TheAlgorithms-C/numerical_methods/qr_decomposition.c
2020-04-20 16:10:43 -04:00

153 lines
3.7 KiB
C

#include <stdio.h>
#include <math.h>
#include <stdlib.h>
#define ROWS 4
#define COLUMNS 3
double A[ROWS][COLUMNS] = {
{1, 2, 3},
{3, 6, 5},
{5, 2, 8},
{8, 9, 3}};
void print_matrix(double A[][COLUMNS], int M, int N)
{
for (int row = 0; row < M; row++)
{
for (int col = 0; col < N; col++)
printf("% 9.3g\t", A[row][col]);
putchar('\n');
}
putchar('\n');
}
void print_2d(double **A, int M, int N)
{
for (int row = 0; row < M; row++)
{
for (int col = 0; col < N; col++)
printf("% 9.3g\t", A[row][col]);
putchar('\n');
}
putchar('\n');
}
double vector_dot(double *a, double *b, int L)
{
double mag = 0.f;
for (int i = 0; i < L; i++)
mag += a[i] * b[i];
return mag;
}
double vector_mag(double *vector, int L)
{
double dot = vector_dot(vector, vector, L);
return sqrt(dot);
}
double *vector_proj(double *a, double *b, double *out, int L)
{
double num = vector_dot(a, b, L);
double deno = vector_dot(b, b, L);
for (int i = 0; i < L; i++)
out[i] = num * b[i] / deno;
return out;
}
double *vector_sub(double *a, double *b, double *out, int L)
{
for (int i = 0; i < L; i++)
out[i] = a[i] - b[i];
return out;
}
void qr_decompose(double A[][COLUMNS], double **Q, double **R, int M, int N)
{
double *col_vector = (double *)malloc(M * sizeof(double));
double *col_vector2 = (double *)malloc(M * sizeof(double));
double *tmp_vector = (double *)malloc(M * sizeof(double));
for (int i = 0; i < N; i++) /* for each column => R is a square matrix of NxN */
{
for (int j = 0; j < i; j++) /* second dimension of column */
R[i][j] = 0.; /* make R upper triangular */
/* get corresponding Q vector */
for (int j = 0; j < M; j++)
{
tmp_vector[j] = A[j][i]; /* accumulator for uk */
col_vector[j] = A[j][i];
}
for (int j = 0; j < i; j++)
{
for (int k = 0; k < M; k++)
col_vector2[k] = Q[k][j];
vector_proj(col_vector, col_vector2, col_vector2, M);
vector_sub(tmp_vector, col_vector2, tmp_vector, M);
}
double mag = vector_mag(tmp_vector, M);
for (int j = 0; j < M; j++)
Q[j][i] = tmp_vector[j] / mag;
/* compute upper triangular values of R */
for (int kk = 0; kk < M; kk++)
col_vector[kk] = Q[kk][i];
for (int k = i; k < N; k++)
{
for (int kk = 0; kk < M; kk++)
col_vector2[kk] = A[kk][k];
R[i][k] = vector_dot(col_vector, col_vector2, M);
}
}
free(col_vector);
free(col_vector2);
free(tmp_vector);
}
int main(void)
{
// double A[][COLUMNS] = {
// {1, -1, 4},
// {1, 4, -2},
// {1, 4, 2},
// {1, -1, 0}};
print_matrix(A, ROWS, COLUMNS);
double **R = (double **)malloc(sizeof(double) * COLUMNS * COLUMNS);
double **Q = (double **)malloc(sizeof(double) * ROWS * COLUMNS);
if (!Q || !R)
{
perror("Unable to allocate memory for Q & R!");
return -1;
}
for (int i = 0; i < ROWS; i++)
{
R[i] = (double *)malloc(sizeof(double) * COLUMNS);
Q[i] = (double *)malloc(sizeof(double) * COLUMNS);
if (!Q[i] || !R[i])
{
perror("Unable to allocate memory for Q & R.");
return -1;
}
}
qr_decompose(A, Q, R, ROWS, COLUMNS);
print_2d(R, ROWS, COLUMNS);
print_2d(Q, ROWS, COLUMNS);
for (int i = 0; i < ROWS; i++)
{
free(R[i]);
free(Q[i]);
}
free(R);
free(Q);
return 0;
}