 2008]

Usage: acpiexec [Options] [InputFile]

Where:
 -? Display this message
 -a Do not abort methods on error
 -b <CommandLine> Batch mode command execution
 -e [Method] Batch mode method execution
 -i Do not run STA/INI methods during init
 -m Display final memory use statistics
 -o <OutputFile> Send output to this file
 -r Disable OpRegion address simulation
 -s Enable Interpreter Slack Mode
 -t Enable Interpreter Serialized Mode
 -v Verbose init output
 -x <DebugLevel> Specify debug output level

10.3 AcpiXtract – Extract ACPI Tables
This utility is used to extract binary ACPI tables from the ASCII output of the acpidump utility
(acpidump is a utility that is part of the PM Tools package.)

Usage: acpixtract [option] <InputFile>

Extract binary ACPI tables from text acpidump output
Default invocation extracts all DSDTs and SSDTs
Version 20081031

Options:
 -a Extract all tables, not just DSDT/SSDT
 -l List table summaries, do not extract
 -s<Signature> Extract all tables named <Signature>

10.4 AcpiSrc – Convert ACPICA Source Code
This utility is used to convert the ACPICA into Linux code format. It can also be used to clean the
ACPICA code by removing extra trailing blanks, etc., and to generate source code statistics.

Ref No SC-<xxxx> 215

ACPI Component Architecture Programmer Reference

ACPI Source Code Conversion Utility version 20081031 [Oct 31 2008]

Usage: acpisrc [-c|l|u] [-dsvy] <SourceDir> <DestinationDir>

Where: -c Generate cleaned version of the source
 -l Generate Linux version of the source
 -u Generate Custom source translation

 -d Leave debug statements in code
 -s Generate source statistics only
 -v Verbose mode
 -y Suppress file overwrite prompts

Example output – source code statistics for ACPICA:

ACPI Source Code Conversion Utility version 20081031 [Oct 31 2008]

Source code statistics only
AcpiSrc statistics:

 233 Files processed
 342 Tabs found
 0 Missing if/else braces
 22 Non-ANSI comments found
 159707 Total Lines
 82496 Lines of code
 29508 Lines of non-comment whitespace
 32210 Lines of comments
 3013 Long lines found
 2.8 Ratio of code to whitespace
 2.6 Ratio of code to comments
 51% code, 20% comments, 18% whitespace, 15% headers

216 Ref No SC-<xxxx>

 ACPI Component Architecture Programmer Reference

11 ACPICA Debugger Reference

11.1 Overview
The ACPICA AML Debugger is an optional subcomponent of the ACPICA Core Subsystem. It can
be operated standalone or in conjunction with (or as an extension of) a native kernel debugger. The
debugger provides the ability to load ACPI tables, dump internal data structures, execute control
methods, disassemble control methods, single step control methods, and set breakpoints within
control methods.

11.2 Supported Environments
The debugger can be executed in a ring 0 (kernel) or ring 3 (application) environment. The
following combinations of debugger and front-end (user-interface) are supported:

• Ring 0 Debugger, Ring 0 Front-End: In this case, the front-end is a host kernel debugger, and
the Debugger operates as an extension to the host debugger.

• Ring 0 Debugger, Ring 3 Front-End. In this mode, the front-end is a ring 3 application that
obtains the command lines from the user and sends them to the debugger executing in Ring 0.
The actual mechanism used for this communication is dependent on the host operating
system.

• Ring 3 Debugger, Ring 3 Front-End. In this mode, the entire ACPICA subsystem (including
the debugger) resides in a Ring 3 application. A single thread can be used for the user
interface, debugger, and AML control method execution. An example of this mode is the
AcpiExec utility.

11.2.1 The AcpiExec Utility

An example of the Ring3/Ring3 model of execution is the user mode AcpiExec utility. This
application includes the entire ACPICA subsystem (including the Debugger) and allows the user to
load ACPI tables from files and execute methods contained in the tables.

Of course, hardware and memory access from Ring 3 is very limited. The AcpiExec utility simulates
hardware access.

11.3 Debugger Architecture
The ACPI debugger consists of the following architectural elements:

• A command line interpreter that receives entire command lines from the host, parses them
into commands and parameters, and dispatches the request to the appropriate handler for the
command.

• A group of modules that implement the various debugger commands.

• A group of callback routines that are invoked by the interpreter/dispatcher during the
execution control methods. These callbacks enable the single stepping of control methods and
the display of arguments to each executed control method.

