mirror of
https://github.com/TheAlgorithms/C
synced 2024-11-29 00:33:14 +03:00
56 lines
1.3 KiB
C
56 lines
1.3 KiB
C
/**
|
|
* \file
|
|
* \brief [Problem 12](https://projecteuler.net/problem=12) solution
|
|
* \author [Krishna Vedala](https://github.com/kvedala)
|
|
*/
|
|
#include <math.h>
|
|
#include <stdio.h>
|
|
#include <stdlib.h>
|
|
|
|
/**
|
|
* Get number of divisors of a given number
|
|
*
|
|
* If \f$x = a \times b\f$, then both \f$a\f$ and \f$b\f$ are divisors of
|
|
* \f$x\f$. Since multiplication is commutative, we only need to search till a
|
|
* maximum of \f$a=b = a^2\f$ i.e., till \f$\sqrt{x}\f$. At every integer till
|
|
* then, there are eaxctly 2 divisors and at \f$a=b\f$, there is only one
|
|
* divisor.
|
|
*/
|
|
long count_divisors(long long n)
|
|
{
|
|
long num_divisors = 0;
|
|
|
|
for (long long i = 1; i < sqrtl(n) + 1; i++)
|
|
if (n % i == 0)
|
|
num_divisors += 2;
|
|
else if (i * i == n)
|
|
num_divisors += 1;
|
|
|
|
return num_divisors;
|
|
}
|
|
|
|
/** Main function */
|
|
int main(int argc, char **argv)
|
|
{
|
|
int MAX_DIVISORS = 500;
|
|
long i = 1, num_divisors;
|
|
long long triangle_number = 1;
|
|
|
|
if (argc == 2)
|
|
MAX_DIVISORS = atoi(argv[1]);
|
|
|
|
while (1)
|
|
{
|
|
i++;
|
|
triangle_number += i;
|
|
num_divisors = count_divisors(triangle_number);
|
|
if (num_divisors > MAX_DIVISORS)
|
|
break;
|
|
}
|
|
|
|
printf("First Triangle number with more than %d divisors: %lld\n",
|
|
MAX_DIVISORS, triangle_number);
|
|
|
|
return 0;
|
|
}
|