mirror of
https://github.com/TheAlgorithms/C
synced 2024-11-22 13:31:21 +03:00
153 lines
3.7 KiB
C
153 lines
3.7 KiB
C
#include <stdio.h>
|
|
#include <math.h>
|
|
#include <stdlib.h>
|
|
|
|
#define ROWS 4
|
|
#define COLUMNS 3
|
|
|
|
double A[ROWS][COLUMNS] = {
|
|
{1, 2, 3},
|
|
{3, 6, 5},
|
|
{5, 2, 8},
|
|
{8, 9, 3}};
|
|
|
|
void print_matrix(double A[][COLUMNS], int M, int N)
|
|
{
|
|
for (int row = 0; row < M; row++)
|
|
{
|
|
for (int col = 0; col < N; col++)
|
|
printf("% 9.3g\t", A[row][col]);
|
|
putchar('\n');
|
|
}
|
|
putchar('\n');
|
|
}
|
|
|
|
void print_2d(double **A, int M, int N)
|
|
{
|
|
for (int row = 0; row < M; row++)
|
|
{
|
|
for (int col = 0; col < N; col++)
|
|
printf("% 9.3g\t", A[row][col]);
|
|
putchar('\n');
|
|
}
|
|
putchar('\n');
|
|
}
|
|
|
|
double vector_dot(double *a, double *b, int L)
|
|
{
|
|
double mag = 0.f;
|
|
for (int i = 0; i < L; i++)
|
|
mag += a[i] * b[i];
|
|
|
|
return mag;
|
|
}
|
|
|
|
double vector_mag(double *vector, int L)
|
|
{
|
|
double dot = vector_dot(vector, vector, L);
|
|
return sqrt(dot);
|
|
}
|
|
|
|
double *vector_proj(double *a, double *b, double *out, int L)
|
|
{
|
|
double num = vector_dot(a, b, L);
|
|
double deno = vector_dot(b, b, L);
|
|
for (int i = 0; i < L; i++)
|
|
out[i] = num * b[i] / deno;
|
|
|
|
return out;
|
|
}
|
|
|
|
double *vector_sub(double *a, double *b, double *out, int L)
|
|
{
|
|
for (int i = 0; i < L; i++)
|
|
out[i] = a[i] - b[i];
|
|
|
|
return out;
|
|
}
|
|
|
|
void qr_decompose(double A[][COLUMNS], double **Q, double **R, int M, int N)
|
|
{
|
|
double *col_vector = (double *)malloc(M * sizeof(double));
|
|
double *col_vector2 = (double *)malloc(M * sizeof(double));
|
|
double *tmp_vector = (double *)malloc(M * sizeof(double));
|
|
for (int i = 0; i < N; i++) /* for each column => R is a square matrix of NxN */
|
|
{
|
|
for (int j = 0; j < i; j++) /* second dimension of column */
|
|
R[i][j] = 0.; /* make R upper triangular */
|
|
|
|
/* get corresponding Q vector */
|
|
for (int j = 0; j < M; j++)
|
|
{
|
|
tmp_vector[j] = A[j][i]; /* accumulator for uk */
|
|
col_vector[j] = A[j][i];
|
|
}
|
|
for (int j = 0; j < i; j++)
|
|
{
|
|
for (int k = 0; k < M; k++)
|
|
col_vector2[k] = Q[k][j];
|
|
vector_proj(col_vector, col_vector2, col_vector2, M);
|
|
vector_sub(tmp_vector, col_vector2, tmp_vector, M);
|
|
}
|
|
double mag = vector_mag(tmp_vector, M);
|
|
for (int j = 0; j < M; j++)
|
|
Q[j][i] = tmp_vector[j] / mag;
|
|
|
|
/* compute upper triangular values of R */
|
|
for (int kk = 0; kk < M; kk++)
|
|
col_vector[kk] = Q[kk][i];
|
|
for (int k = i; k < N; k++)
|
|
{
|
|
for (int kk = 0; kk < M; kk++)
|
|
col_vector2[kk] = A[kk][k];
|
|
R[i][k] = vector_dot(col_vector, col_vector2, M);
|
|
}
|
|
}
|
|
|
|
free(col_vector);
|
|
free(col_vector2);
|
|
free(tmp_vector);
|
|
}
|
|
|
|
int main(void)
|
|
{
|
|
// double A[][COLUMNS] = {
|
|
// {1, -1, 4},
|
|
// {1, 4, -2},
|
|
// {1, 4, 2},
|
|
// {1, -1, 0}};
|
|
|
|
print_matrix(A, ROWS, COLUMNS);
|
|
|
|
double **R = (double **)malloc(sizeof(double) * COLUMNS * COLUMNS);
|
|
double **Q = (double **)malloc(sizeof(double) * ROWS * COLUMNS);
|
|
if (!Q || !R)
|
|
{
|
|
perror("Unable to allocate memory for Q & R!");
|
|
return -1;
|
|
}
|
|
for (int i = 0; i < ROWS; i++)
|
|
{
|
|
R[i] = (double *)malloc(sizeof(double) * COLUMNS);
|
|
Q[i] = (double *)malloc(sizeof(double) * COLUMNS);
|
|
if (!Q[i] || !R[i])
|
|
{
|
|
perror("Unable to allocate memory for Q & R.");
|
|
return -1;
|
|
}
|
|
}
|
|
|
|
qr_decompose(A, Q, R, ROWS, COLUMNS);
|
|
|
|
print_2d(R, ROWS, COLUMNS);
|
|
print_2d(Q, ROWS, COLUMNS);
|
|
|
|
for (int i = 0; i < ROWS; i++)
|
|
{
|
|
free(R[i]);
|
|
free(Q[i]);
|
|
}
|
|
free(R);
|
|
free(Q);
|
|
return 0;
|
|
} |