Ref No SC-<xxxx> 217

ACPI Component Architecture Programmer Reference

When executing in a Ring 0 environment, the debugger initialization creates a separate thread for
the debugger CLI. This threads performs the following tasks until the debugger is shut down:

1. Wait for a command line by calling the AcpiOsGetLine interface

2. Execute the command

All output from the debugger is via the AcpiOsPrint and AcpiOsVprintf interfaces.

The overall architecture of the ACPI Debugger is shown in the diagram below. Note how the
Debugger CLI uses the AcpiOsGetLine interface to obtain user command lines, and how output
from the entire debugger and ACPICA subsystem can be directed to the console, a file, or both via
the implementation of the AcpiOsPrint interface within the OSL layer. Also note how the debugger
and ACPICA subsystem can reside in a different protection ring than the user console support and
file I/O support.

Figure 9. ACPICA Debugger Architecture

OsdPrint()

Console Debugger Command
Line Interpreter

Debugger Command Implementations

ACPI CA Core Subsystem
Debug
Output

File

OS-Dependent Layer

OsdGetLine()

Ring3 or Ring0 Ring3 or Ring0

11.4 Configuration and Installation
The basic idea behind the debugger thread is that it receives a command line from somewhere and
then asynchronously executes it. The command line can come from a ring 3 application (a debugger
front-end), or it can come from the resident kernel debugger (you would install a debugger
extension that forwards command lines to the debugger.)

With this in mind, there are several key components of the debugger:

1. DbInitialize – Initializes the debugger semaphores and creates the debugger thread,
DbExecuteThread

2. DbCommandDispatch – This is the actual command execution code

218 Ref No SC-<xxxx>

 ACPI Component Architecture Programmer Reference

3. DbExecuteThread – Waits for a command to become available (as indicated by the
MTX_DEBUG_CMD_READY mutex), executes the command, (via DbCommandDispatch),
then signals command completion via the MTX_DEBUG_CMD_COMPLETE mutex.

4. DbUserCommands – An example command loop that must execute in its own thread (this is
the caller thread, not a thread that is part of the debugger). This loop obtains a command line
via AcpiOsGetLine, puts it into the LineBuf buffer, and signals the DbExecuteThread that a
command line is available. It is not necessary to use this procedure, however, if command
lines become available from somewhere besides AcpiOsGetLine.

5. DbSingleStep – Called from the dispatcher just before an AML opcode is executed.
Implements its own command loop that obtains command lines from either the
MTX_DEBUG_CMD_READY mutex (multi-thread mode), or by calling AcpiOsGetLine
directly (single thread mode). Drops out of the loop when the control method is aborted or is
allowed to continue running (perhaps just to the next opcode…)

This is the basic thread model and handshake with the outside world. To integrate the debugger into
a specific environment, it is your responsibility to get command lines to the DbExecuteThread via
the LineBuf and the MTX_DEBUG_CMD_READY mutex. Alternatively, you can just call the
DbCommandDispatch directly if you don’t need an asynchronous debugger thread. Additional
explanation follows.

The AcpiExec Ring3 application uses DbUserCommands to process command lines
(DbUserCommands is actually called from aemain.c). However, if integrating with a kernel
debugger, you will probably want to implement your own mechanism instead of using the
DbUserCommands loop. I would imagine this would entail the following:

1. Install a small extension to the kernel debugger that receives command lines intended for that
extension.

2. Copy the command line to the LineBuf.

3. Signal the DbExecuteThread that a command is available. (MTX_DEBUG_CMD_READY).

4. Wait for the command to complete (MTX_DEBUG_CMD_COMPLETE).

5. Return to the kernel debugger.

If you don’t need the extra debugger thread, you can simply execute commands in the caller’s
context:

1. Install a small extension to the kernel debugger that receives command lines intended for that
extension.

2. Copy the command line to the LineBuf.

3. Call DbCommandDispatch to execute the command directly.

4. Return to the kernel debugger.

The behavior of the debugger can be configured as follows (via the config.h header):

#define DEBUGGER_THREADING DEBUGGER_SINGLE_THREADED

This sets the single thread mode of the debugger.

#define DEBUGGER_THREADING DEBUGGER_MULTI_THREADED

This sets the multi-thread mode of the debugger.

Ref No SC-<xxxx> 219

ACPI Component Architecture Programmer Reference

Basically, in multithread mode, we just wait for some other thread to fill the LineBuf with a
command and signal the semaphore. In single thread mode, we explicitly call AcpiOsGetLine to get
a command line.

