TheAlgorithms-C/hash/hash_blake2b.c

481 lines
12 KiB
C

/**
* @addtogroup hash Hash algorithms
* @{
* @file
* @author [Daniel Murrow](https://github.com/dsmurrow)
* @brief [Blake2b cryptographic hash
* function](https://www.rfc-editor.org/rfc/rfc7693)
*
* The Blake2b cryptographic hash function provides
* hashes for data that are secure enough to be used in
* cryptographic applications. It is designed to perform
* optimally on 64-bit platforms. The algorithm can output
* digests between 1 and 64 bytes long, for messages up to
* 128 bits in length. Keyed hashing is also supported for
* keys up to 64 bytes in length.
*/
#include <assert.h> /// for asserts
#include <inttypes.h> /// for fixed-width integer types e.g. uint64_t and uint8_t
#include <stdio.h> /// for IO
#include <stdlib.h> /// for malloc, calloc, and free. As well as size_t
/* Warning suppressed is in blake2b() function, more
* details are over there */
#ifdef __GNUC__
#pragma GCC diagnostic ignored "-Wshift-count-overflow"
#elif _MSC_VER
#pragma warning(disable : 4293)
#endif
/**
* @define bb
* @brief the size of a data block in bytes
*/
#define bb 128
/**
* @define KK_MAX
* @brief max key length for BLAKE2b
*/
#define KK_MAX 64
/**
* @define NN_MAX
* @brief max length of BLAKE2b digest in bytes
*/
#define NN_MAX 64
/**
* @define CEIL
* @brief ceiling division macro without floats
*
* @param a dividend
* @param divisor
*/
#define CEIL(a, b) (((a) / (b)) + ((a) % (b) != 0))
/**
* @define MIN
* @brief returns minimum value
*/
#define MIN(a, b) ((a) < (b) ? (a) : (b))
/**
* @define MAX
* @brief returns maximum value
*/
#define MAX(a, b) ((a) > (b) ? (a) : (b))
/**
* @define ROTR64
* @brief macro to rotate 64-bit ints to the right
* Ripped from RFC 7693
*/
#define ROTR64(n, offset) (((n) >> (offset)) ^ ((n) << (64 - (offset))))
/**
* @define U128_ZERO
* @brief zero-value initializer for u128 type
*/
#define U128_ZERO \
{ \
0, 0 \
}
/** 128-bit number represented as two uint64's */
typedef uint64_t u128[2];
/** Padded input block containing bb bytes */
typedef uint64_t block_t[bb / sizeof(uint64_t)];
static const uint8_t R1 = 32; ///< Rotation constant 1 for mixing function G
static const uint8_t R2 = 24; ///< Rotation constant 2 for mixing function G
static const uint8_t R3 = 16; ///< Rotation constant 3 for mixing function G
static const uint8_t R4 = 63; ///< Rotation constant 4 for mixing function G
static const uint64_t blake2b_iv[8] = {
0x6A09E667F3BCC908, 0xBB67AE8584CAA73B, 0x3C6EF372FE94F82B,
0xA54FF53A5F1D36F1, 0x510E527FADE682D1, 0x9B05688C2B3E6C1F,
0x1F83D9ABFB41BD6B, 0x5BE0CD19137E2179}; ///< BLAKE2b Initialization vector
///< blake2b_iv[i] = floor(2**64 *
///< frac(sqrt(prime(i+1)))),
///< where prime(i) is the i:th
///< prime number
static const uint8_t blake2b_sigma[12][16] = {
{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15},
{14, 10, 4, 8, 9, 15, 13, 6, 1, 12, 0, 2, 11, 7, 5, 3},
{11, 8, 12, 0, 5, 2, 15, 13, 10, 14, 3, 6, 7, 1, 9, 4},
{7, 9, 3, 1, 13, 12, 11, 14, 2, 6, 5, 10, 4, 0, 15, 8},
{9, 0, 5, 7, 2, 4, 10, 15, 14, 1, 11, 12, 6, 8, 3, 13},
{2, 12, 6, 10, 0, 11, 8, 3, 4, 13, 7, 5, 15, 14, 1, 9},
{12, 5, 1, 15, 14, 13, 4, 10, 0, 7, 6, 3, 9, 2, 8, 11},
{13, 11, 7, 14, 12, 1, 3, 9, 5, 0, 15, 4, 8, 6, 2, 10},
{6, 15, 14, 9, 11, 3, 0, 8, 12, 2, 13, 7, 1, 4, 10, 5},
{10, 2, 8, 4, 7, 6, 1, 5, 15, 11, 9, 14, 3, 12, 13, 0},
{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15},
{14, 10, 4, 8, 9, 15, 13, 6, 1, 12, 0, 2, 11, 7, 5,
3}}; ///< word schedule permutations for each round of the algorithm
/**
* @brief put value of n into dest
*
* @param dest 128-bit number to get copied from n
* @param n value put into dest
*
* @returns void
*/
static inline void u128_fill(u128 dest, size_t n)
{
dest[0] = n & UINT64_MAX;
if (sizeof(n) > 8)
{
/* The C standard does not specify a maximum length for size_t,
* although most machines implement it to be the same length as
* uint64_t. On machines where size_t is 8 bytes long this will issue a
* compiler warning, which is why it is suppressed. But on a machine
* where size_t is greater than 8 bytes, this will work as normal. */
dest[1] = n >> 64;
}
else
{
dest[1] = 0;
}
}
/**
* @brief increment an 128-bit number by a given amount
*
* @param dest the value being incremented
* @param n what dest is being increased by
*
* @returns void
*/
static inline void u128_increment(u128 dest, uint64_t n)
{
/* Check for overflow */
if (UINT64_MAX - dest[0] <= n)
{
dest[1]++;
}
dest[0] += n;
}
/**
* @brief blake2b mixing function G
*
* Shuffles values in block v depending on
* provided indeces a, b, c, and d. x and y
* are also mixed into the block.
