TheAlgorithms-C/numerical_methods/qr_eigen_values.c
2020-06-05 15:11:36 -04:00

173 lines
4.7 KiB
C

/**
* @file
* \brief Compute real eigen values and eigen vectors of a symmetric matrix
* using [QR decomposition](https://en.wikipedia.org/wiki/QR_decomposition)
* method.
*/
#include "qr_decompose.h"
#include <math.h>
#include <stdio.h>
#include <stdlib.h>
#include <time.h>
#define LIMS 9 /**< limit of range of matrix values */
/**
* create a square matrix of given size with random elements
* \param[out] A matrix to create (must be pre-allocated in memory)
* \param[in] N matrix size
*/
void create_matrix(double **A, int N)
{
int i, j, tmp, lim2 = LIMS >> 1;
srand(time(NULL));
for (i = 0; i < N; i++)
{
A[i][i] = (rand() % LIMS) - lim2;
for (j = i + 1; j < N; j++)
{
tmp = (rand() % LIMS) - lim2;
A[i][j] = tmp;
A[j][i] = tmp;
}
}
}
/**
* Perform multiplication of two matrices.
* * R2 must be equal to C1
* * Resultant matrix size should be R1xC2
* \param[in] A first matrix to multiply
* \param[in] B second matrix to multiply
* \param[out] OUT output matrix (must be pre-allocated)
* \param[in] R1 number of rows of first matrix
* \param[in] C1 number of columns of first matrix
* \param[in] R2 number of rows of second matrix
* \param[in] C2 number of columns of second matrix
* \returns pointer to resultant matrix
*/
double **mat_mul(double **A, double **B, double **OUT, int R1, int C1, int R2,
int C2)
{
if (C1 != R2)
{
perror("Matrix dimensions mismatch!");
return OUT;
}
for (int i = 0; i < R1; i++)
for (int j = 0; j < C2; j++)
{
OUT[i][j] = 0.f;
for (int k = 0; k < C1; k++)
OUT[i][j] += A[i][k] * B[k][j];
}
return OUT;
}
/**
* main function
*/
int main(int argc, char **argv)
{
int mat_size = 5;
if (argc == 2)
mat_size = atoi(argv[1]);
if (mat_size < 2)
{
fprintf(stderr, "Matrix size should be > 2\n");
return -1;
}
int i, rows = mat_size, columns = mat_size;
double **A = (double **)malloc(sizeof(double *) * mat_size);
double **R = (double **)malloc(sizeof(double *) * mat_size);
double **Q = (double **)malloc(sizeof(double *) * mat_size);
/* number of eigen values = matrix size */
double *eigen_vals = (double *)malloc(sizeof(double) * mat_size);
if (!Q || !R || !eigen_vals)
{
perror("Unable to allocate memory for Q & R!");
return -1;
}
for (i = 0; i < mat_size; i++)
{
A[i] = (double *)malloc(sizeof(double) * mat_size);
R[i] = (double *)malloc(sizeof(double) * mat_size);
Q[i] = (double *)malloc(sizeof(double) * mat_size);
if (!Q[i] || !R[i])
{
perror("Unable to allocate memory for Q & R.");
return -1;
}
}
/* create a random matrix */
create_matrix(A, mat_size);
print_matrix(A, mat_size, mat_size);
int counter = 0, num_eigs = rows - 1;
double last_eig = 0;
clock_t t1 = clock();
while (num_eigs > 0) /* continue till all eigen values are found */
{
/* iterate with QR decomposition */
while (fabs(A[num_eigs][num_eigs - 1]) > 1e-10)
{
last_eig = A[num_eigs][num_eigs];
for (int i = 0; i < rows; i++)
A[i][i] -= last_eig; /* A - cI */
qr_decompose(A, Q, R, rows, columns);
#if defined(DEBUG) || !defined(NDEBUG)
print_matrix(A, rows, columns);
print_matrix(Q, rows, columns);
print_matrix(R, columns, columns);
printf("-------------------- %d ---------------------\n",
++counter);
#endif
mat_mul(R, Q, A, columns, columns, rows, columns);
for (int i = 0; i < rows; i++)
A[i][i] += last_eig; /* A + cI */
}
/* store the converged eigen value */
eigen_vals[num_eigs] = A[num_eigs][num_eigs];
#if defined(DEBUG) || !defined(NDEBUG)
printf("========================\n");
printf("Eigen value: % g,\n", last_eig);
printf("========================\n");
#endif
num_eigs--;
rows--;
columns--;
}
eigen_vals[0] = A[0][0];
double dtime = (double)(clock() - t1) / CLOCKS_PER_SEC;
#if defined(DEBUG) || !defined(NDEBUG)
print_matrix(R, mat_size, mat_size);
print_matrix(Q, mat_size, mat_size);
#endif
printf("Eigen vals: ");
for (i = 0; i < mat_size; i++)
printf("% 9.4g\t", eigen_vals[i]);
printf("\nTime taken to compute: % .4g sec\n", dtime);
for (int i = 0; i < mat_size; i++)
{
free(A[i]);
free(R[i]);
free(Q[i]);
}
free(A);
free(R);
free(Q);
free(eigen_vals);
return 0;
}