11.5 Command Overview
There are four classes of commands supported by the debugger:

1. The General-Purpose commands are available in all modes of the debugger. These
commands provide the basic functionality of loading tables, dumping internal data structures,
and starting the execution of control methods.

2. The Namespace Access commands are always available. These commands provide
information about the currently loaded ACPI namespace.

3. The Control Method Execution Commands are available only during the single-step
execution of control methods. These commands allow the display and modification of method
arguments and local variables, control method disassemble, and the setting of method
breakpoints

4. The File I/O Commands are available only if a filesystem is available to the debugger.

11.6 General Purpose Commands

11.6.1 Allocations

Memory allocation status

SYNTAX

- allocations

This command dumps the current status of the dynamic memory allocations, as maintained by the
ACPICA subsystem debug memory allocation tracking mechanism. Primarily used to detect
memory leaks, the mechanism tracks the allocation and freeing of each memory block, and
maintains statistics on the amount of memory allocated, the number of allocations, etc.

11.6.2 Dump

Display objects and memory

SYNTAX

- dump <Address>|<Namepath> [Byte|Word|Dword|Qword]

A generic command to dump all internal ACPI objects and memory. The operand can be a
namespace name, a pointer to an ACPI object, or a pointer to random memory in the current address
space. The command determines the type of ACPI object and decodes it into the appropriate fields

220 Ref No SC-<xxxx>

 ACPI Component Architecture Programmer Reference

11.6.3 Exit

Terminate

SYNTAX

- exit

Terminate the ACPICA subsystem and exit the debugger.

11.6.4 Help

Get help

SYNTAX

- help

Displays a help screen with the syntax of each command and a short description of each.

11.6.5 History (! And !!)

Command line recall

SYNTAX

- history

- ! <Command Number>

- !!

last few commands. The “!” command can be used to select and re-execute a particular command
from the numbered command buffer, or the “!!” command can be used to simply re-execute the
immediately previous command.

11.6.6 Level

Set debug output level

SYNTAX

- level [<DebugLevel>] [console]

Sets the global debug output level of the ACPICA subsystem for both output directed to a file and
output to the console.

Ref No SC-<xxxx> 221

ACPI Component Architecture Programmer Reference

11.6.7 Locks

Display mutex info and status

SYNTAX

- locks

This command displays information and current status of the various mutexes used for internal
synchronization.

11.6.8 Quit

Terminate

SYNTAX

- quit

Terminate the current execution mode. If executing (single stepping) a control method, the method
is immediately aborted with an exception and the debugger returns to the normal command line
mode. If no control method is executing, the ACPICA subsystem is terminated and the debugger
exits.

11.6.9 Stats

Namespace statistics

SYNTAX

- stats [Allocations|Memory|Misc|Objects|Sizes|Stack]

Display namespace statistics that were gathered when the namespace was loaded. This includes
information about the number of objects and their types, the amount of dynamic memory required,
and the number of search operations performed on the namespace database.

SUBCOMMANDS

Allocations: Display a list of current dynamic memory allocations

Memory: Dump internal memory lists (If ACPICA memory cache is configured)

Misc: Namespace search and mutex use statistics

Objects: Summary of namespace objects

Sizes: Memory allocation sizes for each of the internal objects

Stack: Display CPU stack usage

222 Ref No SC-<xxxx>

 ACPI Component Architecture Programmer Reference

11.6.10 Tables

Display ACPI table info

SYNTAX

- tables

This command displays information about each of the loaded ACPI tables. It uses the internal
AcpiTbPrintTableHeader function.

11.6.11 Unload

Unload table

SYNTAX

- unload <TableSignature> [Instance]

Unload an ACPI Table <Not implemented>

11.7 Namespace Access Commands

11.7.1 BusInfo

Display system bus information

SYNTAX

- businfo

This command displays information about all device objects that have a corresponding _PRT
method. Information includes the _ADR, _HID, _UID, and _CID.

11.7.2 Disassemble

Disassemble a control method

SYNTAX

- disassemble <Method>

This command will dissassemble the input method to the original ASL code.

