mirror of
https://github.com/TheAlgorithms/C
synced 2024-11-25 06:49:36 +03:00
120 lines
2.8 KiB
C
120 lines
2.8 KiB
C
#include <limits.h>
|
|
#include <stdio.h>
|
|
#include <stdlib.h>
|
|
#include <string.h>
|
|
|
|
// Structure for storing a graph
|
|
struct Graph
|
|
{
|
|
int vertexNum;
|
|
int **edges;
|
|
};
|
|
|
|
// Constructs a graph with V vertices and E edges
|
|
void createGraph(struct Graph *G, int V)
|
|
{
|
|
G->vertexNum = V;
|
|
G->edges = (int **)malloc(V * sizeof(int *));
|
|
for (int i = 0; i < V; i++)
|
|
{
|
|
G->edges[i] = (int *)malloc(V * sizeof(int));
|
|
for (int j = 0; j < V; j++) G->edges[i][j] = INT_MAX;
|
|
G->edges[i][i] = 0;
|
|
}
|
|
}
|
|
|
|
// Adds the given edge to the graph
|
|
void addEdge(struct Graph *G, int src, int dst, int weight)
|
|
{
|
|
G->edges[src][dst] = weight;
|
|
}
|
|
|
|
// Utility function to find minimum distance vertex in mdist
|
|
int minDistance(int mdist[], int vset[], int V)
|
|
{
|
|
int minVal = INT_MAX, minInd;
|
|
for (int i = 0; i < V; i++)
|
|
if (vset[i] == 0 && mdist[i] < minVal)
|
|
{
|
|
minVal = mdist[i];
|
|
minInd = i;
|
|
}
|
|
|
|
return minInd;
|
|
}
|
|
|
|
// Utility function to print distances
|
|
void print(int dist[], int V)
|
|
{
|
|
printf("\nVertex Distance\n");
|
|
for (int i = 0; i < V; i++)
|
|
{
|
|
if (dist[i] != INT_MAX)
|
|
printf("%d\t%d\n", i, dist[i]);
|
|
else
|
|
printf("%d\tINF", i);
|
|
}
|
|
}
|
|
|
|
// The main function that finds the shortest path from given source
|
|
// to all other vertices using Dijkstra's Algorithm.It doesn't work on negative
|
|
// weights
|
|
void Dijkstra(struct Graph *graph, int src)
|
|
{
|
|
int V = graph->vertexNum;
|
|
int mdist[V]; // Stores updated distances to vertex
|
|
int vset[V]; // vset[i] is true if the vertex i included
|
|
// in the shortest path tree
|
|
|
|
// Initialise mdist and vset. Set distance of source as zero
|
|
for (int i = 0; i < V; i++) mdist[i] = INT_MAX, vset[i] = 0;
|
|
|
|
mdist[src] = 0;
|
|
|
|
// iterate to find shortest path
|
|
for (int count = 0; count < V - 1; count++)
|
|
{
|
|
int u = minDistance(mdist, vset, V);
|
|
vset[u] = 1;
|
|
|
|
for (int v = 0; v < V; v++)
|
|
{
|
|
if (!vset[v] && graph->edges[u][v] != INT_MAX &&
|
|
mdist[u] + graph->edges[u][v] < mdist[v])
|
|
mdist[v] = mdist[u] + graph->edges[u][v];
|
|
}
|
|
}
|
|
|
|
print(mdist, V);
|
|
|
|
return;
|
|
}
|
|
|
|
// Driver Function
|
|
int main()
|
|
{
|
|
int V, E, gsrc;
|
|
int src, dst, weight;
|
|
struct Graph G;
|
|
printf("Enter number of vertices: ");
|
|
scanf("%d", &V);
|
|
printf("Enter number of edges: ");
|
|
scanf("%d", &E);
|
|
createGraph(&G, V);
|
|
for (int i = 0; i < E; i++)
|
|
{
|
|
printf("\nEdge %d \nEnter source: ", i + 1);
|
|
scanf("%d", &src);
|
|
printf("Enter destination: ");
|
|
scanf("%d", &dst);
|
|
printf("Enter weight: ");
|
|
scanf("%d", &weight);
|
|
addEdge(&G, src, dst, weight);
|
|
}
|
|
printf("\nEnter source:");
|
|
scanf("%d", &gsrc);
|
|
Dijkstra(&G, gsrc);
|
|
|
|
return 0;
|
|
}
|