TheAlgorithms-C/numerical_methods/newton_raphson_root.c

77 lines
1.8 KiB
C

/**
* @file
* \brief Find approximate solution for \f$f(x) = 0\f$ using
* Newton-Raphson interpolation algorithm.
*
* \author [Krishna Vedala](https://github.com/kvedala)
*/
#include <complex.h> /* requires minimum of C99 */
#include <limits.h>
#include <math.h>
#include <stdio.h>
#include <stdlib.h>
#include <time.h>
#define ACCURACY 1e-10 /**< solution accuracy */
/**
* Return value of the function to find the root for.
* \f$f(x)\f$
*/
double complex func(double complex x)
{
return x * x - 3.; /* x^2 = 3 - solution is sqrt(3) */
// return x * x - 2.; /* x^2 = 2 - solution is sqrt(2) */
}
/**
* Return first order derivative of the function.
* \f$f'(x)\f$
*/
double complex d_func(double complex x) { return 2. * x; }
/**
* main function
*/
int main(int argc, char **argv)
{
double delta = 1;
double complex cdelta = 1;
/* initialize random seed: */
srand(time(NULL));
/* random initial approximation */
double complex root = (rand() % 100 - 50) + (rand() % 100 - 50) * I;
unsigned long counter = 0;
/* iterate till a convergence is reached */
while (delta > ACCURACY && counter < ULONG_MAX)
{
cdelta = func(root) / d_func(root);
root += -cdelta;
counter++;
delta = fabs(cabs(cdelta));
#if defined(DEBUG) || !defined(NDEBUG)
if (counter % 50 == 0)
{
double r = creal(root);
double c = cimag(root);
printf("Iter %5lu: Root: %4.4g%c%4.4gi\t\tdelta: %.4g\n", counter,
r, c >= 0 ? '+' : '-', c >= 0 ? c : -c, delta);
}
#endif
}
double r = creal(root);
double c = fabs(cimag(root)) < ACCURACY ? 0 : cimag(root);
printf("Iter %5lu: Root: %4.4g%c%4.4gi\t\tdelta: %.4g\n", counter, r,
c >= 0 ? '+' : '-', c >= 0 ? c : -c, delta);
return 0;
}