Ref No SC-<xxxx> 223

ACPI Component Architecture Programmer Reference

11.7.3 Event

Generate an ACPI Event

SYNTAX

- event <Value>

Generate an ACPI event to test event handling <NOT IMPLEMENTED>

11.7.4 Find

Find names in the Namespace

SYNTAX

- find <name>

Find an ACPI name or names within the current ACPI namespace. All names that match the given
name are displayed as they are found in the namespace. Names are up to four characters, and
wildcards are supported. A ‘?’ in the name will match any character. Thus, the wildcarded name
“A???” will match all names in the namespace that begin with the letter “A”.

11.7.5 Gpe

Generate a GPE

SYNTAX

- gpe <Block Address> <GPE number>

Generate a GPE at the GPE number within the GPE block specified at the Block Address. Use 0 for
the block address to generate a GPE within the permanent FADT-defined GPE blocks (GPE0 and
GPE1.).

11.7.6 Gpes

Display GPE block information

SYNTAX

- gpes

Display information on all GPE blocks, including the FADT-defined GPE blocks (GPE0 and GPE1)
and all loaded GPE Block Devices.

224 Ref No SC-<xxxx>

 ACPI Component Architecture Programmer Reference

11.7.7 Integrity

Validate namespace

SYNTAX

- integrity

This command validates the integrity of the entire loaded namespace. It walks the entire namespace
and checks each namespace node for correctness.

11.7.8 Methods

List all control methods

SYNTAX

- methods

Displays a list of all control methods (and their full pathnames) that are contained within the current
ACPI namespace. (Alias for the command “Object Methods”.)

11.7.9 Namespace

Display the loaded ACPI namespace

SYNTAX

- namespace [<Address> | <Namepath>] [Depth]

Dump all or a portion of the current ACPI namespace. If given with no parameter, this command
displays the entire namespace, one named object per line with information about each object. If
given the name of an object or a pointer to an object, it displays the subtree rooted by that object.

11.7.10 Notify

Generate a Notify

SYNTAX

- notify <Namepath> <Value>

Generates a notify on the specified device. This means that the notify handler for the device is
invoked with the parameters specified.

Ref No SC-<xxxx> 225

ACPI Component Architecture Programmer Reference

11.7.11 Object

Display typed objects

SYNTAX

- object <Object Type>

Display objects within the namespace of the requested type.

The ObjectType parameter must be one of the following:

 ANY
 INTEGERS
 STRINGS
 BUFFERS
 PACKAGES
 FIELDS
 DEVICES
 EVENTS
 METHODS
 MUTEXES
 REGIONS
 POWERRESOURCES
 PROCESSORS
 THERMALZONES
 BUFFERFIELDS
 DDBHANDLES
 DEBUG
 REGIONFIELDS
 BANKFIELDS
 INDEXFIELDS
 REFERENCES
 ALIAS

11.7.12 Owner

Display namespace by owner ID

SYNTAX

- owner <Owner ID> [Depth]

Display objects within the namespace owned by the requested Owner ID.

226 Ref No SC-<xxxx>

 ACPI Component Architecture Programmer Reference

11.7.13 Predefined

Display and check all predefined methods/objects

SYNTAX

- predefined

This command displays and validates all predefined methods and objects (names that start with
underscore and are predefined by the ACPI specification.)

The validation checks the input argument count (if object is a control method) against the count
defined in the ACPI spec.

11.7.14 Prefix

Get or Set current prefix

SYNTAX

- prefix [<NamePath>]

Sets the pathname prefix that is prepended to namestrings entered into the debug and execute
commands. This command is the equivalent of the “CD” command.

11.7.15 References

Find all references to an object within the namespace

SYNTAX

- references <Address>

Display all references to the object at the specified address.

11.7.16 Resources

Display device resources

SYNTAX

- resources <Address>

Display resource lists (_PRS, _CRS, etc.) for the Device object at the specified address.

Ref No SC-<xxxx> 227

ACPI Component Architecture Programmer Reference

11.7.17 Set N

Set object value

SYNTAX

- set N <NamedObject> <Value>

This command sets the value of a namespace object.

11.7.18 Sleep

Simulate ACPI Sleep/Wake

SYNTAX

- sleep <SleepState>

This command simulates the sleep/wake sequence. SleepState should be an integer, 1-5. The
following ACPICA interfaces are executed:

AcpiEnterSleepStatePrep
AcpiEnterSleepState
AcpiLeaveSleepState

11.7.19 Terminate

Shutdown ACPICA subsystem

SYNTAX

- terminate

Shutdown the ACPICA subsystem, but don’t exit the debugger. This command is useful to find
memory leaks in the form of objects left over after the subsystem deletes the entire namespace and
all known internal objects. Any objects left over after shutdown are displayed and may be examined.