*
* @param v array of words to be mixed
* @param a first index
* @param b second index
* @param c third index
* @param d fourth index
* @param x first word being mixed into v
* @param y second word being mixed into y
*
* @returns void
*/
static void G(block_t v, uint8_t a, uint8_t b, uint8_t c, uint8_t d, uint64_t x,
uint64_t y)
{
v[a] += v[b] + x;
v[d] = ROTR64(v[d] ^ v[a], R1);
v[c] += v[d];
v[b] = ROTR64(v[b] ^ v[c], R2);
v[a] += v[b] + y;
v[d] = ROTR64(v[d] ^ v[a], R3);
v[c] += v[d];
v[b] = ROTR64(v[b] ^ v[c], R4);
}
/**
* @brief compression function F
*
* Securely mixes the values in block m into
* the state vector h. Value at v[14] is also
* inverted if this is the final block to be
* compressed.
*
* @param h the state vector
* @param m message vector to be compressed into h
* @param t 128-bit offset counter
* @param f flag to indicate whether this is the final block
*
* @returns void
*/
static void F(uint64_t h[8], block_t m, u128 t, int f)
{
int i;
block_t v;
/* v[0..7] := h[0..7] */
for (i = 0; i < 8; i++)
{
v[i] = h[i];
}
/* v[8..15] := IV[0..7] */
for (; i < 16; i++)
{
v[i] = blake2b_iv[i - 8];
}
v[12] ^= t[0]; /* v[12] ^ (t mod 2**w) */
v[13] ^= t[1]; /* v[13] ^ (t >> w) */
if (f)
{
v[14] = ~v[14];
}
for (i = 0; i < 12; i++)
{
const uint8_t *s = blake2b_sigma[i];
G(v, 0, 4, 8, 12, m[s[0]], m[s[1]]);
G(v, 1, 5, 9, 13, m[s[2]], m[s[3]]);
G(v, 2, 6, 10, 14, m[s[4]], m[s[5]]);
G(v, 3, 7, 11, 15, m[s[6]], m[s[7]]);
G(v, 0, 5, 10, 15, m[s[8]], m[s[9]]);
G(v, 1, 6, 11, 12, m[s[10]], m[s[11]]);
G(v, 2, 7, 8, 13, m[s[12]], m[s[13]]);
G(v, 3, 4, 9, 14, m[s[14]], m[s[15]]);
}
for (i = 0; i < 8; i++)
{
h[i] ^= v[i] ^ v[i + 8];
}
}
/**
* @brief driver function to perform the hashing as described in specification
*
* pseudocode: (credit to authors of RFC 7693 listed above)
* FUNCTION BLAKE2( d[0..dd-1], ll, kk, nn )
* |
* | h[0..7] := IV[0..7] // Initialization Vector.
* |
* | // Parameter block p[0]
* | h[0] := h[0] ^ 0x01010000 ^ (kk << 8) ^ nn
* |
* | // Process padded key and data blocks
* | IF dd > 1 THEN
* | | FOR i = 0 TO dd - 2 DO
* | | | h := F( h, d[i], (i + 1) * bb, FALSE )
* | | END FOR.
* | END IF.
* |
* | // Final block.
* | IF kk = 0 THEN
* | | h := F( h, d[dd - 1], ll, TRUE )
* | ELSE
* | | h := F( h, d[dd - 1], ll + bb, TRUE )
* | END IF.
* |
* | RETURN first "nn" bytes from little-endian word array h[].
* |
* END FUNCTION.
