TheAlgorithms-C/geometry/quaternions.c
2020-08-16 21:53:56 -04:00

174 lines
5.3 KiB
C

/**
* @file
* @brief Functions related to 3D quaternions and Euler angles.
* @author Krishna Vedala
*/
#include <stdio.h>
#ifdef __arm__ // if compiling for ARM-Cortex processors
#define LIBQUAT_ARM
#include <arm_math.h>
#else
#include <math.h>
#endif
#include <assert.h>
#include "geometry_datatypes.h"
/**
* @addtogroup quats 3D Quaternion operations
* @{
*/
/**
* Function to convert given Euler angles to a quaternion.
* \f{eqnarray*}{
* q_{0} & =
* &\cos\left(\frac{\phi}{2}\right)\cos\left(\frac{\theta}{2}\right)\cos\left(\frac{\psi}{2}\right)
* +
* \sin\left(\frac{\phi}{2}\right)\sin\left(\frac{\theta}{2}\right)\sin\left(\frac{\psi}{2}\right)\\
* q_{1} & =
* &\sin\left(\frac{\phi}{2}\right)\cos\left(\frac{\theta}{2}\right)\cos\left(\frac{\psi}{2}\right)
* -
* \cos\left(\frac{\phi}{2}\right)\sin\left(\frac{\theta}{2}\right)\sin\left(\frac{\psi}{2}\right)\\
* q_{2} & =
* &\cos\left(\frac{\phi}{2}\right)\sin\left(\frac{\theta}{2}\right)\cos\left(\frac{\psi}{2}\right)
* +
* \sin\left(\frac{\phi}{2}\right)\cos\left(\frac{\theta}{2}\right)\sin\left(\frac{\psi}{2}\right)\\
* q_{3} & =
* &\cos\left(\frac{\phi}{2}\right)\cos\left(\frac{\theta}{2}\right)\sin\left(\frac{\psi}{2}\right)
* -
* \sin\left(\frac{\phi}{2}\right)\sin\left(\frac{\theta}{2}\right)\cos\left(\frac{\psi}{2}\right)\\
* \f}
*
* @param [in] in_euler input Euler angles instance
* @returns converted quaternion
*/
quaternion quat_from_euler(const euler *in_euler)
{
quaternion out_quat;
if (!in_euler) // if null
{
fprintf(stderr, "%s: Invalid input.", __func__);
return out_quat;
}
quaternion temp;
float cy = cosf(in_euler->yaw * 0.5f);
float sy = sinf(in_euler->yaw * 0.5f);
float cp = cosf(in_euler->pitch * 0.5f);
float sp = sinf(in_euler->pitch * 0.5f);
float cr = cosf(in_euler->roll * 0.5f);
float sr = sinf(in_euler->roll * 0.5f);
temp.w = cr * cp * cy + sr * sp * sy;
temp.q1 = sr * cp * cy - cr * sp * sy;
temp.q2 = cr * sp * cy + sr * cp * sy;
temp.q3 = cr * cp * sy - sr * sp * cy;
return temp;
}
/**
* Function to convert given quaternion to Euler angles.
* \f{eqnarray*}{
* \phi & = &
* \tan^{-1}\left[\frac{2\left(q_0q_1+q_2q_3\right)}{1-2\left(q_1^2+q_2^2\right)}\right]\\
* \theta & =
* &-\sin^{-1}\left[2\left(q_0q_2-q_3q_1\right)\right]\\
* \psi & = &
* \tan^{-1}\left[\frac{2\left(q_0q_3+q_1q_2\right)}{1-2\left(q_2^2+q_3^2\right)}\right]\\
* \f}
*
* @param [in] in_quat input quaternion instance
* @returns converted euler angles
*/
euler euler_from_quat(const quaternion *in_quat)
{
euler out_euler;
if (!in_quat) // if null
{
fprintf(stderr, "%s: Invalid input.", __func__);
return out_euler;
}
out_euler.roll = atan2f(
2.f * (in_quat->w * in_quat->q1 + in_quat->q2 * in_quat->q3),
1.f - 2.f * (in_quat->q1 * in_quat->q1 + in_quat->q2 * in_quat->q2));
out_euler.pitch =
asinf(2.f * (in_quat->w * in_quat->q2 + in_quat->q1 * in_quat->q3));
out_euler.yaw = atan2f(
2.f * (in_quat->w * in_quat->q3 + in_quat->q1 * in_quat->q2),
1.f - 2.f * (in_quat->q2 * in_quat->q2 + in_quat->q3 * in_quat->q3));
return out_euler;
}
/**
* Function to multiply two quaternions.
* \f{eqnarray*}{
* \mathbf{c} & = & \mathbf{a}\otimes\mathbf{b}\\
* & = & \begin{bmatrix}a_{0} & a_{1} & a_{2} &
* a_{3}\end{bmatrix}\otimes\begin{bmatrix}b_{0} & b_{1} & b_{2} &
* b_{3}\end{bmatrix}\\
* & = &
* \begin{bmatrix}
* a_{0}b_{0}-a_{1}b_{1}-a_{2}b_{2}-a_{3}b_{3}\\
* a_{0}b_{1}+a_{1}b_{0}+a_{2}b_{3}-a_{3}b_{2}\\
* a_{0}b_{2}-a_{1}b_{3}+a_{2}b_{0}+a_{3}b_{1}\\
* a_{0}b_{3}+a_{1}b_{2}-a_{2}b_{1}+a_{3}b_{0}
* \end{bmatrix}^{T}
* \f}
*
* @param [in] in_quat1 first input quaternion instance
* @param [in] in_quat2 second input quaternion instance
* @returns resultant quaternion
*/
quaternion quaternion_multiply(const quaternion *in_quat1,
const quaternion *in_quat2)
{
quaternion out_quat;
if (!in_quat1 || !in_quat2) // if null
{
fprintf(stderr, "%s: Invalid input.", __func__);
return out_quat;
}
out_quat.w = in_quat1->w * in_quat2->w - in_quat1->q1 * in_quat2->q1 -
in_quat1->q2 * in_quat2->q2 - in_quat1->q3 * in_quat2->q3;
out_quat.q1 = in_quat1->w * in_quat2->q1 + in_quat1->q1 * in_quat2->w +
in_quat1->q2 * in_quat2->q3 - in_quat1->q3 * in_quat2->q2;
out_quat.q2 = in_quat1->w * in_quat2->q2 - in_quat1->q1 * in_quat2->q3 +
in_quat1->q2 * in_quat2->w + in_quat1->q3 * in_quat2->q1;
out_quat.q3 = in_quat1->w * in_quat2->q3 + in_quat1->q1 * in_quat2->q2 -
in_quat1->q2 * in_quat2->q1 + in_quat1->q3 * in_quat2->w;
return out_quat;
}
/** @} */
static void test()
{
quaternion quat = {0.7071f, 0.7071f, 0.f, 0.f};
euler eul = euler_from_quat(&quat);
printf("Euler: %.4g, %.4g, %.4g\n", eul.pitch, eul.roll, eul.yaw);
quaternion test_quat = quat_from_euler(&eul);
printf("Quaternion: %.4g %+.4g %+.4g %+.4g\n", test_quat.w,
test_quat.dual.x, test_quat.dual.y, test_quat.dual.z);
assert(fabsf(test_quat.w - quat.w) < .01);
assert(fabsf(test_quat.q1 - quat.q1) < .01);
assert(fabsf(test_quat.q2 - quat.q2) < .01);
assert(fabsf(test_quat.q3 - quat.q3) < .01);
}
int main()
{
test();
return 0;
}