TheAlgorithms-C/cipher/affine.c
dsmurrow b5b2218e60
feat: added Affine Cipher (#1245)
* feat: added affine cipher

* chore: applied clang-format

* docs: fixed typo

Co-authored-by: Sharon "Cass" Cassidy <monadicdiffusive@proton.me>

* docs: added brief qualifier

Co-authored-by: Sharon "Cass" Cassidy <monadicdiffusive@proton.me>

* chore: added const qualifier to test_string input

* test: added checks for correct ciphertext

* chore: removed asserts in modular_multiplicative_inverse and defined the ASCII conversion character

* removed previous_remainder variable in modular_multiplicative_inverse()

* chore: added brackets

Co-authored-by: David Leal <halfpacho@gmail.com>

* chore: made test function static

Co-authored-by: David Leal <halfpacho@gmail.com>

* docs: added back quotes to variable `a`

Co-authored-by: David Leal <halfpacho@gmail.com>

* docs: added back quotes to more variables

Co-authored-by: David Leal <halfpacho@gmail.com>

* chore: Added capitalization to string indicating passing tests

Co-authored-by: David Leal <halfpacho@gmail.com>

* chore: apply suggestions from code review

---------

Co-authored-by: Sharon "Cass" Cassidy <monadicdiffusive@proton.me>
Co-authored-by: David Leal <halfpacho@gmail.com>
2023-04-13 15:33:42 -06:00

208 lines
4.9 KiB
C

/**
* @file
* @brief An [affine cipher](https://en.wikipedia.org/wiki/Affine_cipher) is a
* letter substitution cipher that uses a linear transformation to substitute
* letters in a message.
* @details Given an alphabet of length M with characters with numeric values
* 0-(M-1), an arbitrary character x can be transformed with the expression (ax
* + b) % M into our ciphertext character. The only caveat is that a must be
* relatively prime with M in order for this transformation to be invertible,
* i.e., gcd(a, M) = 1.
* @author [Daniel Murrow](https://github.com/dsmurrow)
*/
#include <assert.h> /// for assertions
#include <stdio.h> /// for IO
#include <stdlib.h> /// for div function and div_t struct as well as malloc and free
#include <string.h> /// for strlen, strcpy, and strcmp
/**
* @brief number of characters in our alphabet (printable ASCII characters)
*/
#define ALPHABET_SIZE 95
/**
* @brief used to convert a printable byte (32 to 126) to an element of the
* group Z_95 (0 to 94)
*/
#define Z95_CONVERSION_CONSTANT 32
/**
* @brief a structure representing an affine cipher key
*/
typedef struct
{
int a; ///< what the character is being multiplied by
int b; ///< what is being added after the multiplication with `a`
} affine_key_t;
/**
* @brief finds the value x such that (a * x) % m = 1
*
* @param a number we are finding the inverse for
* @param m the modulus the inversion is based on
*
* @returns the modular multiplicative inverse of `a` mod `m`
*/
int modular_multiplicative_inverse(unsigned int a, unsigned int m)
{
int x[2] = {1, 0};
div_t div_result;
if (m == 0) {
return 0;
}
a %= m;
if (a == 0) {
return 0;
}
div_result.rem = a;
while (div_result.rem > 0)
{
div_result = div(m, a);
m = a;
a = div_result.rem;
// Calculate value of x for this iteration
int next = x[1] - (x[0] * div_result.quot);
x[1] = x[0];
x[0] = next;
}
return x[1];
}
/**
* @brief Given a valid affine cipher key, this function will produce the
* inverse key.
*
* @param key They key to be inverted
*
* @returns inverse of key
*/
affine_key_t inverse_key(affine_key_t key)
{
affine_key_t inverse;
inverse.a = modular_multiplicative_inverse(key.a, ALPHABET_SIZE);
// Turn negative results positive
inverse.a += ALPHABET_SIZE;
inverse.a %= ALPHABET_SIZE;
inverse.b = -(key.b % ALPHABET_SIZE) + ALPHABET_SIZE;
return inverse;
}
/**
* @brief Encrypts character string `s` with key
*
* @param s string to be encrypted
* @param key affine key used for encryption
*
* @returns void
*/
void affine_encrypt(char *s, affine_key_t key)
{
for (int i = 0; s[i] != '\0'; i++)
{
int c = (int)s[i] - Z95_CONVERSION_CONSTANT;
c *= key.a;
c += key.b;
c %= ALPHABET_SIZE;
s[i] = (char)(c + Z95_CONVERSION_CONSTANT);
}
}
/**
* @brief Decrypts an affine ciphertext
*
* @param s string to be decrypted
* @param key Key used when s was encrypted
*
* @returns void
*/
void affine_decrypt(char *s, affine_key_t key)
{
affine_key_t inverse = inverse_key(key);
for (int i = 0; s[i] != '\0'; i++)
{
int c = (int)s[i] - Z95_CONVERSION_CONSTANT;
c += inverse.b;
c *= inverse.a;
c %= ALPHABET_SIZE;
s[i] = (char)(c + Z95_CONVERSION_CONSTANT);
}
}
/**
* @brief Tests a given string
*
* @param s string to be tested
* @param a value of key.a
* @param b value of key.b
*
* @returns void
*/
void test_string(const char *s, const char *ciphertext, int a, int b)
{
char *copy = malloc((strlen(s) + 1) * sizeof(char));
strcpy(copy, s);
affine_key_t key = {a, b};
affine_encrypt(copy, key);
assert(strcmp(copy, ciphertext) == 0); // assert that the encryption worked
affine_decrypt(copy, key);
assert(strcmp(copy, s) ==
0); // assert that we got the same string we started with
free(copy);
}
/**
* @brief Test multiple strings
*
* @returns void
*/
static void tests()
{
test_string("Hello!", "&3ddy2", 7, 11);
test_string("TheAlgorithms/C", "DNC}=jHS2zN!7;E", 67, 67);
test_string("0123456789", "840,($ {ws", 91, 88);
test_string("7W@;cdeRT9uL", "JDfa*we?z&bL", 77, 76);
test_string("~Qr%^-+++$leM", "r'qC0$sss;Ahf", 8, 90);
test_string("The quick brown fox jumps over the lazy dog",
"K7: .*6<4 =-0(1 90' 5*2/, 0):- +7: 3>%& ;08", 94, 0);
test_string(
"One-1, Two-2, Three-3, Four-4, Five-5, Six-6, Seven-7, Eight-8, "
"Nine-9, Ten-10",
"H&60>\\2*uY0q\\2*p4660E\\2XYn40x\\2XDB60L\\2VDI0 "
"\\2V6B6&0S\\2%D=p;0'\\2tD&60Z\\2*6&0>j",
51, 18);
printf("All tests have successfully passed!\n");
}
/**
* @brief main function
*
* @returns 0 upon successful program exit
*/
int main()
{
tests();
return 0;
}