*
* @param dest destination of hashing digest
* @param d message blocks
* @param dd length of d
* @param ll 128-bit length of message
* @param kk length of secret key
* @param nn length of hash digest
*
* @returns 0 upon successful hash
*/
static int BLAKE2B(uint8_t *dest, block_t *d, size_t dd, u128 ll, uint8_t kk,
uint8_t nn)
{
uint8_t bytes[8];
uint64_t i, j;
uint64_t h[8];
u128 t = U128_ZERO;
/* h[0..7] = IV[0..7] */
for (i = 0; i < 8; i++)
{
h[i] = blake2b_iv[i];
}
h[0] ^= 0x01010000 ^ (kk << 8) ^ nn;
if (dd > 1)
{
for (i = 0; i < dd - 1; i++)
{
u128_increment(t, bb);
F(h, d[i], t, 0);
}
}
if (kk != 0)
{
u128_increment(ll, bb);
}
F(h, d[dd - 1], ll, 1);
/* copy bytes from h to destination buffer */
for (i = 0; i < nn; i++)
{
if (i % sizeof(uint64_t) == 0)
{
/* copy values from uint64 to 8 u8's */
for (j = 0; j < sizeof(uint64_t); j++)
{
uint16_t offset = 8 * j;
uint64_t mask = 0xFF;
mask <<= offset;
bytes[j] = (h[i / 8] & (mask)) >> offset;
}
}
dest[i] = bytes[i % 8];
}
return 0;
}
/* @brief blake2b hash function
*
* This is the front-end function that sets up the argument for BLAKE2B().
*
* @param message the message to be hashed
* @param len length of message (0 <= len < 2**128) (depends on sizeof(size_t)
* for this implementation)
* @param key optional secret key
* @param kk length of optional secret key (0 <= kk <= 64)
* @param nn length of output digest (1 <= nn < 64)
*
* @returns NULL if heap memory couldn't be allocated. Otherwise heap allocated
* memory nn bytes large
*/
uint8_t *blake2b(const uint8_t *message, size_t len, const uint8_t *key,
uint8_t kk, uint8_t nn)
{
uint8_t *dest = NULL;
uint64_t long_hold;
size_t dd, has_key, i;
size_t block_index, word_in_block;
u128 ll;
block_t *blocks;
if (message == NULL)
{
len = 0;
}
if (key == NULL)
{
kk = 0;
}
kk = MIN(kk, KK_MAX);
nn = MIN(nn, NN_MAX);
dd = MAX(CEIL(kk, bb) + CEIL(len, bb), 1);
blocks = calloc(dd, sizeof(block_t));
if (blocks == NULL)
{
return NULL;
}
dest = malloc(nn * sizeof(uint8_t));
if (dest == NULL)
{
free(blocks);
return NULL;
}
/* If there is a secret key it occupies the first block */
for (i = 0; i < kk; i++)
{
long_hold = message[i];
long_hold <<= 8 * (i % 8);
word_in_block = (i % bb) / 8;
/* block_index will always be 0 because kk <= 64 and bb = 128*/
blocks[0][word_in_block] |= long_hold;
}
has_key = kk > 0 ? 1 : 0;
for (i = 0; i < len; i++)
{
/* long_hold exists because the bit-shifting will overflow if we don't
* store the value */
long_hold = message[i];
long_hold <<= 8 * (i % 8);
block_index = has_key + (i / bb);
word_in_block = (i % bb) / 8;
blocks[block_index][word_in_block] |= long_hold;
}
u128_fill(ll, len);
BLAKE2B(dest, blocks, dd, ll, kk, nn);
free(blocks);
return dest;
}
/** @} */
/**
* @brief Self-test implementations
* @returns void
*/
static void assert_bytes(const uint8_t *expected, const uint8_t *actual,
uint8_t len)
{
uint8_t i;
assert(expected != NULL);
assert(actual != NULL);
assert(len > 0);
for (i = 0; i < len; i++)
{
assert(expected[i] == actual[i]);
}
printf("All tests have successfully passed!\n");
}
/**
* @brief Main function
* @returns 0 on exit
*/
int main()
{
uint8_t *digest = NULL;
/* "abc" example straight out of RFC-7693 */
uint8_t abc[3] = {'a', 'b', 'c'};
uint8_t abc_answer[64] = {
0xBA, 0x80, 0xA5, 0x3F, 0x98, 0x1C, 0x4D, 0x0D, 0x6A, 0x27, 0x97,
0xB6, 0x9F, 0x12, 0xF6, 0xE9, 0x4C, 0x21, 0x2F, 0x14, 0x68, 0x5A,
0xC4, 0xB7, 0x4B, 0x12, 0xBB, 0x6F, 0xDB, 0xFF, 0xA2, 0xD1, 0x7D,
0x87, 0xC5, 0x39, 0x2A, 0xAB, 0x79, 0x2D, 0xC2, 0x52, 0xD5, 0xDE,
0x45, 0x33, 0xCC, 0x95, 0x18, 0xD3, 0x8A, 0xA8, 0xDB, 0xF1, 0x92,
0x5A, 0xB9, 0x23, 0x86, 0xED, 0xD4, 0x00, 0x99, 0x23};
digest = blake2b(abc, 3, NULL, 0, 64);
assert_bytes(abc_answer, digest, 64);
free(digest);
return 0;
}