11.7.20 Type

Display object type

SYNTAX

- type <Object>

This command displays the type of a namespace object.

228 Ref No SC-<xxxx>

 ACPI Component Architecture Programmer Reference

11.8 Control Method Execution Commands
During single stepping of a control method, the following commands are available. The debugger
enters a slightly different command mode (as indicated by the ‘%’ prompt) when single stepping a
control method to indicate that these commands are now available

11.8.1 Arguments

Display Method arguments

SYNTAX

- arguments

- args

Display all arguments to the currently executing control method

11.8.2 Breakpoint

Set control method breakpoint

SYNTAX

- breakpoint <AML Offset>

Set a breakpoint at the AML offset given. When execution reaches this offset, execution is stopped
and the debugger is entered.

11.8.3 Call

Run to next call

SYNTAX

- call

Step execution of the current control method until the next method invocation (call) is encountered.

11.8.4 Debug

Single step a control method

SYNTAX

- debug <Namepath> [Arg0, Arg1,…]

Begin execution of a control method in single step mode. Each AML opcode and its associated
operand(s) is disassembled and displayed before execution. A single carriage return (Enter) single

Ref No SC-<xxxx> 229

ACPI Component Architecture Programmer Reference

steps to the next AML opcode. The values of the arguments and the value of the return value (if
any) are displayed for each opcode.

11.8.5 Execute

Execute a control method

SYNTAX

- execute <Namepath> [Arg0, Arg1,…]

Execute a control method. This command begins execution of the named method and lets it run to
completion without single stepping. The return result if any is displayed after execution completes.

11.8.6 Go

Run method to next breakpoint

SYNTAX

- go

Cease single step mode and let the control method run freely until either a breakpoint is reached or
the method terminates.

11.8.7 Information

Info about a control method

SYNTAX

- information

11.8.8 Into

Step into call

SYNTAX

- into

Step into a control method invocation instead of over the call. The default single step behavior is to
step over control method calls, meaning that the call is executed and single stepping resumes after
the call returns. Use this command to single step the execution of a called control method.

230 Ref No SC-<xxxx>

 ACPI Component Architecture Programmer Reference

11.8.9 List

Disassemble AML code

SYNTAX

- list [<Opcode count>]

Disassemble the AML code of the current control method from the current AML offset for the
length given. Useful for finding interesting places to set breakpoints.

11.8.10 Locals

Display method local variables

SYNTAX

- locals

Display the current values of all of the local variables for the current control method. When stepping
into a control method invocation, the locals of the newly invoked method are displayed during the
time that method is single stepped.

11.8.11 Results

Display method result stack

SYNTAX

- results

Display the current contents of the internal “Result Stack” for the control method.

11.8.12 Set

Set arguments or locals

SYNTAX

- set Arg|Local <ID> <Value>

Set the value of any of a method’s arguments or local variables. ID is 0-7 for method locals and 0-6
for method arguments.

Ref No SC-<xxxx> 231

ACPI Component Architecture Programmer Reference

11.8.13 Stop

Stop method

SYNTAX

- stop

Terminate the currently executing control method

11.8.14 Thread

Execute a control method with multiple threads

SYNTAX

- thread <number of threads> <number of loops> <Pathname>

Create the specified number of threads to execute the control method at <Pathname>. Each thread
will execute the method <number of loops> times. The command waits until all threads have
completed before returning.

11.8.15 Trace

Set a method trace

SYNTAX

- trace <method name>

This command sets a trace command that will trace the input method if and when it is executed.
Uses the AcpiDebugTrace interface.

11.8.16 Tree

Display calling tree

SYNTAX

- tree

Display the calling tree of the current method (Displays all nested control method invocations.)

232 Ref No SC-<xxxx>

 ACPI Component Architecture Programmer Reference

11.9 File I/O Commands

11.9.1 Close

Close debug output file

SYNTAX

- close

Close the debug output file, if one is currently open. Using Exit or Quit to terminate the debugger
will automatically close any open file.

11.9.2 Load

Load ACPI table

SYNTAX

- load <Filename>

Load an ACPI table into the namespace from a file.

11.9.3 Open

Open debug output file

SYNTAX

- open <Filename>

Open a file for debug output.

Ref No SC-<xxxx> 233

ACPI Component Architecture Programmer Reference

234 Ref No SC-<xxxx>

This page intentionally left blank.

